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Simulation-Based Estimation Methods 1

for Financial Time Series Models 2

Jun Yu 3

Abstract This chapter overviews some recent advances on simulation-based meth- 4

ods of estimating financial time series models that are widely used in financial 5

economics. The simulation-based methods have proven to be particularly useful 6

when the likelihood function and moments do not have tractable forms and hence 7

the maximum likelihood (ML) method and the generalized method of moments 8

(GMM) are difficult to use. They are also useful for improving the finite sample 9

performance of the traditional methods. Both frequentist and Bayesian simulation- 10

based methods are reviewed. Frequentist’s simulation-based methods cover various 11

forms of simulated maximum likelihood (SML) methods, simulated generalized 12

method of moments (SGMM), efficient method of moments (EMM), and indirect 13

inference (II) methods. Bayesian simulation-based methods cover various MCMC 14

algorithms. Each simulation-based method is discussed in the context of a specific 15

financial time series model as a motivating example. Empirical applications, based 16

on real exchange rates, interest rates and equity data, illustrate how to implement the 17

simulation-based methods. In particular, we apply SML to a discrete time stochastic 18

volatility model, EMM to estimate a continuous time stochastic volatility model, 19

MCMC to a credit risk model, the II method to a term structure model. 20

1 Introduction 21

Relative to other fields in economics, financial economics has a relatively short 22

history. Over the last half century, however, there has been an explosion of 23

theoretical work in financial economics. At the same time, more and more complex 24
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financial products and services have been created. The size of financial markets has 25

exponentially increased and the quality of database is hugely advanced. The major 26

developments in theoretical finance and the availability of high quality data provide 27

an extremely rich framework for empirical work in financial economics. 28

How to price financial assets has been a driving force for much of the research 29

on financial asset pricing. With the growth in complexity in financial products 30

and services, the challenges faced by the financial economists naturally grow 31

accordingly, one of which is the computing cost. Another driving force for research 32

in financial economics is to bring finance theory to data. Empirical analysis in 33

financial economics often involves calculating the likelihood function or solving 34

a set of moment conditions. 35

Traditional econometric methods for analyzing models in financial economics 36

include maximum likelihood (ML), quasi-ML, generalized method of moments 37

(GMM), and classical Bayesian methods. When the model is fully specified and the 38

likelihood function has a tractable form, ML and Bayesian methods provide the full 39

likelihood-based inference. Under mild regularity conditions, it is well recognized 40

that the ML estimator (MLE) is consistent, asymptotically normally distributed 41

and asymptotically efficient. Due to the invariance principle, a function of MLE 42

is a MLE and hence inherits all the nice asymptotic properties (e.g., Zehna 1966). 43

These features greatly facilitate applications of ML in financial economics. When 44

the model is not fully specified but certain moments exist, GMM can be applied. 45

Relative to ML, GMM trades off efficiency with robustness. 46

Financial data are typically available in the time series format. Consequently, 47

time series methods are of critical importance to empirical research in financial 48

economics. Historically, financial economists restricted themselves to a small class 49

of time series models so that the setups were simple enough to permit an analytical 50

solution for asset prices. Moreover, empirical analysis was often done based a 51

small set of financial assets, so that the computational cost is kept low. The leading 52

example is perhaps the geometric Brownian motion, which was used by Black and 53

Scholes to price European options (Black and Scholes 1973) and by Merton to price 54

corporate bonds (Merton 1974). In recent years, however, many alternative models 55

and financial products have been proposed so that asset prices do not have analytical 56

solutions any more. As a result, various numerical solutions have been proposed, 57

one class of which is based on simulations. Although the use of simulation-based 58

methods for asset pricing is sufficient important and merits a detailed review, it is 59

beyond the scope of the present chapter. We refer readers to McLeish (2005) for a 60

textbook treatment on asset pricing via simulation methods. 61

Even if the pricing formula of a financial asset has a tractable form, estimation 62

of the underlying time series model is not always feasible by standard econometric 63

methods. For many important financial time series models, the likelihood function 64

or the moment conditions cannot be evaluated analytically and may be numerically 65

formidable so that standard econometric methods, such as ML, GMM and Bayesian, 66

are not feasible. For example, Heston (1993) derived a closed-form expression for 67

the European option price under the square root specification for volatility. It is 68

known that the ML estimation of Heston’s stochastic volatility (SV) model from 69
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stock prices is notoriously difficult. For more complicated models where asset prices 70

do not have a closed-form expression, it is almost always the case that standard 71

estimation methods are difficult to use. 72

Parameter estimation is important for asset pricing. For example, in order to 73

estimate the theoretical price of a contingent claim implied by the underlying time 74

series model, one has to estimate the parameters in the time series model and then 75

plug the estimates into the pricing formula. In addition, parameter estimates in 76

financial time series models are necessary inputs to many other financial decision 77

makings, such as asset allocation, value-at-risk, forecasting, estimation of the 78

magnitude of microstructure noise, estimation of transaction cost, specification 79

analysis, and credit risk analysis. For example, often alternative and sometimes 80

competing time series specifications co-exist. Consequently, it may be important 81

to check the validity of a particular specification and to compare the relative 82

performance of alternative specifications. Obviously, estimation of these alternative 83

specifications is an important preliminary step to the specification analysis. For 84

another example, in order to estimate the credit spread of a risky corporate bond over 85

the corresponding Treasury rate and the default probability of a firm, the parameters 86

in the underlying structural model have to be estimated first. 87

In some cases where ML or GMM or Bayesian methods are feasible but financial 88

time series are highly persistent, classical estimators of certain parameters may have 89

poor finite sample statistical properties, due to the presence of a large finite sample 90

bias. The bias in parameter estimation leads to a bias in other financial decision 91

making. Moreover, the large finite sample bias often leads to a poor approximation 92

to the finite sample distribution by the asymptotic distribution. As a result, statistical 93

inference based on the asymptotic distribution may be misleading. Because many 94

financial variables, such as interest rates and volatility, are highly persistence, this 95

finite sample problem may be empirically important. 96

To overcome the difficulties in calculating likelihood and moments and to 97

improve the finite sample property of standard estimators, many simulation-based 98

estimation methods have been proposed in recent years. Some of them are method- 99

ologically general; some other are specially tailored to deal with a particular model 100

structure. In this chapter, we review some simulation-based estimation methods that 101

have been used to deal with financial time series models. 102

Stern (1997) is an excellent review of the simulation-based estimation methods 103

in the cross-sectional context while Gouriéroux and Monfort (1995) reviewed the 104

simulation-based estimation methods in the classical framework. Johannes and 105

Polson (2009) reviewed the Bayesian MCMC methods used in financial economet- 106

rics. Our present review is different from these reviews in several important aspects. 107

First, our review covers both the classical and Bayesian methods whereas Johannes 108

and Polson (2009) only reviewed the Bayesian methods. Second, relative to Stern 109

(1997) and Gouriéroux and Monfort (1995), more recently developed classical 110

methods are discussed in the present chapter. Moreover, only our review discuss 111

the usefulness of simulation-based methods to improve finite sample performances. 112

We organize the rest of this chapter by collecting the methods into four cate- 113

gories: simulation-based ML (SML), simulation-based GMM (SGMM), Bayesian 114
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Markov chain Monte Carlo (MCMC) methods, and simulation-based resampling 115

methods. Each method is discussed in the context of specific examples and an 116

empirical illustration is performed using real data correspondingly. Section 15.2 117

overviews the classical estimation methods and explains why they may be difficult to 118

use in practice. Section 15.3 discusses discrete time stochastic volatility models and 119

illustrates the implementation of a SML method. Section 15.4 discusses continuous 120

time models and illustrates the implementation of EMM. Section 15.5 discusses 121

structure credit risk models and illustrates the implementation of a Bayesian MCMC 122

method. Section 15.6 discusses continuous time models with a linear and persistent 123

drift function and illustrates the implementation of the indirect inference (II) method 124

in the context of Vasicek model for the short term interest rate. Finally, Sect. 15.7 125

concludes. 126

2 Problems with Traditional Estimation Methods 127

In many cases the likelihood function of a financial time series model can be 128

expressed as:1 129

L.�/ D p.XI �/ D
Z
p.X;VI �/dV; (1)

where X D .X1; � � � ; Xn/ WD .Xh; � � � ; Xnh/ is the data observed by econometri- 130

cians,2 h the sampling interval, p.X/ the joint density of X, V a vector of latent 131

variables, � a set of K parameters that econometricians wish to estimate. As X.t/ 132

often represents the annualized data, when daily (weekly or monthly) data are used, 133

h is set at 1/252 (1/52 or 1/12). Assume T D nh is the time span of the data and the 134

true values for � is �0. 135

MLE maximizes the log-likelihood function over � in a certain parameter space: 136

O�MLn WD argmax�2�`.�//;

where `.�/ D lnL.�/ D lnp.XI �/. The first order condition of the maximization 137

problem is: 138
@`

@�
D 0:

Under mild regularity conditions, the ML estimator (MLE) has desirable asymp- 139

totic properties of consistency, normality and efficiency. Moreover, the invariance 140

property of MLE ensures that a smoothed transformation of MLE is a MLE of the 141

same transformation of the corresponding parameters (Zehna 1966). This property 142

has proven very useful in financial applications. 143

1Specific examples can be found below.
2When there is no confusion, we will use Xt and Xth interchangeably.
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Unfortunately, when the integration in (1) is not analytically available and the 144

dimension of V is high, numerical evaluation of (1) is difficult. If p.XI �/ is difficult 145

to calculate, ML is not easy to implement. 146

Instead of maximizing the likelihood function, Bayesian methods update the 147

prior density to the posterior density using the likelihood function, based on the 148

