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ABSTRACT
This article proposes the new grid bootstrap to construct confidence intervals (CI) for the persistence
parameter in a class of continuous-time models. It is different from the standard grid bootstrap of Hansen
in dealing with the initial condition. The asymptotic validity of the CI is discussed under the in-fill scheme.
The modified grid bootstrap leads to uniform inferences on the persistence parameter. Its improvement
over in-fill asymptotics is achieved by expanding the coefficient-based statistic around its in-fill asymptotic
distribution that is non-pivotal and depends on the initial condition. Monte Carlo studies show that the
modified grid bootstrap performs better than Hansen’s grid bootstrap. Empirical applications to the U.S.
interest rates and volatilities suggest significant differences between the two bootstrap procedures when
the initial condition is large.
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1. Introduction

A popular model to describe the evolution of an economic time
series y(t) is given by the following Ornstein–Uhlenbeck (OU)
process:

dy(t) = κ(μ − y(t))dt + σdW(t), y(0) = y0, (1)

where κ ∈ [0, ∞), μ ∈ (−∞, ∞), and σ ∈ (0, ∞) are all
constants, y0 is the initial condition, and W(t) is a standard
Brownian motion (BM). In this model, κ captures the persis-
tence of y(t) and is the parameter of interest in the present
article. Consider the case when a discrete sample of observa-
tions for y(t) is available as yth with t = 1, 2, . . . , T (:= N/h),
where h is the sample interval and T is the sample size. Clearly,
N is the time span over which the discrete-sampled data is
available.

The exact discrete-time model corresponding to Equation
(1) is given by

yth = ρh(κ)y(t−1)h + μ
(

1 − e−κh
)

+
√

(1 − e−2κh)/(2κ)εt ,
(2)

where ρh(κ) = e−κh, εt
iid∼ N(0, σ 2). The discrete-time repre-

sentation in Equation (2) is a first-order autoregressive (AR(1))
model with the AR coefficient ρh(κ) = e−κh = e−κN/T := ec/T

where c = −κN. When h → 0, ρh(κ) → 1 and hence,
Equation (2) is closely related to the following local-to-unity
model studied in Chan and Wei (1987) and Phillips (1987),1

yt = ρTyt−1 + εt , ρT = 1 + c/T, y0 ∼ Op(1). (3)

1Phillips (1987) assumed that ρT = exp(c/T) = 1+c/T+O(T−2), y0 = Op(1),
and {εt} is a strong mixing sequence. Chan and Wei (1987) assumed that
y0 = 0 and {εt} is a martingale difference sequence.
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Hansen (1999) proposed the grid bootstrap to construct a
confidence interval (CI) for ρT in model (3) and shows that
as T → ∞, the bootstrap CI (BCI) for ρT has an asymptoti-
cally correct coverage. Mikusheva (2007) strengthened Hansen’s
result by showing that the BCI for the AR coefficient is valid
uniformly over the parameter space of ρT .

Since our continuous-time model is closely related to the
local-to-unity model, the results in Hansen (1999) and Miku-
sheva (2007) motivated us to make use of the grid bootstrap
to construct a CI for κ after κ is estimated by least square
(LS). Unfortunately, the standard grid bootstrap procedure
of Hansen cannot be directly applied to the continuous-time
model due to a key difference between the continuous-time
model and the local-to-unity model considered in Hansen
(1999) and Mikusheva (2007). In particular, to make model (2)
and model (3) comparable, both sides of model (2) must be
divided by

√
(1 − e−2κh)/(2κ). Consequently, the initial con-

dition in model (2 ) becomes Op
(

1/
√

h
)

as h → 0, which
is larger than those considered in Hansen (1999) and Miku-
sheva (2007). As a result, we have to modify Hansen’s grid
bootstrap by carefully dealing with the initial condition and
obtain its asymptotic justification. The asymptotic justification
of the modified bootstrap is made under the in-fill scheme,
that is, by assuming h → 0 and fixed N. It is shown that
the BCI for κ obtained by the modified grid bootstrap has an
asymptotically correct coverage uniformly over the parameter
space for κ ∈ [0, ∞). Unless y0 = 0 in Equation (1), the
standard grid bootstrap procedure does not necessarily lead to
an asymptotically correct coverage as h → 0. Moreover, we
show that the modified grid bootstrap provides the second-
order improvement compared to the in-fill asymptotic dis-
tribution that depends on the initial condition. This finding

© 2021 American Statistical Association

https://doi.org/10.1080/07350015.2021.1930014
https://crossmark.crossref.org/dialog/?doi=10.1080/07350015.2021.1930014&domain=pdf&date_stamp=2022-06-04
mailto:wlxiao@zju.edu.cn
http://www.tandfonline.com/UBES


JOURNAL OF BUSINESS & ECONOMIC STATISTICS 1391

is interesting as the in-fill asymptotic distribution has been
found to outperform the long-span asymptotic distribution (i.e.,
when N → ∞ and h is fixed) and the double asymptotic
distribution (i.e., when N → ∞ and h → 0) in finite
samples.

Our setup and approach have a few other attractive features.
First, our method can be used to test for the unit root as
well as for a stationary root. This is in sharp contrast to the
approaches based on the long-span asymptotic scheme where
the test statistics and their asymptotic distributions under the
unit root null hypothesis (such as the Dickey–Fuller test and
the Phillips–Perron test) are very different from those under the
stationary null hypothesis (such as the KPSS test of Kwiatkowski
et al. (1992) and the test proposed in Chang, Cheng, and Yao
2019). Second, as a by-product, the modified bootstrap method
obtains an approximate median unbiased estimator of κ .

We organize the article as follows. Section 2 reviews some
relevant results in the literature on the continuous-time model
given by Equation (1) and relates some of them to those in
the discrete-time AR(1) model. In Section 3, a more general
continuous-time model is introduced. The LS estimator of κ and
its in-fill asymptotic distribution are also discussed. In Section 4,
we first propose the modified grid bootstrap to construct CIs for
κ and provide the asymptotic justification to the proposed pro-
cedure. We then establish a probabilistic expansion that uses the
in-fill asymptotic distribution as the leading term and explain
how an approximate median unbiased estimator of κ is obtained
as a by-product. Section 5 discusses how to implement the mod-
ified grid bootstrap procedure. Simulation studies, which aim to
check the finite-sample performance of the modified bootstrap,
are carried out in Section 6. Section 7 reports CIs for κ based
on the U.S. interest rates and volatilities. Section 8 concludes.
Proofs of Lemma 3.1, Remark 4.1, Theorem 4.1, Lemma 4.1,
Theorem 4.2, and Remark 4.6 are given in the appendix. Proofs
of other lemmas and lemmas that are used to prove Theorem 4.1
and Theorem 4.2 are given in the online supplement.

We use the following notations throughout the article: “⇒”
means weak convergence in distribution; “→” means conver-
gence in real sequence; “∼” means asymptotic equivalence;
“ d=” means distributional equivalence; “→p, ”“→d,”and “→a.s.”
mean convergence in probability, distribution, and almost
surely, respectively.

2. A Literature Review

Let Y := {yth}T
t=1 be data generated from the continuous-time

model given by Equation (1) with the exact discrete-time model
given by Equation (2). Clearly, the sample size T can be made
to go to infinity by either increasing N (the long-span scheme)
or decreasing h (the in-fill scheme) or both (the double scheme).

Dividing both sides of Equation (2) by
√

σ 2(1−e−2κh)
2κ

gives rise to

xth = ρh(κ)x(t−1)h + μ
(
1 − e−κh)√

σ 2(1 − e−2κh)/(2κ)
+ εt , x0

= y0√
σ 2(1 − e−2κh)/(2κ)

, (4)

where xth = yth/
√

σ 2(1 − e−2κh)/(2κ). Model (4) is an AR(1)
process with ρh(κ) = e−κh. If κ > 0, then 0 < ρh(κ) < 1. If
κ = 0, then ρh(κ) = 1, implying the presence of a unit root. If
h → 0 but N is finite, then ρh(κ) = e−κh = 1 − κh + o(h) =
1 − κN/T + o(h). So the in-fill asymptotic scheme implies
that model (4) has a root that is local-to-unity with the local
parameter c = −κN and the initial condition x0 ∼ Op

(
1/

√
h
)

that diverges as h → 0 if y0 ∼ Op (1) but not 0. Let the LS
estimator of ρh(κ) be ρ̂h and the LS estimator of κ be κ̂ =
− ln (ρ̂h) /h.

The long-span, in-fill, and double asymptotic distributions
for κ̂ have been derived in the literature. For example, when
κ > 0,

√
N (̂κ − κ) ⇒ N

(
0,

(
exp(2κh) − 1

)
/h

)
as T →

∞; see Tang and Chen (2009). When κ = 0, Nκ̂ ⇒
− ∫ 1

0 W(r)dW(r)/
∫ 1

0 W(r)2dr with W(r) = W(r)−∫ 1
0 W(s)ds

as T → ∞. The discontinuity in the long-span asymptotic
distribution for κ echoes that for ρ in the discrete-time AR(1)
model. Yu (2014) and Zhou and Yu (2015) developed the
in-fill asymptotic distribution for κ̂ when μ is known and
unknown, respectively. The in-fill asymptotic distribution is
continuous in κ when κ passes zero. Unless y0 = 0, the
in-fill asymptotic distribution explicitly depends on the initial
condition, y0.

