
Fractional Gaussian Noise: Spectral Density
and Estimation Methods

Shuping Shi∗
Macquarie University

Jun Yu
Singapore Management University

Chen Zhang
Singapore Management University

January 18, 2023

Abstract
The fractional Brownian motion (fBm) process is a continuous-time Gaussian

process with its increment being the fractional Gaussian noise (fGn). The dynam-
ics of fBm and fGn are governed by a fractional parameter H ∈ (0, 1). This paper
first derives an analytical expression for the spectral density of fGn and investi-
gates the accuracy of various approximation methods for it. We then conduct an
extensive Monte Carlo study comparing the finite sample performance and compu-
tational cost of alternative estimation methods for H in fGn. These methods include
two semiparametric methods, the time-domain maximum likelihood (ML) method,
the Whittle ML method, and the change-of-frequency method. We implement two
versions of the Whittle method, based on the derived analytical expression and Pax-
son’s approximation for the spectral density, respectively. Special attention is paid
to highly anti-persistent processes with H close to zero, which are of empirical rele-
vance to financial volatility modelling. Considering the trade-off between statistical
and computational efficiency, we recommend using either the Whittle ML method
based on Paxson’s approximation or the time-domain ML method. We model the log
realized volatility dynamics of 40 financial assets in the US market from 2012 to 2019
with fBm. Although all estimation methods suggest rough volatility, the implied
degree of roughness varies substantially with the estimation methods, highlighting
the importance of understanding the finite sample performance of various estimation
methods.
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1 Introduction

The fractional Brownian motion (fBm) is a continuous-time Gaussian process that gener-

alises the standard Brownian motion. This process was shown useful in characterising the

empirical feature discovered by Hurst (1951) in over 75 different geophysical phenomena

(later known as long memory) in the 1960s (Mandelbrot, 1965; Mandelbrot and Van Ness,

1968). It has since enjoyed widespread empirical applications across many fields, including

hydrologic sciences, earth science, data network traffic, economics, and finance. See Molz

et al. (1997); Korvin (1992); Park and Willinger (2000); Graves et al. (2017) for reviews.

The fBm process is governed by a self-similar parameter H, also known as the fractional

parameter or the Hurst exponent, ranging between zero and one (non-inclusive). It captures

qualitatively different behaviour with different values of H. The standard Brownian motion

corresponds to the case of H = 0.5. The increment of fBm is the fractional Gaussian noise

(fGn), with its autocorrelation function decaying at a hyperbolical rate. Figure 1 shows

different traces of fGn. The long-run variance of fGn is not summable when H > 0.5 and

the time series is said to have a long memory, whereas when H < 0.5 the long-run variance

is zero and the time series is anti-persistent or rough. The long memory fGn process

behaves like a long-term trend, whereas the rough fGn generates short-term reversal. In

the continuous-time literature, the fGn process is often embedded in a general continuous-

time specification such as the fractional Ornstein-Uhlenbeck (fOU) process (Comte, 1996;

Comte and Renault, 1996).

In economics and finance, another popular process for capturing the long memory or

anti-persistent feature of empirical data is the fractionally integrated noise (fIn), governed

by the memory parameter d. The two processes share similar empirical features. Geweke

and Porter-Hudak (1983) show that the ratio between the spectral densities of fGn and

fIn is uniformly bounded in the spectral frequency when H = d + 0.5. The fIn process is

most often seen embedded in a stationary autoregressive moving average model, leading

to an autoregressive fractionally integrated moving average (ARFIMA) model (Granger,
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1980; Granger and Joyeux, 1980; Hosking, 1981).1 The discrete-time ARFIMA model is

empirically more popular than the fBm-based continuous-time processes due to its simple

expression for the spectral density and the fact that we only have discrete observations in

practice. See Graves et al. (2017) for an interesting survey that compares the two classes

of models and their history.

Figure 1: Typical sample path of fGn

(a) H = 0.1 (b) H = 0.5 (c) H = 0.9

Nevertheless, in recent years, fGn-based continuous-time models have received much

attention in mathematical finance, financial engineering, and financial econometrics. In a

seminar paper by Gatheral et al. (2018), the log volatility surface is found to be well fitted

by a rough fBm process (i.e., H ≈ 0.14). Several other studies fit the fBm or fOU models

to actual realized volatility data and find that volatility is rough (i.e., H < 0.5) (Wang

et al., 2021; Fukasawa et al., 2022; Bolko et al., 2022; Wang et al., 2022). Moreover, the

rough fGn-based models are shown to provide better out-of-sample forecasting results for

volatility than some popular discrete-time models such as the HAR model of Corsi (2009).