Bayes theorem: 149

p.� jX/ / p.XI �/p.�/;
where p.�/ is the prior density and p.� jX/ the posterior distribution. As in ML, if 150

p.XI �/ is difficult to calculate, the posterior density p.� jX/ is generally difficult to 151

evaluate. 152

Unlike ML or Bayesian methods that rely on the distributional assumption of the 153

model, GMM only requires a set of moment conditions to be known. Let g be a set 154

of q moment conditions, i.e. 155

EŒg.XI �0/	 D 0

GMM minimizes a distance measure, i.e. 156

O�GMMn WD argmin�2�

 
1

n

nX

tD1
g.Xt I �/

!0
Wn

 
1

n

nX

tD1
g.Xt I �/

!0
;

where Wn is a certain positive definite weighting matrix of q � q-dimension (q 	 157

K), which may depend on the sample but not � . Obviously, the implementation 158

of GMM requires the moments to be known analytically or easy to calculate 159

numerically. Since a fixed set of moments contain less information than a density, 160

in general GMM uses less information than ML and hence is statistically less 161

efficient. In the case where the moment conditions are selected based on the 162

score functions (in which case q D K), GMM and ML are equivalent. However, 163

sometimes moment conditions are obtained without a distributional assumption 164

and hence GMM may be more robust than the likelihood-based methods. Under 165

mild regularity conditions, Hansen (1982) obtained the asymptotic distributions 166

of GMM estimators. Unfortunately, many financial time series models do not 167

have an analytical expression for moments and moments are difficult to evaluate 168

numerically, making GMM not trivial to implement. 169

Even if ML is applicable, MLE is not necessarily the best estimator in finite 170

sample. Phillips and Yu (2005a,b, 2009a,b) have provided numerous examples to 171

demonstrate the poor finite sample properties of MLE. In general there are three 172

reasons for this. First, many financial variables (such as interest rates and volatility) 173

are very persistent. When a linear time series model is fitted to these variables, ML 174

and GMM typically lead to substantial finite sample bias for the mean reversion 175

parameter even in very large samples. For example, when 2,500 daily observations 176

are used to estimate the square root model of the short term interest rate, ML 177

estimates the mean reversion parameter with nearly 300% bias. Second, often 178

financial applications involve non-linear transformation of estimators of the system 179

parameters. Even if the system parameters are estimated without any bias, insertion 180
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of even unbiased estimators into the nonlinear functions will not assure unbiased 181

estimation of the quantity of interest. A well known example is the MLE of a deep 182

out-of-money option which is highly nonlinear in volatility. In general, the more 183

pronounced the nonlinearity, the worse the finite sample performance is. Third, even 184

if a long-span sample is available for some financial variables and hence asymptotic 185

properties of econometric estimators is more relevant, full data sets are not always 186

employed in estimation because of possible structural changes in long-span data. 187

When short-span samples are used in estimation, finite sample distributions can be 188

far from the asymptotic theory. 189

A natural way to improve the finite sample performance of classical estimators 190

is to obtain the bias in an analytical form and then remove the bias from the biased 191

estimator, with the hope that the variance of the bias-corrected estimator does not 192

increase or only increases slightly so that the mean square error becomes smaller. 193

Unfortunately, the explicit analytical bias function is often not available, except in 194

very simple cases. 195

When the likelihood function and moments are difficult to calculate or traditional 196

estimators perform poorly in finite sample, one can resort to simulation methods. 197

There has been an explosion of theoretical and empirical work using simulation 198

methods in financial time series analysis over the last 15 years. In the following 199

sections we will consider some important examples in financial economics and 200

financial econometrics. Simulated-based methods are discussed in the context of 201

these examples and an empirical illustration is provided in each case. 202

3 Simulated ML and Discrete Time SV Models 203

To illustrate the problem in ML, we first introduce the basic lognormal (LN) SV 204

model of Taylor (1982) defined by 205

�
Xt D �eht =2�t ; t D 1; : : : ; n;

htC1 D �ht C ��t ; t D 1; : : : ; n � 1; (2)

where Xt is the return of an asset, j�j < 1, �t
iid� N.0; 1/, �t

iid� N.0; 1/, 206

corr.�t ; �t / D 0, and h1 � N.0; �2=.1 � �2//. The parameters of interest are 207

� D .�; �; �/0. This model is proven to be a powerful alternative to ARCH-type 208

models (Geweke 1994; Danielsson 1994). Its continuous time counterpart has been 209

used to pricing options contracts (Hull and White 1987). 210

Let X D .X1; : : : ; Xn/
0 and V D .h1; : : : ; hn/

0. Only X is observed by the 211

econometrician. The likelihood function of the model is given by 212

p.XI �/ D
Z
p.X;VI �/dV D

Z
p.XjVI �/p.VI �/dV: (3)



UNCORRECTED
PROOF

Simulation-Based Estimation Methods for Financial Time Series Models 419

To perform the ML estimation to the SV model, one must approximate the high- 213

dimensional integral (3) numerically. Since a typical financial time series has at least 214

several hundreds observations, using traditional numerical integration methods, 215

such as quadratures, to approximate the high-dimensional integral (3) is numerically 216

formidable. This is the motivation of the use of Monte Carlo integration methods in 217

much of the SV literature. 218

The basic LN-SV model has been found to be too restrictive empirically for many 219

financial time series and generalized in various dimensions to accommodate stylized 220

facts. Examples include the leverage effect (Harvey and Shephard 1996; Yu 2005), 221

SV-t (Harvey et al. 1994), super-position (Pitt and Shephard 1999b), jumps (Duffie 222

et al. 2000), time varying leverage effect (Yu 2009b). An widely used specification, 223

alternative to the LN-SV model, is the Heston model (Heston 1993). 224

In this section, we will review several approaches to do simulated ML estimation 225

of the basic LN-SV model. The general methodology is first discussed, followed by 226

a discussion of how to use the method to estimate the LN-SV model and then by an 227

empirical application. 228

3.1 Importance Sampler Based on the Laplace Approximation 229

Taking the advantage that the integrand is a probability distribution, a widely used 230

SML method evaluates the likelihood function numerically via simulations. One 231

method matches the integrand with a multivariate normal distribution, draws a 232

sequence of independent variables from the multivariate normal distribution, and 233

approximates the integral by the sample mean of a function of the independent 234

draws. Namely, a Monte Carlo method is used to approximate the integral numeri- 235

cally and a carefully selected multivariate normal density is served as an importance 236

function in the Monte Carlo method. The technique in the first stage is known as 237

the Laplace approximation while the technique in the second stage is known as the 238

importance sampler. In this chapter the method is denoted LA-IS. 239

To fix the idea, in Stage 1, we approximate p.X;VI �/ by a multivariate normal 240

distribution for V, N.�I V�;�˝�1/, where 241

V� D arg max
V

lnp.X;VI �/ (4)

and 242

˝ D @2 lnp.X;V�I �/
@V@V0 : (5)

For the LN-SV model V� does not have the analytical expression and hence 243

numerical methods are needed. For example, Shephard and Pitt (1997), Durham 244

(2006), Skaug and Yu (2007) proposed to use Newton’s method, which involves 245
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recursive calculations of V D V� � ˝�1V�, based on a certain initial vector of 246

log-volatilities, V0. 247

Based on the Laplace approximation, the likelihood function can be written as 248

p.XI �/ D
Z
p.X;VI �/dV D

Z
p.X;VI �/

N.VI V�;�˝�1/
N.VI V�;�˝�1/dV: (6)

The idea of importance sampling is to draw samples V.1/; : : : ;V.S/ from 249

N.�I V�;�˝�1/ so that p.XI �/ is approximated by 250

1

S

SX

sD1

p.X;V.s/I �/
N.V.s/I V�;�˝�1/

: (7)

After the likelihood function is obtained, a numerical optimization procedure, such 251

as the quasi Newton method, can be applied to obtain the ML estimator. 252

The convergence of (7) to the likelihood function p.XI �/ with S ! 1 is 253

ensured by Komogorov’s strong law of large numbers. The square root rate of 254

convergence is achieved if and only if the following condition holds 255

Var



p.X;V.s/I �/

N.V.s/I V�;�˝�1/

�
< 1:

See Koopman et al. (2009) for further discussions on the conditions and a test to 256

check the convergence. 257

The idea of the LA-IS method is quite general. The approximation error is 258

determined by the distance between the integrant and the multivariate normal 259

distribution and the size of S . The Laplace approximation does not have any error 260

if p.X;VI �/ is the Gaussianity in V. In this case, S D 1 is big enough to obtain 261

the exact value of the integral. The further p.X;VI �/ away from Gaussian in V, the 262

less precise the Laplace approximation is. In this case, a large value is needed for S . 263

For the LN-SV model, the integrand in (3) can be written as 264

p.X;VI �/ D N



h1; 0;

�2

1 � �2
� nY

tD2
N
�
ht ; �hn�1; �2

� nY

tD1
N
�
Xt; 0; �

2eht
�
; (8)

and hence 265

lnp.X;VI �/ D lnN



h1; 0;

�2

1 � �2

�
C

nX

tD2
lnN

�
ht ; �hn�1; �2

�

C
nX

tD1
lnN

�
Xt ; 0; �

2eht
�
: (9)
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It is easy to show that 266

@N.xI�; �2/=@x
N.xI�; �2/ D �x � �

�2
;
@N.xI�; �2/=@�
N.xI�; �2/ D �� � x

�2
;

267
@N.xI�; �2/=@�2
N.xI�; �2/ D � 1

�2



1 � .x � �/2

�2

�
;

Using these results, we obtain the gradient of the log-integrand: 268

0
BBBBBBBB@

@ lnp.X;VI�/
@h1

@ lnp.X;VI�/
@h2
:::