When κ is positive but reasonably close to zero, Yu (2014),
Zhou and Yu (2015), and Bao, Ullah, and Wang (2017)
found that the in-fill distribution is much closer to the finite-
sample distribution than both the long-span and the double
asymptotic distributions, even when 10 years or 50 years of
monthly data are used. The superiority of the in-fill distri-
bution over the long-span distribution is not surprising as
the in-fill distribution depends explicitly on the initial con-
dition and is asymmetric. While these two features can be
found in the finite sample distribution, they are lost in the
long-span and double asymptotic distributions. Unfortunately,
the in-fill distribution depends on unknown parameters that
cannot be consistently estimated under the in-fill scheme in
general.

In the discrete-time literature on local-to-unity, the initial
condition is typically assumed to be Op(1) and the correspond-
ing long-span asymptotic distribution involves functionals of
the OU process but is independent of the initial condition.2
Phillips (1987) developed the in-fill asymptotic distribution for
the LS estimator of AR coefficient when y0 = 0 and μ is
known (i.e., μ = 0 ). In the same article, Phillips (1987)
showed that this in-fill asymptotic distribution is the same as the
long-span asymptotic distribution in the local-to-unity model
with the initial condition of Op(1). Perron (1991) extended
the results in Phillips (1987) by allowing for a general initial
condition y0. Alternatively, bootstrap methods have been pro-
posed to make inference about the AR coefficient in the AR(1)
model.

2 From Mikusheva (2015), it can be easily shown that as T → ∞, in the
local-to-unity model with intercept, T(ρ̂−ρ) ⇒ ∫ 1

0 Jc(r)dW(r)/
∫ 1

0 Jc(r)2dr

where Jc(r) = Jc(r) − ∫ 1
0 Jc(s)ds is the demeaned OU process with Jc(r) =∫ r

0 exp(c(r − s))dW(s).
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When the AR(1) model has a unit root, the long-span asymp-
totic distribution is nonstandard. Basawa et al. (1991) and Park
(2003) introduced bootstrap procedures which improve upon
the long-span asymptotic theory. In an important study, Park
(2003) justified the bootstrap procedure by obtaining a prob-
abilistic expansion for the Dickey–Fuller t statistic around the
Dickey–Fuller distribution and shows that the bootstrap offers
a second-order refinement for the Dickey–Fuller test. Under
the local-to-unity model, Hansen (1999) introduced the grid
bootstrap approach. Mikusheva (2007) showed that Hansen’s
grid bootstrap is uniformly valid. More recently, Andrews,
Cheng, and Guggenberger (2020) showed that Hansen’s grid
bootstrap approach is uniformly valid for unknown innova-
tion distributions. Mikusheva (2015) obtained a probabilistic
expansion of the t statistic around the local-to-unity asymp-
totic distribution and shows that Hansen’s grid bootstrap leads
to a second-order improvement in the local-to-unity asymp-
totic approach. The results of Mikusheva (2015) are impor-
tant because, when the AR(1) coefficient is less than but close
to one, the local-to-unity asymptotic distribution tends to
give better approximations to the finite-sample distribution
than the normal distribution when the sample size is small
or moderately large. However, since the initial condition is
assumed to be Op(1) in the model of Mikusheva (2015), the
local-to-unity asymptotic distribution is independent of the
initial condition. It is unknown if the bootstrap distribution
continues to offer improvement when the initial condition is
larger.

We now review the concept of CI. Let ρ denote the parameter
of interest in a statistical model and tT(Y , ρ) denote a test
statistic with sampling distribution FT(x|ρ) = Pr(tT(Y , ρ) <

x|ρ). For q ∈ (0, 1), let cT(q|ρ) be the quantile function of
tT(Y , ρ), that is, FT(cT(q|ρ)|ρ) = q. Define a q -level CI for
ρ by

CIq := {ρ ∈ R : cT(x1|ρ) ≤ tT(Y , ρ) ≤ cT(x2|ρ)}, (5)

where x1 = (1 − q)/2 and x2 = 1 − (1 − q)/2. If
ρ0 is the true parameter value of ρ, by definition, Pr(ρ0 ∈
CIq) = q, and hence, the coverage probability is exactly q,
the intended level. When cT(q|ρ) is replaced with the quantile
function of a pivotal asymptotic distribution of tT(Y , ρ), the
asymptotic CI has a correct probability coverage asymptotically.
For example, if the asymptotic distribution is N(0, 1), then
a 95% asymptotic CI is CIA

95% = {ρ ∈ R : −1.96 ≤
tT(Y , ρ) ≤ 1.96}. If cT(q|ρ) is replaced with the quantile
function of a bootstrap distribution, denoted by c∗

T(q|ρ), then
the CI is a bootstrap confidence interval (BCI). There are
some advantages of using BCIs over the asymptotic CIs. First,
BCIs are obtained by re-sampling the data. Although asymp-
totic justification of bootstrap methods requires the knowl-
edge of asymptotic theory, generating a BCI does not require
an asymptotic scheme. Second, bootstrap methods are known
to provide a finite sample refinement to asymptotic theory
in the sense that the bootstrap distribution provides better
approximations to the finite sample distribution than asymp-
totic distributions; see Chang and Hall (2015). Not surprisingly,
BCIs often have a more accurate coverage than the asymp-
totic CIs.

3. The Model and In-Fill Asymptotic Theory

3.1. The Model and Estimator

Following Wang and Yu (2016), we consider the following
continuous-time model:

dy(t) = κ(μ − y(t))dt + σdL(t), y(0) = y0 = Op(1), (6)

where κ ∈ [0, ∞), μ ∈ (−∞, ∞), and σ ∈ (0, ∞) are all
constants, L(t) is a Lévy process defined on a probability space(
�,F , {Ft}t≥0, P

)
, with L(0) = 0 a.s., Ft = σ

{{
y(s)

}t
s=0

}
.

The generalization from W(t) to L(t) is important in empirical
applications for many financial variables; see Madan and Seneta
(1990) for equity prices, Bai and Ng (2005) for interest rates,
and Aït-Sahalia andJacod (2014) for an excellent textbook expla-
nation of why L(t) is important. The generalization makes the
analytical approach of Bao, Ullah, and Wang (2017) infeasible.

In this article, we are interested in obtaining CIs for κ from
discrete-sampled observations Y . Other parameters, such as
μ,σ and parameters in L(t), are treated as nuisance parameters.
The exact discrete-time representation of Equation (6) is

yth = ρh(κ)y(t−1)h + μ(1 − exp(−κh))

+ σ

∫ th

(t−1)h
exp(−κ(th − s))dL(s). (7)

The Lévy process makes
{
σ

∫ th
(t−1)h exp(−κ(th − s))dL(s)

}N/h

t=1
an iid sequence with the distribution depending on the speci-
fication of the Lévy measure. Let the characteristic function of
L(t) be of the form of E(exp{isL(t)}) = exp{−tψ(s)}, where
i = √−1 and the function ψ : R → C is the Lévy exponent of
L(t).

Assuming that L(t) is square-integrable, the error term in
Equation (7) has the following moments:

E

(
σ

∫ th

(t−1)h
exp(−κ(th − s))dL(s)

)

= σ iψ ′(0)
1 − exp(−κh)

κ
,

var

(
σ

∫ th

(t−1)h
exp(−κ(th − s))dL(s)

)

= σ 2ψ ′′(0)
1 − exp(−2κh)

2κ
.

To simplify notations, let

λh(κ) =
√

1 − e−2κh

2κ
, σ 2

ψ = σ 2ψ ′′(0),

μ∗ = μ + σ iψ ′(0)

κ
, gh (κ)

= μ∗(1 − ρh(κ)),

uth(κ) = (σψλh)
−1

(
σ

∫ th

(t−1)h
exp(−κ(th − s))dL(s)

−σ iψ ′(0)
1 − ρh(κ)

κ

)
. (8)

Note that {uth}T
t=1 is a sequence of iid variables with zero-mean

and unit variance. When there is no confusion, we omit h in yth
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and uth. Using notations in Equation (8), we rewrite Equation
(7) as follows:

yt = ρh(κ)yt−1 + gh(κ) + εt , εt (9)
= σψλh(κ)ut , y(0) = y0 = Op(1).

Dividing both sides of Equation (9) by σψλh(κ) and letting xt =
yt/

(
σψλh(κ)

)
, we have

xt = ρh(κ)xt−1 + gh(κ)/
(
σψλh(κ)

) + ut , x0 = Op(λ
−1
h (κ)).

(10)
As in Equation (4), the in-fill asymptotic scheme implies that

Equation (10) is a local-to-unity model with the local parameter
c = −κN and the initial condition x0 ∼ Op

(
1/

√
h
)

that
diverges as h → 0 when y0 ∼ Op (1) but not 0.

In model (7), let ρ̂h be the LS estimator of ρh(κ) and κ̂h =
− ln(ρ̂h)/h. The coefficient-based statistic and t statistic for
ρh(κ) are, respectively,

z (Y , ρ, T) = T (ρ̂h − ρh(κ)) and t (Y , ρ, T) = ρ̂h − ρh(κ)

σ̂ρ̂h
,

where σ̂ρ̂h =
√

1
T
∑T

t=1(yt − ĝh − ρ̂hyt−1)2×√(∑T
t=1 y2

t−1 − 1
T

(∑T
t=1 yt−1

)2
)−1

. The normalization

in z (Y , ρ, T) is T not
√

T; see Phillips (1987). Following Perron
(1991) and Zhou and Yu (2015), we define the coefficient-based
statistic for κ as

z (Y , κ , h) = N (̂κh − κ) . (11)

3.2. In-Fill Asymptotic Theory

The in-fill asymptotic theory has gained much prominence in
the recent years. Studies that have developed in-fill asymptotics
for different econometric models include Li and Xiu (2016),
Jiang, Wang, and Yu (2018, 2020). In this section, we extend the
in-fill asymptotic result of Zhou and Yu (2015) to model (6).

