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The purpose of this online supplement is to prove Theorem 3.2 in Li, et al (2017),

that is, to show under H0 that B̃IMT has the same asymptotic distribution as BIMT

and that B̃MT has the same asymptotic distribution as BMT. Based on Proposition

3.1, the relationship B̃IMT =BIMT+op(n
−1/2) is enough to guarantee that B̃IMT and

BIMT have the same asymptotic distribution. Based on Theorem 3.1, J̃1 = J1 + op(1)

and J̃0 = J0 + op(1) are enough to guarantee that B̃MT and BMT will have the same
asymptotic distribution. Therefore, what we try to find are an order condition for M to

ensure B̃IMT =BIMT+op(n
−1/2) and order conditions for M and ML to ensure J̃1 =

J1 + op(1) and J̃0 = J0 + op(1). Note that B̃IMT and J̃0 are based on MCMC output
obtained from the null model while J̃1 is based on MCMC output obtained from both the
null model and the expanded model because J1 = tr

{
CE

(
y,
(
θ̄,θE = 0

))
VE
(
θ̄L
)}

.
We organize this supplement as follows. In Section 1, we give an order condition for M

to ensure that B̃IMT =BIMT+op(n
−1/2). In Section 2, we give order conditions for M

and ML to ensure that J̃1 = J1 + op(1). In Section 3, we give an order condition for M to
ensure that J̃0 = J0 + op(1). Section 4 proves Theorem 3.2. Throughout this supplement,
the sample size n is assumed to go to infinity.

1 Order Condition for M to Ensure B̃IMT =BIMT+op(n
−1/2)

Under H0, Ĵn(θ̄) = Op(1) and nV (θ̄) = Op(1). If Ĵn(θ̃) − Ĵn(θ̄) = op(n
−1/2) and

n
(
Ṽ (θ̃)− V (θ̄)

)
= op(n

−1/2), then we will have

B̃IMT = ntr
{

Ĵn

(
θ̃
)
Ṽ
(
θ̃
)}

= tr
{

Ĵn

(
θ̃
)
nṼ
(
θ̃
)}

= tr
{[

Ĵn

(
θ̄
)

+ op(n
−1/2)

] [
n
(
Ṽ
(
θ̃
)
− V

(
θ̄
))

+ nV
(
θ̄
)]}

= tr
{[

Ĵn

(
θ̄
)

+ op(n
−1/2)

] [
nV
(
θ̄
)

+ op(n
−1/2)

]}
= tr

{
nĴn

(
θ̄
)
V
(
θ̄
)}

+ tr
{

Ĵn

(
θ̄
)
op(n

−1/2)
}

+ tr
{
nV
(
θ̄
)
op(n

−1/2)
}

+ op(n
−1)
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= BIMT+op(n
−1/2) = IOSA + op(n

−1/2) = q × IR + op(n
−1/2).

Together with Proposition 3.1, this will ensure that B̃IMT has the same asymptotic
distribution as BIMT. In Section 1.1 we give an order condition for M to ensure Ĵn(θ̃)−
Ĵn(θ̄) = op(n

−1/2). In Section 1.2 we then give an order condition for M to ensure

n
(
Ṽ (θ̃)− V (θ̄)

)
= op(n

−1/2).

1.1 Order condition for M to ensure Ĵn

(
θ̃
)
− Ĵn

(
θ̄
)
= op(n

−1/2)

Let us first assume θ is a scalar. Let σ21n be the long run variance of Markov chain,{
θ
(m)
n

}M

m=1
, i.e., σ21n = V ar

(
θ
(1)
n |y

)
+ 2

∑∞
k=1 γn (k|y) where γ1n (k|y) is the kth order

autocovariance. Note that V ar
(
θ
(1)
n |y

)
is the posterior variance V

(
θ̄
)
. We can rewrite

σ21n as

σ21n = V ar
(
θ(1)n |y

)
+ 2

∑∞

k=1
γ1n (k|y) = 2

∑∞

k=0
γ1n (k|y)− V ar

(
θ(1)n |y

)
=

2
∑∞

k=0

γ1n (k|y)

V ar
(
θ
(1)
n |y

) − 1

V ar
(
θ(1)n |y

)
=
(

2
∑∞

k=0
ρ (k)− 1

)
V ar

(
θ(1)n |y

)
.