@ lnp.X;VI�/
@hn�1

@ lnp.X;VI�/
@hn

1
CCCCCCCCA

D

0
BBBBBBBB@

�h2�h1
�2

� 1
2

C 1
2
�21

�h3��2h2C�h1
�2

� 1
2

C 1
2
�22

:::
�hn��2hn�1C�hT�2

�2
� 1

2
C 1

2
�2n�1

hn��hn�1

�2
� 1

2
C 1

2
�2n

1
CCCCCCCCA

; (10)

and the Hessian matrix of the log-integrand: 269

˝ D

0

BBBBBBBBB@

� 1
�2

� 1
2
�21

�

�2
� � � 0 0

�

�2
� 1C�2

�2
� 1

2
�22 � � � 0 0

:::
:::

: : :
:::

:::

0 0 � � � � 1C�2
�2

� 1
2
�2n�1

�

�2

0 0 � � � �

�2
� 1
�2

� 1
2
�2n

1

CCCCCCCCCA

: (11)

Durham (2006, 2007), Koopman et al. (2009), Skaug and Yu (2007) and 270

Yu (2009b) applied the SML method to estimate generalized SV models and 271

documented the reliable performance in various contexts. 272

3.2 Monte Carlo Likelihood Method 273

Durbin and Koopman (1997) proposed a closely related SML method which is 274

termed Monte Carlo likelihood (MCL) method. MCL was originally designed to 275

evaluate the likelihood function of a linear state-space model with non-Gaussian 276

errors. The basic idea is to decompose the likelihood function into the likelihood of 277

a linear state-space model with Gaussian errors and that of the remainder. It is known 278

that the likelihood function of a linear state-space model with Gaussian errors can 279

be calculated by the Kalman filter. The likelihood of the remainder is calculated by 280

simulations using LA-IS. 281



UNCORRECTED
PROOF

422 J. Yu

To obtain the linear state-space form for the LN-SV model, one can apply the 282

log-squared transformation to Xt : 283

�
Yt D lnX2

t D ln �2 C ht C "t ; t D 1; : : : ; n;

htC1 D �ht C ��t ; t D 1; : : : ; n � 1;
(12)

where "t
iid� ln�2.1/ (i.e. no-Gaussian), �t

iid�N.0; 1/, corr."t ; �t /D 0, and h1 �N 284

.0; �2=.1� �2//. For any linear state-space model with non-Gaussian measurement 285

errors, Durbin and Koopman (1997) showed that the log-likelihood function can be 286

expressed as 287

lnp.XI �/ D lnLG.XI �/C lnEG

�
p"."I �/
pG."I �/

	
; (13)

where lnLG.XI �/ is the the log-likelihood function of a carefully chosen approxi- 288

mating Gaussian model, p"."I �/ the true density of ".WD ."1; : : : ; "n/
0/, pG."I �/ 289

the Gaussian density of the measurement errors of the approximating model, 290

EG the expectation with respect to the importance density in connection to the 291

approximating model. 292

Relative to (3), (13) has the advantage that simulations are only needed to 293

estimate the departure of the likelihood from the Gaussian likelihood, rather than 294

the full likelihood. For the LN-SV model, lnLG.XI �/ often takes a much larger 295

value than lnEG
h
p"."I�/
pG."I�/

i
. As a result, MCL is computationally efficient than 296

other simulated-based ML methods because it only needs a small number of 297

simulations to achieve the desirable accuracy when approximating the likelihood. 298

However, the implementation of the method requires a linear non-Gaussian state- 299

space representation. Jungbacker and Koopman (2007) extended the method to deal 300

with nonlinear non-Gaussian state-space models. Sandmann and Koopman (1998) 301

applied the method to estimate the LN-SV model and the SV-t model. Broto and 302

Ruiz (2004) compared the performance of alternative methods for estimating the 303

LN-SV model and found supporting evidence for of the good performance of MCL. 304

3.3 Efficient Importance Sampler 305

Richard and Zhang (2007) developed an alternative simulated ML method. It 306

is based on a particular factorization of the importance density and termed as 307

Efficient Importance Sampling (EIS). Relative to the two SML methods reviewed 308

in Sects 3.1 and 3.2, EIS minimizes locally the Monte Carlo sampling variance of 309

the approximation to the integrand by factorizing the importance density. To fix the 310

idea, assume g.VjX/ is the importance density which can be constructed as 311

g.VjX/ D
nY

tD1
g.ht jht�1;X/ D

nY

tD1

n
Cte

ct htCdt h2t p.ht jht�1/
o
; (14)
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where ct ; Ct and dt depend on X and ht�1 with fCtg be a normalization sequence 312

so that g is a normal distribution. The sequences fctg and fdtg should be chosen to 313

match p.X;VI �/ and g.VjX/ which, as we shown in Sect. 15.3.1, requires a high- 314

dimensional non-linear regression. The caveat of EIS is to match each component in 315

g.VjX/ (i.e. Ctect htCdt h
2
t p.ht jht�1/), to the corresponding element in the integrand 316

p.XI V/ (ie p.Xt jht /p.ht jht�1/) in a backward manner, with t D n; n � 1; � � � ; 1. 317

It is easy to show that Ct depends only on ht�1 but not on ht . As a result, the 318

recursive matching problem is equivalent to running the following linear regression 319

backward: 320

lnp.Xt jh.s/t /� lnCtC1 D a C cth
.s/
t C dt .h

.s/
t /

2; s D 1; � � � ; S; (15)

where h.1/t ; : : : ; h
.S/
t are drawn from the importance density and h.s/t and .h.s/t /

2 are 321

treated as the explanatory variables in the regression model with CnC1 D 1. 322

The method to approximate the likelihood involves the following procedures: 323

1. Draw initial V.s/ from (2) with s D 1; � � � ; S . 324

2. Estimate ct and dt from (15) and do it backward with CnC1 D 1. 325

3. Draw V.s/ from importance density g.VjX/ based on ct and dt . 326

4. Repeat Steps 2-3 until convergence. Denote the resulting sampler by V.s/. 327

5. Approximate the likelihood by 328

1

S

SX

sD1

8
<

:

nY

tD1

p.Xt jh.s/t /
Ct exp

�
cth

.s/
t C dt.h

.s/
t /

2

�

9
=

; :

The EIS algorithm relies on the user to provide a problem-dependent auxiliary 329

class of importance samplers. An advantage of this method is that it does not 330

rely on the assumption that the latent process is Gaussian. Liesenfeld and Richard 331

(2003, 2006) applied this method to estimate a number of discrete SV models while 332

Kleppe et al. (2009) applied this method to estimate a continuous time SV model. 333

Lee and Koopman (2004) compared the EIS method with the LA-IS method and 334

found two methods are comparable in the context of the LN-SV model and the SV-t 335

model. Bauwens and Galli (2008) and Bauwens and Hautsch (2006) applied EIS to 336

estimate a stochastic duration model and a stochastic conditional intensity model, 337

respectively. 338

3.4 An Empirical Example 339

For the purposes of illustration, we fit the LN-SV model to a widely used dataset 340

(namely svpd1.txt). The dataset consists of 945 observations on daily pound/dollar 341

exchange rate from 01/10/1981 to 28/06/1985. The same data were used in Harvey 342

et al. (1994), Shephard and Pitt (1997), Meyer and Yu (2000), and Skaug and Yu 343

(2007). 344
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Table 1 SMLE of the LN-SV model
� � � Log-likelihood

S D 32 0.6323 0.1685 0.9748 917.845
S D 64 0.6305 0.1687 0.9734 917.458

Matlab code (namely LAISLNSV.m) is used to implement the LA-IS method. 345

Table 1 reports the estimates and the likelihood when S D 32. In Skaug and Yu 346

(2007) the same method was used to estimate the same model but S was set at 64. 347

The estimates and the log-likelihood value based on S D 32 are very similar to 348

those based on S D 64, suggesting that a small number of random samples can 349

approximate the likelihood function very well. 350

4 Simulated GMM and Continuous Time Models 351

Many models that are used to describe financial time series are written in terms of a 352

continuous time diffusion X.t/ that satisfies the stochastic differential equation 353

dX.t/ D �.X.t/I �/dt C �.X.t/I �/dB.t/; (16)

where B.t/ is a standard Brownian motion, �.X.t/I �/ a diffusion function, 354

�.X.t/I �/ a drift function, and � a vector of unknown parameters. The target here 355

is to estimate � from a discrete sampled observations, Xh; : : : ; Xnh with h being 356

the sampling interval. This class of parametric models has been widely used to 357

characterize the temporal dynamics of financial variables, including stock prices, 358

interest rates, and exchange rates. 359

Many estimation methods are based on the construction of the likelihood function 360

derived from the transition probability density of the discretely sampled data. 361

This approach is explained as follows. Suppose p.XihjX.i�1/h; �/ is the transition 362

probability density. The Markov property of model (16) implies the following log- 363

likelihood function for the discrete sample 364

`.�/ D
nX

iD1
ln.p.XihjX.i�1/h; �//: (17)

To perform exact ML estimation, one needs a closed form expression for `.�/ 365

and hence ln.p.XihjX.i�1/h; �//. In general, the transition density p satisfies the 366

forward equation: 367

@p

@t
D 1

2

@2p

@y2
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and the backward equation: 368
@p