Lemma 3.1. For model (6), define z (Y , κ , h) by Equation (11)
and let θ = (μ∗, σψ). Then, as h → 0,

z (Y , κ , h) ⇒ −ϒ3 − ϒ2W(1)

ϒ1 − ϒ2
2

:= zy0(κ , θ), (12)

where

ϒ1 = exp(2c) − 4 exp(c) + 2c + 3
2c3 b2

+2b
c

∫ 1

0
(exp(rc) − 1)Jc(r)dr +

∫ 1

0
J2
c (r)dr

+exp(2c) − 2 exp(c) + 1
c2 bγ0

+2γ0

∫ 1

0
exp(rc)Jc(r)dr + γ 2

0
exp(2c) − 1

2c
;

ϒ2 = exp(c) − c − 1
c2 b +

∫ 1

0
Jc(r)dr + exp(c) − 1

c
γ0;

ϒ3 = b
c

∫ 1

0
(exp(rc) − 1)dW(r) +

∫ 1

0
Jc(r)dW(r)

+γ0

∫ 1

0
exp(rc)dW(r);

Jc(r) =
∫ r

0
exp(c(r − s))dW(s); γ0 = y0

σψ

√
N

;

b = μ∗
√−cκ

σψ

; c = −κN.

If θ can be consistently estimated (say by θ̂ = (̂σψ , μ̂∗)), then
z (Y , κ , h) can be inverted to construct a feasible CI for κ as

CIA
q = {κ ∈ R : c(x1|κ) ≤ z (Y , κ , h) ≤ c(x2|κ)} , (13)

where c(·|κ) is the quantile function of zy0
(
κ , θ̂

)
. This method

is related to the inversion method of Stock (1991). Its validity
depends crucially on consistent estimation of θ .

While σψ can be consistently estimated under the in-fill
scheme (see Lemma 9.1 in the online supplement), it is unclear
how to estimate μ∗ consistently under the in-fill scheme. A natu-
ral estimator of μ∗ is μ̂∗ = ĝh

1−ρ̂h
, where ĝh is the LS estimator of

gh. The following lemma shows that μ̂∗ is inconsistent as h → 0.
As a result, the inversion method based on μ̂∗ cannot generate
the asymptotically correct coverage as h → 0.

Lemma 3.2. Let μ̂∗ = ĝh
1−ρ̂h

, where ĝh is the LS estimator of the
intercept in model (9). Then, as h → 0, μ̂∗ ∼ Op(h−2).

Remark 3.1. If model (6) is driven by the standard BM (i.e.,
L(t) = W(t)), then ψ ′(0) = 0, ψ ′′(0) = 1, and the in-
fill distribution of κ̂h given in Equation (12) is the same as
that obtained from Zhou and Yu (2015). In addition, if μ is
known and equal to 0, the in-fill distribution of κ̂h is identical
to that in Perron (1991). By further assuming y0 = 0, the in-fill
distribution of κ̂h is the same as that in Phillips (1987).

Remark 3.2. If model (6) is driven by a standard BM, unless
y0 = 0, then the in-fill distribution of κ̂ depends on the initial
condition via γ0. If y0 = 0 and μ = 0, then γ0 and b are both
equal to 0 in Lemma 3.1. In this case, Lemma 3.1 implies that

zy0(κ , θ) = −
∫ 1

0 Jc(r)dW(r) − ∫ 1
0 Jc(r)drW(1)∫ 1

0 J2
c (r)dr −

(∫ 1
0 Jc(r)dr

)2

= −
∫ 1

0 Jc(r)dW(r)∫ 1
0 Jc(r)2dr

. (14)

The initial condition disappears in Equation (14) and the in-
fill asymptotic distribution is the mirror image of the long-
span asymptotic distribution of T (ρ̂ − ρ) in the local-to-
unity model when the initial condition is Op(1); see Remark
3 in Mikusheva (2015). If we further impose κ = 0, then
zy0(κ , θ) = − ∫ 1

0 W(r)dW(r)/
∫ 1

0 W(r)2dr where W(r) is the
demeaned BM. When y0 �= 0, our in-fill asymptotic theory
for κ̂h corresponds to the long-span asymptotic theory for ρ̂
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in the local-to-unity model with the initial condition Op(
√

T).
In this case, the initial condition explicitly enters the in-fill
asymptotic distribution via γ0, which is expected to outperform
− ∫ 1

0 Jc(r)dW(r)/
∫ 1

0 Jc(r)2dr.

4. Modified Grid Bootstrap

4.1. Modified Grid Bootstrap

The standard grid bootstrap of Hansen (1999) is for the local-to-
unity AR(1) model with y0 ∼ Op(1). According to of Hansen
(1999, sec. 4), the bootstrap initialization y∗

0 is set to 0 when
ρ ≥ 1 and to the fitted value of y0 that is based on the LS
estimates otherwise. Moreover, y∗

0 is then fixed in all bootstrap
replications. This choice of initialization is made to avoid the
dependence of the initialization. Since under the in-fill scheme
the initial condition explicitly enters the in-fill asymptotic dis-
tribution in our model, the dependence of the initialization is
needed. As a result, we have to modify the grid bootstrap proce-
dure when generating a bootstrap sample. Consider generating
the following AR(1) pseudo time series

{
y∗

t
}T

t=0 with errors
{
ε∗

t
}

conditional on κ :

y∗
t = ρh(κ)y∗

t−1 + g̃h(κ) + ε∗
t , y∗(0) = y0 = Op(1), (15)

where g̃h(κ) is obtained by regressing yt − ρh(κ)yt−1 on a
constant. This way of obtaining g̃h(κ) is crucial since gh(κ)

explicitly depends on κ in our model, unlike the usual discrete-
time AR(1) model with intercept where the estimator of the
intercept does not depend on the nuisance parameter. More
importantly, when generating bootstrap samples, we explicitly
retain the initial condition by letting y∗(0) = y0, regardless of
the value of ρh(κ) (and hence, κ). This is critically different from
the standard grid bootstrap that sets y∗

0 to 0 when κ ≤ 0 (or
equivalently ρh(κ) ≥ 1).

The error ε∗
t is generated in the following way. First, let

{et}T
t=1 be the LS residuals when yt is regressed on yt−1

and a constant by LS. Second, we independently draw ε∗
t

from {et}T
t=1 with replacement and obtain a bootstrap sample{

y∗
t
}T

t=1 (:= Y∗) from Equation (15). Third, based on LS we
obtain ρ̂∗, κ̂∗

h = − ln(ρ̂∗)/h, z (Y∗, κ , h) = N
(̂
κ∗

h − κ
)

from
Y∗. Fourth, we repeat the above steps for B times to obtain the
bootstrap distribution of z (Y∗, κ , h). Finally, the BCI for κ is
obtained as

CI∗q = {κ ∈ R : c∗
T(x1|κ) ≤ z (Y , κ , h) ≤ c∗

T(x2|κ)}, (16)

where c∗
T(·|κ) is the quantile function of z (Y∗, κ , h).

4.2. Asymptotic Validity of the Modified Bootstrap

We now provide asymptotic justification of the modified grid
bootstrap under the in-fill scheme.

Theorem 4.1. Let κ0 be the true value of κ . Assume that

1. κ0 ∈ K = [0, ∞), μ ∈ (−∞, ∞), σ ∈ (0, ∞).
2. The increment of the Lévy process L(t +h)−L(t) has a finite

rth absolute moment with some r > 2.

Under these two assumptions, as h → 0,

sup
κ∈K

sup
x

∣∣Pr{z(Y , κ , h)<x|κ}−Pr ∗{z(Y∗, κ , h)<x|κ , Y}∣∣→0,

P − a.s., (17)

lim
h→0

inf
κ0∈K

Pr{κ0 ∈ CI∗q} = lim
h→0

sup
κ0∈K

Pr{κ0 ∈ CI∗q} = q, (18)

where Pr ∗ is the probability with respect to the bootstrap distri-
bution and P − a.s. means “for almost all realizations of Y .”

The two assumptions are primitive and easy to verify.
Assumption 1 of Theorem 4.1 requires the parameter space
of κ be the nonnegative half-line. Assumption 2, Theorem 4.1
is a typical moment restriction that enables us to apply the
invariance principle. The result in Equation (17) shows that the
distribution of the bootstrap statistic is closer to the finite sample
distribution uniformly over the parameter space K, when h is
closer to 0. In the limit, the bootstrap statistic behaves like a
random variable whose distribution is the in-fill asymptotic dis-
tribution. The results in Equation (18) suggest that the coverage
probability of CI∗q converges to q when h → 0.

Unfortunately, the grid bootstrap of Hansen does not neces-
sarily have an asymptotically correct coverage when h → 0. This
problem arises because, by setting y∗

0 = 0 for κ ≤ 0, a bootstrap
sample cannot approximate the original data with y0 �= 0 at
nonpositive grid points. This result is reported below.

Lemma 4.1. Under the assumptions specified in Theorem 4.1, if
we generate a bootstrap sample by letting y∗

0 = 0 for κ ≤ 0 and
obtain CI∗q as in Equation (16), then when y0 �= 0, there exists
0 < x1 < x2 < 1, as h → 0,

Pr{κ0 ∈ CI∗q} � x2 − x1.

