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Abstract

This paper proposes a class of nonlinear stochastic volatil-
ity (SV) models based on the Box-Cox transformation.
The proposed class encompasses many parametric SV
models that have appeared in the literature, including the
well known lognormal SV model, and has an advantage in
the ease with which different specifications on SV can be
tested. In addition, the functional form of transformation
which induces marginal normality of volatility is obtained
as a byproduct of this general way of modeling SV. Effi-
cient method of moments is used to estimate the model.
Empirical results reveal that the lognormal SV model is
rejected.
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1. Introduction

Modeling the volatility of financial time series via stochas-
tic volatility (SV) models has received a great deal of at-
tention both in the theoretical finance and in the empirical
finance literature. Prices of options based on SV models
are shown to be more accurate than those based on the
Black-Scholes model (see, for example, Melino and Turn-
bull (1990)). Moreover, the SV model is proved to be a
serious competitor to GARCH-type models for explaining
time varying volatility. Empirical successes of the log-
normal SV model relative to GARCH are documented in
Kim, et al. (1998) in terms of in-sample fitting, and in Yu
(2002) in terms of out-of-sample forecasting.

In the option pricing literature, the SV model is often
formulated in terms of stochastic differential equations.
For instance, Wiggins (1987), Chesney and Scott (1989),
and Scott (1987) specify the following model for the asset
price P (t) and the corresponding volatility σ2(t),

dP (t)/P (t) = αdt + σ(t)dB1(t), (0.1)

d lnσ2(t) = λ(ξ − lnσ2(t))dt + γdB2(t), (0.2)

where B1(t) and B2(t) are two independent standard
Brownian motions.

In the empirical literature, the above continuous time
model is often discretized. For example, the Euler-
Maruyama The approximation, after a location shift and

reparameterization, leads to the so-called lognormal SV
model given by

Xt = σtet, (0.3)

lnσ2
t = µ + φ(lnσ2

t−1 − µ) + σvt, (0.4)

where Xt is the continuously compounded return and et, vt

are two uncorrelated sequences of independent and identi-
cally distributed (iid) N(0, 1) variables. In the literature
σt is often represented by exp(1

2ht). One implication of
its specification is that the marginal distribution of log-
arithmic volatility is normal. This assumption has very
important implications for financial economics and risk
management. So far this model as received a great deal of
attention in the econometrics literature.

Alternative SV models have appeared in the litera-
ture. For example, Stein and Stein (1991) and Johnson
and Shanno (1987) assume σ(t) follows, respectively, an
Ornstein-Uhlenbeck (OU) process and a geometric Brow-
nian motion, while Hull and White (1987) and Heston
(1993) assume a geometric Brownian motion and a square-
root process for σ2(t). In the discrete time case, various
SV models can be regarded as generalizations to corre-
sponding GARCH models. For example, a polynomial
SV model is a generalization of GARCH(1,1) (Bollerslev
(1986)) while a square root polynomial SV model is a gen-
eralization of standard deviation GARCH(1,1). Andersen
(1994) introduces a general class of SV models, of which a
class of polynomial SV models has been emphasized. This
class encompasses many discrete time SV models in the
literature.

Despite all these alternative specifications, there is a
lack of procedure for selecting appropriate functional form
of SV. The specification of the correct SV function, on
the other hand, is very important in two respects. First,
different functional forms lead to different formulae for
option pricing. Misspecification of the SV function can
result in incorrect option prices. Second, the marginal
distribution of volatility depends upon the functional form
of SV.

In this paper, we propose a new class of SV models,
namely, the nonlinear SV model. Like the class of Ander-
sen (1994), it includes as special cases many discrete time
SV models that have appeared in the literature. It over-
laps with but does not encompass the class of Andersen.



An advantage of our proposed class is the ease with which
different specifications on SV can be tested. In fact, the
specification test is based on a single parameter. Another
advantage of our proposed class is that, as a byproduct
of this general way of modeling volatility, one obtains the
functional form of transformation which induces marginal
normality of volatility. Section 2 presents this class of
nonlinear models. In Section 3, we use efficient method of
moments (EMM) to estimate the model. In Section 4, the
class is fitted to daily observations on an index return.