@s
D �1

2

@2p

@x2
;

where p.y; t jx; s/ is the transition density. Solving the partial differential equation 369

numerically at y D Xih; x D X.i�1/h yields the transition density. This approach 370

was proposed by Lo (1988). 371

Unfortunately, only in rare cases, does the transition density p.XihjX.i�1/h; �/ 372

have a closed form solution. Phillips and Yu (2009) provide a list of examples 373

in which ln.p.XihjX.i�1/h; �// have a closed form analytical expression. These 374

examples include the geometric Brownian Motion, Ornstein-Uhlenbeck (OU) pro- 375

cess, square-root process, and inverse square-root process. In general solving the 376

forward/backward equations is computationally demanding. 377

A classical and widely used estimation method is via the Euler scheme, which 378

approximates a general diffusion process such as equation (16) by the following 379

discrete time model 380

Xih D X.i�1/h C �.X.i�1/h; �/hC �.X.i�1/h; �/
p
h�i ; (18)

where �i � i.i.d. N.0; 1/. The transition density for the Euler discrete time model 381

(18) has the following closed form expression: 382

XihjX.i�1/h � N
�
X.i�1/h C �.X.i�1/h; �/h; �2.X.i�1/h; �/h

�
: (19)

Obviously, the Euler scheme introduces a discretization bias. The magnitude 383

of the bias introduced by Euler scheme is determined by h, which cannot be 384

controlled econometricians. In general, the bias becomes negligible when h is 385

close to zero. One way to use the full likelihood analysis is to make the sampling 386

interval arbitrarily small by partitioning the original sampling interval so that the 387

new subintervals are sufficiently fine for the discretization bias to be negligible. By 388

making the subintervals smaller, one inevitably introduces latent variables between 389

the two original consecutive observationsX.i�1/h and Xih. While our main focus is 390

SGMM in this section, SML is possible and is discussed first. 391

4.1 SML Methods 392

To implement ML estimation, one can integrate out these latent observations.3 When 393

the partition becomes finer, the discretization bias is approaching 0 but the required 394

3Alternative to simulation-based approaches, one can use closed-form sequences to approximate
the transition density itself, thereby developing an approximation to the likelihood function.
Two different approximation mechanisms have been proposed in the literature. One is based on
Hermite polynomial expansions (Aı̈t-Sahalia 1999, 2002, 2008) whereas the other is based on the
saddlepoint approximation (Aı̈t-Sahalia and Yu 2006).
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integration becomes high dimensional. In general, the integral does not have a 395

closed-form expression and hence simulation-based methods can be used, leading 396

to simulated ML estimators. To fix the idea, suppose thatM �1 auxiliary points are 397

introduced between .i � 1/h and ih, i.e. 398

..i � 1/h �/0; 1; � � � ; M�1; M .� ih/:

Thus 399

p.XihjX.i�1/hI �/ D
Z

� � �
Z
p.XM ;XM�1 ; � � � ; X1 jX0 I �/dX1 � � �dXM�1

D
Z

� � �
Z MY

mD1
p.Xm jXm�1 I �/dX1 � � �dXM�1 : (20)

The second equality follows from the Markov property. The idea behind the simu- 400

lated ML method is to approximate the densities p.Xm jXm�1 I �/ (step 1), evaluate 401

the multidimensional integral using importance sampling techniques (step 2) and 402

then maximize the likelihood function numerically. To the best of my knowledge, 403

Pedersen (1995) was the first study that suggested the idea in this context. 404

Pedersen’s method relies on the Euler scheme, namely, approximates the latent 405

transition densities p.Xm jXm�1 I �/ based on the Euler scheme and approximates 406

the integral by drawing samples of .XM�1 ; � � � ; X1/ via simulations from the 407

Euler scheme. That is, the importance sampling function is the mapping from 408

.�1; �2; � � � ; �M�1/ 7! .X1 ; X2 ; � � � ; XM�1 / given by the Euler scheme: 409

XmC1
D Xm C �.Xm I �/h=M C �.Xm; �/

p
h=M�mC1; m D 0; � � � ;M � 2;

where .�1; � � � ; �M�1/ is a multivariate standard normal. 410

Durham and Gallant (2002) noted two sources of approximation error in 411

Pedersen’s method, the discretization bias in the Euler scheme and the errors 412

due to the Monte Carlo integration. A number of studies have provided methods 413

to reduce these two sources of error. For example, to reduce the discretization 414

bias in step 1, Elerian (1998) used the Milstein scheme instead of the Euler 415

scheme while Durham and Gallant advocated using a variance stablization trans- 416

formation, i.e. applying the Lamperti transform to the continuous time model. 417

Certainly, other methods that can reduce the discretization bias may be used. 418

Regarding step 2, Elerian et al. (2001) argued that the importance sampling function 419

of Pedersen ignores the end-point information, XM , and Durham and Gallant 420

(2002) showed that Pedersen’s importance function draws most samples from 421

regions where the integrand has little mass. Consequently, Pedersen’s method is 422

simulation-inefficient. 423
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To improve the efficiency of the importance sampler, Durham and Gallant (2002) 424

considered the following importance sampling function 425

XmC1
D Xm C Xih � Xm

ih� m
h=M C �.Xm ; �/

p
h=M�mC1; m D 0; � � � ;M � 2;

where .�1; � � � ; �M�1/ is a multivariate standard normal. Loosing speaking, this is a 426

Brownian bridge because it starts from X.i�1/h at .i � 1/h and is conditioned to ter- 427

minate with Xih at ih. Another importance sampling function proposed by Durham 428

and Gallant (2002) is to draw XmC1
from the density N.Xm C Q�mh=M; Q�2mh=M/ 429

where Q�m D .XM �Xm/=.ih�m/, Q�2m D �2.Xm/.M �m�1/=.M �m/. Elerian 430

et al. (2001) suggested the following tied-down process: 431

p.X1 ; � � � ; XM�1 jX0; XM /;

as the importance function and proposed using the Laplace approximation to the 432

tied-down process. Durham and Gallant (2002) compared the performance of these 433

three importance functions relative to Pedersen (1995) and found that all these 434

methods deliver substantial improvements. 435

4.2 Simulated GMM (SGMM) 436

Not only is the likelihood function for (16) difficult to construct, but also the 437

moment conditions; see, for example, Duffie and Singleton (1993) and He (1990).4 438

While model (16) is difficult to estimate, data can be easily simulated from it. 439

For example, one can simulate data from the Euler scheme at an arbitrarily small 440

sampling interval. With the interval approaches to zero, the simulated data can 441

be regarded as the exact simulation although the transition density at the coarser 442

sampling interval is not known analytically. With simulated data, moments can be 443

easily constructed, facilitating simulation-based GMM estimation. Simulated GMM 444

(SGMM) methods have been proposed by McFadden (1989), Pakes and Pollard 445

(1989) for iid environments, and Lee and Ingram (1991), Duffie and Singleton 446

(1993) for time series environments. 447

Let feX.s/
t .�/g𝒩 .n/

tD1 be the data simulated from (16) when parameter is � using 448

random seed s. Therefore, feX.s/
t .�0/g is drawn from the same distribution as the 449

original data fXtg and hence share the same moment characteristic. The parameter 450

� is chosen so as to “match moments”, that is, to minimize the distance between 451

4However, whenX.t/ is observed, Hansen and Scheinkman (1995) showed that there exist forward
and reverse-time generators for stationary continuous time models and explained how to use these
generators to construct moment conditions.
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sample moments of the data and those of the simulated data. AssumingH represents 452

K-moments, SGMM estimator is defined as: 453

O�SGMMn WD argmin�2�

0

@1
n

nX

tD1
g.Xt /� 1

𝒩 .n/
𝒩 .n/X

tD1
g. QX.s/

t I �/
1

A
0

Wn

0

@1
n

nX

tD1
g.Xt /� 1

𝒩 .n/
𝒩 .n/X

tD1
g. QX.s/

t I �/
1

A
0

;

whereWn is a certain positive definite weighting matrix of q�q-dimension (q 	 K), 454

which may depend on the sample but not � , 𝒩 .n/ is the number of number of 455

observations in a simulated path. Under the ergodicity condition, 456

1

𝒩 .n/
𝒩 .n/X

tD1
g. QX.s/

t I �0/ p! E.g.Xt I �0//

and 457

1

n

nX

tD1
g.Xt /

p! E.g.Xt I �0//;

justifying the SGMM procedure. 458

The SGMM procedure can be made optimal with a careful choice of the 459

weighting function, given a set of moments. However, the SGMM estimator is in 460

general asymptotically less efficient than SML for the reason that moments are less 461

informative than the likelihood. Gallant and Tauchen (1996a,b) extended the SGMM 462

technique so that the GMM estimator is asymptotically as efficient as SML. This 463

approach is termed efficient method of moments (EMM), which we review below. 464

4.3 Efficient Method of Moments 465

EMM is first introduced by Gallant and Tauchen (1996a,b) and has now found 466

many applications in financial time series; see Gallant and Tauchen (2001a,c) for 467

the detailed account of the method and a review of the literature. While it is closely 468

related to the general SGMM, there is one important difference between them. 469

Namely, GMM relies on an ad hoc chosen set of moment conditions, EMM is 470

based on a judiciously chosen set of moment conditions. The moment conditions 471

that EMM is based on are the expectation of the score of an auxiliary model which 472

is often referred to as the score generator. 473
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For the purpose of illustration, let a SV model be the structural model. The SV 474

model is the continuous time version of the Box-Cox SV model of Yu et al. (2006), 475

which contains many classical continuous SV models as special cases, and is of the 476

form: 477

dS.t/ D ˛10S.t/dt C S.t/Œ1C ı.ˇ10 C ˇ12h.t//	
1=.2ı/dB1.t/;

478
dh.t/ D �˛22h.t/dt C dB2.t/:

Let the conditional density of the structural model (the Box-Cox SV model in 479

this case) is defined by 480

pt .Xt jYt ; �/;
where Xt D lnS.t/, the true value of � is �0, �0 2 � 
 <`� with `� being the 481

length of �0 and Yt is a vector of lagged Xt . Denote the conditional density of an 482

auxiliary model by 483

ft .Xt jYt ; ˇ/; ˇ 2 R 
 <`ˇ :