Remark 4.1. Although we have used the coefficient-based statis-
tic for κ to construct CIs, we can also construct CI for κ from a
carefully defined t statistic. Note that in the proof of Lemma 3.1,
as h → 0, N (̂κh − κ) = −T(ρ̂h − ρh(κ)) + op(1). Therefore,
we can express

κ̂h − κ = −h−1(ρ̂h − ρh(κ)) + op(1). (19)

From Equation (19), we may define the standard error of κ̂h
by σ̂κ̂h = h−1σ̂ρ̂h and the t statistic for κ̂h by t (Y , κ , T) =
(̂κh − κ) /σ̂κ̂h . It can be shown that, as h → 0,

t (Y , κ , h) ⇒ −ϒ3 − ϒ2W(1)√
ϒ1 − ϒ2

2

:= ty0(κ , θ).

Remark 4.2. Since t (Y∗, κ , h) = −t (Y∗, ρ, h) + op(1) under
the in-fill scheme, following the approach of Mikusheva (2007)
and the proof of Theorem 4.1, we can also justify the use of
t (Y∗, κ , h) to construct a CI for κ .

4.3. Asymptotic Expansion and the Second-Order
Improvement

An important advantage of bootstrap methods over asymptotic
distributions is that bootstrap often provides refinements in
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finite samples. This feature also holds true in our model. Park
(2003) and Mikusheva (2015) justified the bootstrap approach
by developing the second-order probabilistic expansions of the
statistics of interest. The expansions are obtained in Park (2003)
for both the t statistic and the coefficient-based statistic around
their respective Dickey–Fuller distributions that are pivotal. The
expansion is obtained in Mikusheva (2015) for the t statistic
around

∫ 1
0 Jc(r)dW/

√∫ 1
0 Jc(r)2dr that is nonpivotal but inde-

pendent of the initial condition. Our leading term is the in-fill
asymptotic distribution, which is not only nonpivotal but also
dependent on the initial condition.

Theorem 4.2. Assume that the assumptions specified in Theo-
rem 4.1 hold, and additionally, the increment of Lévy process
L(t + h) − L(t) has a bounded rth moment for some r ≥ 8.
Then

z (Y , κ , h) = zy0(κ , θ) + T−1/4A + T−1/2B + op(T−1/2), (20)

where the leading term zy0(κ , θ) is the in-fill asymptotic distri-
bution given in Equation (12), and the full expressions of the
higher order terms A and B, which are all Op(1), are provided in
the appendix. Furthermore, the modified grid bootstrap leads to
the distributional expansion:

sup
x

| Pr ∗(z
(
Y∗, κ , h

)
< x|κ , Y) − Pr(z (Y , κ , h) < x|κ)|

= o(T−1/2), P − a.s. (21)

Remark 4.3. Following Mikusheva (2015), one can expand
z (Y∗, κ , h) and show that the difference between z (Y∗, κ , h)

and z (Y , κ , h) is op(T−1/2). Hence, compared with zy0(κ , θ),
z (Y∗, κ , h) is closer to z (Y , κ , h). The intuition for the improve-
ment is that the bootstrap distribution but not the limit distri-
bution depends on the distribution of error terms.

Remark 4.4. When ψ ′(0) = 0, ψ ′′(0) = 1, y0 = μ,
κ = 0, zy0(κ , θ) = − ∫ 1

0 W(r)dW(r)/
∫ 1

0 W(r)2dr. Equa-
tion (20) extends the result in Park (2003) from the unit root
model without intercept to the unit root model with intercept.
When ψ ′(0) = 0, ψ ′′(0) = 1, y0 = μ, zy0(κ , θ) =
− ∫ 1

0 J(r)dW(r)/
∫ 1

0 J(r)2dr. Equation (20) extends the result
in Mikusheva (2015) from the local-to-unity model with the
negligible initial condition to the local-to-unity model with the
divergent initial condition.

Remark 4.5. According to Equation (20), we have

Pr(z (Y , κ , h) < x|κ) = Pr(zy0(κ , θ) < x|κ) + O(T−1/4) (22)

uniformly in x. Let ξ = zy0(κ , θ) + T−1/4A + T−1/2B. Theo-
rem 4.2 suggests that ξ provides the second-order improvement
to the in-fill asymptotic distribution since

Pr(z (Y , κ , h) < x|κ) = Pr(ξ < x|κ) + o(T−1/2).

Remark 4.6. We can obtain a second-order expansion for
t (Y , κ , h), defined in Equation (20), as

t (Y , κ , h) = ty0(κ , θ) + T−1/4C + T−1/2D + op(T−1/2),

where the full expressions of C and D, which are all Op(1), are
provided in the appendix.

4.4. Median Unbiased Estimator

The bootstrap sample can be used to construct not only an
asymptotically valid CI for κ but also an approximate median
unbiased estimator of κ . Define κ̃h as

κ̃h =
{ (

m∗
T(κ)

)−1 |κ=κ̂h if
(
m∗

T(κ)
)−1 |κ=κ̂h ≥ 0

0 otherwise
, (23)

where m∗
T(κ) is the median of the bootstrap distribution of κ̂h

conditional on κ , and κ̂h is the LS estimator from the original
sample. Then κ̃h is approximately median-unbiased.

Andrews (1993) constructed an exact median unbiased esti-
mator for the AR parameter ρ under the assumption of Gaussian
errors in the AR(1) model. In our case, κ̃h is not exact median
unbiased because m∗

T (̂κh|κ) is not the exact but an approximate
median of the finite-sample distribution of κ̂h. Since Equation
(17) is satisfied under the in-fill scheme, it is immediate that,
as h → 0, c∗

T(q|κ) → c(q|κ) for any q. As m∗
T(κ) is an affine

transformation of c∗
T(0.5|κ), m∗

T(κ) → m(κ) as h → 0, where
m(κ) is the median function of finite sample distribution of κ̂h.
Consequently, κ̃h is approximately median unbiased.

5. Implementation

In this section, we discuss in practice how we can construct the
modified grid bootstrap CI for κ and the approximate median
unbiased estimator κ̃h. We introduce the seven-step procedure.

1. Given the data {yth}T
t=0, we run the following LS regression:

yth = ρ̂hy(t−1)h + ĝh + eth,

where eth is the LS residual. Use {eth}T
t=1 to construct σ̂ 2 =

1
T
∑T

t=1 e2
th.

2. Construct a grid of ρh, AJ = {ρh1, ρh2, ...ρhJ}, centered at ρ̂h,
with the first and last grid points being ρ̂h ± 7 × se(ρ̂h) .

3. Given a point in the grid (ρhj ∈ AJ , j ∈ {1, ..., J}), perform the
second LS regression:

yth − ρhjy(t−1)h = g̃h + νt ,

where νt is the residual. Note that g̃h is a function of ρhj.
4. We independently draw {ε∗

th}T
t=1 from the empirical distribu-

tion of {eth} with replacement. We then generate a bootstrap
sample {y∗b

th }T
t=1 based on {ε∗

th}T
t=1 and the same initial condi-

tion as the observed data, that is,3

y∗b
th = ρhjy∗b

(t−1)h + g̃h + ε∗
th, y∗b

0 = y0.

5. Generate B sets of bootstrap sample, that is,
{{y∗b

th }T
t=1

}B
b=1.

For every set of bootstrap sample, obtain the LS estimate
of κ (denoted by κ̂∗

h ) and calculate z
(
Y∗, κj, h

) = N (̂κ∗
h −

κj) where κj = − ln(ρhj)/h. Calculate the xth quantile
of {z

(
Y∗, κj, h

)}B
b=1 and {̂κ∗

h }B
b=1 , denoted by c∗

T(x|κj) and
q∗

T(x|κj), respectively.

3 In practice, if we suspects that the error term has unconditional het-
eroscedasticity, one may combine the wild bootstrap with the grid method,

that is, y∗b
th = ρhjy∗b

(t−1)h + g̃h + ethz∗
th, yb

0 = y0, z∗
th

iid∼ N(0, 1).
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6. Estimate the quantile functions c∗
T(x|κ) and q∗

T(x|κG) by
kernel regression,

c∗
T(x|κ) =

∑J
j=1 K

(
κ−κj

δ

)
c∗

T(x|κj)∑J
j=1 K

(
κ−κj

δ

) ,

q∗
T(x|κ) =

∑J
j=1 K

(
κ−κj

δ

)
q∗

T(x|κj)∑J
j=1 K

(
κ−κj

δ

)
where K(·) is a kernel function and δ is a bandwidth. In the
simulation and empirical studies that will be reported later,
we use the Epanechnikov kernel (K(x) = 3

4 (1 − x2)1(|x| ≤
1)) and choose the bandwidth by LS cross-validation.

7. The CI for κ is obtained by:

CIB
q = {

κ ∈ R : c∗
T(x1|κ) ≤ z (Y , κ , h) ≤ c∗

T(x2|κ)
}

.

The approximate median unbiased estimate κ̃h is calculated
as in (23) by letting m∗

T(κ) = q∗
T(0.5|κ).