2. A Class of Nonlinear SV Models

The lognormal SV model specifies that the logarithmic
volatility follows an AR(1) process. However, this rela-
tionship may not always be warranted by the data. A
natural generalization to this relationship is to allow a
general (nonlinear) smooth function of volatility to follow
an AR(1) process. That is,

Xt = σtet, (0.5)

h(σ2
t , δ) = µ + φ[h(σ2

t−1, δ)− µ] + σvt, (0.6)

where et and vt are two uncorrelated N(0, 1) sequences,
and h is a smooth function indexed by a parameter δ. A
nice choice of this function is the Box-Cox power function
(Box and Cox (1964)):

h(t, δ) =

 (tδ − 1)/δ, if δ 6= 0,

log t, if δ = 0.
(0.7)

As the function h is specified as a general nonlinear func-
tion, we call the model the nonlinear SV model. Sev-
eral attractive features of this new class of SV models in-
clude: i) as we will show below it includes the lognormal
SV model and the other “classical” SV models as special
cases, ii) it adds great flexibility on the functional form,
and iii) it allows a simple test for the lognormal SV specifi-
cation, i.e., a test of H0 : δ = 0, and some other “classical”
SV specifications. If we write ht = h(σ2

t , δ), then we can
re-write the nonlinear SV models as

Xt = [g(ht, δ)]1/2et, (0.8)
ht = µ + φ(ht−1 − µ) + σvt, (0.9)

where g(ht, δ) is the inverse Box-Cox transformation:

g(ht, δ) =

 (1 + δht)1/δ, if δ 6= 0,

exp(ht), if δ = 0.
(0.10)

Equivalently we can re-write them in a form of

Xt = σtet, (0.11)

(σ2
t )δ − 1

δ
= µ + φ[

(σ2
t−1)

δ − 1
δ

− µ] + σvt. (0.12)

Table 1: Alternative Stochastic Volatility Models and Pa-
rameter Relationship

Models δ µ φ

Wiggins lnσ2
t = µ+ 0

Scott φ(lnσ2
t−1 − µ) + σvt

Kim et al.

Scott σt = µ+ 0.5
Andersen φ(σt−1 − µ) + σvt

Heston σt = φσt−1 + σvt 0.5 0

Hull & White lnσ2
t = µ+ 0 1

lnσ2
t−1 + σvt

Andersen σ2
t = µ+ 1

φ(σ2
t−1 − µ) + σvt

Clark lnσ2
t = µ + σvt 0 0

Nonlinear ((σ2
t )δ − 1)/δ = µ+

SV φ[((σ2
t−1)

δ − 1)/δ − µ]
+σvt

Denote the parameters of interest by θ = (µ, δ, φ, σ).
The idea of our proposed SV models is similar to that

in Higgins and Bera (1992) from the linear ARCH model
(Engle (1982)) to the nonlinear ARCH (NARCH) model.
Obviously, our model provides a stochastic volatility gen-
eralization of a nonlinear GARCH(1,1) model.

It can be seen as δ → 0, (1 + δht)1/(2δ) → exp(0.5ht)
and ((σ2

t )δ − 1)/δ → lnσ2
t . Hence the proposed nonlinear

SV model includes the lognormal SV model as a special
case. If δ = 1, the variance equation (0.12) becomes

σ2
t = µ′ + φ(σ2

t−1 − µ′) + σvt, (0.13)

where µ′ = µ + 1. This is a polynomial SV model in An-
dersen (1994). According to this specification, volatility
follows a normal distribution as its marginal distribution.
If δ = 0.5, the variance equation (0.12) becomes

σt = µ′′ + φ(σt−1 − µ′′) + 0.5σvt, (0.14)

where µ′′ = 0.5µ + 1. This is a square root polynomial
SV model in Andersen (1994) and can be regarded as a
discrete time version of the continuous time SV model in
Scott (1987) and Stein and Stein (1991). As a result, the
marginal distribution of the square root of volatility is
Gaussian.

In Table 1 we summarize some well-known stochastic
volatility models and show their parameter relations with
our model. For the continuous time stochastic volatility
models, their Euler discrete time versions are considered.
It can be seen that all these models can be obtained from



our model by placing the appropriate restrictions on the
three parameters δ, µ and φ. In fact, all the models except
ours require δ to be 0, 0.5, or 1.1 For a general δ, our
model is different from any of them and δ provides some
idea about the degree of departure from a “classical” para-
metric SV model.

