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Abstract

The linkage among the realized volatilities of component stocks is important when
modeling and forecasting the relevant index volatility. In this article, the linkage is
measured via an extended Common Correlated Effects (CCEs) approach under a
panel heterogeneous autoregression model where unobserved common factors in
errors are assumed. Consistency of the CCE estimator is obtained. The common fac-
tors are extracted using the principal component analysis. Empirical studies show
that realized volatility models exploiting the linkage effects lead to significantly bet-
ter out-of-sample forecast performance, for example, an up to 32% increase in the
pseudo R2. We also conduct various forecasting exercises on the linkage variables
that compare conventional regression methods with popular machine learning
techniques.

Key words: volatility forecasting, heterogeneous autoregression, common correlated effect, fac-

tor analysis, random forest

JEL classification: C31, C32, G12, G17

Volatility forecasting is central to financial institutions and market regulators. Portfolio

managers tend to maximize returns when facing risk limits. With the development of real-

ized variation based on high-frequency data, we are able to better measure financial market

volatility. From then on, various volatility forecasting models have been put forward in the
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literature, such as the renowned fractionally integrated autoregressive moving average

models used in Andersen et al. (2001) and the heterogeneous autoregressive (HAR) model

proposed by Corsi (2009). No matter how complicated forms the above models can take,

most of them rely on the asset-specific realized volatility histories. On the contrary, the

comovement and spillover effect of risk across assets is well documented in the existing

volatility literature and has been modeled by multivariate general autoregressive condition-

al heteroskedasticity (GARCH) and stochastic volatility (SV) models.1

This article exploits the linkages among the realized volatilities of component stocks to

improve the corresponding stock index volatility forecasting. We propose a heterogeneous

panel HAR (HARP) model assuming unobserved common factors to grasp the linkages.

Our framework is based on the common correlated effect (CCE) estimator of Pesaran

(2006) and allows us to extract unobserved common factors from the residuals of the

econometric model. We demonstrate the consistency of the CCE estimator within our

framework by applying Theorem 1 in Chudik and Pesaran (2015). Regarding the specifica-

tion of cross-sectional unit regressors, we follow the realized semivariance models of Patton

and Sheppard (2015). Another important step for our forecasting implementation is to

model the dynamics of unobserved common factors. We conduct various forecasting exer-

cises and compare regression methods with popular machine learning techniques.

We consider empirical applications to various equity indices, including the NASDAQ

100 exchange-traded fund (ETF), the Dow Jones Industrial Average (DJIA), the Dow Jones

Transportation Average, and the Dow Jones Utility Average. Several novel findings are

summarized as follows. First, the cross-sectional correlation of realized volatilities does

exist for the considered component stocks. This finding holds irrespective of the underlying

models.2 Second, the in-sample results suggest that the role of unobserved common factors

in explaining future volatility is nontrivial. They even carry partially the information con-

tained in realized semivariances, especially the negative ones. Third and perhaps more im-

portantly, we show that incorporating unobserved common factors into the HAR-type

regressions leads to large and significant improvements in forecast accuracy.

It should be noted that there are other empirical applications of the CCE estimator in

the literature. For example, the CCE approach allows Kapetanios and Pesaran (2004) to es-

timate asset return equations with both observed and unobserved common factors. Bernoth

and Pick (2011) utilize the CCE framework to model the linkages between bank and insur-

ance companies so as to improve forecasting the systemic risk. Chudik et al. (2017) develop

tests for debt threshold effects in the context of dynamic heterogeneous panel data models,

where the CCE estimator produces unbiased and consistent coefficient estimates for thresh-

old variables. However, we are not aware of any application of the CCE estimator to the

problem of volatility forecasting.

1 See Bauwens, Laurent, and Rombouts (2006) and Asai, McAleer, and Yu (2006) for more detailed

reviews and discussions.

2 After some normalization of daily realized volatilities for a wide range of asset classes, Bollerslev

et al. (2018) reach a conclusion closely related to ours. Their “normalized risk measures” exhibit al-

most identical unconditional distributions and similar highly persistent autocorrelation functions

when comparing across assets and asset classes.
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This article makes various contributions in several strands of literature. The first

contribution is to extend the HAR model to a heterogeneous panel data model to exploit

the linkages among the realized volatilities of component stocks. This idea is related

to the volatility spillover literature under GARCH or SV framework (see, e.g., Engle,

Ito, and Lin, 1990; King, Sentana, and Wadhwani, 1994), as we all exploit volatility infor-

mation from other time series through some exogenous variables or presumptive common

factors.3 While the factor GARCH and SV models usually attribute the volatility comove-

ment to asset common return factors and hence the consequent factor volatility, our formu-

lation directly estimates common factors driving a panel of realized variances (RVs) by the

CCE estimator. Moreover, our design explicitly deals with endogeneity concerns on model

parameter estimates possibly caused by latent factors.

Our second contribution is to introduce the CCE approach to estimation of the panel

HAR model and establish consistency of the CCE estimator. Third, we add to the literature

on panels of realized volatilities.4 Among this line of work, the nearest to ours are

Bollerslev et al. (2018) and Cheng, Swanson, and Yang (2019), both of which augment the

standard HAR regression with the factors extracted from panels of realized volatilities or

returns.5 In contrast to their setups, our linkage factors are extracted from the residuals of

the CCE framework, a fairly dissimilar way of presuming the role of the common factors.

We show that our model that exclusively exploits the linkage effects outside the asset’s own

histories can lead to increase in the out-of-sample R2 by a wide margin, relative to volatility

forecasting models without accommodating the linkage effects.

In the next section, we review a list of reference HAR-type models. Section 2 discusses

the econometric approach and the forecasting procedure. Section 3 describes the data,

which are analyzed in Section 4. Section 5 conducts some robustness checks. Finally,

Section 6 concludes. An online supplement contains additional empirical and theoretical

results.

3 The factor ARCH models were proposed by Diebold and Nerlove (1989) and Engle, Ng, and

Rothschild (1990), and have been extended by Ng, Engle, and Rothschild (1992) and Bollerslev and

Engle (1993) to model common persistence in conditional variances and covariances. The multivari-

ate SV factor models were developed successively to become a more flexible alternative to

GARCH-type models (see, e.g., King, Sentana, and Wadhwani, 1994; Pitt and Shephard, 1999). The

origins of multivariate stochastic factor models were discussed in Shephard (2004), along with an

intuitive argument of their basic features.

4 Early works of this literature are represented by Anderson and Vahid (2007), Gourieroux, Jasiak,

and Sufana (2009), Bauer and Vorkink (2011), Bauwens, Storti, and Violante (2012), Hautsch, Kyj,

and Oomen (2012), Halbleib and Voev (2014), and Asai and McAleer (2015). However, their feasibility

to panel data of vast dimensions is not clear.

5 The above two papers treat volatility common factors in fairly differentiated ways. The framework

of Cheng, Swanson, and Yang (2019) assumes unobservable common price factors governing pan-

els of asset returns, which can be further used to generate volatility factors. Their factor estimation

is based on a two-step shrinkage procedure in order to select the subset of assets, informative for

extracting factors. Bollerslev et al. (2018) regard their common factors as the global risk factors

influencing across asset classes, which are approximated by the average normalized realized vola-

tilities over all asset classes.
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1 A Review of Reference Models

Before moving into the panel-based HAR model, it is useful to review some HAR-type ref-

erence models, which act either as our basic specification for the CCE estimator or as com-

parison models in the subsequent exercise. Following Andersen and Bollerslev (1998), the

M-sample daily RV at day t can be calculated by summing the corresponding M equally

spaced intra-daily squared returns rt;j. Here, the subscript t indexes the day, and j indicates

the time interval within day t,

RVt �
XM
j¼1

r2
t;j; for t ¼ 1; 2; . . . ;T; j ¼ 1;2; . . . ;M; (1)

where rt;j ¼ pt;j � pt;j�1 with pt;j being the log-price at time (t, j).

To model realized variation, a series of HAR-type models were invented in the litera-

ture, see Corsi, Audrino, and Renò (2012) for a survey. The basic HAR model was intro-

duced by Corsi (2009) and has gained great popularity because of its estimation simplicity

and outstanding out-of-sample performance. The basic HAR model in Corsi (2009) postu-

lates that the h-step-ahead daily RVtþh can be modeled by

RVtþh ¼ b0 þ bdRV 1ð Þ
t þ bwRV 5ð Þ

t þ bmRV 22ð Þ
t þ 1tþh; (2)

where the explanatory variables can take the general form of RV lð Þ
t . It is defined by

RV lð Þ
t � l�1

Xl

s¼1

RVt�s (3)

as the l period averages of daily RV, the bs are the coefficients, and 1tf gt
is the error term.