6. Simulation Studies

To evaluate the performance of the modified bootstrap method
in the continuous-time model, we construct CIs with the 95%
coverage using three alternative methods: the in-fill asymptotic
distribution when it is feasible, the standard grid bootstrap of
Hansen (1999), and our modified grid bootstrap method in
Section 5. The two bootstrap CIs only differ in the choice of ini-
tialization. We consider three data-generating processes (DGPs)
(denoted DGP1 to DGP3) and simulate discrete observations
with sampling interval h from model (6) where the L évy process
is the variance gamma process with v = 0.5. In all three DGPs,
we set κ ∈ {0.01, 0.1}, h = 1/12, N = 5, σ = 1, and
y0 ∈ {0.5, 1, 2}. In DGP1, we set μ = 0, ψ ′(0) = 0, ψ ′′(0) = 1.
In DGP2, we set μ = 0.1, iψ ′(0) = 0, and ψ ′′(0) = 1.
In DGP3 we set μ = 0.1, iψ ′(0) = 0.05, and ψ ′′(0) = 1.
For DGP1, we assume that μ∗ is known and equal to 0. This
setting allows us to invert the quantiles based on zy0(κ , 0, σ̂ψ )

in (12). For DGPs 2-3 since there is no consistent estimator for
μ∗, the in-fill asymptotic distribution is not feasible and hence
we only compare the two bootstrap methods. The number of
replications is set at 2500. To calculate BCIs, we set the number
of bootstrap iterations to B = 399 and the grid size to J = 50.

The Monte Carlo average is used to calculate the
empirical coverage of the true value (κ0), that is,

1
2500

∑2500
m=1 1

(
κ

(m)
L ≤ κ0 ≤ κ

(m)
U

)
, where κ

(m)
L and κ

(m)
U are the

bounds of a CI in the m th replication, and 1(·) is the indicator
that equals one if κ0 is contained in the interval. The closer the
empirical coverage to 95%, the better the performance of the
method. Table 1 reports the empirical coverage and the median
length of the CIs (in the parentheses) for alternative methods.
Numbers in boldface indicate that the best performing method
(in terms of the absolute difference) in each of the parameter
settings.

Several interesting conclusions can be drawn from Table 1.
First, it can be seen that the feasible in-fill CI is outperformed
by the modified bootstrap. This is expected as we showed in
Theorem 4.2 that our method is likely to produce a better
finite-sample performance due to the refinement. Second, for
the standard bootstrap, the empirical coverage is not close to
the nominal one when the initial condition is large. It tends to
lead to a too-small coverage probability and a too-narrow CI.
This finding is particularly striking when the initial condition is
larger. For example, for DGP3, when y0 = 2 and κ = 0.01,
the coverage of the standard bootstrap is only 88.4%. Finally,
our modified bootstrap always performs the best with coverage
always close to 95%. Regardless of y0 , it tends to outperform
the other CIs in all DGPs, consistent with the prediction of
Theorem 4.2 and Lemma 4.1.

To evaluate the finite sample performance of κ̃h, Table 2
reports the mean square error (MSE) of κ̂h and κ̃h under DGP1-
DGP3. From Table 2, it is clear that κ̃h has a lower MSE under all

Table 2. MSE of κ̂h and κ̃h .

y0 = 0.5 y0 = 1 y0 = 2

DGP1 κ = 0.01 κ̂h 2.336 2.338 2.336
κ̃h 1.248 1.229 1.248

κ = 0.1 κ̂h 2.408 2.247 1.764
κ̃h 1.275 1.175 0.912

DGP2 κ = 0.01 κ̂h 2.336 2.338 2.336
κ̃h 1.252 1.228 1.249

κ = 0.1 κ̂h 2.421 2.290 1.813
κ̃h 1.283 1.203 0.961

DGP3 κ = 0.01 κ̂h 2.211 2.227 2.259
κ̃h 1.119 1.153 1.157

κ = 0.1 κ̂h 2.392 2.415 2.049
κ̃h 1.227 1.274 1.055

Table 1. 95% confidence intervals by alternative methods.

y0 = 0.5 y0 = 1 y0 = 2

DGP1 κ = 0.01 In-fill distribution 0.936 (2.330) 0.929 (2.062) 0.890 (1.728)

Hansen’s bootstrap 0.940 (2.365) 0.925 (2.308) 0.887 (2.104)

Modified bootstrap 0.951 (2.433) 0.950 (2.438) 0.948 (2.435)

κ = 0.1 In-fill distribution 0.934 (2.486) 0.928 (2.146) 0.904 (2.104)

Hansen’s bootstrap 0.944 (2.536) 0.942 (2.418) 0.917 (2.138)

Modified bootstrap 0.950 (2.593) 0.954 (2.516) 0.962 (2.312)

DGP2 κ = 0.01 Hansen’s bootstrap 0.940 (2.367) 0.924 (2.307) 0.888 (2.104)

Modified bootstrap 0.951 (2.430) 0.950 (2.435) 0.949 (2.434)

κ = 0.1 Hansen’s bootstrap 0.943 (2.550) 0.939 (2.429) 0.918 (2.153)

Modified bootstrap 0.948 (2.603) 0.952 (2.521) 0.959 (2.335)

DGP3 κ = 0.01 Hansen’s bootstrap 0.941 (2.355) 0.926 (2.299) 0.884 (2.071)

Modified bootstrap 0.956 (2.454) 0.952 (2.460) 0.953 (2.442)

κ = 0.1 Hansen’s bootstrap 0.945 (2.563) 0.929 (2.464) 0.904 (2.187)

Modified bootstrap 0.953 (2.630) 0.948 (2.606) 0.958 (2.446)
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parameter settings. This finding echoes the results in Andrews
(1993) and Andrews and Chen (1994) that the median unbiased
estimator performs better than the LS estimator.

7. Empirical Studies

In this section, we apply the modified grid bootstrap method
to construct BCIs for κ and κ̃h to estimate κ in model (1) and
model (6) using the U.S. monthly interest rates with different
maturities, the Chicago Board Options Exchange logarithmic
volatility index (VIX), and the logarithmic S&P 100 volatility
index (VXO). The methods used to generate CIs are identical to
those in Section 6.

We obtain seven interest rates from the Federal Reserve Bank
of St. Louis, including the Federal fund effective rate (FED-
FUNDS), 3-month t-bill rate (TB3MS), 3-month, 1-year, 3-year,
5-year, and 10-year treasury constant maturity rates (GS3M, GS,
GS3, GS5 and GS10). Our studies cover two time periods, from
December 1994 to December 1999 and from January 2003 to
January 2008. Table 3 reports the initial condition, μ̂, ρ̂h(κ),
κ̂h, κ̃h, and the two BCIs generated by the two grid bootstrap
procedures.

Several interesting observations may be found from Table 3.
First, the standard grid bootstrap always gives a narrower CI
than the modified bootstrap. Second, the differences between
the two sets of CIs are more noticeable in Panel A than those
in Panel B. This finding is not surprising because the initial

conditions in Panel A are generally larger. The first two obser-
vations agree with our simulation studies where it is found that
the modified grid tends to lead to a wider BCI with a large initial
condition and that the standard bootstrap method tends to lead
to a too-small coverage probability. While the two sets of CIs are
less different in Panel B than those in Panel A, we can still see
the two CIs for GS10 are remarkably different from each other
due to a larger initial condition. Based on the simulation studies
and Lemma 4.1, the modified grid bootstrap method should
produce a more accurate probability coverage. Third, all the CIs
include zero, suggesting that we cannot reject the unit root null
hypothesis. Interestingly, κ̃h in Panel B suggests all the interest
rate data except GS10 have the median being exactly zero. This
finding of unit root for the interest rate echoes the empirical
studies in Romero-Ávila (2007). However, it is important to
point out that the linear specification in the term structure
and interest rate dynamics has been rejected by nonparametric
methods; see Aït-Sahalia (1996). Hence, the failure of rejecting
unit root in the interest rate dynamics could be due to nonlinear
dynamics.

The daily observations from 2 February 2001 to 29 August
2008 and from 4 January 2010 to 30 December 2016 for CBOE
VIX and VXO data are collected from the Federal Reserve Bank
of St. Louis. Table 4 reports the initial condition, μ̂, ρ̂h(κ), κ̂h, κ̃h,
and the two BCIs. As in Table 3, the standard bootstrap method
leads to narrower CIs in both cases. Unlike Table 3, all the CIs in
two panels exclude zero, suggesting the evidence of stationarity
in log-VIX and log-VXO.

Table 3. Empirical results for the interest rates data.

Panel A: December 1994 to December 1999 (h = 1/12, N = 5)

y0 μ̂ ρ̂h(κ) κ̂h κ̃h Standard 95% BCI Modified 95% BCI

FEDFUNDS 5.45 5.350 0.931 0.858 0.045 (−0.329, 1.126) (−0.768, 1.643)
TB3MS 5.60 4.935 0.900 1.269 0.729 (−0.316, 1.714) (−0.600, 2.216)
GS3M 5.76 5.078 0.900 1.265 0.725 (−0.332, 1.711) (−0.600, 2.209)
GS1 7.14 5.310 0.861 1.799 1.472 (−0.356, 2.335) (−0.435, 2.752)
GS3 7.71 5.617 0.872 1.640 1.314 (−0.568, 2.179) (−0.470, 2.637)
GS5 7.78 5.689 0.887 1.445 1.136 (−0.686, 1.953) (−0.503, 2.344)
GS10 7.81 5.815 0.904 1.217 0.939 (−0.721, 1.642) (−0.529, 2.026)

Panel B: January 2003 to January 2008 (h = 1/12, N = 5)

y0 μ̂ ρ̂h(κ) κ̂h κ̃h Standard 95% BCI Modified 95% BCI

FEDFUNDS 1.24 7.052 0.989 0.139 0.0 (−0.433, 0.417) (−0.496, 0.479)
TB3MS 1.17 4.468 0.983 0.206 0.0 (−0.434, 0.593) (−0.495, 0.644)
GS3M 1.19 4.581 0.983 0.207 0.0 (−0.444, 0.594) (−0.495, 0.645)
GS1 1.36 4.361 0.980 0.244 0.0 (−0.422, 0.631) (−0.460, 0.691)
GS3 2.18 3.749 0.967 0.405 0.0 (−0.459, 0.855) (−0.551, 0.882)
GS5 3.05 3.901 0.946 0.671 0.0 (−0.463, 1.146) (−0.620, 1.337)
GS10 4.05 4.364 0.857 1.854 1.059 (−0.046, 2.456) (−0.399, 3.237)

Table 4. Empirical results for the interest rates data for the log volatility indices.