The Box-Cox transformation has been applied in vari-
ous areas in finance. One of the most relevant applications
to our work may be that by Higgins and Bera (1992) who
introduce the nonlinear ARCH model. Another relevant
application is Hentschel (1995) who introduces a family
of GARCH models by applying the Box-Cox transforma-
tion to the conditional standard deviation. A nice feature
of our proposed class is that it provides a simple way to
test the null hypothesis of polynomial SV specifications,
including the lognormal SV specification, against a va-
riety of non-polynomial alternatives. In fact, this spec-
ification test is based entirely on a single parameter, δ.
Moreover, as a consequence of specification testing, our
proposed class provides an effective channel to check the
marginal distribution of unobserved volatility. Therefore,
our method serves as an alternative approach for studying
marginal distribution of daily volatility to the approach
based on ultra-high frequency data that has appeared in
a recent literature (cf Andersen et al., 2001).

3. Estimation by EMM

In this paper we use EMM to estimate the proposed model
and to make inferences. EMM is first introduced by Gal-
lant and Tauchen (1996) and has now found many suc-
cessful applications in economics and finance; see Gallant
and Tauchen (2001a) for a brief review of the literature.
It is closely related to GMM of Hansen (1982). An im-
portant difference between them is that while GMM relies
on an ad hoc chosen set of moment conditions, EMM is
based on a judiciously chosen set of moment conditions.
The moment conditions EMM employs is the expectation
of the score of an auxiliary model which is often referred
to as the score generator.

Let the SV model be the structural model. The condi-
tional density of the structural model is defined by

pt(xt|yt, θ),

where yt is a vector of lagged xt, the true value of θ is θ0

and θ0 ∈ Θ ⊂ <`θ with `θ being the length of θ0. Denote
the conditional density of an auxiliary model by

ft(xt|yt, β), β ∈ R ⊂ <`β .

1Some specifications in Table 1 may be different from the ac-
tual specifications used in the original references. However, they
are equivalent to each other via Ito’s lemma. For example, Heston
(1993) adopts a square root specification for σ2

t which is identical to
assuming σt follows a particular OU process.

Further define the expected score of the auxiliary model
under the structural model as

m(θ, β) =
∫
· · ·

∫
∂

∂β
ln f(x|y, β)p(x|y, θ)p(y|θ)dxdy.

Obviously, in the context of the SV model, the integra-
tion cannot be solved analytically since neither p(x|y, θ)
nor p(y|θ) has closed form. However, it is easy to simu-
late from an SV model so that one can approximate the
integral by Monte Carlo simulations. That is

m(θ, β) ≈ mN (θ, β) ≡ 1
N

N∑
τ=1

∂

∂β
ln f(x̂τ (θ)|ŷτ (θ), β),

where {x̂τ , ŷτ} are simulated from the structural model.
The EMM estimator is a minimum chi-squared estimator
which minimizes the following quadratic form,

θ̂n = arg min
θ∈Θ

m′
N (θ, β̂n)(In)−1mN (θ, β̂n),

where β̂n is a quasi maximum likelihood estimator of the
auxiliary model and In is an estimate of

I0 = lim
n→∞

V ar

(
1√
n

n∑
t=1

{ ∂

∂β
ln ft(xt|yt, β

∗)}
)

with β∗ being the pseudo true value of β. Under regu-
larity conditions, Gallant and Tauchen (1996) show that
the EMM estimator is consistent and has the following
asymptotic normal distribution,

√
n(θ̂n − θ0)

d→ N(0,
∂

∂θ
m(θ0, β

∗)(I0)−1 ∂

∂θ′
m(θ0, β

∗)).

For specification testing, we have

Jn = nm′
N (θ̂n, β̂n)(In)−1mN (θ̂n, β̂n) d→ χ2

`β−`θ

under the null hypothesis that the structural model is cor-
rect. When a model fails the above specification test one
may wish to examine the quasi-t-ratios and/or t-ratios to
look for some suggestion as to what is wrong with the
structural model. Large quasi-t-ratios and t-ratios reveal
the features of the data that the structural model cannot
approximate.

Furthermore, Gallant and Tauchen (1996) show that
if the auxiliary model nests the data generating process,
EMM has the same asymptotic variance as maximum like-
lihood and hence is fully efficient. If the auxiliary model
closely approximate the data generating process, EMM is
nearly fully efficient (Gallant and Long (1997)).