According to Jones (2004), under Assumption 13, as M →∞, we have

√
Mσ−11n

(
θ̃ − θ̄

)
d→ N (0, 1) . (1)

By the Taylor expansion and (1), we have

Ĵn

(
θ̃
)

=
1

n

n∑
t=1

st

(
θ̃
)2

=
1

n

n∑
t=1

[
st
(
θ̄
)

+ ht

(
θ̃4

)(
θ̃ − θ̄

)]2
=

1

n

n∑
t=1

st
(
θ̄
)2

+
2

n

n∑
t=1

ht

(
θ̃4

)(
θ̃ − θ̄

)
st
(
θ̄
)

+
1

n

n∑
t=1

[
ht

(
θ̃4

)(
θ̃ − θ̄

)]2
= Ĵn

(
θ̄
)

+O

(
1√
M
σ1n

)
2

n

n∑
t=1

ht

(
θ̃4

)
st
(
θ̄
)

+O

(
1

M
σ21n

)
1

n

n∑
t=1

ht

(
θ̃4

)2
= Ĵn

(
θ̄
)

+O

(
1√
M
σ1n

)
Op(1) +O

(
1

M
σ21n

)
Op(1),

where θ̃4 lies between θ̃ and θ̄ and 2
n

∑n
t=1 ht

(
θ̃4

)
st
(
θ̄
)

= Op (1) and 1
n

∑n
t=1 ht

(
θ̃4

)2
=

Op (1) by Assumptions 10-12.
To show

Ĵn

(
θ̃
)

= Ĵn

(
θ̄
)

+ op(n
−1/2), (2)

it is enough to have
1√
M
σ1n = op

(
n−1/2

)
, (3)
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which is equivalent to

M = O
(
n1+c∗1σ21n

)
, for any c∗1 > 0. (4)

The condition (3) is also used in Chen, Gao and Phillips (2017) to obtain the asymptotic
normality of θ̃ when M →∞ and n→∞.

In this paper, θ is a q-dimensional vector. That is why we require

M = n1+c∗1σ2∗1n, (5)

with σ2∗1n = maxa∈{1,...,q} σ
2
1n,a and σ21n,a being the long run variance of

{
θ
(m)
a

}M

m=1
for

a = 1, . . . , q.

1.2 Order condition for M to ensure n
[
Ṽ (θ̃)− V

(
θ̄
)]

= op(n
−1/2)

Again, let us first assume θ is a scalar. Let σ22n = V ar

((
θ
(1)
n − θ̄

)2
|y
)

+2
∑∞

k=1 γ
′
2n (k|y)

be the long run variance of

{(
θ
(m)
n − θ̄

)2}M

m=1

where γ′2n (k|y) is the kth order autoco-

variance of
(
θ
(m)
n − θ̄

)2
.

Note that

Ṽ
(
θ̃
)

=
1

M

M∑
m=1

(
θ(m)
n − θ̃

)2
=

1

M

M∑
m=1

(
θ(m)
n − θ̄ + θ̄−θ̃

)2
=

1

M

M∑
m=1

(
θ(m)
n − θ̄

)2
− 2

M

M∑
m=1

(
θ(m)
n − θ̄

)(
θ̃ − θ̄

)
+

1

M

M∑
m=1

(
θ̄−θ̃

)2
=

1

M

M∑
m=1

(
θ(m)
n − θ̄

)2
− 1

M

M∑
m=1

(
θ̄−θ̃

)2
.

Then we have

√
M
(
Ṽ
(
θ̃
)
− V

(
θ̄
))

=
1√
M

M∑
m=1

(
θ(m)
n − θ̄

)2
−
√
MV

(
θ̄
)
−
√
M
(
θ̃ − θ̄

)2
=
√
M

(
1

M

M∑
m=1

(
θ(m)
n − θ̄

)2
− V

(
θ̄
))
−
√
M
(
θ̃ − θ̄

)2
.

Thus,

√
Mσ−12n

(
Ṽ
(
θ̃
)
− V

(
θ̄
))

=
√
Mσ−12n

(
1

M

M∑
m=1

(
θ(m)
n − θ̄

)2
− V

(
θ̄
))
−
√
Mσ−12n

(
θ̃ − θ̄

)2
.