Since each RV lð Þ
t can be regarded as a volatility cascade, generated by the actions of distinct

types of market participants trading at daily, weekly, or monthly frequencies (Müller et al.,

1993), the lag structure in the HAR model is fixed at some lag index vector l ¼ 1; 5; 22½ �.
Andersen, Bollerslev, and Diebold (2007) extend the standard HAR model from two

perspectives. First, they added the daily jump component Jt to Equation (2) to explicitly

capture its impacts. The extended model is denoted as the HAR-J model,

RVtþh ¼ b0 þ bdRV 1ð Þ
t þ bwRV 5ð Þ

t þ bmRV 22ð Þ
t þ bjJt þ 1tþh; (4)

where the empirical measurement of the squared jumps is Jt ¼ max RVt � BPVt; 0ð Þ, and

the realized bipower variation (BPV) is defined as BPVt � 2=pð Þ�1PM
j¼2 jrt;j�1jjrt;jj: Second,

through a decomposition of RV by the Z1;t statistic in Huang and Tauchen (2005) into the

continuous sample path and the jump components, they extend the HAR-J model by expli-

citly incorporating the above two types of volatility components. The Z1;t statistic distin-

guishes the “significant” jumps CJt from continuous sample path components CSPt:

CSPt � I Zt � Uað Þ � RVt þ I Zt � Uað Þ � BPVt;

CJt � I Zt > Uað Þ �max RVt � BPVt;0ð Þ;

where Zt is the ratio statistic defined in Huang and Tauchen (2005), and Ua is the cumula-

tive distribution function of a standard Gaussian distribution with a level of significance.

The daily, weekly, and monthly average components of CSPt and CJt are then constructed
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in the same manner as RV lð Þ in Equation (3). The model specification for the continuous

HAR-J, namely, HAR-CJ, is given by

RVtþh ¼ b0 þ bc
dCSP 1ð Þ

t þ bc
wCSP 5ð Þ

t þ bc
mCSP 22ð Þ

t þ bj
d CJ 1ð Þ

t þ bj
wCJ 5ð Þ

t þ bj
mCJ 22ð Þ

t þ 1tþh:

(5)

Note that compared with the HAR-J model, the HAR-CJ model explicitly controls for

the weekly and monthly components of continuous jumps. Thus, the HAR-J model can be

treated as a special and restrictive case of the HAR-CJ model for bd ¼ bc
d þ bj

d; bj ¼
bj

d; bw ¼ bc
w þ bj

w, and bm ¼ bc
m þ bj

m.

To capture the information from signed high-frequency variation, Patton and Sheppard

(2015) developed a series of realized semivariance HAR (HAR-RS) models. The first one,

HAR-RS-I model, completely decomposes the RV 1ð Þ in Equation (2) into two asymmetric

semivariances, RSþt and RS�t ,

RVtþh ¼ b0 þ bþd RSþt þ b�d RS�t þ bwRV 5ð Þ
t þ bmRV 22ð Þ

t þ 1tþh; (6)

where RS�t ¼
PM

j¼1 r2
t;j � I rt;j < 0

� �
and RSþt ¼

PM
j¼1 r2

t;j � I rt;j > 0
� �

. To verify the actual

effects of signed variations, they include an additional term capturing the leverage effect,

RV 1ð Þ
t � I rt < 0ð Þ. The second model in Equation (7) is denoted as HAR-RS-II,

RVtþh¼b0þb1RV 1ð Þ
t � I rt < 0ð Þþbþd RSþt þb�d RS�t þbwRV 5ð Þ

t þbmRV 22ð Þ
t þ1tþh: (7)

The third and fourth models in Patton and Sheppard (2015), denoted as HAR-SJ-I

(Equation 8) and HAR-SJ-II (Equation 9), respectively, examine the role that decomposing

RVs into signed jump variations and BPV can play in forecasting volatility:

RVtþh ¼ b0 þ bj
dSJt þ bbpv

d BPVt þ bwRV 5ð Þ
t þ bmRV 22ð Þ

t þ 1tþh; (8)

RVtþh ¼ b0 þ bj�
d SJ�t þ bjþ

d SJþt þ bbpv
d BPVt þ bwRV 5ð Þ

t þ bmRV 22ð Þ
t þ 1tþh; (9)

where SJt ¼ RSþt � RS�t ; SJþt ¼ SJt � I SJt > 0ð Þ, and SJ�t ¼ SJt � I SJt < 0ð Þ. The HAR-SJ-II

model further extends the HAR-SJ-I model by distinguishing the effect of a positive jump

variation from that of a negative jump variation.

Since RVtþh is unobservable at time t, the models mentioned above must take h periods

of lags in order to estimate the coefficients in practice.

2 The Panel HAR Model

To control for possibly unobserved common effects in volatility across a class of assets, we

construct a HARP model with error cross-sectional dependence, which is an extension of

the framework of Chudik and Pesaran (2015). Let yit be the RV of the i-th individual asset

at time t for i ¼ 1; . . . ;N; t ¼ 1; . . . ;T. Suppose that yit can be described by the following

heterogeneous dynamic panel data model as the h-period direct forecasting model,

yit ¼ a>i;hdt�h þ
X
l2L

/ lð Þ
i;h

�y lð Þ
i;t�h þ b>i;hxi;t�h þ uit; (10)
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�y lð Þ
it�h ¼ l�1

Xl�1

s¼0

yi;t�h�s; (11)

for i ¼ 1;2; . . . ;N and t ¼ 1;2; . . . ;T, where dt�h is a r� 1 vector of observed common

effects, including deterministic such as intercepts or seasonal dummies, xi;t�h is a k� 1 vec-

tor of regressors specific to cross-sectional unit i at time t – h, and ai;h and bi;h are parameter

vectors specific for the h-period forecasting model. yi;t�h�s represents the s-th lag of yi;t�h,

and �y lð Þ
i;t�h is the HAR component, which is the average of previous l periods of yi;t�h. / lð Þ

i;h is

the coefficient for �y lð Þ
i;t�h; L is the lag index vector of l and we let L ¼ max Lð Þ.6

Furthermore, we assume that the RV of individual stocks is correlated beyond what can be

explained by the observed determinants because the error term, uit, comprises m unob-

served common factors,7

uit ¼ c>i;hf t þ �it; (12)

where ci;h is the m� 1 vector of factor loadings, f t is the m� 1 vector of unobserved com-

mon factors that could themselves be serially correlated, and �it are the idiosyncratic errors

assumed to be independently distributed of ðdt�h; xi;t�hÞ and uncorrelated with the factors.

Assume that f t can be modeled by a VAR or by a more general relationship,8

f t ¼ Uf ;hf t�h þ ft: (13)

Following Pesaran (2006) and Chudik and Pesaran (2015), the unobserved factors, f t,

can be also correlated with ð�yðlÞi;t�h;dt�h;xi;t�hÞ. To permit such a possibility, we assume a

fairly general model for individual-specific regressors, xi;t�h,

xi;t�h ¼ K>i;hdt�h þPi;hyit�h;�Lþ1 þ C>i;hf t�h þ vi;t�h; (14)

where yit�h;�Lþ1 ¼ yi;t�h; . . . ; yi;t�h�Lþ1ð Þ>; Ki;h and Ci;h are r� k and m�k matrix of fac-

tor loadings for observed and unobserved factors, respectively, Pi;h is a k�L matrix of un-

known coefficients, and vi;t�h is assumed to follow a general linear covariance stationary

process distributed independently of �it. Equations (10)–(14) hitherto set out our panel

HAR volatility forecasting model, named as the HARP model.9

2.1 The CCE Estimator

Clearly, forecasts of yit need consistent estimates of the parameters and unobserved com-

mon factors. Unfortunately, conventional panel estimators of Equation (10) yield inconsist-

ent estimates of coefficients due to the correlation of regressors ðxi;t�h; �y
ðlÞ
i;t�hÞ and error

terms uit. To see this, since f t is assumed to be serially correlated, the error term in

Equation (10), uit, is thus serially correlated through Equation (12), which further entails

6 Following the convention of the HAR-RV literature, we set L ¼ 22 in our empirical exercise. In this

literature, it is common to set L ¼ ½1; 5; 22� to claim that tomorrow’s RV can be a sum of daily,

weekly, and monthly averages of past RVs.

7 The recent paper by Bollerslev et al. (2018) interprets the common factors as combined economic

forces from the investor sentiment, the variance risk premium and the news surprise variable.

8 The benchmark scheme of predicting f̂ tþh and its alternatives are further elaborated in Section 4.1.

9 Note that before we pin down the underlying specification of xit , the HARP model can be quite flex-

ible to accommodate other HAR-type specifications in the literature.
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the correlation of uit and yi;t�h�s. Since the HAR components �y
ðlÞ
i;t�h are linear functions of

yi;t�h�s, they are correlated with uit. It is more apparent to witness the correlation between

xi;t�h and uit, regarding the fact that they both contain serially correlated factors f t.

In this section, we address the issue of inconsistency and demonstrate how to estimate

the slope coefficients ð/ð1Þi;h ; . . . ;/ðLÞi;h ;bi;hÞ from Equation (10), employing the CCE estimator

proposed by Pesaran (2006). We note that Equations (10) and (12) can be combined, and

rewritten as

yit ¼ a>i;hdt�h þ
X
l2L

/ lð Þ
i;h

�y lð Þ
i;t�h þ b>i;hxi;t�h þ c>i;hf t þ �it

¼ a>i;hdt�h þ
XL�1

l¼0

wih;lyi;t�h�l þ b>i;hxi;t�h þ c>i;hf t þ �it

¼ a>i;hdt�h þ w>i;hyit�h;�Lþ1 þ b>i;hxi;t�h þ c>i;hf t þ �it;

(15)

where yit�h;�Lþ1 ¼ yi;t�h; . . . ; yi;t�h�Lþ1ð Þ> and wi;h ¼ wih;0; . . . ;wih;L�1

� �> are given by

wih;0 ¼ / 1ð Þ
i;h þ

/ 2ð Þ
i;h

2
þ � � � þ

/ Lð Þ
i;h

L
; wih;1 ¼

/ 2ð Þ
i;h

2
þ � � � þ

/ Lð Þ
i;h

L
;

..