Panel A: 2 February 2001 to 29 August 2008 (N = 7.55, h = 1/252)

y0 μ̂ ρ̂h(κ) κ̂h κ̃h Standard 95% BCI Modified 95% BCI

Log-VIX 3.089 2.901 0.986 3.621 3.346 (2.078, 4.757) (1.071, 5.204)
Log-VXO 3.209 2.929 0.987 3.219 2.700 (1.630, 4.348) (0.731, 4.751)
Panel B: 4 January 2010 to 30 December 2016 (N = 6.99, h = 1/252)

y0 μ̂ ρ̂h(κ) κ̂h κ̃h Standard 95% BCI Modified 95% BCI

Log-VIX 2.998 2.837 0.964 9.186 8.723 (6.600, 11.413) (5.390, 11.967)
Log-VXO 2.878 2.800 0.960 10.277 7.787 (7.369, 12.755) (6.285, 13.255)
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8. Conclusion

In this article, we discuss the advantages and drawbacks of
using three asymptotic distributions obtained from the long-
span, double, and in-fill schemes for constructing CIs of per-
sistence parameter κ under a Lévy-driven OU model. Although
the in-fill asymptotic distribution is closer to the finite sample
distribution than the long-span and double asymptotic distri-
butions and is continuous in κ , it is generally infeasible in
practice.

Since the discrete-time representation of our continuous-
time model is similar to the local-to-unity model, for which the
asymptotic justification of the standard grid bootstrap has been
provided in the literature, it is natural to consider the use of
the grid BCI for the continuous-time model. However, since the
initial conditions in the exact discretization of the continuous-
time model under the in-fill scheme is larger than those in
the local-to-unity model typically assumed in the literature, the
standard grid bootstrap may fail to provide the asymptotically
correct coverage under the in-fill scheme. In this article, we
propose a modified grid bootstrap method to cater a larger
initial condition.

We show that the modified bootstrap leads to uniform infer-
ences on the persistence parameter and provides a probabilis-
tic expansion of the coefficient-based statistic around its in-
fill asymptotic distribution. The probabilistic expansion allows
us to establish a second-order approximation by the bootstrap
distribution of the coefficient-based statistic to its finite sample
distribution. While our parameter of interest is κ in this article,
we expect our grid bootstrap performs better than the standard
bootstrap for the AR coefficient in the AR(1) model when the
initial condition is not zero.

Monte Carlo studies reveal several important results. First,
the BCIs implied by the standard grid bootstrap generally suffer
from an under-coverage problem. The under-coverage problem
is more significant when the initial condition becomes larger.
On the other hand, the BCI implied by the modified grid
gives a probability coverage that is very close to the nominal
value. Second, the modified grid bootstrap performs better
than the in-fill asymptotic distribution, even when the latter is
feasible.

The empirical application to the U.S. interest rate data
under different maturities shows that the unit root hypothesis
cannot be rejected by the modified grid bootstrap, suggest-
ing non-stationarity in the interest rate data. Our BCIs are
wider than those implied by the standard grid bootstrap. The
empirical application to CBOE’s VIX and VXO data shows
that the unit root hypothesis is rejected by the modified grid
bootstrap.

While the proposed modified grid bootstrap method per-
forms better than the standard grid bootstrap method in a
class of simple continuous-time models, it is not clear how
to implement it for models with a more complicated dynamic
behavior. An interesting class of model is the generalized local-
to-unity (GLTU) model proposed recently by Dou and Müller
(2021) whose limit is the continuous-time ARMA model (see
Chambers and Thornton 2012). How to implement the grid
bootstrap method for the GLTU model or the continuous-time
ARMA model is an open question.
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Appendix

Proof of Lemma 3.1 and Remark 4.1

Proof. In the following proof, although ρh(κ), ρ̂h(κ), gh(κ), ĝh(κ),
σψ(κ), λh(κ) are all dependent on κ , we omit this dependence to
keep notations simple. We can follow Zhou and Yu (2010) to prove
Lemma 3.1 and Remark 4.1. The only difference is that in Zhou and
Yu (2010) L(t) = W(t). If we divide equation (9) by σψλh, then we
have xt = ρhxt−1 + ğh + ut , where ğh = gh/

(
σψλh

)
. Under the in-fill

scheme, we have

1
T2

T∑
t=1

x2
t−1 ⇒ ϒ1,

1
T3/2

T∑
t=1

xt ⇒ ϒ2,
1
T

T∑
t=1

xt−1ut ⇒ ϒ3.

(A.1)
Let S(T, κ) = 1

σ̂ 2T
∑T

t=1 yt−1εt − 1
σ̂T

∑T
t=1 yt−1 1

σ̂T
∑T

t=1 εt , and

R(T, κ) = 1
σ̂ 2T2

∑T
t=1 y2

t−1 −
(

1
σ̂T

3
2

∑T
t=1 yt−1

)2
, where σ̂ 2 =

1
T

∑T
t=1

(
yt − ĝh − ρ̂hyt−1

)2. By construction,

T(ρ̂h − ρh) = S(T, κ)

R(T, κ)
, t (Y , ρ, T) = S(T, κ)√

R(T, κ)
.

Hence,

T(ρ̂h − ρh) =
1
T

∑T
t=1 xt−1ut − 1√

T
∑T

t=1 ut 1
T3/2

∑T
t=1 xt−1

1
T2

∑T
t=1 x2

t−1 −
(

1
T3/2

∑T
t=1 xt−1

)2 .

(A.2)
Letting ςh(·) = − ln(·)/h, we have

κ̂h − κ = ςh(ρ̂h) − ςh(ρh) = ς ′
h(ρ̃h)(ρ̂h − ρh),

where ρ̃h(κ) is a value between ρ̂h and ρh. Therefore, we can write

T
ς ′

h(ρh(κ))
(̂κh − κ) =

(
1 + ς ′

h(ρ̃h) − ς ′
h(ρh)

ς ′
h(ρh)

)
T(ρ̂h − ρh). (A.3)

Given T = N/h and N (̂κ − κ) = z (Y , κ , h), Equation (A.3) implies

z (Y , κ , h) = ξh(κ)z (Y , ρ, T) , (A.4)

where ξh(κ) = hς ′
h(ρh)

(
1 + ς ′

h(ρ̃h)−ς ′
h(ρh)

ς ′
h(ρh)

)
.

Since κ̂h = − ln(ρ̂h)
h , applying the generalized Delta

method and using the relationship in Equation (A.4), Th =
N,

(
1 + ς ′

h(ρ̃h)−ς ′
h(ρh)

ς ′
h(ρh)

)
→p 1, hς ′

h(ρ̃h) →p −1, and ξh(κ) →p −1,

we obtain z (Y , κ , h) ⇒ −ϒ3−ϒ2W(1)

ϒ1−ϒ2
2

. This completes the proof of
Lemma 3.1.

For t (Y , ρ, T), we have

t (Y , ρ, T) =
∑T

t=1 yt−1εt − 1
T

∑T
t=1 yt−1

1
T

∑T
t=1 εt√

σ̂ 2
(∑T

t=1 y2
t−1 − 1

T

(∑T
t=1 yt−1

)2
) (A.5)

= σψλh

σ̂c
√

h

⎡⎢⎢⎣ 1
T

∑T
t=1 xt−1ut − 1

T3/2
∑T

t=1 xt−1
1√
T

∑T
t=1 ut√

1
T2

∑T
t=1 x2

t−1 −
(

1
T3/2

∑T
t=1 xt−1

)2

⎤⎥⎥⎦ ,

where σ̂c = 1
Tλ2

h

∑T
t=1

(
yt − ĝh − ρ̂hyt−1

)2. Note that λh/h → 1. By

Lemma 9.1 in the online supplement, we have σψλh
σ̂c

√
h

→p 1. Applying
the results in Equation (A.1), we can obtain the limit of t (Y , ρ, T).

To obtain the limit of t(Y , κ , h), similar to Equation (A.4), we have

t (Y , κ , h) = ξh(κ)t (Y , ρ, T) . (A.6)

Since ξh(κ) →p −1, we have t (Y , κ , h) = −t (Y , ρ, T) + op(1) under
the in-fill scheme, giving the result in Remark 4.1.

Proof of Lemma 3.2

Proof. Note that μ̂∗ = ĝh
1−ρ̂h

and

ĝh
1 − ρ̂h

= Tĝh
T

[
1 − ρh + (

ρh − ρ̂h
)] . (A.7)

For the denominator in Equation (A.7), applying Equations (A.1) and
(A.2) in the main article, as h → 0, we have

T
[
1 − ρh + (

ρh − ρ̂h
)] = T(1 − exp(c/T)) + T

(
ρh − ρ̂h

)
= −c + Op(1). (A.8)

For the numerator in Equation (A.7), letting ̂̆gh = ĝh/
(
σψλh

)
and

ğh = gh/
(
σψλh

)
, we have

Tĝh = Tσψλh
(̂

ğh − ğh + ğh
)

= Tgh + Tσψλh
(̂

ğh − ğh
)

= Tμ

1 − ρh(κ)
+ σψλhOp(T1/2)

= −T2μ
c

+ o(1) + σψ Op(N1/2) = Op(T2). (A.9)

Equations (A.7)–(A.9) give the result in Lemma 3.2 and the proof is
completed.