By (1),
√
Mσ−12n

(
θ̃ − θ̄

)2 p→ 0 as M →∞. Note that

√
Mσ−12n

(
1

M

M∑
m=1

(
θ(m)
n − θ̄

)2
− V

(
θ̄
)) d→ N (0, 1) , (6)
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by the central limit theorem for Markov chains (Jones, 2004) under Assumption 13. Hence,
we have √

Mσ−12n

(
Ṽ
(
θ̃
)
− V

(
θ̄
)) d→ N (0, 1) ,

by the Slusky Theorem. It can be shown that

n
(
Ṽ
(
θ̃
)
− V

(
θ̄
))

=
n√
M
σ2n

[√
Mσ−12n

(
Ṽ
(
θ̃
)
− V

(
θ̄
))]

= op(n
−1/2), (7)

if
n√
M
σ2n = o(n−1/2), (8)

which is equivalent to

M = O
(
n3+c∗2σ22n

)
, for any c∗2 > 0. (9)

Since θ is q-dimensional, we require

M = n3+c∗2σ2∗2n, (10)

with σ2∗2n = maxb∈{1,...,r} σ
2
2n,b and σ22n,b being the long run variance of

{
ϑ
(m)
b

}M

m=1
for

b = 1, . . . , r, where ϑ = vech
[(
θ − θ̄

) (
θ − θ̄

)′]
.

2 Order Conditions for M and ML to Ensure J̃1 − J1 = op(1)

Following Li, et al (2015), 1
nC
(
y,
(
θ̄,θE = 0

))
= Op(1) and nV (θ̄L) = Op(1). If

1

n

[
C
(
y,
(
θ̃,θE = 0

))
− C

(
y,
(
θ̄,θE = 0

))]
= op(1), (11)

and
n
(
Ṽ (θ̃L)− V (θ̄L)

)
= op(1), (12)

we will have

J̃1 = tr
{
CE

(
y,
(
θ̃,θE = 0

))
ṼE

(
θ̃L

)}
= tr

{
1

n
CE

(
y,
(
θ̃,θE = 0

))
nṼE

(
θ̃L

)}
= tr

{[
1

n
CE

(
y,
(
θ̄,θE = 0

))
+ op (1)

] [
nVE

(
θ̄L
)

+ op (1)
]}

= tr
{
CE

(
y,
(
θ̄,θE = 0

))
VE
(
θ̄L
)}

+ op (1)

= J1 + op (1) .

Hence, for B̃MT =BMT+op(1), we need to obtain an order condition for M in the original
model to ensure (11) and an order condition for ML in the expanded model to ensure (12).
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2.1 Order condition for M to ensure 1
n

[
C
(
y,
(
θ̃, θE = 0

))
− C

(
y,
(
θ̄,θE = 0

))]
=

op(1)