.

wih;L�2 ¼
/ L�1ð Þ

i;h

L� 1
þ

/ Lð Þ
i;h

L
; wih;L�1 ¼

/ Lð Þ
i;h

L
:

As a result, we note that Equation (15) can be viewed as a panel restricted AR(L) model

with error cross-sectional dependence.

The parameters of interest in Equation (15) are wi and bi while f t is unobserved. To esti-

mate wi and bi in model (15), we can adopt the CCE) estimator proposed by Pesaran

(2006), which is further extended by Chudik and Pesaran (2015) to the dynamic setting. To

this end, let zit ¼ ðyit;x
>
i;t�hÞ

> and define the cross-sectional average of zit at period t as �zt.

The parameter of interests are hi;h ¼ ðw>i;h;b>i;hÞ
>. Define

Ni ¼

y>ipT ;�Lþ1 x>i;pT

y>ipTþ1;�Lþ1 x>i;pTþ1

..

. ..
.

y>iT�h;�Lþ1 x>i;T�h

0
BBBBBBB@

1
CCCCCCCA
; �Q ¼

d>pT
�z>pTþ1 �z>pT

� � � �z>1

d>pTþ1 �z>pTþ2 �z>pTþ1 � � � �z>2

..

. ..
. ..

. ..
. ..

.

d>T�h �z>T�hþ1
�z>T�h � � � �z>T�hþ1�pT

0
BBBBBBBB@

1
CCCCCCCCA
; (16)

where pT > L is a predetermined value. Let the projection matrix M �Q ¼ IT�pT
�

�Qð �Q> �QÞþ �Q
>
; where IT�pT

is a ðT � pTÞ � ðT � pTÞ dimensional identity matrix, and Aþ

represents the Moore–Penrose generalized inverse of A. The CCE estimator of hi;h is given by

ĥ ih;CCE ¼ N>i M �QNi

� ��1
N>i M �Qyi; (17)

where yi ¼ yi;pTþh; yi;pTþhþ1; . . . ; yi;Tð Þ>:
Theorem 1 in Chudik and Pesaran (2015) shows the consistency of CCE estimator for

the AR framework under certain assumptions. Since the HAR model can be regarded as a

restricted AR model, the consistency of CCE estimator for the HARP model can be easily
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established by applying Theorem 1 in Chudik and Pesaran (2015). We elaborate this appli-

cation in detail along with necessary assumptions in Online Appendix A. The Monte Carlo

experiments are also conducted to investigate the general performance of the CCE estima-

tor under the HARP framework in Online Appendix B.

2.2 Forecasting Realized Volatility

We are interested in the forecast of yi;Tþh conditional on the information up to time T.

Equation (15) may be rewritten for yi;tþh as the following h-period direct forecasting model10

yi;tþh ¼ a>i;hdt þ w>i;hyit;�Lþ1 þ b>i;hxit þ c>i;hf tþh þ �itþh: (18)

The forecast of yi;Tþh contingent on the information up to time T is therefore

ŷi;TþhjT ¼ â>i;hdT þ ŵ
>
i;hyiT;�Lþ1 þ b̂

>
i;hxiT þ ĉ>i;h f̂ TþhjT ; (19)

where f̂ TþhjT is a forecast of f Tþh. As argued above in Section 2.1, any conventional panel

estimator of âi;h; ŵ
>
i;h; b̂i;h without the control of f t is inconsistent.

Hence, to obtain the forecasts ŷi;TþhjT from Equation (19), it requires consistent estimation

of the corresponding parameters and forecasts of f tþh. We solve the above forecasting problem

by employing a two-stage process: first, we obtain the initial consistent estimates of ðw>i;h;b>i;hÞ
>

and unobserved common factors f t , utilizing the CCE estimator and principal components

(PCs). The factor estimates from this procedure are consistent as well (Pesaran, 2006). For in-

stance, given the consistent estimation of wi;h and bi;h, we can obtain git ¼ a>i;hdt�h þ uit, as

ĝit ¼ yit � ŵ
>
i;hyit�h;�Lþ1 � b̂

>
i;hxit�h: (20)

After acquiring the residuals, ĝit, an estimate of uit is produced by integrating out the

common observed factors, dt�h,

ûi ¼MDĝi; (21)

where ûi ¼ ûi;hþ1; ûi;hþ2; . . . ; ûi;T

� �
and D ¼ d1

>;d2
>; . . . ;dT�h

>
� �

. Bernoth and Pick

(2011) pointed out that the orthogonality assumption of dt to f t is necessary to guarantee

unbiasedness of the parameter estimates of the common factors, âi, although an absence of

it will not bias the forecasts resulting from the above procedure.

With estimates of the residuals ûit, we are able to extract the unobserved common factors,

f t, from residuals of the h-step direct projection using the PC analysis. In our application,

consistent estimation of wi;h and bi;h is guaranteed under any fixed number of unobserved fac-

tors, m.11 However, since f t and its factor loadings still matter for the forecasts by Equation

(18), an estimate of m seems essential. To resolve this, we apply the Bai and Ng’s (2002)

method to the residuals, ûi given in Equation (21), which yields a choice of m¼2.12

10 Assuming certain vector autoregressive processes for dt and ft , we can iterate on Equations (10)

and (12), and then conduct recursive substitutions to yield the direct forecasting model. Bernoth

and Pick (2009) provide a detailed mathematical induction on a similar question.

11 As suggested by Pesaran (2006), the number of unobserved factors, m, only becomes a practical

issue if the focus of the analysis is on the factor loadings, for instance, the parameters of asset

pricing factors.

12 We also test the forecasts for different values of m and the results remain qualitatively similar.
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In the second stage, the above estimates of f t can then be plugged back to Equation (18)

to estimate the parameters ai;h; wi;h; bi;h and ci;h by OLS. For the h-step prediction, we still

produce direct forecasts of f̂ tþh under certain hypothetical process of f t ,
13 as the PC ana-

lysis only generates f̂ t up to time T. It is noteworthy to mention that the two-stage proced-

ure is iterated for each h separately.

2.3 Assessment of the Forecasts

Forecast performance of yit is evaluated using the following criteria:

MAFE hð Þ ¼ 1

V

XV

j¼1

jeiTj ;hj; (22)

MSFE hð Þ ¼ 1

V

XV

j¼1

e2
iTj ;h

; (23)

SDFE hð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V � 1
eiTj ;h �

1

V

XV

j¼1

eiTj ;h

0
@

1
A

2
vuuut ; (24)

where eiTj ;h ¼ yiTj ;h � ŷiTj ;h
is the forecast error, j ¼ 1;2; . . . ;V, and ŷiTj ;h

is the h-day ahead

forecast with information up to Tj, where Tj stands for the last observation in each of the V

rolling windows. Another widely adopted method for evaluation is by means of the R2-cri-

terion of the Mincer–Zarnowitz regression,14 given by

yiTj ;h ¼ aþ bŷiTj ;h
þ uTj

; for j ¼ 1;2; . . . ;V; (25)

Note that we choose the level-regression (25) over the log-regression, because Hansen

and Lunde (2006) have argued that the R2 from a regression of log yiTj;hð Þ on a constant

and log ŷiTj ;h

� �
is unlikely to induce the same ranking of volatility models as the R2 from

the infeasible regressions (with the true volatility), unless a proportionate relationship exists

between the estimated and true values of volatility.15

Based on the findings of Hansen and Lunde (2006) and Patton (2011), we also compute

the expected values of Gaussian quasi-likelihood (QLIKE),

QLIKE hð Þ ¼ log ŷiTj ;h
þ

yiTj ;h

ŷiTj ;h

; for j ¼ 1; 2; . . . ;V; (26)

The QLIKE function, along with the mean squared forecast error (MSFE) loss, has been

demonstrated to be robust to noise in the proxy for volatility in Patton (2011). Moreover,

Patton and Sheppard (2009) find that relative to the MSFE loss, the QLIKE loss has better

power properties under the Diebold–Mariano test. In the last place, we complement the

above results by running the unconditional Giacomini and White (2006) test for the mean

absolute forecast error, in order to test the equal predictive ability of a pair of models.

13 Section 4.1 provides a detailed discussion on various forecasting schemes of ft and their

implications.

14 Interested readers may refer to Mincer and Zarnowitz (1969) for more details.

15 Hansen and Lunde (2006) prove that if the proxy, ~r2
t , and the true volatility, r2

t , satisfy the equation

~r2
t ¼ ð1� tt Þr2

t for some random variable, tt , the ranking of volatility models remains unaffected

by the measurement errors of ~r2
t .
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3 Data Description

In the empirical exercise, we consider an application to the RV of the NASDAQ 100 Trust

ETF tracking the NASDAQ 100 Index, with ticker symbol QQQ. To avoid the concerns of

data mining, the information on unobserved common factors is extracted solely from a

panel data of the NASDAQ 100 constituents.16

The data on the NASDAQ 100 ETF consists of high-frequency transaction prices from

May 22, 2007 to October 20, 2017, which totals 2625 observations. The 104 constituents

cover industry groups ranging from computer hardware and software, telecommunications,

retail/wholesale trade, and biotechnology. Since the components of the NASDAQ 100

index are varying over time, we only include the stocks that always belong to the index dur-

ing our sample period, in order to keep the panel balanced. In total, eighty-nine stocks are

selected. A more detailed description of these stocks is given in Online Appendix D, includ-

ing their ticker symbols, names, and Global Industry Classification sectors. The whole data-

set and its relevant information are provided by Pitrading Inc., which base their source

information from New York Stock Exchange’s TAQ database. All the above data are

obtained at one-minute increments. The intraday prices are then used to calculate daily RV

measures by Equation (1).