See Gatheral et al. (2018) and Wang et al. (2021). The rough fGn-based models have

found a wide range of financial applications, including in option pricing (Livieri et al., 2018;

Bayer et al., 2016; Garnier and Sølna, 2018), variance swaps (Bayer et al., 2016), portfolio

choice (Fouque and Hu, 2018), and dynamic hedging (El Euch et al., 2018). The Rough
1Tanaka (2013) and Wang and Yu (2022) show that the ARFIMA process converges weakly to fOU

(or fBm) when the autoregressive coefficient is local-to-unity (or unity) and the number of discrete-time
observations goes to infinity. Despite their asymptotic similarity, these two classes of processes might
perform differently in finite samples.
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Volatility website contains more than 200 papers in this rapidly growing literature.2 Many

applications rely critically on the mathematical tractability in the adopted continuous-time

framework.

This paper investigates the finite sample performance of several alternative estima-

tion methods for H in fGn (the increment of fBm) from discrete observations. Unlike

the memory parameter d in ARFIMA models where finite sample performance of vari-

ous estimation methods is well understood,3 a comprehensive study comparing the finite

sample performance of estimation approaches for H, especially when H takes values in

the interval (0, 0.3), is yet to be conducted. The estimation methods considered include

the log periodogram regression method (Geweke and Porter-Hudak, 1983, GPH), the local

Whittle (LW) method (Robinson, 1995a; Künsch, 1987), the time-domain maximum likeli-

hood (TDML) method, the Whittle (frequency domain) maximum likelihood (ML) method

(Whittle, 1953, 1954), and the change-of-frequency method (Brouste et al., 2020, CoF).

The two semiparametric methods (GPH and LW) are most often employed to estimate

d in ARFIMA and rely on a theoretical feature of its spectral density at the local-to-zero

frequency. Since fGn shares a similar feature with fIn, the semiparametric methods can

be readily applied to fGn. The log likelihood of TDML involves the determinant and

the inverse of the variance-covariance matrix, which can be computationally intensive.

Haslett and Raftery (1989, HR hereafter) proposed a recursive approach to calculate the

log likelihood function of TDML for the ARFIMA model which is shown to improve the

computational speed considerably. We employ this approach to compute the log likelihood

of TDML for fGn. The estimation method is referred to as TDML-HR. Since the HR log

likelihood for fGn is exact, the estimation results of TDML and TDML-HR are identical.

However, they are substantially different in computational speed. The implementation

of the Whittle ML method requires the spectral density. The spectral density of fGn

involves an infinite sum that converges extremely slowly when H is close to zero and brings

challenges to the computation. We consider two versions of the Whittle ML method. The
2See https://sites.google.com/site/roughvol for a selective list of papers in this growing literature.
3See Shi and Yu (2022) for a recent study on the topic.
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first version is based on the analytical expression for the spectral density that we derive in

this paper, referred to as the exact Whittle ML (EWML) method. The second version is

based on Paxson’s approximation of the spectral density as in Fukasawa and Takabatake

(2019a), referred to as the approximate Whittle ML (AWML) method. Special attention

is paid to a highly rough fGn with H close to 0.

Simulation results lead to several interesting findings. First, in terms of root mean

square errors (RMSE), the three ML methods (TDML, EWML, AWML) significantly out-

perform CoF and the two semiparametric methods, whereas CoF is found superior to

the two semiparametric methods. Second, AWML provides almost identical estimates to

EWML. Third, TDML is more efficient than the two Whittle ML methods when H is close

to zero and performs similarly to the Whittle methods when H is larger. Fourth, among

the three ML methods, AWML is computationally most efficient and EWML is compu-

tationally least efficient. Specifically, the computation time of EWML, and TDML-HR

is about 3722 and 2.87 times of that of AWML, respectively. In light of the statistical

and computational efficiency, we recommend using either TDML-HR or AWML for the

estimation of H in fGn.