Proof of Theorem 4.1

Proof. First, let us define (S(T, κ), R(T, κ)) and (S∗(T, κ), R∗(T, κ)) as

S(T, κ) = 1
T

⎛⎝ 1
σ̂ 2

T∑
t=1

yt−1εt − 1
σ̂T

T∑
t=1

yt−1
1
σ̂

T∑
t=1

εt

⎞⎠ ,

R(T, κ) = 1
T2

⎛⎜⎝ 1
σ̂ 2

T∑
t=1

y2
t−1 −

⎛⎝ 1
σ̂T

T∑
t=1

yt−1

⎞⎠2
⎞⎟⎠ ,
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S∗(T, κ) = 1
T

⎛⎝ 1
σ̂ 2

T∑
t=1

y∗
t−1ε

∗
t − 1

σ̂T

T∑
t=1

y∗
t−1

1
σ̂

T∑
t=1

ε∗
t

⎞⎠ ,

R∗(T, κ) = 1
T2

⎛⎜⎝ 1
σ̂ 2

T∑
t=1

y∗2
t−1 −

⎛⎝ 1
σ̂T

T∑
t=1

y∗
t−1

⎞⎠2
⎞⎟⎠ .

Note that as in Equation (A.4), we can also express

z (Y , κ , h) = ξh(κ)
S(T, κ)

R(T, κ)
, z

(
Y∗, κ , h

) = ξ∗
h (κ)

S∗(T, κ)

R∗(T, κ)
, (A.10)

where ξh(κ) = hς ′
h(ρh)

(
1 + ς ′

h(ρ̃h)−ς ′
h(ρh)

ς ′
h(ρh)

)
and ξ∗

h (κ) =

hς ′
h
(
ρh

) (
1 + ς ′

h
(
ρ̃∗

h
)−ς ′

h(ρh)

ς ′
h(ρh)

)
.

We are now in the position to show

sup
κ∈K

Pr{|z (Y , κ , h) − z
(
Y∗, κ , h

) | > ε} → 0. (A.11)

Note that for any κ ∈ K,

sup
κ∈K

Pr
{∣∣∣∣ S(T, κ)

R(T, κ)
− S∗(T, κ)

R∗(T, κ)

∣∣∣∣ > 2ε

}
≤ sup

κ∈K
Pr

{
C

∣∣S(T, κ) − S∗(T, κ)
∣∣ >

ε

2

}
+ sup

κ∈K
Pr

{
C

∣∣R(T, κ) − R∗(T, κ)
∣∣ >

ε

2

}
→ 0,

where the convergence can be established using items 5 to 8 of Lemma
9.4 in the online supplement. We can express

sup
κ∈K

Pr
{|z (Y , κ , h) − z

(
Y∗, κ , h

) | > ε
}

(A.12)

= sup
κ∈K

Pr
{∣∣∣∣ξh(κ)

S(T, κ)

R(T, κ)
− ξ∗

h (κ)
S∗(T, κ)

R∗(T, κ)

∣∣∣∣ > ε

}
.

For all value of κ ∈ K, we have

ς ′
h
(
ρ̂h

) − ς ′
h
(
ρh

)
ς ′

h
(
ρh

) = −
1

hρh
− 1

hρ̂h
1

hρh

= ρh − ρ̂h
ρ̂h

→p 0, (A.13)

ς ′
h(ρh)h = − h

hρh
→ −1. (A.14)

Combing (A.12), (A.13) and (A.14), we obtain

sup
κ∈K

Pr
{|z (Y , κ , h) − z

(
Y∗, κ , h

) | > ε
}

= sup
κ∈K

Pr
{
(1 + op(1))

∣∣∣∣ S(T, κ)

R(T, κ)
− S∗(T, κ)

R∗(T, κ)

∣∣∣∣ > ε

}
→ 0,

This proves Equation (A.11).
We now proceed to show that z

(
Y∗, κ , h

)
has a uniformly continu-

ous probability distribution in the sense that as ε → 0,

sup
κ∈K

sup
x

Pr ∗ {
x − ε < z

(
Y∗, κ , h

)
< x + ε

} → 0, P − a.s. (A.15)

For κ ∈ K, let
{

x∗
t
}

be a bootstrap sample generated from

x∗
t = ρhx∗

t−1 + ğh + ut , (A.16)

where x∗
t = y∗

t /(σψλh) and ğh = g̃h/(σψλh). Let

x̃∗
t = ρhx̃∗

t−1 + ğh + zt , zt
iid∼ N(0, 1). (A.17)

Let ρ̂∗
h and ρ̂

∗,z
h be the LS estimator of ρh in model (A.16) and model

(A.17), respectively. Using Equation (A.17) and following the similar
steps that proves Lemma 9.4 in the online supplement, we can show

T
(
ρ̂∗

h − ρh
) = T

(
ρ̂

∗,z
h − ρh

)
+ oa.s.(1).

Moreover, for model (A.17), Bao, Ullah, and Wang (2017) derived
the exact cumulative distribution function of ρ̂

∗,z
h − ρh , that is

uniformly continuous. Hence, T
(
ρ̂∗

h (κ) − ρh(κ)
)

is asymptotically
uniformly continuous for any κ ∈ K.

Equations (A.15) and (A.11) imply that as T → 0, we have

sup
κ∈K

sup
x

∣∣Pr{z (Y , κ , h) < x|κ} − Pr ∗{z
(
Y∗, κ , h

)
< x|Y , κ}∣∣

→ 0, P − a.s.

The proof of the first part of Theorem 4.1 is completed.
To prove the second part of Theorem 4.1, following notations

of Mikusheva (2007) by letting FT,κ (x) = Pr{z(Y , κ , h) < x|κ),
GT,κ (x) = Pr ∗{z(Y∗, κ , h) < x|κ , Y}, qG

x (h, κ) be the xth quantile
of GT,κ (x), we have

Pr{κ0 ∈ CI∗q} = FT,κ
(

qG
(1+q)/2(h, κ)

)
− FT,κ (qG

(1−q)/2(h, κ))

= FT,κ
(

qG
(1+q)/2(h, κ)

)
− GT,κ

(
qG
(1+q)/2(h, κ)

)
−FT,κ (qG

(1−q)/2(h, κ)) + GT,κ (qG
(1−q)/2(h, κ))

+GT,κ
(

qG
(1+q)/2(h, κ)

)
− GT,κ (qG

(1−q)/2(h, κ))

= (
1 + q

)
/2 − (1 − q)/2

+
[
FT,κ

(
qG
(1+q)/2(h, κ)

)
−GT,κ

(
qG
(1+q)/2(h, κ)

)]
+
[
GT,κ (qG

(1−q)/2(h, κ)) − FT,κ (qG
(1−q)/2(h, κ))

]
= q +

[
FT,κ

(
qG
(1+q)/2(h, κ)

)
−GT,κ

(
qG
(1+q)/2(h, κ)

)]
+
[
GT,κ (qG

(1−q)/2(h, κ))−FT,κ (qG
(1−q)/2(h, κ))

]
.

Moreover, we can express

lim
h→0

sup
κ∈K

Pr{κ0 ∈ CI∗q}

= q + lim
h→0

sup
κ∈K

[
FT,κ

(
qG
(1+q)/2(h, κ)

)
−GT,κ

(
qG
(1+q)/2(h, κ)

)]
+ lim

h→0
sup
κ∈K

[
GT,κ (qG

(1−q)/2(h, κ)) − FT,κ (qG
(1−q)/2(h, κ))

]
≤ q + 2 lim

h→0
sup
κ∈K

sup
x

|FT,κ (x) − GT,κ (x) | = q,

where the last equality is from Equation (17). Note that

Pr{κ0 ∈ CI∗q} = q −
[

GT,κ
(

qG
(1+q)/2(h, κ)

)
−FT,κ

(
qG
(1+q)/2(h, κ)

)]
−

[
FT,κ (qG

(1−q)/2(h, κ)) − GT,κ (qG
(1−q)/2(h, κ))

]
≥ q − 2 sup

x
|FT,κ (x) − GT,κ (x) |.

Hence, we have

lim
h→0

inf
κ∈K

Pr{κ0 ∈ CI∗q} ≥ q − 2

lim
h→0

sup
κ∈K

sup
x

|FT,κ (x) − GT,κ (x) | = q,
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q ≥ lim
h→0

sup
κ∈K

Pr{κ0 ∈ CI∗q} ≥ lim
h→0

inf
κ∈K

Pr{κ0 ∈ CI∗q} ≥ q.

This completes the proof of Theorem 4.1.