To have an abundance of time series, we use the original data at one-minute intervals in

our primary analysis. However, we are aware that a too high sampling frequency might

cause microstructure bias to distort volatility estimates from its true daily variance. The

previous work by Liu, Patton, and Sheppard (2015) offers some evidence on why five-

minute RV is typically considered as the benchmark.17 For the justification of using the

one-minute data, we construct volatility signature plots for the NASDAQ 100 ETF (QQQ)

and the eight representative stocks in Figure 1, to check if one-minute RV is an appropriate

alternative to five-minute RV.18 A description of the full company names and their weights

is included in Table 1. The main pattern is that volatility signature plots for all the consid-

ered assets are flat, which is especially the case for QQQ. This indicates no apparent varia-

tions from one-minute sampling, relative to five-minute sampling, at least for our

datasets.19

16 Our focus on the index volatility is reminiscent of the exercise in Bollersleva et al. (2019), where

they exploit the information in the realized semicovariance matrix to improve the portfolio vari-

ance forecasts. In practice, the NASDAQ 100 Index ETF is usually regarded as one of the most im-

portant portfolios in the financial market.

17 Liu, Patton, and Sheppard (2015) conduct a comprehensive study for over 400 different realized

measures, with a wide range of sampling frequencies, and they apply these to 11 years of daily

data on thirty individual financial assets. Overall, they find it difficult to significantly outperform

five-minute RV.

18 The volatility signature plot was first introduced by Andersen et al. (2000) to provide some guid-

ance on the optimal sampling frequency.

19 Liu, Patton, and Sheppard (2015) conclude that as long as the assets are liquid enough, one-

minute sampling is nevertheless sparse to avoid the problem of microstructure bias. For the ro-

bustness check, we also conduct a similar empirical analysis on five-minute sampling data in

Section 5.2 and the HARP model still outperforms the risk models solely based on its own realized

volatility components.
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We describe summary statistics of the RV series for the NASDAQ100 ETF in column 2

of Table 2. Due to the vast number of the NASDAQ 100 Index components, we only pre-

sent the statistics of six representative stocks in columns 3–8 of Table 2. Table 2 documents

the results of the sample mean, median, minimum, maximum, standard deviation, skew-

ness, and kurtosis for the RV series over the full sample periods. Table 2 also reports the

p-values20 of the Jarque–Bera test for normality and those of the augmented Dickey–Fuller
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Figure 1 Volatility signature plot for representative stocks and the NASDAQ 100 ETF. (a–i) Plot the

average daily realized volatility (on the y-axis) for the NASDAQ 100 ETF, four highly liquid components

(AAPL, FB, INTC, and NVDA) and four relatively illiquid components (CTAS, IDXX, ISRG, and JBHT) of

the NASDAQ 100 Index over their corresponding sampling intervals (on the x-axis). The sampling

intervals run from 1 minute to 20 minutes.

Table 1 Descriptions of liquid and illiquid stocks

Ticker Company name Weights in the NASDAQ 100 (%)

Liquid stocks

AAPL Apple Inc. 12.39

FB Facebook Inc. 4.85

INTC Intel Corporation 2.60

NVDA NVIDIA Corporation 1.80

Illiquid stocks

CTAS Cintas Corporation 0.27

IDXX IDEXX Laboratories Inc. 0.25

ISRG Intuitive Surgical Inc. 0.70

JBHT J.B. Hunt Transport Services Inc. 0.16

20 In our exercises, we set the lower bound of the p-values of the Jarque–Bera and the ADF tests at

0.001. Values less than 0.001 are truncated at 0.001.
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(ADF) test for unit root. The null hypotheses of a normal distribution and a unit root are

strongly rejected in all cases, whereas the other statistics disperse over a wide range.

3.1 Observed Common Factors

Note that all of the volatility models in our empirical exercise contain a set of observed

macroeconomic factors dt. Inspired by recent research by Fernandes, Medeiros, and

Scharth (2014), we include the following predictors in dt contemporaneously: (i) the j-day

continuously compounded return on the one-month crude oil futures contract for j ¼
1;5;10;22; and 66 (oil j-day return); (ii) the first difference of the logarithm of the trade-

weighted average of the foreign exchange value of the US dollar index against the

Australian dollar, Canadian dollar, Swiss franc, euro, British pound sterling, Japanese yen,

and Swedish krona (USD change); (iii) the excess yield of the Moody’s seasoned Baa cor-

porate bond over the Moody’s seasoned AAA corporate bond (credit spread); (iv) the differ-

ence between the 10-year and 3-month Treasury constant maturity rates (term spread); and

(v) the difference between the effective and target federal fund rates (FF deviation). While

both oil prices (Oil) and term spread (TS) are concerned with various dimensions of the

overall market conditions, USD change (USDI), and FF deviation (FED) are both linked to

US macroeconomic states. Descriptive statistics for dt are available in Online Appendix E.

4 Empirical Analysis

In this section, we conduct an empirical exercise to thoroughly examine both in-sample and

out-of-sample performance of the HARP model. The result is in comparison with the per-

formance of the autoregressive model (AR) and a battery of HAR-type models reviewed in

Section 1. The rivalry models are listed as follows:

i. AR model: the simple autoregression model AR(22);

ii. HAR model: defined in (2);

Table 2 Summary statistics for the RV of the NASDAQ100 ETF and six representative stocks

Statistic QQQ Tickers of representative stocks

AAL ALXN DISCA ISRG QCOM XLNX

Mean 1.0536 17.0766 4.7820 3.5654 4.1525 2.3330 2.7815

Median 0.6119 7.2913 3.4835 2.0676 2.6538 1.4461 1.7512

Maximum 9.8061 669.3273 135.1100 583.1942 65.4187 34.2651 33.9595

Minimum 0.0687 0.5071 0.4013 0.4374 0.3030 0.1598 0.3030

Standard deviation 1.2467 30.9578 5.0603 13.5319 4.6312 2.7424 2.9660

Skewness 3.0783 7.8892 9.2852 35.4074 4.0143 4.2497 3.5105

Kurtosis 15.1628 117.0782 189.5792 1416.5222 29.7366 31.5784 21.4986

Jarque–Bera 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

ADF 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Notes: The second column of Table 2 contains statistics for the RV of the NASDAQ100 ETF from May 22,

2007 to October 20, 2017, for a total of 2625 observations. The statistics of six component stocks of the

NASDAQ 100 index are presented in columns 3–8. For JB and ADF test, statistics that are outside tabulated

critical values, we report maximum (0.999) or minimum (0.001) p-values. All the statistics here are computed

based on the data at one-minute increments.
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iii. HAR-J model: defined in (4);

iv. HAR-CJ model: defined in (5);

v. HAR-RS-I model: defined in (6);

vi. HAR-RS-II model: defined in (7);

vii. HAR-SJ-I model: defined in (8);

viii. HAR-SJ-II model: defined in (9).

Bear in mind that all the considered volatility models explicitly control the effects of

observed macroeconomic factors by dt. To justify the usage of the CCE estimator, we need

to first verify the existence of the possible error cross-sectional dependence. In Table 3, we

report the cross-section dependence (CD) test of Pesaran (2004, 2015) and their p-values,

which are based on the average of pair-wise correlations of the residuals from various

HAR-type regressions of individual stock volatility. For all regressions and forecast hori-

zons, these residual terms show a considerable degree of cross-sectional dependence.21 This

implies that even after controlling for major predictors of volatility in our dataset, sizable

CD still remains across component stocks, which supports the utilization of this informa-

tion to improve the forecast accuracy.

The HARP model in our analysis is built upon the specification of HAR-RS-II, due to its

sound out-of-sample performance documented in Patton and Sheppard (2015). This par-

ticularly implies that unit-specific regressors xit are ðRV
ð1Þ
it � Iðrt < 0Þ;RSþit ;RS�it Þ

>, while

other regressors in Equation (10) are well defined above.22 In the main experiment, we con-

centrate on forecasting the RV of the NASDAQ 100 ETF, where the information of unob-

served common effects is extracted from the panel of realized volatilities of the NASDAQ

100 components. We want to see if the comovements of component stocks genuinely assist

in predicting the index fund volatility.

For all of the exercises, we conduct an in-sample exercise with the full sample and a roll-

ing window out-of-sample exercise. The window length is set at 1000. We also test other

values of the window length and the results remain similar.23 Each of the above candidate

models is applied to the dataset, and a series of h days ahead forecasts are obtained. Note

that, to compute h-day ahead forecasts, we employ a direct forecasting approach in which

we estimate RVtþh in the above models.24 We consider both short-horizon and long-

horizon forecasts with h¼ 1, 5, 10, and 22. For assessing the out-of-sample performance,

we calculate the five statistics in Section 2.3: (i) the MSFE; (ii) the standard deviation of

forecast error (SDFE); (iii) the mean absolute forecast error (MAFE); (iv) the Mincer–

Zarnowitz pseudo-R2; and (v) the QLIKE function for each candidate model at each fore-

cast horizon h.