In the empirical application, we model the log volatility dynamics of ten exchange-

traded funds (ETF), including the S&P 500 index ETF and nine industry index ETFs, and

30 Dow Jones stocks with fBm. The estimated self-similar parameters from the TDML,

EWML and AWML methods are very close to each other. The volatility of the S&P 500

market index ETF is found to be the smoothest with H around 0.22, while the volatility

of industry ETFs and individual stocks are found to be rougher with a lower bound of 0.1.

The estimated coefficients from CoF are higher than those of the ML methods, whereas

estimates from the semiparametric are significantly lower. All estimation methods suggest

a rough dynamic for all financial assets with H < 0.5.

The rest of the paper is organised as follows. Section 2 presents the model specification

and its spectral density. Section 3 discusses various estimation methods for H. Simula-

tion results are detailed in Section 4. Section 5 presents the empirical results. Section 6
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concludes. The appendix contains an additional table for the empirical application.

2 Fractional Brownian Motion

Let B (t) be the standard Brownian motion. The fractional Brownian motion process,

denoted by BH (t), is a moving average of past dB (t), which takes the form of

BH(t) =
1

Γ(H + 0.5)

{∫ 0

−∞

[
(t− s)H−0.5 − (−s)H−0.5

]
dB(s) +

∫ t

0

(t− s)H−0.5 dB(s)

}
.

See Mandelbrot and Van Ness (1968).4 It is self-similar in the sense that BH(ct) =

cH−0.5BH(t) with c being an arbitrary constant. In other words, the properties of fBm

are preserved with respect to scaling in time. The fBm process reduces to the standard

Brownian motion when H = 0.5.

The fBm process is Gaussian with mean zero and covariance

Cov
(
BH(t), BH(s)

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, ∀t, s. (1)

The increment of fBm is fGn and denoted by yt. Using discrete time notations, we have

yt = σ
(
BH(t)−BH(t− 1)

)
and BH(t) = BH(t− 1) +

1

σ
yt.

The process BH(t) can be viewed as a unit root process with an fGn error. The autoco-

variance of yt is, ∀k ≥ 0,

Cov (yt, yt+k) =
σ2

2

[
(k + 1)2H + (k − 1)2H − 2k2H

]
, (2)

∼ σ2H(2H − 1)k2H−2 for large k,

where the approximation is based on the Taylor expansion. When H ∈ (0.5, 1), the auto-
4This is also referred to as the Type I fBm. When s is restricted to be between 0 and t (inclusive), it

becomes a Type II fBm. See, for example, Comte and Renault (1996).
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covariances of fGn are not absolutely summable and fGn has a long memory. When H ∈

(0, 0.5), it is easy to verify that ∀k ̸= 0, Cov (yt, yt+k) < 0 and
∑∞

k=−∞Cov (yt, yt+k) = 0.

Under this setting, fGn is anti-persistent and the corresponding fBm is rough.

Let λ be the spectral frequency. The spectral density of fGn is given by Sinai (1976)

and takes the form of

f(λ) = 2CH(1− cos(λ))
∞∑

k=−∞

|2πk + λ|−1−2H (3)

for λ ∈ (0, π], where CH = σ2 (2π)−1 Γ(2H + 1) sin(πH). Note that the spectral density

involves an infinite summation, which makes the computation of the spectral density chal-

lenging. Computing the spectral density is, however, essential for the implementation of

Whittle ML methods. In the next few subsections, we consider various computational meth-

ods for the spectral density, including an analytical expression and three approximation

methods.

Analytical Expression

We provide an analytical expression for f (λ).5 Let ζ (s, q) :=
∞∑
j=0

(j + q)−s be Riemann’s

general zeta or Hurwitz’s zeta function. The infinite sum in the spectral density of fGn can

be unfolded and expressed using the Hurwitz zeta function as the following:

∞∑
j=−∞

|2πj + λ|−1−2H =
−1∑

j=−∞

|2πj + λ|−1−2H +
∞∑
j=0

|2πj + λ|−1−2H

= (2π)−1−2H

(
∞∑
j=1

∣∣∣∣j − λ

2π

∣∣∣∣−1−2H

+
∞∑
j=0

∣∣∣∣j + λ

2π

∣∣∣∣−1−2H
)