Let us first assume θ is a scalar. By the Taylor expansion, we have

1

n
C
(
y,
(
θ̃,θE = 0

))
=

1

n

n∑
t=1

st

(
θ̃,θE = 0

) n∑
t=1

st

(
θ̃,θE = 0

)′
=

1

n

n∑
t=1

[
st
(
θ̄,θE = 0

)
+ ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′]
×

n∑
t=1

[
st
(
θ̄,θE = 0

)
+ ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′]′
=

1√
n

n∑
t=1

[
st
(
θ̄,θE = 0

)
+ ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′]
×

1√
n

n∑
t=1

[
st
(
θ̄,θE = 0

)
+ ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′]′

=
1√
n

n∑
t=1

st
(
θ̄,θE = 0

)( 1√
n

n∑
t=1

st
(
θ̄,θE = 0

))′

+
1√
n

n∑
t=1

st
(
θ̄,θE = 0

)( 1√
n

n∑
t=1

ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′)′

+
1√
n

n∑
t=1

ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′( 1√
n

n∑
t=1

st
(
θ̄,θE = 0

))′

+
1√
n

n∑
t=1

ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′( 1√
n

n∑
t=1

ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′)′
,

where θ̃5 lies between θ̃ and θ̄. Under the null hypothesis, we have

1√
n

n∑
t=1

st
(
θ̄,θE = 0

)( 1√
n

n∑
t=1

ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)′)′

=
1√
n

n∑
t=1

st
(
θ̄,θE = 0

)( 1

n

n∑
t=1

ht

(
θ̃5,θE = 0

) √n√
M
σ1n

(√
Mσ−11n

(
θ̃ − θ̄,0

)))′
= Op (1)Op (1)O

( √
n√
M
σ1n

)
Op(1) = Op

( √
n√
M
σ1n

)
,

and

1√
n

n∑
t=1

ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

)( 1√
n

n∑
t=1

ht

(
θ̃5,θE = 0

)(
θ̃ − θ̄,0

))′
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=
1

n

n∑
t=1

ht

(
θ̃5,θE = 0

)√
n
(
θ̃ − θ̄,0

)( 1

n

n∑
t=1

ht

(
θ̃5,θE = 0

)√
n
(
θ̃ − θ̄,0

))′

=
1

n

n∑
t=1

ht

(
θ̃5,θE = 0

) √n√
M
σ1n

(√
Mσ−11n

(
θ̃ − θ̄,0

))
×(

1

n

n∑
t=1

ht

(
θ̃5,θE = 0

) √n√
M
σ1n

(√
Mσ−11n

(
θ̃ − θ̄,0

)))′
= Op (1)O

( √
n√
M
σ1n

)
Op(1)Op(1)O

( √
n√
M
σ1n

)
Op(1) = Op

( n
M
σ21n

)
Hence, if O

( √
n√
M
σ1n

)
= o(1), that is,

M = O(n1+c∗3σ21n), for any c∗3 > 0, (13)

then
1

n
CE

(
y,
(
θ̃,θE = 0

))
=

1

n
CE

(
y,
(
θ̄,θE = 0

))
+ op (1) .

Again, since θ is q-dimensional, we set

M = n1+c∗3σ2∗1n, for any c∗3 > 0. (14)

2.2 Order condition for ML to ensure n
(
Ṽ (θ̃L)− V ( θ̄L)

)
= op(1)

Since
{
θ
(m)
Ln

}ML

m=1
is a geometrically ergodic Markov chain with stationary distribution as

the posterior distribution of θL, the MCMC estimators of posterior mean θ̄L and posterior
variance V

(
θ̄L
)

can be given by

θ̃L=
1

ML

ML∑
m=1

θ
(m)
Ln , Ṽ

(
θ̃L

)
=

1

ML

ML∑
m=1

(
θ
(m)
Ln − θ̃L

)(
θ
(m)
Ln − θ̃L

)′
.

Let σ2Ln,b be the long run variance of
{
ϑ
(m)
Ln,b

}ML

m=1
for b = 1, 2, · · · , rL where ϑL =

vech
[(
θL − θ̄L

) (
θL − θ̄L

)′]
. If we choose

ML = n2+c∗5σ2∗Ln, for any c∗5 > 0, (15)

with σ2∗Ln = maxb∈{1,2,...,qL(qL+1)/2} σ
2
Ln,b, then using the same proof as in Section 1.2, we

can show that
n
(
Ṽ (θ̃L)− V

(
θ̄L
))

= op(n
−1/2),

n
(
Ṽ (θ̃L)− V

(
θ̄L
))

= op(1).
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3 Order Condition for M to Ensure J̃0 − J0 = op(1)

B̃IMT =BIMT+op(n
−1/4) is a sufficient condition to ensure J̃0 − J0 = op(1). This is

because if B̃IMT =BIMT+op(n
−1/4), then we have

J̃0 =
√
n
(
B̃IMT/q − 1

)2
=
√
n
(

BIMT/q + op

(
n−1/4

)
/q − 1

)2
=
√
n(BIMT/q − 1)2 +

√
nop

(
n−1/2

)
− 2
√
n(BIMT/q − 1)op

(
n−1/4

)
/q

= J0 + op (1) + op

(
n−1/4

)
= J0 + op (1) .