21 Under the null of weak error cross-sectional dependence, the CD statistics are asymptotically dis-

tributed as N 0; 1ð Þ.
22 The lagged dependent variables �y

ðlÞ
it include RV

ð5Þ
it and RV

ð22Þ
it , while dt are observed macroeco-

nomic factors, of which the details are explained in Section 3.1.

23 We test the results with the window length of 500 observations. Tables are provided in Online

Appendix G.2.

24 This approach permits us to produce multi-step ahead forecasts without imposing any assumption

about future realizations on the explanatory variables.
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4.1 The Scheme of Predicting f̂ tþh

Before the study of various schemes for forecasting f̂ tþh, an initial investigation on the stat-

istical properties of f t seems necessary. We start by estimating f t based on the HARP speci-

fication and the CCE estimator, across various forecast horizons (h ¼ 1; 5; 10; 22)

separately. We report summary statistics of f t in Table 4.25 As can be seen clearly, the null

hypotheses of a normal distribution and a unit root process are both rejected for the two

PCs (f 1 and f 2). Except for f 2 at h¼ 1, the factors have highly persistent autocorrelation

structures in other cases.

Due to the linear nature of the HARP specification and high persistence of f t, we first

contemplate three linear autoregressive models of forecasting f̂ tþh: the AR model, the HAR

model, the VAR model (Stock and Watson, 2002; Pesaran, Pick, and Allan, 2011),26 where

the number of lags is selected by the Bayes Information Criterion. As a complement to the

above linear models, we also employ the random forest method, one of the popular ma-

chine learning tools, to capture the possibly nonlinear dynamics of f t, since they are

extracted from the noisy regression residuals.27 For each of the above four methods, direct

forecasts of f tþh based on the information up to time t are performed, and a rolling window

exercise is implemented to estimate the associated coefficients.

Table 3 Results for CD test for RV of the NASDAQ 100 constituents

Method h¼ 1 h¼ 5 h¼ 10 h¼ 22

CD p-value CD p-value CD p-value CD p-value

RW 5386.1615 0.0000 6661.1541 0.0000 6844.1628 0.0000 7426.2886 0.0000

AR(22) 4178.6508 0.0000 5563.3119 0.0000 6031.7421 0.0000 6814.7767 0.0000

HAR 4491.6446 0.0000 5719.2537 0.0000 6167.5320 0.0000 6957.3473 0.0000

HAR-J 4384.6859 0.0000 5655.8968 0.0000 6107.9819 0.0000 6895.6076 0.0000

HAR-CJ 4251.0679 0.0000 5474.3930 0.0000 5880.9295 0.0000 6596.3800 0.0000

HAR-RS-I 4386.1947 0.0000 5641.6365 0.0000 6118.8177 0.0000 6919.7391 0.0000

HAR-RS-II 4179.7576 0.0000 5530.1978 0.0000 6063.0118 0.0000 6884.2000 0.0000

HAR-SJ-I 4403.8828 0.0000 5646.2349 0.0000 6132.6288 0.0000 6926.7192 0.0000

HAR-SJ-II 4351.2087 0.0000 5611.6945 0.0000 6103.8054 0.0000 6900.0884 0.0000

Notes: CD is short for the cross-section dependence test statistic applied to the residuals of the asset-specific

regression. RW indicates a random walk model. A large CD statistics indicates that the residuals of certain

model estimation are correlated across individual component stocks.

25 The sample autocorrelation functions of ft is reported in Figure A2 of Online Appendix F.

26 We also tried to apply the VARMA model to forecast ftþh . However, the VARMA model requires

the data to be highly stationary. Since we are using a rolling window exercise, this implies that ft

needs to be highly stationary in each roll, which is usually not guaranteed in practice. Hence, we

use the VAR model instead.

27 The inclusion of the random forest method provides a flexible way of accommodating the possible

non-linearity of ft . A detailed description of the random forest procedure is provided in Online

Appendix C. The further investigation about how the random forest performs in the actual fore-

casting of RV is outside the scope of this article, which becomes the subject for future research.

Qiu et al. j Forecasting Equity Index Volatility 173

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/20/1/160/5861755 by Shanghai U

niversity of Finance and Econom
ics user on 27 January 2022

https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbaa005#supplementary-data
https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbaa005#supplementary-data
https://academic.oup.com/jfec/article-lookup/doi/10.1093/jjfinec/nbaa005#supplementary-data


With the HARP model and its benchmark specification (i.e., HAR-RS-II), the relative

out-of-sample performance from the above four ways of forecasting f tþh is compared in

Table 5. Looking across the columns, we see that the random forest method outperforms

its three linear competitors for h¼5 and 10. The Giacomini–White (GW) tests based on the

mean absolute forecast errors, reported in Table 6, again corroborate this conclusion. In

contrast, in the case of h¼ 1 and 22, the performance of the random forest method is on a

par with the other three methods. Based on the above outcomes, we believe that it is sens-

ible to employ the random forest method as the benchmark forecasting scheme for f̂ tþh in

the following exercises.

4.2 The In-Sample and Out-of-Sample Results for the NASDAQ 100 ETF

We begin our discussion by considering the in-sample results in Table 7, where the HARP

model is compared with its baseline specification without unobserved common factors, the

HAR-RS-II model. The race is evaluated by the in-sample predictive R2’s. We find that, in

the HARP model with f t, the coefficients of RS�t decrease substantially in magnitudes but

remain significant for all horizons, and this effect is less obvious for the coefficients of RSþt .

Akin to a substitution effect, the coefficients on all f t are relatively large and significant.

Moreover, the HARP model explains 32% (at h¼ 1) to 174% (at h¼ 22) more of the vari-

ation in volatility than the HAR-RS-II model not containing f t. The above finding implies

that aside from additional information for explaining dependent variables, the unobserved

common factors may partially capture the information contained in positive and negative

realized semivariances.

Table 8 presents some descriptive results of the out-of-sample evaluation for forecasting

1, 5, 10, and 22 days ahead. In particular, we report the MSFE, SDFE, MAFE, QLIKE, and

the pseudo R2 from the rolling-window regressions for the HARP model as well as for the

set of other candidate models. We find a consistent ranking of models across all forecast

Table 4 Summary statistics for the unobserved common factors

Statistic h¼ 1 h¼ 5 h¼ 10 h¼ 22

f 1 f2 f1 f2 f1 f2 f1 f2

Mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Median 0.2038 0.1382 0.2290 0.1189 0.2524 �0.0393 �0.2678 0.0697

Maximum 14.1083 7.2167 5.4090 20.6654 5.0550 12.5781 12.3710 15.2257

Minimum �14.1560 �26.5783 �18.9432 �21.5940 �15.4713 �15.9108 �6.7179 �13.2345

Standard

deviation

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Skewness �2.5078 �11.2995 �6.4684 �0.8306 �5.0666 �2.0137 4.0513 0.7770

Kurtosis 56.8944 252.7725 88.6692 189.6395 54.0926 64.9030 35.8895 49.9837

Jarque–Bera 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

ADF test 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010

Notes: Table 4 contains statistics for the unobserved common factors computed based on the CCE estimator

and applied to RVs of the NASDAQ 100 constituents. For each forecast horizon (h ¼ 1; 5; 10; 22), we extract

two PCs. For JB and ADF tests, statistics that are outside tabulated critical values, we report maximum (0.999)

or minimum (0.001) p-values.
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horizons: the AR(22) performs the worst, followed by models with high-frequency intraday

data (i.e., the HAR, the HAR-J, and the HAR-CJ), while the more sophisticated RV models

(i.e., the HAR-RS-I, the HAR-RS-II, the HAR-SJ-I, the HAR-SJ-II, and the HARP) perform

better. The HARP model has the best performance in all cases of h. To further examine

whether the outperformance is statistically significant, we perform the modified GW test in

Table 9. The result shows that the outperformance of the HARP model is statistically sig-

nificant at 5% for all forecast horizons.