Proof of Lemma 4.1

Proof. To prove Lemma 4.1, we only need to find an example where the
coverage probability is incorrect asymptotically. To simplify notations
in various limits and without loss of generality, assume μ∗ = 0.
We first study the limits of 1

σ̂T
∑T

t=1 y∗
t−1ε

∗
t , 1

σ̂ 2T2
∑T

t=1 y∗2
t−1, and

1
σ̂T3/2

∑T
t=1 y∗

t−1 when y∗
0 is set to 0. From Equation (A.1) and Lemma

9.1, Lemma 9.4.1 of the online supplement, when y∗
0 = 0, we have,

1
σ̂ 2T2

T∑
t=1

y∗2
t−1 ⇒ ϒ∗

1 ,

1
σ̂T3/2

T∑
t=1

y∗
t−1 ⇒ ϒ∗

2 ,

1
σ̂T

T∑
t=1

y∗
t−1ε

∗
t ⇒ ϒ∗

3 ,

where

ϒ∗
1 =

∫ 1

0
J2
c (r)dr, ϒ∗

2 =
∫ 1

0
Jc(r)dr, ϒ∗

3 =
∫ 1

0
Jc(r)dW(r).

We can re-express ϒ∗
1 , ϒ∗

2 and ϒ∗
3 as

ϒ∗
1

d= ϒ1 − 2γ0

∫ 1

0
exp(rc)Jc(r)dr − γ 2

0
exp(2c) − 1

2c
,

ϒ∗
2

d= ϒ2 − γ0
exp(c) − 1

c
, ϒ∗

3
d= ϒ3 − γ0

∫ 1

0
exp(rc)dW(r),

where ϒ1, ϒ2 and ϒ3 are defined in Equation (12) with b = 0 since
μ∗ = 0. Note that ϒ1, ϒ2 and ϒ3 all depend on the initial condition y0
via γ0. The coefficient-based statistics of the bootstrap sample has the
following limit:

z(Y∗, κ , h) ⇒ −ϒ∗
3 − ϒ∗

2 W(1)

ϒ∗
1 − ϒ∗2

2
d= − ϒ3 − ϒ2 + E1,γ0

ϒ1 − ϒ2
2 + E2,γ0

:= z0(κ , θ), (A.18)

where θ = (0, σψ), and

E1,γ0 = γ0
exp(c) − 1

c

∫ 1

0
dW(r) − γ0

∫ 1

0
exp(rc)dW(r),

E2,γ0 = 2ϒ2γ0
exp(c) − 1

c
− 2γ0

∫ 1

0
exp(rc)Jc(r)dr

−γ 2
0

exp(2c) − 1
2c

−
(

γ0
exp(c) − 1

c

)2
.

Equation (A.18) allows us to write

z0(κ , θ) = − ϒ3 − ϒ2
ϒ1 − ϒ2

2
+ E3,γ0 = zy0(κ , θ) + E3,γ0 ,

where E3,γ0 = − E1,γ0
(
ϒ1−ϒ2

2
)−(ϒ3−ϒ2)E2,γ0(

ϒ1−ϒ2
2
)
(ϒ1−ϒ2

2 +E2,γ0 )
�= 0 almost surely when

y0 �= 0.
When y0 �= 0, Pr(z0(κ , θ) ≤ x|κ) �= Pr(zy0(κ , θ) ≤ x|κ). Hence,

we have

GT,κ (x) = FT,κ (x) + (
GT,κ (x) − FT,κ (x)

) →p F∞,κ (x) + Eγ0 ,

where GT,κ (x) = Pr ∗{z
(
Y∗, κ , h

)
< x|Y , κ}, FT,κ (x) =

Pr(z(Y , κ , h) ≤ x|κ), F∞,κ (x) = Pr(zy0(κ , θ) ≤ x|κ), Eγ0 =
G∞,κ (x) − F∞,κ (x) and G∞,κ (x) = Pr(z0(κ , θ) ≤ x|κ). The BCI
from the bootstrap sample that is initialized at y∗

0 = 0 is

CI∗q = {κ ∈ R : qG
x1(h, κ) ≤ z(Y , κ , h) ≤ qG

x2(h, κ)}
= {κ ∈ R : GT,κ

(
qG

x1(h, κ
)

≤ GT,κ (z(Y , κ , h))

≤ GT,κ (qG
x2(h, κ))

= {κ ∈ R : x1 ≤ GT,κ (z(Y , κ , h)) ≤ x2}. (A.19)

Note that GT,κ (x) →p G∞,κ (y) = Pr(z0(κ , θ) ≤ y|κ), FT,κ (x) →
F∞,κ (y) = Pr(zy0(κ , θ) ≤ y). Hence,

Pr(G∞,κ (y) ≤ x) = Pr(F∞,κ (y) + Eγ0 ≤ x)

= Pr(F∞,κ (y) ≤ x − Eγ0)

= Pr(y ≤ F−1∞,κ (x − Eγ0))

= F∞,κ
(

F−1∞,κ (x − Eγ0)
)

= x − Eγ0 .

If Eγ0 = 0, G∞,κ (y) is an U[0, 1] random variable as Pr(G∞,κ (y) ≤
x) = x. In this case, the coverage probability of CI∗q would go to x2 −
x1 = q. However, if Eγ0 �= 0, for any x1 < Eγ0, Pr(G∞,κ (y) ≤ x1) = 0.
In this case, we have

Pr(x1 ≤ G∞,κ (y) ≤ x2) = Pr(G∞,κ (y) ≤ x2)

= x2 − Eγ0 < x2 − x1.

This gives an example where the coverage is not well controlled in the
limit and hence, proves Lemma 4.1.

Proof of Theorem 4.2 and Remark 4.6

Proof. To show the probabilistic expansion, we rewrite z (Y , ρ, T) by
applying Lemma 9.7 in the online supplement:

z (Y , ρ, T) =
1
T

∑T
t=1 xt−1ut − 1

T3/2
∑T

t=1 xt−1 1√
T

∑T
t=1 ut

1
T2

∑T
t=1 x2

t−1 −
(

1
T3/2

∑T
t=1 xt−1

)2

= A1/B1 (A.20)

where

A1 = ϒ3 − ϒ2W(1) + 1
T1/4 (R3,T−1/4 − M(V)ϒ2)

+ 1
T1/2

(
R3,T−1/2 − N(V)ϒ2 − R2,T−1/2 W(1)

)
− 1

T3/4 R2,T−1/2 M(V) − 1
T

R2,T−1/2 N(V) + op(T−1/2),

B1 = ϒ1 − ϒ2
2 + 1

T1/2 (R1,T−1/2 − 2R2,T−1/2)

− 1
T

R2,T−1/2 + op(T−1/2).

Expanding z (Y , ρ, T) around its in-fill asymptotic distribution, we
obtain

z (Y , ρ, T) = ϒ3 − ϒ2W(1)

ϒ1 − ϒ2
2

+ 1
T1/4

R3,T−1/4 − M(V)ϒ2

ϒ1 − ϒ2
2

+ 1
T1/2

⎛⎜⎝ R3,T−1/2 −N(V)ϒ2−R2,T−1/2 W(1)

ϒ1−ϒ2
2

−ϒ3−ϒ2W(1)

(ϒ1−ϒ2
2 )2

(
R1,T−1/2 − 2R2,T−1/2

)
⎞⎟⎠
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+ op
(

T−1/2
)

= zy0 (ρ, θ) + T−1/4Ã + T−1/2B̃ + op(T−1/2),

where

Ã = R3,T−1/4 − M(V)ϒ2

ϒ1 − ϒ2
2

,

B̃ = R3,T−1/2 − N(V)ϒ2 − R2,T−1/2 W(1)

ϒ1 − ϒ2
2

−ϒ3 − ϒ2W(1)

(ϒ1 − ϒ2
2 )2

(
R1,T−1/2 − 2R2,T−1/2

)
.

The expansion of z (Y , κ , h) can be obtained from Equation (A.4). With
ξh(κ) →p −1, we can show

z (Y , κ , h) = ξh(κ)
(

zy0 (ρ, θ)+T−1/4Ã+T−1/2B̃+op(T−1/2)
)

= zy0 (κ , θ) + T−1/4A + T−1/2B + op(T−1/2),

where A = −Ã and B = −B̃.
Finally, for the last claim in Theorem 4.2, following Theorem 3

in Mikusheva (2015), we can easily show that the difference between
z
(
Y∗, κ , h

)
and z (Y , κ , h) is op(T−1/2). This completes the proof of

Theorem 4.2.
For Remark 4.6, from Equation (A.5) note that

t (Y , ρ, T)

= σψλh
σ̂c

√
h

⎡⎢⎢⎣
1
T

∑T
t=1 xt−1ut − 1

T3/2
∑T

t=1 xt−1 1√
T

∑T
t=1 ut√

1
T2

∑T
t=1 x2

t−1 −
(

1
T3/2

∑T
t=1 xt−1

)2

⎤⎥⎥⎦
= (

1 + op(1)
) A1

C1
,

where C1 =
√

ϒ1 − ϒ2
2 + 1

T1/2 (R1,T−1/2 − 2R2,T−1/2 ) − 1
T R2,T−1/2

+op(T−1/2). Expanding t (Y , ρ, T) around its in-fill asymptotic

distribution, we obtain

t (Y , ρ, T) = ϒ3 − ϒ2W(1)√
ϒ1 − ϒ2

2

+ 1
T1/4

R3,T−1/4 − M(V)ϒ2√
ϒ1 − ϒ2

2

+ 1
T1/2

⎛⎜⎝
R3,T−1/2 −N(V)ϒ2−R2,T−1/2 W(1)√

ϒ1−ϒ2
2

− 1
2

ϒ3−ϒ2W(1)

(ϒ1−ϒ2
2 )2/3

(
R1,T−1/2 − 2R2,T−1/2

)
⎞⎟⎠

+op
(

T−1/2
)

.

From Equation (A.6) and ξh(κ) →p −1, we have

t (Y , κ , h) = ty0 (κ , θ) + T−1/4C + T−1/2D + op(T−1/2),

where

C = −R3,T−1/4 − M(V)ϒ2√
ϒ1 − ϒ2

2

,

D = −R3,T−1/2 − N(V)ϒ2 − R2,T−1/2 W(1)√
ϒ1 − ϒ2

2

+ 1
2

ϒ3 − ϒ2W(1)

(ϒ1 − ϒ2
2 )2/3

(
R1,T−1/2 − 2R2,T−1/2

)
.

This completes the proof of Remark 4.6.
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