To choose an auxiliary model, the seminonparametric
(SNP) density proposed by Gallant and Tauchen (1989)
can be used since its success has been documented in many
applications. As to SNP modeling, six out of eight tuning



parameters are to be selected, namely, Lu, Lg, Lr, Lp, Kz,
and Ky. The other two parameters, Iz and Ix, are irrele-
vant for univariate time series and hence are set to 0. Lu

determines the location transformation whereas Lg and
Lr determine the scale transformation. Altogether they
determine the nature of the leading term of the Hermite
expansion. The other two parameters Kz and Ky deter-
mine the nature of the innovation. To search for a good
auxiliary model, one can use the Schwarz BIC criterion to
move along an upward expansion path until an adequate
model is found, as outlined in Bansal et al. (1995). To
preserve space we refer readers to Gallant and Tauchen
(2001b) for further discussion about the role of the tun-
ing parameters and how to design an expansion path to
choose them.

4. An Empirical Application

In this section we consider an application using a stock in-
dex series which consist of 4044 observations on 100 times
the log-first difference of the daily S&P 500 index for the
period from January 4, 1977 to December 31, 1992. The
same data have been used in Gallant and Tauchen (2001a)
to fit the SV model of Clark (1973). Since the return se-
ries is not mean-adjusted, to allow for a possible no-zero
mean and also some dynamics in mean, we introduce an
AR(1) structure in the mean equation. As a consequence,
we fit the following two models to the data:

Xt = µ0 + c(Xt−1 − µ0) + exp(
1
2
ht)et, (0.15)

ht = µ + φ(ht−1 − µ) + σvt; (0.16)

and

Xt = µ0 + c(Xt−1 − µ0) + (1 + δht)1/(2δ)et, (0.17)

ht = µ + φ(ht−1 − µ) + σvt. (0.18)

We call them the lognormal SV model and the proposed
SV model respectively.

The same sets of tuning parameters as in Gallant and
Tauchen (2001a) are employed in the SNP model, since
the identical dataset is used. We report these tuning pa-
rameters in the following order

(Lu, Lg, Lr, Lp,Kz, Iz,Ky, Iy).

To ensure that the chosen SNP model is reasonable, we
have compared the BIC value with those from many al-
ternative sets of tuning parameters and find that the BIC
value from the chosen SNP model is one of the small-
est. The set of the tuning parameters, the corresponding
BIC value, the leading term in the Hermite expansion,
the characterization of Xt and the number of parameters
in the auxiliary model are presented in Table 2 where an
ARCH leading term is used.

Table 2: Tuning parameters for SNP modeling, BIC, Lead-
ing Term, Characterization of Xt and the Number of Pa-
rameters in the Auxiliary Model

Data Tuning parameters BIC

SP500 (2, 0, 11, 1, 4, 0, 0, 0) 1.32715

Leading term Characterization of Xt `β

ARCH Semiparametric ARCH 19

Since the sample size is large, we believe that the choice
of leading term is not crucial as long as a form of con-
ditional heteroskedasticity has been accommodated. In a
Monte Carlo study, Andersen et al. (1999) find that the
EMM efficiency approaches that of maximum likelihood
for larger sample size when various forms of conditional
heteroskedasticity are used as the leading term. More-
over, they find that the EMM-based inferences, such as
the t-statistic and Jn statistic, are robust to the choice of
auxiliary model when the sample size is large.

Table 3 and Table 4 report the empirical results, where
we perturb starting values when doing the optimizations.
Furthermore, we simulate 101,000 observations from the
SV models, of which first 1,000 observations are discarded
in order to let transients die out. Table 3 reports the
estimates, the numerical Wald standard errors, the 95%
approximate criterion-difference confidence intervals, the
value of statistic Jn, and the degrees of freedom and the
p-value of Jn for the lognormal SV model and for the
proposed SV model. Table 4 reports the quasi-t-ratios
and t-ratios from the score generator for both models.

A few results emerge from these two tables. First and
most interestingly, the point estimate of δ is −0.4597. It is
significantly less than 0 and hence significantly less than
0.5 and 1. As a consequence, one has to reject the log-
normal SV model and all the other SV models in Table 1.
Observing that δ is not significantly different from −0.5,
to gain some idea about our estimated results, we approx-
imate δ ≈ −0.5, plug the estimates into Equation (0.12)
and get the following estimated variance equation:

1
σt

= 1.2237 + 0.9840(
1

σt−1
− 1.2237) + 0.057vt.