It is perhaps more informative to focus on the performance comparison of the HAR, the

HAR-RS-II, and the HARP models due to their nested specifications in sequence. The above

comparison shows that relative to the basic HAR model, the HARP specification improves

26.2–37% more of the variation in future volatility. Even if we control the effect of semi-

variance components in the HAR-RS-II model, the HARP can still explain 2.5% (h¼ 1) to

33% (h¼ 22) more of the variation in future volatility. When the horizon increases, the un-

observed factors add more value to the forecast precision. A possible interpretation of this

is rooted from the fact that f t is constructed from regression residuals. In the case of short

Table 5 The out-of-sample forecast comparison for different ways of forecasting f̂ tþh

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h ¼ 1

HARPAR 0.2190 0.1330 0.2753 0.4680 0.7767

HARPHAR 0.2160 0.1307 0.2722 0.4647 0.7799

HARPVAR 0.2159 0.1375 0.2775 0.4646 0.7800

HARPRF 0.2114 0.1339 0.2698 0.4598 0.7845

Panel B: h ¼ 5

HARPAR 0.3666 0.2085 0.3758 0.6055 0.6272

HARPHAR 0.3622 0.2072 0.3724 0.6018 0.6316

HARPVAR 0.3564 0.1956 0.3604 0.5970 0.6375

HARPRF 0.3433 0.1931 0.3409 0.5859 0.6509

Panel C: h ¼ 10

HARPAR 0.4075 0.2398 0.4024 0.6384 0.5862

HARPHAR 0.4075 0.2449 0.4059 0.6383 0.5862

HARPVAR 0.4150 0.2453 0.3790 0.6442 0.5785

HARPRF 0.4058 0.2654 0.3683 0.6370 0.5879

Panel D: h ¼ 22

HARPAR 0.4670 0.2863 0.4595 0.6834 0.5261

HARPHAR 0.4629 0.3061 0.4614 0.6804 0.5303

HARPVAR 0.5193 0.3587 0.4410 0.7206 0.4731

HARPRF 0.4788 0.3748 0.4266 0.6919 0.5142

Notes: This table reports the out-of-sample results for predicting h-day future realized variation using the dif-

ferent models of forecasting f̂ tþh. The candidate models are the HAR model (HARPHAR), the AR(h) model

(HARPAR), and the random forecast method (HARPRF). The results are based on the transaction data of the

NASDAQ 100 ETF spanning from May 22, 2007 to October 20, 2017 (a total of 2625 observations). We use

a rolling window of 1000 observations to estimate the coefficients of the above models, and evaluate the out-

of-sample forecast performance at four horizons (h¼ 1, 5, 10, and 22). Each panel in Table 5 corresponds to a

specific forecast horizon, which varies from 1 day to 22 days. Bold numbers indicate the best performing model

by each criterion at each forecast horizon.
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horizons, the information from major predictors of the HAR-RS-II model is plentiful so

that there is not much remaining in the residuals. However, with the expansion of horizons,

it is more likely to have extra information left unexplored in residuals.

5 Robustness Checks

This section presents three out-of-sample checks on the conclusions from the previous sec-

tion, with the identical set of volatility models. The first is an application to the DJIA. The

second is a test of the main results on the NASDAQ 100 ETF with a five-minute sampling

interval. For space consideration, we only report the results for h¼1. Results for other fore-

cast horizons can be found in Online Appendix G.1. The third considers estimating the un-

observed factors alternatively based on the PC analysis and then use these factor estimates

to augment the regression (18). Apart from the above trials, we also test our findings by

other industrial indices in Online Appendix G.2, by a different window length in Online

Appendix G.3, and by varying the sample period in Online Appendix G.4.

5.1 Evidence on the DJIA

The previous sections presented results for the NASDAQ 100 ETF. In this section, we re-

port out-of-sample results for the DJIA index. Data at one-minute sampling interval is pro-

vided by Pitrading Incorporation and covers the same period as the main results. The DJIA

is a weighted average index that includes the value of thirty large, publicly owned compa-

nies based in the United States. All forecasts are generated using rolling window regressions

based on 1000 observations, and parameter estimates are updated daily.

The results are reported in Tables 10 and 11. We note that the HARP forecast is always

the winner and significantly improves the out-of-sample forecast performance. Relative to

the best semivariance-based specification, the HARP generates gains in the out-of-sample

R2 by 35.2%. The GW test in Table 11 implies that the improvement by HARP is

Table 6 The GW test for the mean absolute forecast errors—different ways of forecasting f̂ tþh

Method HARPAR HARPHAR HARPVAR HARPAR HARPHAR HARPVAR

h¼ 1 h¼ 5

HARPAR – – – – – –

HARPHAR 0.0244 – – 0.1274 – –

HARPVAR 0.4173 0.0185 – 0.0097 0.0266

HARPRF 0.0573 0.3722 0.4001 0.0000 0.0000 0.0000

h ¼ 10 h ¼ 22

HARPAR – – – – – –

HARPHAR 0.3843 – – 0.6001 – –

HARPVAR 0.0088 0.0021 – 0.3418 0.2872 –

HARPRF 0.0003 0.0001 0.0141 0.0476 0.0325 0.1026

Notes: The modified GW test (Giacomini and White, 2006) is implemented to test the null hypothesis that the

row method (in vertical headings) performs equally well as the column method (in horizontal headings) in

terms of the absolute forecast error. (h ¼ 1; 5; 10; 22 Table 6, Bold numbers indicate the null hypothesis can be

rejected at 5% level of significance.
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Table 7 In-sample results for the benchmark specification with and without unobserved com-

mon factors

h¼ 1 h¼ 5 h¼ 10 h¼ 22

M M0 M M0 M M0 M M0

Panel A: Feasible common factors

Constant 0.3700 0.4505 0.4317 0.5096 0.4845 0.5260 0.6013 0.6428

(0.0413) (0.0237) (0.0508) (0.0310) (0.0565) (0.0352) (0.0629) (0.0379)

OIL 0.4373 �0.2574 �0.9595 �0.9611 0.4554 �0.1422 �0.7933 �1.0313

(0.6334) (0.3622) (0.7781) (0.4736) (0.8639) (0.5377) (0.9577) (0.5770)

USD �1.7878 1.2087 �1.3487 0.7342 �3.2909 �1.2032 0.9706 2.3014

(3.0697) (1.7551) (3.7716) (2.2960) (4.1871) (2.6061) (4.6416) (2.7970)

CS �1.3083 �0.8762 �0.0156 0.7781 0.4170 1.1349 0.9932 1.6086

(0.6697) (0.3829) (0.8226) (0.5009) (0.9131) (0.5683) (1.0124) (0.6104)

TS �0.0590 �0.0254 �0.0419 0.0049 �0.0298 �0.0233 �0.0303 �0.0196

(0.0180) (0.0103) (0.0222) (0.0135) (0.0246) (0.0154) (0.0273) (0.0165)

FFD 1.7295 1.2395 1.0488 0.3062 1.5633 1.5272 1.7559 1.6254

(0.1547) (0.0889) (0.1901) (0.1165) (0.2112) (0.1348) (0.2344) (0.1429)

Panel B: Cross-section-specific regressors

RV
ð1Þ
t � Iðrt < 0Þ 0.0778 0.0798 �0.1214 �0.0585 �0.0954 �0.0634 �0.0147 0.0068

(0.0333) (0.0190) (0.0409) (0.0249) (0.0453) (0.0282) (0.0502) (0.0303)

RSþt 0.1129 0.1315 0.0926 0.0995 0.2715 0.1749 0.0196 0.0176

(0.0501) (0.0287) (0.0616) (0.0375) (0.0683) (0.0426) (0.0756) (0.0457)

RS�t 0.2733 0.0957 0.1447 0.0673 0.1229 0.0459 0.1368 0.0731

(0.0163) (0.0097) (0.0201) (0.0123) (0.0223) (0.0139) (0.0247) (0.0149)

RV
ð5Þ
t 0.2379 0.1930 0.3287 0.1714 0.1177 0.0674 0.1744 0.0746

(0.0220) (0.0126) (0.0270) (0.0166) (0.0300) (0.0187) (0.0332) (0.0201)

RV
ð22Þ
t 0.2710 0.2490 0.2548 0.2466 0.3098 0.3770 0.2320 0.2923

(0.0165) (0.0094) (0.0203) (0.0123) (0.0225) (0.0149) (0.0249) (0.0151)

Panel C: Estimated unobserved common factors

Common effect f1 �0.4718 �0.6600 �0.7052 0.8185

(0.0086) (0.0108) (0.0124) (0.0132)

Common effect f2 �0.4150 �0.3149 0.3062 �0.2731

(0.0081) (0.0109) (0.0133) (0.0136)

Panel D: Goodness of fit

R2 0.6765 0.8944 0.5127 0.8196 0.4008 0.7681 0.2686 0.7347

Adj. R2 0.6753 0.8939 0.5108 0.8188 0.3985 0.7670 0.2658 0.7335

Notes: This table reports the in-sample results for predicting the h-day future realized volatility using the

HAR-RS-II model and the HARP model. The estimation is based on the full sample data of the NASDAQ 100

ETF and considers a range of forecast horizons (h ¼ 1; 5; 10; 22). Panel A reports the coefficient estimates of

observed common factors and their standard errors (in parentheses). Panel B reports the coefficient estimates

of unit-specific regressors and their standard errors (in brackets), while Panel C reports the relevant results for

unobserved common factors. The bottom panel provides the in-sample predictive R2 and adjusted R2.
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Table 8 Out-of-sample forecast comparison of models for RV of the NASDAQ 100 ETF