= (2π)−1−2H

(
∞∑
j=0

∣∣∣∣j + 1− λ

2π

∣∣∣∣−1−2H

+
∞∑
j=0

∣∣∣∣j + λ

2π

∣∣∣∣−1−2H
)

= (2π)−1−2H

[
ζ

(
1 + 2H, 1− λ

2π

)
+ ζ

(
1 + 2H,

λ

2π

)]
. (4)

5According to Fukasawa and Takabatake (2019b), no closed-form expression for the spectral density of
fGn is known so far.
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By replacing the infinite sum in (3) with the expression in (4), we obtain the analytical

expression which is displayed in Theorem 2.1 below.6

Theorem 2.1 The spectral density of fGn is given by

f(λ) = 2CH(1− cos(λ)) (2π)−1−2H

[
ζ

(
1 + 2H, 1− λ

2π

)
+ ζ

(
1 + 2H,

λ

2π

)]
, (5)

where CH = σ2 (2π)−1 Γ(2H + 1) sin(πH) and ζ (s, q) =
∑∞

j=0(j + q)−s is the Hurwitz zeta

function.

The in-built function hurwitzZeta in MATLAB can be employed to compute ζ (s, q).

But unfortunately, the computational speed of ζ (s, q) and hence f(λ) is quite slow which

might hamper the widespread applications of the Whittle ML method. Therefore, we search

for suitable approximation methods next. The analytical expression (5) is, however, crucial

for evaluating the accuracy of various approximation methods.

Truncation Method

It is natural to approximate the infinite sum
∑∞

k=−∞ in (3) by
∑K

k=−K , with K being

the upper bound of the sum. We refer to it as the truncation method. The choice of K

depends on the convergence rate of the summand; the slower the convergence, the larger

K is required to ensure approximation accuracy. When H is close to zero, the summand

|2πk + λ|−1−2H is almost divergent and an extremely large K is needed. The calculation of

the summation and hence the spectral density of fGn under this setting using the truncation

method will be computationally costly. If K is not large enough, the computed spectral

density might be far from its actual value.

As an illustration, we plot in Figure 2 the true value of f(λ) computed from the ana-

lytical expression (5) and the approximated spectral density using the truncation method

with K = 2000, 5000, 20000 for λ ∈ (0, π]. We set H = 0.1, 0.2, 0.3, 0.7, 0.8, 0.9. It is clear
6We follow the traditional wisdom that special functions and cumulative density functions of well-known

distributions are regarded as analytical expressions since these functions can be computed up to machine
precision and vector operations are possible using standard software.
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Figure 2: The truncation-based approximation to f(λ) with K = 2000, 5000, 20000 for
λ ∈ (0, π].

that when H = 0.1 all truncation numbers considered cannot lead to a well approximated

spectral density. The approximation gets poorer when H moves closer to zero and the

spectral frequency λ is higher. Given the empirical relevance of small H values in fGn for

log volatility modelling (Gatheral et al., 2018; Fukasawa and Takabatake, 2019a), the large

approximation errors are expected to have important implications for estimation methods

that rely on the global approximation to f(λ) such as the Whittle ML method.

Paxson’s Approximation Method

In light of the difficulty described above for the truncation method, we consider an alter-

native approximation method. The spectral density of fGn can be rewritten as

f(λ) = 2CH(1− cos(λ))

(
|λ|−γH +

∞∑
j=1

b(j, λ)

)
,
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where γH = 2H+1 and b(j, λ) = (2πj+λ)−γH +(2πj−λ)−γH . The Paxson approximation

of the spectral density (Paxson, 1997; Fukasawa and Takabatake, 2019a) is

f(λ) ≈ 2CH(1− cos(λ))

{
|λ|−γH +

K∑
j=1

b(j, λ) +
1

2
[a(K,λ) + a(K + 1, λ)]

}
, (6)

where K is a pre-specified integer and

a(k, λ) =
1

4πH

[
(2πk + λ)1−γH + (2πk − λ)1−γH

]
.

Like the truncation method, the infinite summation
∑∞

j=1 b(j, λ) is replaced with a trun-

cated quantity
∑K

j=1 b(j, λ). The Paxson approximation, however, has an additional term,
1
2
[a(K,λ) + a(K + 1, λ)], which is expected to reduce the approximation error.