Further define the expected score of the auxiliary model under the structural model 484

as 485

m.�; ˇ/ D
Z

� � �
Z

@

@̌
lnf .xjy; ˇ/p.xjy; �/p.yj�/dxdy:

Obviously, in the context of the SV model, the integration cannot be solved 486

analytically since neither p.xjy; �/ nor p.yj�/ has a closed form expression. 487

However, it is easy to simulate from an SV model so that one can approximate 488

the integral by Monte Carlo simulations. That is 489

m.�; ˇ/ � mN.�; ˇ/ � 1

N

NX

D1

@

@̌
lnf . OX.�/j OY.�/; ˇ/;

where f OX; OYg are simulated from the structural model. The EMM estimator is a 490

minimum chi-squared estimator which minimizes the following quadratic form, 491

O�n D arg min
�2� m

0
N .�;

Ǒ
n/.In/

�1mN .�; Ǒ
n/;

where Ǒ
n is a quasi maximum likelihood estimator of the auxiliary model and In is 492

an estimate of 493

I0 D lim
n!1Var

 
1p
n

nX

tD1

�
@

@̌
lnft .xt jyt ; ˇ�/

!

with ˇ� being the pseudo true value of ˇ. Under regularity conditions, Gallant and 494

Tauchen (1996a,b) show that the EMM estimator is consistent and has the following 495
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asymptotic normal distribution, 496

p
n. O�n � �0/ d! N



0;
@

@�
m.�0; ˇ

�/.I0/�1
@

@� 0m.�0; ˇ
�/
�
:

For specification testing, we have 497

Jn D nm0
N .

O�n; Ǒ
n/.In/

�1mN . O�n; Ǒ
n/

d! �2`ˇ�`�

under the null hypothesis that the structural model is correct. When a model fails the 498

above specification test one may wish to examine the quasi-t-ratios and/or t-ratios 499

to look for some suggestion as to what is wrong with the structural model. The 500

quasi-t-ratios are defined as 501

OTn D S�1
n

p
nmN . O�n; Ǒ

n/;

where Sn D Œdiag.In/	1=2. It is well known that the elements of OTn are downward 502

biased in absolute value. To correct the bias one can use the t-ratios defined by 503

QTn D Q�1
n

p
nmN . O�n; Ǒ

n/;

where 504

Qn D


diagfIn � @

@� 0
mN. O�n; Ǒ

n/Œm
0
N .

O�n; Ǒ
n/.In/

�1mN . O�n; Ǒ
n/	

�1 @

@�
mN . O�n; Ǒ

n/g
�1=2

:

Large quasi-t-ratios and t-ratios reveal the features of the data that the structural 505

model cannot approximate. 506

Furthermore, Gallant and Tauchen (1996a,b) show that if the auxiliary model 507

nests the data generating process, under regularity conditions the EMM estimator 508

has the same asymptotic variance as the maximum likelihood estimator and hence 509

is fully efficient. If the auxiliary model can closely approximate the data generating 510

process, the EMM estimator is nearly fully efficient (Gallant and Long 1997; 511

Tauchen 1997). 512

To choose an auxiliary model, the seminonparametric (SNP) density proposed 513

by Gallant and Tauchen (1989) can be used since its success has been documented 514

in many applications. As to SNP modeling, six out of eight tuning parameters are 515

to be selected, namely, Lu, Lg , Lr , Lp , Kz, and Ky . The other two parameters, Iz 516

and Ix, are irrelevant for univariate time series and hence set to be 0. Lu determines 517

the location transformation whereas Lg and Lr determine the scale transformation. 518

Altogether they determine the nature of the leading term of the Hermite expansion. 519

The other two parameters Kz and Ky determine the nature of the innovation. To 520

search for a good auxiliary model, one can use the Schwarz BIC criterion to move 521

along an upward expansion path until an adequate model is found, as outlined in 522
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Table 2 EMM estimate of the continuous time box-cox SV model
˛10 ˛22 ˇ10 ˇ12 ı �26

0.4364 0.5649 �0.1094 0.2710 0.1367 13.895

Bansal et al. (1995). To preserve space we refer readers to Gallant and Tauchen 523

(2001b) for further discussion about the role of the tuning parameters and how to 524

design an expansion path to choose them. 525

While EMM has found a wide range of applications in financial time series, 526

Duffee and Stanton (2008) reported finite sample evidence against EMM when 527

financial time series is persistent. In particular, in the context of simple term 528

structure models, they showed that although EMM has the same asymptotic 529

efficiency as ML, the variance of EMM estimator in finite sample is too large and 530

cannot be accepted in practice. 531

4.4 An Empirical Example 532

For the purposes of illustration, we fit the continuous time Box-Cox SV model to 533

daily prices of Microsoft. The stock price data consist of 3,778 observations on the 534

daily price of a share of Microsoft, adjusted for stock split, for the period from 535

March 13, 1986 to February 23, 2001. The same data have been used in Gallant and 536

Tauchen (2001a) to fit a continuous time LN-SV model. For this reason, we use the 537

same sets of tuning parameters in the SNP model as in Gallant and Tauchen (2001a), 538

namely, 539

.Lu; Lg; Lr ; Lp;Kz; Iz; Ky; Iy/ D .1; 1; 1; 1; 6; 0; 0; 0/:

Fortran code and the date can be obtained from an anonymous ftp site at 540

ftp.econ.duke.edu. A EMM User Guide by Gallant and Tauchen (2001a) is available 541

from the same site. To estimate the Box-Cox SV model, we only needed to change 542

the specification of the diffusion function in the subroutine difuse in the fortran file 543

emmuothr.f, i.e. “tmp1 D DEXP( DMIN1 (tmp1,bnd))” is changed to “tmp1 D 544

(1+ delta* DMIN1 (tmp1,bnd))**(0.5/delta)”. Table 2 reports the EMM estimates. 545

Obviously, the volatility of Microsoft is very persistent since the estimated mean 546

reversion parameter is close to zero and the estimate value of ı is not far away 547

from 0, indicating that the estimated Box-Cox SV is not very different from the 548

LN-SV model model. 549

5 Bayesian MCMC and Credit Risk Models 550

Credit derivatives market had experienced a fantastic growth before the global 551

financial meltdown in 2007. The size of the market had grew so much and the 552

credit risk management had been done so poorly in practice that the impact of the 553
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financial crisis is so big. Not surprisingly, how to estimate credit risk has received an 554

increasing attention from academic researchers, industry participants, policy makers 555

and regulators. 556

A widely used approach to credit risk modelling in practice is the so-called 557

structural method. All structural credit risk models specify a dynamic structure for 558

the underlying firm’s asset and default boundary. Let V be the firm’s asset process, r 559

the risk-free interest rate, F the face value of a zero-coupon debt that the firm issues 560

with the time to maturity T . Merton (1974) is the simplest structural model where 561

Vt is assumed to follow a geometric Brownian motion: 562

d lnVt D .� � �2=2/dt C �dBt ; V0 D c; (21)

The exact discrete time model, sampled with the step size h, is 563

lnVtC1 D .� � �2=2/hC lnVt C �
p
h�t ; V0 D c; (22)

which contains a unit root. 564

There are two types of outstanding claims faced by a firm that is listed in a stock 565

exchange, an equity and a zero-coupon debt whose face value is F maturing at T . 566

The default occurs at the maturity date of debt in the event that the issuer’s assets are 567

less than the face value of the debt (i.e. VT < F ). Under the assumption of (21) the 568

firm’s equity can be priced with the Black-Scholes formula as if it is a call option 569

on the total asset value V of the firm with the strike price of F and the maturity date 570

T . Namely, the equity claim, denoted by St , is 571

St � S.Vt I �/ D Vt˚.d1t / � Fe�r.T�t /˚.d2t /; (23)

where ˚.�/ is the cumulative distribution function of the standard normal variate, 572

d1t D ln.Vt=F /C .r C �2=2/.T � t/

�
p
T � t

;

and 573

d2t D ln.Vt=F /C .r � �2=2/.T � t/

�
p
T � t

:

Merton’s model can be used to evaluate private firm credit risk and the credit 574

spread of a risk corporate bond over the corresponding Treasure rate. The credit 575

spread is given by 576

C.Vt I �/ D � 1

T � t
ln



Vt

F
˚.�d1t /C e�r.T�t /˚.d2t /

�
� r: (24)
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The default probability is given by 577

P.Vt I �/ D ˚



ln.F=Vt/ � .� � �2=2/.T � t /

�
p
T � t

�
: (25)

At a reasonably high frequency, St may be observed with errors due to the 578

presence of various market microstructure effects. This observation motivates Duan 579

and Fulop (2009) to consider the following generalization to Merton’s model: 580

lnSt D lnS.Vt I �/C ıvt ; vt � N.0; 1/: (26)

In a state-space framework, (26) is an observation equation and (22) is a 581

state equation. Unfortunately, the Kalman filter is not applicable here since the 582

observation equation is nonlinear. 583

Let X D .lnS1; � � � ; lnSn/0, V D .lnV1; � � � ; lnVn/0, and � D .�; �; ı/0. The 584

likelihood function of (26) is given by 585

p.XI �/ D
Z
p.X;VI �/dV D

Z
p.XjVI�/p.VI �/dV: (27)

In general this is a high-dimensional integral which does not have closed form 586

expression due to the non-linear dependence of lnSt on lnVt . Although in this 587

section, our main focus is the Bayesian MCMC methods, SML is possible. Indeed 588

all the SML methods discussed in Sect. 15.3 are applicable here. However, we will 589

discuss a new set of SML methods – particle filters. 590

5.1 SML via Particle Filter 591

It is known that Kalman filter is an optimal recursive data processing algorithm 592

for processing series of measurements generated from a linear dynamic system. It 593

is applicable any linear Gaussian state-space model where all relevant conditional 594

distributions are linear Gaussians. Particle filters, also known as sequential Monte 595