In Section 1, we have shown that under the null hypothesis, Ĵn(θ̄) = Op(1) and nV (θ̄) =

Op(1). If Ĵn(θ̃)− Ĵn(θ̄) = op(n
−1/4) and n

(
Ṽ (θ̃)− V (θ̄)

)
= op(n

−1/4), then we have

B̃IMT = ntr
{

Ĵn

(
θ̃
)
Ṽ
(
θ̃
)}

= tr
{

Ĵn

(
θ̃
)
nṼ
(
θ̃
)}

= tr
{[

Ĵn

(
θ̄
)

+ op(n
−1/4)

] [
n
(
Ṽ
(
θ̃
)
− V

(
θ̄
))

+ nV
(
θ̄
)]}

= tr
{[

Ĵn

(
θ̄
)

+ op(n
−1/4)

] [
nV
(
θ̄
)

+ op(n
−1/4)

]}
= tr

{
nĴn

(
θ̄
)
V
(
θ̄
)}

+ tr
{

Ĵn

(
θ̄
)
op(n

−1/4)
}

+ tr
{
nV
(
θ̄
)
op(n

−1/4)
}

+ op(n
−1/2)

= BIMT+op(n
−1/4)Op(1) + op(n

−1/4)Op(1) + op(n
−1/2)

= BIMT+op(n
−1/4).

According to (8) and (9), to ensure n
[
Ṽ (θ̃)− V

(
θ̄
)]

= op(n
−1/4), we only need

n√
M
σ∗2n = o(n−1/4), (16)

which is equivalent to

M = O
(
n2.5+c∗4σ2∗2n

)
, for any c∗4 > 0. (17)

This order condition is weaker than that specified in (10).

Furthermore, according to (3) and (4), to ensure Ĵn

(
θ̃
)

= Ĵn

(
θ̄
)

+op(n
−1/4), we only

need
1√
M
σ∗1n = o

(
n−1/4

)
, (18)

which is equivalent to

M = O
(
n0.5+c∗6σ2∗1n

)
, for any c∗6 > 0. (19)

This order condition is weaker than that specified in (5).
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4 Proof of Theorem 3.2

Combining the order conditions given by (5) and (10) provides the order condition for
MBIMT given by Equation (8) in Theorem 3.2 when BIMT is used.

Regarding BMT, according Section 2, if M = n1+c∗3σ2∗1n in the original model, then

1

n
CE

(
y,
(
θ̃,θE = 0

))
=

1

n
CE

(
y,
(
θ̄,θE = 0

))
+ op (1) .

If ML = n2+c∗5σ2∗Ln in the expanded model, then

n
(
Ṽ (θ̃L)− V

(
θ̄L
))

= op(1).

Under these two order conditions (one for M and one for ML) we have J̃1 = J1 + op(1).

According to Section 3, if M = max
{
n0.5+c∗6σ2∗1n, n

2.5+c∗4σ2∗2n
}

, we have J̃0 = J0 + op(1).

From Section 2, if M = n1+c∗3σ2∗1n and ML = n2+c∗5σ2∗Ln, we have J̃1 = J1 + op(1). Hence, if
we set the number of MCMC draws to

MBMT = max
{
n0.5+c∗6σ2∗1n, n

1+c∗3σ2∗1n, n
2.5+c∗4σ2∗2n

}
= max

{
n1+c∗3σ2∗1n, n

2.5+c∗4σ2∗2n

}
in the original model and to

ML = n2+c∗5σ2∗Ln

in the expanded model, then we have

B̃MT = J̃1 + J̃0 = BMT + op (1) .

This proves the asymptotic equivalence of B̃MT and BMT. Furthermore, under H0, B̃MT
converges to χ2(qE).

To derive the power property of B̃MT , note that B̃IMT =BIMT+op(n
−1/4) also holds

true for misspecified models when M = max
{
n1+c∗3σ2∗1n, n

2.5+c∗4σ2∗2n
}

. In addition, when
the model is misspecified so that q∗ 6= q, from Theorem 3.1, we can show that

J̃0 =
√
n
(
B̃IMT/q − 1

)2
=
√
n
(

BIMT/q + op

(
n−1/4

)
/q − 1

)2
=
√
n(BIMT/q − 1)2 +

√
nop

(
n−1/2

)
− 2
√
n(BIMT/q − 1)op

(
n−1/4

)
/q

= J0 + op (1) + op

(
n−1/4

)
= J0 + op (1) = Op(

√
n).

Hence, the order of the power of B̃MT is no less than Op(
√
n). This completes the proofs

of Theorem 3.2.
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