Figure 3: Paxson’s approximation of the spectral density

Figure 3 displays the approximated spectral density (Paxson) with K = 50, 200, 1000

and the analytical values of f(λ) when H = 0.1, 0.2, 0.3, 0.7, 0.8, 0.9 and λ ∈ (0, π]. Figure

4 shows the ratios of the true spectral density f(λ) to the approximated ones. Evidently,

Paxson’s approximation is much more accurate than the truncation-based approximation

(see Figure 2), especially when H = 0.1, 0.2. The approximation works very well even when

K is as small as 50.
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Figure 4: The ratios of the true spectral density to Paxson’s approximation

Taylor-series Approximation for λ → 0

At the near zero frequency (i.e., λ → 0), the spectral density can be approximated by

f(λ) ∼ CHλ
1−2H , (7)

using the Taylor expansion and L’Hopital’s rule. This is compared to the spectral density

of fIn(d) with d = H − 0.5 or ARFIMA(0, H − 0.5, 0):7

f̃(λ) =
σ2

2π
(2− 2 cos(λ))−(H−0.5) ∼ σ2

2π
λ1−2H , as λ → 0, (8)

by the Taylor approximation. Both spectral densities converge to zero at a rate of O(λ1−2H)

as λ → 0. Despite the similarity, the two spectral densities take very different forms and

behave differently when the frequency is away from zero; see a detailed discussion on this

point in Section 2 of Geweke and Porter-Hudak (1983).

7The fIn(d) process is defined as ut = (1−L)−det, where L is the lag operator, et
iid∼ (0, σ2) with σ2 > 0,

and d ∈ (−0.5, 0.5).
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Figure 5: The Taylor approximation of the spectral density

We now examine the accuracy of the Taylor approximation (7) of fGn at the near zero

frequency. Figure 5 plots, in the black dash line, the local-to-zero-frequency approximation

for λ ∈ (0, 0.5] and the red solid line is the corresponding analytical spectral density. The

Taylor expansion general works well when λ → 0. The approximation accuracy, however,

deteriorates as H becomes smaller. For example, when H = 0.1, it cannot well approximate

the true spectral density even when λ is as low as 0.1. This suggests that estimation

methods that rely on the local-to-zero-frequency approximation (e.g., the semiparametric

methods which will be introduced in the next section) are expected to perform poorly when

H is small. Once again, given the empirical relevance of small H values in the volatility

modelling literature, the approximation errors are expected to have important implications

for the semiparametric methods.

3 Estimation Methods

We introduce the two semiparametric methods (GPH and LW), the time-domain and fre-

quency domain ML methods, and the CoF approach in this section. Both semiparamet-

ric methods are based on the Taylor approximation of the spectral density, i.e., f(λ) ∼

CHλ
1−2H .
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3.1 GPH method

The estimation method proposed by Geweke and Porter-Hudak (1983) is as follows. By

taking log of both sides of (7), we have

log f(λ) = log (CH) + (1− 2H) log(λ). (9)

Simple re-organisation of (9) leads to the following regression model:

log I(λj) = log (CH) + (1− 2H) log(λ) + εj,

where εj = ln I(λj)− ln f(λ). Let zj = ln(λ). The ordinary least squares estimator of the

coefficient 1− 2H is

β̂GPH =

∑m
j=1(zj − z̄) ln I(λj)∑m

j=1(zj − z̄)2
,

where z̄ = m−1
∑m

j=1 zj and I (λj) is the periodogram at the jth Fourier frequency λj =

2πj/T (with j = 1, 2, . . . ,m) defined as

I (λj) =
1

2πT

∣∣∣∣∣
T∑
t=0

yt exp (−itλj)

∣∣∣∣∣
2

. (10)

Note that m represents the number of spectral frequencies (i.e., sample size) employed in

the regression and is a tuning parameter chosen by the user. The GPH estimator of H is

obtained as

ĤGPH =
1

2

(
1− β̂GPH

)
.

Under the settings of m → ∞ and m/T → 0, the GPH estimator converges to the true

value H at rate Op(
√
m) and has a limiting distribution of the following:

√
m
(
ĤGPH −H

)
d→ N(0, π2/6) with π2/6 = 1.645. (11)

See Robinson (1995b). Assumption m/T → 0 implies that maxj {λj} = 2πm/T → 0. That
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is, one should only use near zero frequencies to estimate H.