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h ¼ 1

AR(22) 0.4428 0.1587 0.3282 0.6654 0.5487

HAR 0.4190 0.1569 0.3250 0.6473 0.5729

HAR-J 0.3783 0.1487 0.3114 0.6150 0.6145

HAR-CJ 0.3575 0.1491 0.3096 0.5979 0.6356

HAR-RS-I 0.2341 0.1371 0.2884 0.4839 0.7614

HAR-RS-II 0.2302 0.1349 0.2819 0.4798 0.7654

HAR-SJ-I 0.2498 0.1465 0.2927 0.4998 0.7454

HAR-SJ-II 0.2333 0.1382 0.2891 0.4830 0.7622

HARP 0.2114 0.1339 0.2698 0.4598 0.7845

Panel B: h ¼ 5

AR(22) 0.5623 0.2618 0.4247 0.7499 0.4280

HAR 0.4761 0.2547 0.4101 0.6900 0.5158

HAR-J 0.4768 0.2728 0.4052 0.6905 0.5151

HAR-CJ 0.4578 0.3255 0.3942 0.6766 0.5343

HAR-RS-I 0.4780 0.2548 0.3984 0.6914 0.5138

HAR-RS-II 0.4632 0.2612 0.3965 0.6806 0.5289

HAR-SJ-I 0.4874 0.2577 0.3999 0.6981 0.5043

HAR-SJ-II 0.4462 0.2443 0.3925 0.6680 0.5461

HARP 0.3433 0.1931 0.3409 0.5859 0.6509

Panel C: h ¼ 10

AR(22) 0.5782 0.3126 0.4460 0.7604 0.4128

HAR 0.5426 0.3322 0.4398 0.7366 0.4490

HAR-J 0.5223 0.9742 0.4368 0.7227 0.4696

HAR-CJ 0.5222 0.3965 0.4276 0.7226 0.4697

HAR-RS-I 0.5107 0.3472 0.4310 0.7146 0.4814

HAR-RS-II 0.5027 0.3552 0.4269 0.7090 0.4895

HAR-SJ-I 0.5056 0.3622 0.4308 0.7110 0.4866

HAR-SJ-II 0.9043 0.3170 0.4415 0.9509 0.0817

HARP 0.4058 0.2654 0.3683 0.6370 0.5879

Panel D: h ¼ 22

AR(22) 0.6179 0.3958 0.4941 0.7861 0.3730

HAR 0.6012 0.3952 0.4899 0.7754 0.3900

HAR-J 0.6112 0.3815 0.4885 0.7818 0.3799

HAR-CJ 0.6250 0.3982 0.4883 0.7906 0.3658

HAR-RS-I 0.6035 0.4550 0.4899 0.7768 0.3877

HAR-RS-II 0.6045 0.3888 0.4872 0.7775 0.3866

HAR-SJ-I 0.6017 0.4642 0.4898 0.7757 0.3894

HAR-SJ-II 0.6055 0.5216 0.4887 0.7781 0.3856

HARP 0.4788 0.3748 0.4266 0.6919 0.5142

Notes: This table reports the out-of-sample results for predicting h-day future realized variation using the dif-

ferent predictor variables and risk models. The results are based on the transaction data of the NASDAQ 100

ETF spanning from May 22, 2007 to October 20, 2017 (a total of 2625 observations). We use a rolling win-

dow of 1000 observations to estimate the coefficients of the models, and evaluate the out-of-sample forecast

performance at four horizons (h¼ 1, h¼ 5, h¼ 10, and h¼ 22). Each panel in Table 8 corresponds to a specific

forecast horizon, which ranges from 1 day to 22 days. Bold numbers indicate the best performing model by

each criterion at each forecast horizon.
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Table 9 The GW test for the mean absolute forecast errors—the NASDAQ 100 ETF

Method AR(22) HAR HAR-J HAR-

CJ

HAR-

RS-I

HAR-

RS-II

HAR-

SJ-I

HAR-

SJ-II

Panel A: h ¼ 1

AR(22) – – – – – – – –

HAR 0.5936 – – – – – – –

HAR-J 0.0068 0.0000 – – – – – –

HAR-CJ 0.0008 0.0000 0.4332 – – – – –

HAR-RS-I 0.0001 0.0001 0.0050 0.0058 – – – –

HAR-RS-II 0.0000 0.0000 0.0000 0.0000 0.0304 – – –

HAR-SJ-I 0.0000 0.0000 0.0020 0.0028 0.0656 0.0000 – –

HAR-SJ-II 0.0002 0.0002 0.0068 0.0086 0.3482 0.0190 0.1289 –

HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0060 0.0000 0.0000

Panel B: h ¼ 5

AR(22) – – – – – – – –

HAR 0.1284 – – – – – – –

HAR-J 0.0475 0.0062 – – – – – –

HAR-CJ 0.0028 0.0002 0.0077 – – – – –

HAR-RS-I 0.0139 0.0003 0.0027 0.3819 – – – –

HAR-RS-II 0.0093 0.0000 0.0003 0.5971 0.1716 – – –

HAR-SJ-I 0.0178 0.0030 0.0260 0.2597 0.0175 0.0714 – –

HAR-SJ-II 0.0034 0.0000 0.0000 0.7023 0.0072 0.0176 0.0052 –

HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Panel C: h ¼ 10

AR(22) – – – – – – – –

HAR 0.4620 – – – – – – –

HAR-J 0.3554 0.2268 – – – – – –

HAR-CJ 0.0477 0.0042 0.0154 – – – – –

HAR-RS-I 0.1665 0.0236 0.0022 0.4104 – – – –

HAR-RS-II 0.1279 0.0359 0.0165 0.9043 0.1295 – – –

HAR-SJ-I 0.1858 0.0536 0.0185 0.4746 0.8771 0.0495 – –

HAR-SJ-II 0.6800 0.8733 0.7063 0.2821 0.4451 0.3663 0.4666 –

HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

Panel D: h ¼ 22

AR(22) – – – – – – – –

HAR 0.6077 – – – – – – –

HAR-J 0.4487 0.5539 – – – – – –

HAR-CJ 0.5025 0.6427 0.9489 – – – – –

HAR-RS-I 0.5918 0.9796 0.4787 0.6039 – – – –

HAR-RS-II 0.3305 0.3026 0.4892 0.7376 0.1795 – – –

HAR-SJ-I 0.5900 0.8755 0.6093 0.6654 0.8190 0.2828 – –

HAR-SJ-II 0.4660 0.5700 0.8699 0.8888 0.3776 0.2854 0.5575 –

HARP 0.0075 0.0127 0.0136 0.0140 0.0124 0.0131 0.0126 0.0120

Notes: The modified GW test (Giacomini and White, 2006) is implemented to test the null hypothesis that the

row method (in vertical headings) performs equally well as the column method (in horizontal headings) in

terms of the absolute forecast error. Corresponding p-values for a number of forecasting horizons

(h ¼ 1; 5; 10; 22) are reported in Panels A–D of Table 9, respectively. Bold numbers indicate the null hypothesis

can be rejected at 5% level of significance.
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significant at 1%. Overall, the above conclusions are in agreement with the results for the

NASDAQ 100 ETF.

5.2 Variation in the Sampling Frequency

Here we examine the robustness of the HARP model to the intraday RVs constructed from

a five-minute sampling frequency. This choice directly reflects the sampling frequency

adopted in much of the existing realized volatility literature.28 Summary statistics of the

five-minute RVs of the NASDAQ 100 ETF are reported in Online Appendix G.5.

Table 11 The GW test for the mean absolute forecast errors-the DJIA (h¼ 1)

Method AR(22) HAR HAR-J HAR-CJ HAR-RS-I HAR-RS-II HAR-SJ-I HAR-SJ-II

AR(22) – – – – – – – –

HAR 0.0959 – – – – – – –

HAR-J 0.0239 0.0266 – – – – – –

HAR-CJ 0.1254 0.3795 0.0016 – – – – –

HAR-RS-I 0.0129 0.0034 0.7456 0.0033 – – – –

HAR-RS-II 0.0000 0.0000 0.0009 0.0000 0.0001 – – –

HAR-SJ-I 0.0316 0.1331 0.7198 0.0833 0.1478 0.0000 – –

HAR-SJ-II 0.0324 0.1526 0.9165 0.0919 0.4069 0.0004 0.7530 –

HARP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Notes: The modified GW test (Giacomini and White, 2006) is implemented to test the null hypothesis that the row

method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the

absolute forecast error. Bold numbers indicate the null hypothesis can be rejected at 5% level of significance.

Table 10 Out-of-sample forecast comparison of models on the DJIA (h¼ 1)

Method MSFE QLIKE MAFE SDFE Pseudo R2

AR(22) 1.1207 0.2401 0.3852 1.0586 0.2990

HAR 0.9000 0.2177 0.3707 0.9487 0.4370

HAR-J 0.8720 0.2116 0.3648 0.9338 0.4545

HAR-CJ 0.9153 0.2154 0.3722 0.9567 0.4275

HAR-RS-I 0.9776 0.2063 0.3636 0.9887 0.3885

HAR-RS-II 0.8223 0.2049 0.3467 0.9068 0.4857

HAR-SJ-I 0.9325 0.2089 0.3662 0.9656 0.4168

HAR-SJ-II 1.1121 0.2036 0.3653 1.0546 0.3044

HARP 0.5487 0.1852 0.3005 0.7407 0.6568

Notes: This table reports the out-of-sample results for predicting one-day ahead future realized variation using

the different predictor variables and risk models. The results are based on data of the DJIA spanning from May

22, 2007 to October 20, 2017 (a total of 2625 observations). We use a rolling window of 1000 observations to

estimate the coefficients of the models, and evaluate the out-of-sample forecast performance. Bold numbers in-

dicate the best performing model by each criterion.