This compares to the estimated variance equation in the
lognormal model,

lnσ2
t = −0.3425 + 0.9846(lnσ2

t−1 + 0.3425) + 0.1022vt.

It can be easily demonstrated that the two marginal dis-
tributions are not close to each other and hence the log-
normal distribution is not a good approximation to the



Table 3: Parameter estimates, standard errors, confidence
intervals, χ2 criterion for S&P500

Lognormal SV model Proposed SV model

µ0 0.0389 0.0387
(0.0136) (0.0137)

[0.0123, 0.0651] [0.0122, 0.0650]

c 0.0880 0.0875
(0.0159) (0.0158)

[0.0583, 0.1179] [0.0579, 0.1177]

µ −0.3425 −0.4474
(0.0613) (0.0812)

[−0.4593,−0.2291] [−0.5066,−0.3441]

φ 0.9846 0.9840
(0.0120) (0.0106)

[0.9657, 0.9966] [0.9736, 0.9946]

σ 0.1022 0.1140
(0.0456) (0.0405)

[0.0566, 0.1719] [0.0734, 0.1532]

δ NA −0.4597
(0.1807)

[−0.6316,−0.2885]

χ2 25.01 21.65

df 14 13

p− value 0.034 0.061

marginal distribution of volatility. Furthermore, theoret-
ically speaking a distributional constraint has to be im-
posed on ht in the proposed SV models to ensure non-
negativeness of σt. In the empirical applications, how-
ever, we still adopt the assumption of exact normality. To
understand how restricted this assumption is, we calcu-
late Prob(σt < 0)=Prob(1/σt < 0)=0.0000065 which is
a very small value. Besides, our model is not limited to
the Box-Cox power transform. Some other transforma-
tions, which do not have this restriction (such as the one
in Yang (2006)), may be used.

Second, the point estimate of φ (0.984) is close to 1
and just in the stationary region. It remains almost the
same in the proposed model. In fact all the estimated
parameters have similar magnitude and standard errors
across both models. The only exceptions are µ which de-
creases from -0.3425 to -0.4474 and σ which increases from
0.1022 to 0.1140. This is because µ and σ are closely re-
lated to δ in the proposed model. Since the estimated δ
is far away from 0 in the proposed model, this translates

Table 4: Quasi-t-ratios and t-ratios for S&P500

Lognormal SV model Proposed SV model

Quasi-t-ratio T-ratio Quasi-t-ratio T-ratio

VAR b1 −0.096 −0.334 −0.089 −0.302
b2 −1.243 −1.249 −1.243 −1.259
b3 −0.446 −1.540 −0.436 −1.571

ARCH r1 0.781 1.391 0.676 1.471
r2 0.627 0.909 0.513 0.896
r3 0.130 0.224 0.028 0.051
r4 1.122 1.228 1.047 1.160
r5 1.053 1.498 0.933 1.399
r6 0.253 0.312 0.132 0.179
r7 0.066 0.088 −0.052 −0.071
r8 1.032 1.521 0.861 1.489
r9 0.881 1.040 0.754 0.945
r10 0.549 0.588 0.448 0.494
r11 −0.243 −0.280 −0.388 −0.500
r12 0.257 0.270 0.145 0.159

SNP s1 0.033 0.063 0.093 0.179
s2 0.977 3.091 0.706 2.477
s3 0.205 0.232 0.258 0.291
s4 2.303 3.767 1.798 3.332

to large discrepancies between the estimated µ’s and the
estimated σ’s. Third, the minimum χ2 criterion provides
mild evidence against the lognormal specification, which
is rejected at the 5% level but not at the 1% level. The ev-
idence is consistent with the diagnostic quasi-t-ratios and
t-ratios. There are large quasi-t-ratios and t-ratios on the
scores corresponding to the polynomial part of the SNP
score. These t-statistics indicate that exp(0.5ht) may not
be the correct transformation. When the proposed SV
model is fitted, the p-value of Jn statistic increases by
about 80%. One can accept the proposed model at the
5% level. Furthermore, all the quasi-t-ratios become in-
significant in the proposed model. Although some of the
t-ratios on the scores corresponding to the polynomial part
of the SNP score are still too large, they are clearly smaller
than those in the lognormal model.
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