Carlo methods, extend the Kalman filter to nonlinear and non-Gaussian state space 596

models. 597

In a state space model, two equations have to be specified in the fully parametric 598

manner. First, the state equation describes the evolution of the state with time. 599

Second, the measurement equation relates the noisy measurements to the state. 600

A recursive filtering approach means that received data can be processed sequen- 601

tially rather than as a batch so that it is not necessary to store the complete data set 602

nor to reprocess existing data if a new measurement becomes available. Such a filter 603

consists of essentially two stages: prediction and updating. The prediction stage uses 604

the system model to predict the state density forward from one measurement time 605

to the next. Since the state is usually subject to unknown disturbances, prediction 606
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generally translates, deforms, and spreads the state density. The updating operation 607

uses the latest measurement to modify the prediction density. This is achieved 608

using Bayes theorem, which is the mechanism for updating knowledge about the 609

target state in the light of extra information from new data. When the model is 610

linear and Gaussian, the density in both stages is Gaussian and Kalman filter gives 611

analytical expressions to the mean and the co-variance. As a byproduct, the full 612

conditional distribution of measurements is available, facilitating the calculation of 613

the likelihood. 614

For nonlinear and non-Gaussain state space models, the density in neither stage 615

is not Gaussian any more and the optimal filter is not available analytically. Particle 616

filter is a technique for implementing a recursive filter by Monte Carlo simulations. 617

The key idea is to represent the required density in connection to prediction and 618

updating by a set of random samples (known as “particles”) with associated weights 619

and to compute estimates based on these samples and weights. As the number 620

of samples becomes very large, this simulation-based empirical distribution is 621

equivalent the true distribution. 622

To fix the idea, assume that the nonlinear non-Gaussian state space model is of 623

the form, 624
�
Yt D H.Xt ; et /

Xt D F.Xt�1; ut /;
(28)

where Xt is a k-dimensional state vector,5 ut is a l-dimensional white noise 625

sequence with density q.u/, vt is a l-dimensional white noise sequence with density 626

r.v/ and assumed uncorrelated with fusgtsD1, H and F are possibly nonlinear 627

functions. Let vt D G.Yt ; Xt / and G0 is the derivative of G as a function of 628

Yt . The density of the initial state vector is assumed to be p0.x/. Denote Y1Wk D 629

fY1; � � � ; Ykg. The objective of the prediction is to obtain p.Xt jY1Wt /. It can be seen 630

that 631

p.Xt jY1Wt�1/ D
Z
p.Xt jXt�1/p.Xt�1jY1Wt�1/dXt�1: (29)

At time step t , when a new measurement Yt becomes available, it may be used to 632

update the predictive density p.Xt jY1Wt�1/ via Bayes rule in the updating stage, 633

p.Xt jY1Wt / D p.Yt jXt/p.Xt jY1Wt�1/
p.Yt jY1Wt�1/ : (30)

Unfortunately, for the nonlinear non-Gaussian state-space model, the recursive 634

propagation in both stages is only a conceptual solution and cannot be determined 635

analytically. To deal with this problem, particle filtering algorithm consists of 636

recursive propagation of the weights and support points when each measurement 637

is received sequentially so that the true densities can be approximated by the 638

corresponding empirical density. 639

5In Merton’s model, Xt D lnVt , Yt D lnSt , et D �
p
h�t , ut D ıvt .
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Various versions of particle filters have been proposed in the literature. In this 640

chapter we only summarize all the steps involved in Kitagawa’s algorithm (Kitagawa 641

1996): 642

1. Generate M l-dimensional particles from p0.x/, f
.j /
0 for j D 1; : : : ;M . 643

2. Repeat the following steps for t D 1; : : : ; n. 644

(a) Generate M l-dimensional particles from q.u/, u.j /t for j D 1; : : : ;M . 645

(b) Compute p.j /t D F.f
.j /
t�1; u

.j /
t / for j D 1; : : : ;M . 646

(c) Compute ˛.j /t D r.G.Yt ; p
.j /
t // for j D 1; : : : ;M . 647

(d) Re-sample fp.j /t gMjD1 to get ff .j /t gMjD1 with probabilities proportional to 648

fr.G.Yt ; p.j /t // � jG0.Yt ; p.j /t /jgMjD1. 649

Other particle filtering algorithms include sampling importance resampling filter 650

of Gordon et al. (1993), auxiliary sampling importance resampling filter of Pitt and 651

Shephard (1999a), and regularized particle filter (Musso et al. 2001). 652

To estimate the Merton’s model via ML, Duan and Fulop employed the particle 653

filtering method of Pitt (2002). Unlike the method proposed by Kitagawa (1995) 654

which samples a pointX.m/
t when the system is advanced, Duan and Fulop sampled 655

a pair .V .m/
t ; V

.m/
tC1/ at once when the system is advanced. Since the resulting 656

likelihood function is not smooth with respect to the parameters, to ensure a smooth 657

surface for the likelihood function, Duan and Fulop used the smooth bootstrap 658

procedure for resampling of Pitt (2002). 659

Because the log-likelihood function can be obtained as a by-product of the 660

filtering algorithm, it can be maximized numerically over the parameter space to 661

obtain the SMLE. If M ! 1, the log-likelihood value obtained from simulations 662

should converge to the true likelihood value. As a result, it is expected that for a 663

sufficiently large number of particles, the estimates that maximize the approximated 664

log-likelihood function are sufficiently close to the true ML estimates. 665

5.2 Bayesian MCMC Methods 666

The structure in the state-space model ensures the pivotal role played by Bayes 667

theorem in the recursive propagation. Not surprisingly, the requirement for the 668

updating of information on receipt of new measurements are ideally suited for 669

the Bayesian approach for statistical inference. In this chapter, we will show 670

that Bayesian methods provide a rigorous general approach to the dynamic state 671

estimation problem. Since many models in financial econometrics have a state- 672

space representation, Bayesian methods have received more and more attentions 673

in statistical analysis of financial time series. 674

The general idea of the Bayesian approach is to perform posterior computations, 675

given the likelihood function and the prior distribution. MCMC is a class of 676

algorthims which enables one to obtain a correlated sample from a Morkov chain 677
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whose stationary transition density is the same as the posterior distribution. There 678

are certain advantages in the Bayesian MCMC method. First, as a likelihood-based 679

method, MCMC matches the efficiency of ML. Second, as a by-product of param- 680

eter estimation, MCMC provides smoothed estimates of latent variables because 681

it augments the parameter space by including the latent variables. Third, unlike 682

the frequentist’s methods whose inference is almost always based on asymptotic 683

arguments, inferences via MCMC are based on the exact posterior distribution. 684

This advantage is especially important when the standard asymptotic theory is 685

difficult to derive or the asymptotic distribution does not provide satisfactory 686

approximation to the finite sample distribution. As a trade-off, one has to specify 687

the prior distribution. In addition, with MCMC it is straightforward to obtain the 688

exact posterior distribution of any transformation (linear or nonlinear) of model 689

parameters and latent variables, such as the credit spread and the default probability. 690

Therefore, the exact finite sample inference can easily be made in MCMC, whereas 691

the ML method necessitates the delta method to obtain the asymptotic distribution. 692

When the asymptotic distribution of the original parameters does not work well, it 693

is expected that the asymptotic distribution yielded by the delta method may not 694

work well. Fourth, numerical optimization is not needed in MCMC. This advantage 695

is of practical importance when the likelihood function is difficult to optimize 696

numerically. Finally, the proposed method lends itself easily to dealing with flexible 697

specifications. 698

There are three disadvantages of the MCMC method. First, in order to obtain 699

the filtered estimate of the latent variable, a separate method is required. This 700

is in contrast with the ML method of Duan and Fulop (2009) where the filtered 701

estimate of the latent variable is obtained as a by-product. Second, with the MCMC 702

method the model has to be fully specified whereas the MLE remains consistent 703

even when the microstructure noise is nonparametrically specified, and in this case, 704

ML becomes quasi-ML. However, in recent years, semiparametric MCMC methods 705

have appeared in the literature. For example, the flexibility of the error distribution 706

may be accommodated by using a Dirichelt process mixture (DPM) prior (see 707

Ferguson (1973) for the detailed account of DMP, and Jensen and Maheu (2008) 708

for an application of DMP to volatility modeling). Finally, prior distributions have 709

to be specified. In some cases, prior distributions may have important influences on 710

the posterior analysis but it is not so obvious to specify the prior distributions. 711

From the Bayesian viewpoint, we understand the specification of the structural 712

credit risk model as a hierarchical structure of conditional distributions. The hierar- 713

chy is specified by a sequence of three distributions, the conditional distribution 714

of lnSt j lnVt ; ı, the conditional distribution of lnVt j lnVt�1; �; � , and the prior 715

distribution of � . Hence, our Bayesian model consists of the joint prior distribution 716

of all unobservables, here the three parameters, �; �; ı, and the unknown states, 717

V, and the joint distribution of the observables, here the sequence of contaminated 718

log-equity prices X. The treatment of the latent state variables V as the additional 719

unknown parameters is the well known data-augmentation technique originally 720

proposed by Tanner and Wong (1987) in the context of MCMC. Bayesian inference 721

is then based on the posterior distribution of the unobservables given the data. In the 722
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sequel, we will denote the probability density function of a random variable � by 723

p.�/. By successive conditioning, the joint prior density is 724

p.�; �; ı;V/ D p.�; �; ı/p.lnV0/
nY

tD1
p.lnVt j lnVt�1; �; �/: (31)