28 See also the theoretical comparisons of various volatility estimators in Andersen, Bollerslev, and

Meddahi (2011) and Ghysels and Sinko (2011) from a forecasting perspective. Liu, Patton, and
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Comparing to statistics on one-minute intraday data in Table 2, we notice very minor

changes. We then duplicate the rolling window regressions on the five-minute data in

Tables 12 and 13. The losses for all the forecast criteria are systematically lower than those

in the one-minute case. We also notice that the results are qualitatively the same as those

based on the one-minute data. The experiment confirms that the robustness of HARP under

different sampling frequencies.

5.3 Alternative Estimation of Unobserved Factors

Since our article is related to volatility spillover literature which always explores more in-

formation from other datasets, it is an interesting trial to compare the HARP model with

the HAR models incorporating common factors extracted from other time series. Two al-

ternative approaches are considered below. The first method (denoted by HARPCA1) con-

ducts a direct estimation of unobserved common factors from panels of RVs of the

NASDAQ 100 components, using the PC analysis. Following Kapetanios and Pesaran

(2004), this is implemented in a two-stage procedure, where in the first-stage PCs for RVs

of the NASDAQ 100 components are obtained as in Stock and Watson (2002), and in the

second stage, the regression for the NASDAQ 100 ETF is estimated augmenting the

observed regressors with estimated PCs. It can be seen that this approach immediately gen-

erates unobserved factors instead of approximating them initially by cross-section averages

of the dependent variable and the observed regressors.29

Table 12 Out-of-sample forecast comparison of models on the NASDAQ 100 ETF sampled at a

five-minute frequency (h¼ 1)

Method MSFE QLIKE MAFE SDFE Pseudo R2

AR(22) 1.1111 0.2327 0.4401 1.3125 �0.8863

HAR 1.0463 0.2257 0.3824 1.0229 �0.1457

HAR-J 0.7040 0.1963 0.3428 0.8390 0.2291

HAR-CJ 0.7178 0.1881 0.3293 0.8472 0.2139

HAR-RS-I 0.3090 0.1906 0.3269 0.5559 0.6616

HAR-RS-II 0.6451 0.1847 0.3255 0.8032 0.2936

HAR-SJ-I 0.2812 0.1909 0.3249 0.5303 0.6921

HAR-SJ-II 0.2641 0.1853 0.3125 0.5139 0.7108

HARP 0.2400 0.1757 0.2948 0.4899 0.7372

Notes: This table reports the out-of-sample results for predicting one-day future realized variation using the dif-

ferent predictor variables and risk models. The results are based on data of the Dow Jones Transportation

Average spanning from May 22, 2007 to October 20, 2017 (a total of 2625 observations). We use a rolling win-

dow of 1000 observations to estimate the coefficients of the models and evaluate the out-of-sample forecast per-

formance at h¼ 1. Bold numbers indicate the best performing model by each criterion at each forecast horizon.

Sheppard (2015) give a comprehensive empirical study of 400 volatility estimators across multiple

assets.

29 A theoretical comparison is provided in Kapetanios and Pesaran (2004) on the small sample prop-

erties of the CCE method and the PC approach. After a series of Monte Carlo experiments,

Kapetanios and Pesaran (2004) conclude that the PC augmented method does not perform as well

as the CCE estimator and can be subject to substantial bias.
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The second choice implements the PC analysis of lagged RVs of the NASDAQ 100 ETF

and thus augments the regression (18) with the information of its own lagged terms

(denoted by HARPCA2). This is inspired by the work of Vortelinos (2017), which has al-

ready made the comparison between the HAR and the model augmented with PCs of the

dependent variable’s lagged terms. Vortelinos (2017) found that the HAR marginally out-

performs the PC-based model.

The out-of-sample results are presented in Table 14, which shows that the HARP defeats

the other two competitors under each of the evaluation criteria. Table 15 confirms the im-

provement is significant in all cases except for h¼22. It is not a surprise the HARPCA1 dom-

inates the HARPCA2 in our sample, since the former is likely to access richer information

from other time series rather than lagged RVs of the NASDAQ 100 ETF per se.

6 Conclusions

In this article, we argue that the linkages among component stock volatilities are important

for forecasting the relevant index or index fund volatility. We develop a panel-based HAR

model assuming unobserved common factors across cross-sectional units to capture the

comovements in realized volatility. The framework configuration draws from the CCE-

type estimators of Pesaran (2006) and Chudik and Pesaran (2015). It is shown that the

CCE estimator is consistent. Monte Carlo studies confirm that the CCE estimator has

sound finite sample performance.

We illustrate the relevance of the proposed HARP model by an empirical application to

forecasting the realized volatility of the NASDAQ 100 ETF. The in-sample analysis disclo-

ses that the unobserved factors from the panel regression play an important role. They may

capture information that is not contained already in the asset-specific realized volatility his-

tories, such as the sentiment of the financial market, the news effect, or the varying risk pre-

mium.30 Taking the unobserved factors into account can lead up to 174% increase in the

Table 13 The GW test for the mean absolute forecast error—the NASDAQ 100 ETF at a five-mi-

nute sampling frequency (h¼ 1)

Method AR(22) HAR HAR-J HAR-CJ HAR-RS-I HAR-RS-II HAR-SJ-I HAR-SJ-II

AR(22)

HAR 0.0013

HAR-J 0.0000 0.0000

HAR-CJ 0.0000 0.0000 0.0000

HAR-RS-I 0.0000 0.0012 0.1849 0.8437

HAR-RS-II 0.0000 0.0000 0.0000 0.3558 0.9096

HAR-SJ-I 0.0000 0.0048 0.2370 0.7770 0.5794 0.9649

HAR-SJ-II 0.0000 0.0008 0.0542 0.3025 0.0013 0.3993 0.0000

HARP 0.0000 0.0000 0.0029 0.0379 0.0000 0.0033 0.0000 0.0000

Notes: The modified GW test (Giacomini and White, 2006) is implemented to test the null hypothesis that the row

method (in vertical headings) performs equally well as the column method (in horizontal headings) in terms of the

absolute forecast error. Bold numbers indicate the null hypothesis can be rejected at 5% level of significance.

30 See, for example, Baker and Wurgler (2006) and Baker, Wurgler, and Yuan (2012) for the import-

ance of investor sentiment in explaining the cross section of stock returns.
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Table 14 Out-of-sample comparison of the HARP and models with other factor estimates on the

NASDAQ 100 ETF

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h ¼ 1

HARPCA1 0.2382 0.8017 0.2887 0.4881 0.7577

HARPCA2 0.2517 0.1402 0.2892 0.5017 0.7435

HARP 0.2129 0.1307 0.2709 0.4614 0.7831

Panel B: h ¼ 5

HARPCA1 0.4310 1.3620 0.3681 0.6565 0.5616

HARPCA2 0.4783 0.2661 0.4057 0.6916 0.5136

HARP 0.3458 0.2072 0.3409 0.5880 0.6483

Panel C: h ¼ 10

HARPCA1 0.4903 0.9658 0.3941 0.7002 0.5021

HARPCA2 0.5243 0.3578 0.4339 0.7241 0.4675

HARP 0.4071 0.2449 0.3662 0.6380 0.5866

Panel D: h ¼ 22

HARPCA1 0.5650 1.1543 0.4390 0.7516 0.4267

HARPCA2 0.7484 0.4043 0.4926 0.8651 0.2406

HARP 0.4835 0.3061 0.4258 0.6954 0.5093

Notes: The results are based on data of the NASDAQ 100 ETF spanning from May 22, 2007 to October 20,

2017 (a total of 2625 observations). HARPCA1 and HARPCA2 denote estimating the unobserved factors by

the PC analysis of two different time series, respectively. We use a rolling window of 1000 observations to esti-

mate the coefficients of the models, and evaluate the out-of-sample forecast performance. Bold numbers indi-

cate the best performing model by each criterion at each forecast horizon.

Table 15 The GW test for the mean absolute forecast errors—various spillover effect estimators

Method HARPCA1 HARPCA2 HARP HARPCA1 HARPCA2 HARP

h ¼ 1 h ¼ 5

HARPCA1 – – – – – –

HARPCA2 0.0000 – – 0.0000 – –

HARP 0.0002 0.0000 – 0.0005 0.0000

h ¼ 10 h ¼ 22

HARPCA1 – – – – – –

HARPCA2 0.0000 – – 0.0000 – –

HARP 0.0261 0.0000 – 0.5612 0.0000 –

Notes: The modified GW test (Giacomini and White, 2006) is implemented to test the null hypothesis that the

row method (in vertical headings) performs equally well as the column method (in horizontal headings) in

terms of the absolute forecast error. Corresponding p-values for a number of forecasting horizons

(h ¼ 1; 5; 10; 22) are reported in Panels A–D of Table 6, respectively. Bold numbers indicate the null hypothesis

can be rejected at 5% level of significance.
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in-sample R2. In the out-of-sample exercise, the HARP model that includes these latent

common factors significantly outperforms benchmark models that do not. Moreover, the

HARP model produces substantial predictive gains, as measured by 2.5–69.6% larger out-

of-sample R2 values, relative to those without common unobservable factors. Our findings

are robust to different stock indices and alternative estimates of the unobserved common

factors.

Our HARP estimator is not limited to the univariate forecasting exercises demonstrated

in this article. It is possible that the HARP method can be further applied to the full realized

covariance matrix. We leave these for future research.

Supplemental Data

Supplemental data is available at Journal of Financial Econometrics online.
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