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This note corrects an error in Yu and Phillips (2001, hereafter YP) where a time transformation
was used to induce Gaussian disturbances in the discrete time version of a continuous time model.
The error occurs in equations (3.7)–(3.10) of YP where the Dambis–Dubins–Schwarz (hereafter
DDS) theorem was applied to the quadratic variation of the error term in equation (3.6), [M]h, in
order to induce a sequence of stopping time points {tj } for which the disturbance term in (3.10)
follows a normal distribution, facilitating Gaussian estimation.

To apply the DDS theorem, the original error process, M(h) needs to be a continuous
martingale with finite quadratic variation. In YP, it was assumed that M(h) was a continuous
martingale. This note shows that the assumption is generally not warranted and so the DDS
theorem does not induce a Brownian motion. However, a simple decomposition splits the error
process into a trend component and a continuous martingale process. The DDS theorem can
then be applied to the detrended error process, generating a Brownian motion residual. With the
presence of the time-varying trend component, the discrete time model is heteroscedastic and the
regressor is endogenous. The endogeneity is addressed using an instrumental variable procedure
for parameter estimation. In addition, we show that the new stopping time sequence differs from
that in YP by a term of O(a2), where a is the pre-specified normalized timing constant. In the
case where a is often chosen to be the average variance whose value is small, the difference
between the two stopping time sequences is likely small.

The discrete time model of the following (non-linear) continuous time model

dr(t) = (α + βr(t)) dt + σrγ (t)dB(t), (1.1)

has the form

r(t + h) = α

β
(eβh − 1) + eβhr(t) +

∫ h

0
σeβ(h−τ )rγ (t + τ ) dB(τ ), (1.2)
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where B is standard Brownian motion. Let M(h) = σ
∫ h

0 eβ(h−τ )rγ (t + τ ) dB(τ ). YP assumed
that M(h) is a continuous martingale with ‘quadratic variation’:

[M]∗h = σ 2
∫ h

0
e2β(h−τ )r2γ (t + τ ) dτ. (1.3)

Under this assumption, YP used the DDS theorem—see Revuz and Yor (1999)—to induce a
Brownian motion to represent the process M(h). That is, for any fixed ‘timing’ constant a > 0,
YP set

hj+1 = inf
{
s | [Mj ]∗s ≥ a

} = inf

{
s | σ 2

∫ s

0
e2β(s−τ )r2γ (tj + τ ) dτ ≥ a

}
, (1.4)

and constructed a sequence of time points {tj } using the iterations tj+1 = tj + hj+1, leading to
the following version of (1.2) evaluated at {tj }:

r(tj+1) = α

β
(eβhj+1 − 1) + eβhj+1r(tj ) + M(hj+1). (1.5)

If the DDS theorem were applicable, then M(hj+1) = B(a) ∼ N (0, a).
Unfortunately, in general, M(h) is NOT a continuous martingale. There is a trend factor in

M(h) and the quadratic variation calculation (1.3) in YP fails to take account of this factor. M(h)
is not a continuous martingale even when γ = 0. In this simple case, we have

M(h) = σeβh

∫ h

0
e−βs dB(s),

which is an Ornstein–Uhlenbeck (OU) process satisfying dM(h) = βM(h)dh + σdB(h), whose
quadratic variation process is

[M]h = hσ 2 �= σ 2e2βh

∫ h

0
e−2βs ds.

To adjust for the drift in the residual of (1.2), let

M(h) = σ

∫ h

0
eβ(h−s)rγ (s) dB(s) = eβhσ

∫ h

0
e−βsrγ (s) dB(s) = eβhH (h),

where H (h) := σ
∫ h

0 e−βsrγ (s) dB(s) is a continuous martingale. Then M(t) follows the process

dM(t) = βM(t) dt + eβtdH (t) = βM(t) dt + σrγ (t)dB(t),

with

d[H ]t = σ 2e−2βt r2γ (t) dt and d[M]t = σ 2r2γ (t) dt.

Hence, instead of (1.3), the actual quadratic variation of M is

[M]h = σ 2
∫ h

0
r2γ (t + s) ds.

The equation of interest is

r(t) =
[
r(0) + α

β

]
eβt − α

β
+ eβtH (t),
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so that

r(t + h) =
[
r(0) + α

β

]
eβ(t+h) − α

β
+ eβ(t+h)H (t + h)

= eβhr(t) + α

β
(eβh − 1) + eβ(t+h)H (t + h) − eβ(t+h)H (t)

= eβhr(t) + α

β
(eβh − 1) + eβ(t+h)(H (t + h) − H (t))

= eβhr(t) + α

β
(eβh − 1) + eβ(t+h)σ

∫ t+h

t

e−βsrγ (s) dB(s)

= eβhr(t) + α

β
(eβh − 1) + eβhσ

∫ h

0
e−βprγ (t + p) dB(t + p).

Now

Qt (h) = σ

∫ h

0
e−βprγ (t + p) dB(t + p)

is a continuous martingale with dQt (h) = e−βhσ rγ (t + h)dB(t + h) and

d[Qt ]h = e−2βhσ 2r2γ (t + h) dh.

Applying the DDS theorem to Qt with timing constant a so that

h̃j+1 = inf
{
s : [Qtj ]s ≥ a

} = inf

{
s : σ 2

∫ s

0
e−2βpr2γ (tj + p) dp ≥ a

}
, (1.6)

we have

r(tj+1) = eβh̃j+1r(tj ) + α

β

(
eβh̃j+1 − 1

) + eβh̃j+1Qtj

(̃
hj+1

)
,

which has Gaussian N (0, a) innovations and where tj+1 = tj + h̃j+1. However, the step size and
stopping times h̃j+1 are endogenous. As a result, the ordinary least squares or weighted least
squares procedures are inconsistent. To consistently estimate α and β, we note that (1, r(tj )) is a
valid instrument. The estimating equations are

∑
j

(
e−βh̃j+1r(tj+1) − α

β

(
1 − e−βh̃j+1

) − r(tj )

)
r(tj ) = 0 (1.7)

and ∑
j

(
e−βh̃j+1r(tj+1) − α

β

(
1 − e−βh̃j+1

) − r(tj )

)
= 0. (1.8)

Solving these two equations for α and β yields the instrumental variable (IV) estimators of
(α, β) which we denote as (̂α, β̂). The analytic expression for α̂ is

α̂ = β̂

∑
j

[
e−β̂̂̃hj+1r(tj+1(β̂)) − r(tj (β̂))

]
∑

j

(
1 − e−β̂̂̃hj+1

) ,
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and β̂ is obtained by numerically solving the following equation:∑
j

[(
e−β̂̃hj+1r (̂tj+1) − r (̂tj )

)
r (̂tj )

]∑
j

(
1 − e−β̂̃hj+1

)
−

∑
j

(
e−β̂̃hj+1r (̂tj+1) − r (̂tj )

)∑
j

[(
1 − e−β̂̃hj+1 )r (̂tj

)] = 0,

where ̂̃h = h̃(β̂) and t̂j = tj (β̂).
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