We assume prior independence of the parameters �, ı and � . Clearly 725

p.lnVt j lnVt�1; �; �/ is defined through the state equations (22). The likelihood 726

p.Xj�; �; ı;V/ is specified by the observation equations (26) and the conditional 727

independence assumption: 728

p.Xj�; �; ı;V/ D
nY

tD1
p.lnSt j lnVt ; ı/: (32)

Then, by Bayes’ theorem, the joint posterior distribution of the unobservables given 729
the data is proportional to the prior times likelihood, i.e. 730

p.�; �; ı;VjX/ / p.�/p.�/p.ı/p.lnV0/
nY

tD1
p.lnVt j lnVt�1; �; �/

nY

tD1
p.lnSt j lnVt ; ı/:

(33)
731

Without data augmentation, we need to deal with the intractable likelihood 732

function p.Xj�/ which makes the direct analysis of the posterior density p.� jV/ 733

difficult. The particle filtering algorithm of Duan and Fulop (2009) can be used 734

to overcome the problem. With data augmentation, we focus on the new posterior 735

density p.�;VjX/ given in (33). Note that the new likelihood function is p.Xj�;V/ 736

which is readily available analytically once the distribution of �t is specified. 737

Another advantage of using the data-augmentation technique is that the latent 738

state variables V are the additional unknown parameters and hence we can make 739

statistical inference about them. 740

The idea behind the MCMC methods is to repeatedly sample from a Markov 741

chain whose stationary (multivariate) distribution is the (multivariate) posterior 742

density. Once the chain converges, the sample is regarded as a correlated sample 743

from the posterior density. By the ergodic theorem for Markov chains, the posterior 744

moments and marginal densities can be estimated by averaging the corresponding 745

functions over the sample. For example, one can estimate the posterior mean by the 746

sample mean, and obtain the credible interval from the marginal density. When the 747

simulation size is very large, the marginal densities can be regarded to be exact, 748

enabling exact finite sample inferences. Since the latent state variables are in the 749

parameter space, MCMC also provides the exact solution to the smoothing problem 750

of inferring about the unobserved equity value. 751

While there are a number of MCMC algorithms available in the literature, we 752

only use the Gibbs sampler which samples each variate, one at a time, from the 753

full conditional distributions defined by (33). When all the variates are sampled in 754
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a cycle, we have one sweep. The algorithm is then repeated for many sweeps with 755

the variates being updated with the most recent samples. With regularity conditions, 756

the draws from the samplers converge to draw from the posterior distribution at 757

a geometric rate. For further information about MCMC and its applications in 758

econometrics, see Chib (2001) and Johannes and Polson (2003). 759

Defining lnV�t by lnV1; : : : ; lnVt�1; lnVtC1; : : : ; lnVn, the Gibbs sampler is 760

summarized as: 761

1. Initialize � and V. 762

2. Sample lnVt from lnVt j lnV�t ;X. 763

3. Sample � jX;V; �; ı. 764

4. Sample ıjX;V; �; � . 765

5. Sample �jX;V; �; ı. 766

Steps 2–5 forms one cycle. Repeating steps 2–5 for many thousands of times 767

yields the MCMC output. To mitigate the effect of initialization and to ensure 768

the full convergence of the chains, we discard the so-call burn-in samples. The 769

remaining samples are used to make inference. 770

It is easy to implement the Gibbs sampling for the credit risk model defined 771

above. One can make use of the all purpose Bayesian software package WinBUGS. 772

As shown in Meyer and Yu (2000) and Yu et al. (2006), WinBUGS provides an 773

idea framework to perform the Bayesian MCMC computation when the model has 774

a state-space form, whether it is nonlinear or non-Gaussian or both. As the Gibbs 775

sampler updates only one variable at a time, it is referred as a single-move algorithm. 776

In the stochastic volatility literature, the single-move algorithm has been criti- 777

cized by Kim et al. (1998) for lacking simulation efficiency because the components 778

of state variables are highly correlated. More efficient MCMC algorithms, such 779

as multi-move algorithms, can be developed for estimating credit risk models. In 780

fact, Shephard and Pitt (1997), Kim et al. (1998), Chib et al. (2002), Liesenfeld 781

and Richard (2006) and Omori et al. (2007) have developed various multi-move 782

algorithms to estimate univariate and multivariate SV models. The idea of the multi- 783

mover algorithms is to sample the latent vector V in a single block. 784

5.3 An Empirical Application 785

For the purposes of illustration, we fit the credit risk model to daily prices of AA a 786

company from the Dow Jones Industrial Index. The daily equity values are obtained 787

from the CRSP database over year 2003 (the logarithmic values are contained in a 788

file named AAlogS.txt). The initial maturity of debt is 10 years. The debt is available 789

from the balance sheet obtained from the Compustat annual file. It is compounded 790

for 10 years at the risk-free rate to obtain F . The risk-free rate is obtained from the 791

US Federal Reserve. Duan and Fulop fitted the same model to the same data using 792

SML via particle filter and approximated the variance using the Fisher information 793

matrix. Following Huang and Yu (2009), we use the following independent prior 794
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Table 3 MCMC and SML estimates of the credit risk model
t5� � ı � 100
t5
t5Mean Std err Mean Std err Mean Std err

t5Bayesian 0.3154 0.1689 0.1686 0.0125 0.5673 0.1225
t5SML 0.3130 0.1640 0.1589 0.0181 0.6820 0.2082

for the three system parameters: � � N.0:3; 4/, ı � IG.3; 0:0001/, and � � 795

IG.2:5; 0:025/ where IG is the inverse-gamma distribution. 796

WinBugs code (aa.odc) is used to implement the MCMC method based on 797

55,000 sweeps of which the first 5,000 sweeps are thrown away. Table 3 reports 798

the estimates (the posterior means) and the standard errors (the posterior standard 799

errors). For the purpose of comparison, the SML estimates and their asymptotic 800

standard errors, obtained directly from Duan and Fulop (2009, Table 1), are also 801

reported. While the two sets of estimates are close to each other, their standard 802

errors are further away. 803

6 Resampling Methods and Term Structure Models 804

It is well known dynamic models are estimated with bias by standard estimation 805

methods, such as least squares (LS), maximum likelihood (ML) or generalized 806

method of moments (GMM). The bias was developed by Hurwicz (1950) for the 807

autoregressive parameter in the context of dynamic discrete time models. The 808

percentage bias of the corresponding parameter, i.e. the mean reversion parameter, 809

is much more pronounced in continuous time models than their discrete time 810

counterparts. On the other hand, estimation is fundamentally important for many 811

practical applications. For example, it provides parameter estimators which are 812

used directly for estimating prices of financial assets and derivatives. For another 813

example, parameter estimation serves as an important stage for the empirical 814

analysis of specification and comparative diagnostics. Not surprisingly, it has been 815

found in the literature that the bias in the mean reversion estimator has important 816

implications for the specification analysis of continuous time models (Pritsker 1998) 817

and for pricing financial assets (Phillips and Yu 2005a, 2009b). For instance, when 818

the true mean reversion parameter is 0.1 and 600 weekly observations (i.e. just over 819

10 years of data) are available to estimate a one-factor square-root term structure 820

model (Cox et al. 1985), the bias in the ML estimator of the mean reversion 821

parameter is 391.2% in an upwards direction. This estimation bias, together with the 822

estimation errors and nonlinearity, produces a 60.6% downward bias in the option 823

price of a discount bond and 2.48% downward bias in the discount bond price. The 824

latter figures are comparable in magnitude to the estimates of bias effects discussed 825

in Hull (2000, Chap. 21.7). The biases would be even larger when less observations 826

are available and do not disappear even when using long spans of data that are 827

currently available. For example, when the true mean reversion parameter is 0.1 and 828
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600 monthly observations (i.e. 50 years of data) are available to estimate the square- 829

root diffusion model, the bias in the ML estimator of the mean reversion parameter 830

is 84.5% in an upwards direction. This estimation bias implies a 24.4% downward 831

bias in the option price of a discount bond and a 1.0% downward bias in the discount 832

bond price. 833

In recent years, there have been interesting advances in developing analytical 834

formulae to approximate the bias in certain model specifications. This is typically 835

obtained by estimating higher order terms in an asymptotic expansion of the bias. 836

For example, in the Vasicek term structure model with a known �, 837

dXt D �.�� Xt/dt C �dBt ; X0 � N.�; �2=.2�//

Yu (2009a,b) showed that the bias in the MLE of � can be approximated by 838

1

2T

�
3C e2�h

� � 2.1� e�2n�h/
T n.1 � e�2�h/

:

When � has to be estimated in the Vasicek model, Tang and Chen (2009) showed 839

that the bias in the MLE of � can be approximated by 840

E.b�/ � � D 1

2T
.e2�h C 2e�h C 5/:

Interestingly, the same bias formula applies to a QML estimate of �, developed by 841

Nowman (1997), under the CIR model, as shown in Tang and Chen (2009). 842

For more complicated models, unfortunately, the approximate bias formula is 843

not available. To reduce this bias in parameter estimation and in pricing contingent 844

claims, Phillips and Yu (2005a) proposed a new jackknife procedure. Phillips and 845

Yu (2005a) show that the jackknife method always trades off the gain that may be 846

achieved in bias reduction with a loss that arises through increased variance. 847

The bootstrap method of Efron (1979) is another way to reduce the bias via 848

simulation. It was shown to be an effective method for bias correction (Hall 1992) 849

and was illustrated in the parameter estimation in the context of continuous time 850

model in Tang and Chen (2009). Relative to the jackknife method, it does not 851

significantly increase the variance. Relative to the two simulation-based procedures 852

that will be discussed below, however, bootstrap seems to use less information and 853

hence is expected to be less efficient. 854

6.1 Indirect Inference and Median Unbiased Estimation 855

Resampling methods may achieve bias reduction as well as variance reduction. 856

In this chapter, two simulation-based resampling methods are discussed, indirect 857

inference (II) and median unbiased estimation (MUE). 858
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II and MUE are simulation-based estimation procedures and can be understood 859

as a generalization of the simulated method of moments approach of Duffie 860

and Singleton (1993). MUE was first introduced by Andrews (1993). II was 861

first introduced by Smith (1993) and coined with the term by Gouriéroux et al. 862

(1993). II was originally proposed to deal with situations where the moments or 863

the likelihood function of the true model are difficult to deal with (and hence 864

traditional methods such as GMM and ML are difficult to implement), but the 865

true model is amenable to data simulation. Because many continuous time models 866

are easy to simulate but difficult to obtain moment and likelihood functions, the II 867

procedure has some convenient advantages in working with continuous time models 868

in finance. 869

The II and MUE procedures can have good small sample properties of parameter 870

estimates, as shown by Andrews (1993), MacKinnon and Smith (1996), Monfort 871

(1996), Gouriéroux et al. (2000) in the time series context and by Gouriéroux et al. 872

(2005) in the panel context. The idea why II can remove the bias goes as follows. 873

Whenever a bias occurs in an estimate and from whatever source, this bias will also 874

be present in the same estimate obtained from data, which are of the same structure 875

of the original data, simulated from the model for the same reasons. Hence, the 876

bias can be calculated via simulations. The method therefore offers some interesting 877

opportunities for bias correction and the improvement of finite sample properties in 878

continuous time parameter estimation, as shown in Phillips and Yu (2009a). 879

To fix the idea of II/MUE for parameter estimation, consider the Vasicek model 880

which is typically used to describe the movement of the short term interest rate. 881

Suppose we need to estimate the parameter � in: 882

dX.t/ D �.� �X.t//dt C �.X.t// dW.t/;

from observations fXh; � � � ; Xnhg. An initial estimator of � can be obtained, for 883

example, by applying the Euler scheme to fXh; � � � ; Xnhg (call it O�n). Such an 884

estimator is involved with the discretization bias (due to the use of the Euler scheme) 885

as well as a finite sample estimation bias (due to the poor finite sample property of 886

ML in the near-unit-root situation). 887

Given a parameter choice �, we apply the Euler scheme with a much smaller step 888

size than h (say ı D h=100), which leads to 889

QXk
tCı D �.�� QXk

t /hC QXk
t C �. QXk

t /
p
ı"tCı;

where 890

t D 0; ı; � � � ; h.D 100ı/„ ƒ‚ …; hC ı; � � � ; 2h.D 200ı/„ ƒ‚ …; 2hC ı; � � � ; nh:

This sequence may be regarded as a nearly exact simulation from the continuous 891

time OU model for small ı. We then choose every .h=ı/th observation to form the 892
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sequence of f QXk
ihgniD1, which can be regarded as data simulated directly from the 893

OU model with the (observationally relevant) step size h.6 894

Let f QXk
h ; � � � ; QXk

nhg be data simulated from the true model, where k D 1; � � � ; K 895

with K being the number of simulated paths. It should be emphasized that it is 896

important to choose the number of simulated observations and the sampling interval 897

to be the same as the number of observations and the sampling interval in the 898

observed sequence for the purpose of the bias calibration. Another estimator of � 899

can be obtained by applying the Euler scheme to fXk
h ; � � � ; Xk

nhg (call it Q�kn ). Such an 900

estimator and hence the expected value of them across simulated paths is naturally 901

dependent on the given parameter choice �. 902

The central idea in II/MUE is to match the parameter obtained from the actual 903

data with that obtained from the simulated data. In particular, the II estimator and 904

median unbiased estimator of � solve, respectively, 905

O�n D 1

K

KX

hD1
Q�kn .�/ or O�n D O�0:5. Q�kn .�//; (34)

where O� is the  th sample quantile. In the case where K tends to infinity, the II 906

estimator and median unbiased estimator solve 907

O�n D E. Q�kn.�// or O�n D �0:5. Q�kn .�//; (35)

where E. Q�kn .�// is called the mean binding function, and �0:5. Q�kn .�// is the median 908

binding function, i.e. 909

bn.�/ D E. Q�kn .�//; or bN .�/ D �0:5. Q�kn .�//:

It is a finite sample functional relating the bias to �: In the case where bn is invertible, 910

the II estimator and median unbiased estimator are given by: 911

O�IIn D b�1
n . O�n/: (36)

Typically, the binding functions cannot be computed analytically in either case. That 912

is why II/MUE needs to calculate the binding functions via simulations. While 913

often used in the literature for the binding function is the mean, the median has 914

certain advantages over the mean. First, the median is more robust to outliers than 915

the mean. Second, it is easier to obtain the unbiased property via the median. In 916

particular, while the linearity of bn.�/ gives rise of the mean-unbiasedness in O�IIn , 917

only monotonicity is needed for bn.�/ to ensure the median-unbiasedness (Phillips 918

and Yu 2009b). 919

6If the transition density of XtChjXt for the continuous time model is analytically available, exact
simulation can be directly obtained. In this case, the Euler scheme at a finer grid is not necessary.
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There are several advantages in the II/MUE procedure relative to the jackknife 920

procedure. First, II is more effective on removing the bias in parameter estimates. 921

Phillips and Yu (2009a) provided evidence to support this superiority of II. Second, 922

the bias reduction may be achieved often without an increase in variance. In extreme 923

cases of root near unity, the variance of II/MUE can be even smaller than that of ML 924

(Phillips and Yu 2009a). To see this, note that (36) implies: 925

Var. O�IIn / D


@bn

@�

��1
Var. O�MLn /



@bn

@�0

��1
:

When @bn=@� >1, the II/MUE estimator has a smaller variance than MLE. 926

Gouriéroux et al. (2000) discussed the relationship among II, MUE and bootstrap 927

in the context of bias correction. 928

A disadvantage in the II/MUE procedure is the high computational cost. It is 929

expected that with the continuing explosive growth in computing power, such a 930

drawback is of less concern. Nevertheless, to reduce the computational cost, one can 931

choose a fine grid of discrete points of � and obtain the binding function on the grid. 932

Then standard interpolation and extrapolation methods can be used to approximate 933

the binding functions at any point. 934

As pointed out before, since prices of contingent-claims are always non-linear 935

transformations of the system parameters, insertion of even unbiased estimators 936

into the pricing formulae will not assure unbiased estimation of a contingent-claim 937

price. The stronger the nonlinearity, the larger the bias. As a result, plugging-in the 938

II/MUE estimates into the pricing formulae may still yield an estimate of the price 939

with unsatisfactory finite sample performances. This feature was illustrated in a the 940

context of various continuous time models and contingent claims in Phillips and Yu 941

(2009d). To improve the finite sample properties of the contingent price estimate, 942

Phillips and Yu (2009b) generalized the II/MUE procedure so that it is applied to 943

the quantity of interest directly. 944

To fix the idea, suppose � is the scalar parameter in the continuous time model 945

on which the price of a contingent claim, P.�/, is based. Denote by O�MLn the MLE 946

of � that is obtained from the actual data, and write bPML
n D P. O�MLn / be the ML 947

estimate of P . bPML
n involves finite sample estimation bias due to the non-linearity 948

of the pricing function P in � , or the use of the biased estimate O�MLn ; or both these 949

effects. The II/MUE approach involves the following steps. 950

1. Given a value for the contingent-claim price p, compute P�1.p/ (call it �.p/), 951

where P�1.�/ is the inverse of the pricing function P.�/. 952

2. LeteSk.p/ D f QSk1 ; QSk2 ; � � � ; QSkT g be data simulated from the time series model (16) 953

given �.p/, where k D 1; : : : ; K with K being the number of simulated paths. 954

As argued above, we choose the number of observations ineSk.p/ to be the same 955

as the number of actual observations in S for the express purpose of finite sample 956

bias calibration. 957
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Table 4 ML, II and median unbiased estimates of � in the Vasicek model

MLE II MUE

O� 0.2613 0.1358 0.1642

3. Obtain Q�ML;kn .p/, the MLE of � , from the kth simulated path, and calculate 958
ePML;k
n .p/ D P. Q�ML;kn .p//. 959

4. Choose p so that the average behavior of ePML;k
n .p/ is matched with bPML

n to 960

produce a new bias corrected estimate. 961

6.2 An Empirical Application 962

This empirical application compares the ML method and the simulation-based 963

methods for estimating the mean reversion parameter in a context of Vasicek term 964

structure model. The dataset of a short term interest rate series involves the Federal 965

fund rate and is available from the H-15 Federal Reserve Statistical Release. It is 966

sampled monthly and has 432 observations covering the period from January 1963 967

to December 1998. The same data were used in Ait-Sahalia (1999) and are contained 968

in a file named ff.txt. 969

Matlab code, simVasicek.m, is used to obtain the ML, II and median unbiased 970

estimates of � in the Vasiecek model. Table 4 reports these estimates. The ML 971

estimate is about twice as large as the II estimate. The II estimate is similar to the 972

median unbiased estimate. 973

7 Conclusions 974

Simulation-based estimation of financial time series model has been ongoing in 975

the financial econometric literature and the empirical finance literature for more 976

than one decade. Some new developments have been made and some existing 977

methods have been refined with the increasing complexity in models. More and 978

more attention have been paid to the simulation-based methods in recent years. 979

Researchers in empirical finance have sought to use these methods in practical 980

applications in an increasing scale. we expect the need for these methods to grow 981

further as the financial industry continues to expand and data sets become richer. 982
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