From Figure 5, the Taylor approximation does not work well when H is small and λ

is not near zero. Therefore, we expect GPH to suffer from a large bias when m is chosen

to be a large number in finite samples. On the other hand, if the sample size m is chosen

to be a very small number, the variance of the GPH estimator will increase substantially.

Andrews and Guggenberger (2003) give the asymptotic RMSE optimal choice of the tuning

parameter, that is, m = T 0.8. However, in the ARFIMA literature, smaller values of m

(e.g., m = T δ with δ = 0.5, 0.6, 0.65, 0.7) are often used to reduce biases (Agiakloglou et al.,

1993; Smith et al., 1997; Nielsen and Frederiksen, 2005; Nadarajah et al., 2021).

3.2 Local Whittle method

The local Whittle method proposed by Künsch (1987) and Robinson (1995a) solves the

following optimisation problem:

(
ĈLW , ĤLW

)
= argmax

C,H

1

m

m∑
j=1

[
− log f (λj)−

I (λj)

f (λj)

]

= arg max
CH ,H

1

m

m∑
j=1

[
− logCH + (2H − 1) log λj −

1

CH

λ2H−1I(λj)

]
,(12)

where the spectral density f (λj) is replaced by its Taylor approximation. The analytical

solution of LWE is

ĈLW =
1

m

m∑
j=1

λ2H−1
j I(λj) and ĤLW = argmax

H

[
− log

(
ĈLW

)
+ (2H − 1)

1

m

m∑
j=1

log λj

]
.

Under the settings of m → ∞ and m/T → 0, the local Whittle estimator is a consistent

estimator of H and has the following limiting distribution (Robinson, 1995a):

√
m
(
ĤLW −H

)
d→ N(0, 1/4).

Clearly, the LW estimator is more efficient than the GPH estimator (0.25 versus 1.645 for
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the asymptotic variance). Both GPH and LW rely on the Taylor series approximation,

which was shown to be inaccurate when H is close to zero and λ is not so close to zero.

Therefore, like GPH, we expect LW to suffer from a large bias in finite samples when m

is too large. However, if m is too small, a large variance for ĤLW is expected. In the

ARFIMA literature, a setting of m = T δ with δ ∈ [0.5, 0.8] is often used; see for example,

Nielsen and Frederiksen (2005) and (Giraitis et al., 2012, Chapter 8.7).

3.3 Time-domain ML method

Let y = (y1, · · · , yT )′, θ = (H, σ), and Σy be the covariance matrix of y whose elements are

found from (2). Since y ∼ N(µ,Σy) with µ = 0, the log likelihood function of fGn is

logL(θ) ∝ 1

2T
log |Σy|+

1

2T
(y − µ)′ Σ−1

y (y − µ) . (13)

In the case of unknown µ, µ is replaced with a consistent estimator (e.g., the sample mean).

The time domain ML estimator is defined as

θ̂ML = argmax
θ

logL(θ).

The asymptotic theory of θ̂ML under the model specification of fGn was studied in

Dahlhaus (1989) when H ∈ (0.5, 1) and Lieberman et al. (2012) when H ∈ (0, 0.5). Under

both settings, the TDML estimator has the limiting property that

√
T
(
θ̂ML − θ

)
d→ N(0,Γ (θ)−1) with Γ (θ) =

1

4π

∫ π

−π

∂ log f (λ)

∂θ

(
∂ log f (λ)

∂θ

)′

dλ (14)

as T → ∞. The TDML estimator is shown asymptotic efficient in the sense of Fisher in

Dahlhaus (1989), while the local asymptotic normal (LAN) property of the estimator is

obtained in Cohen et al. (2011).

The TDML method is time consuming as it requires computing the inverse matrix and

searching for the global maximum of the objective function via a numerical method. To
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improve the computational speed without compromising asymptotic efficiency, Haslett and

Raftery (1989) proposed a recursive approach to calculate logL(θ) without computing |Σy|

and Σ−1
y for the ARFIMA model. By noting that, conditional on yt−1 = (y1, y2, · · · , yt−1)

′,

yt follows a Gaussian distribution, the log likelihood function can be rewritten as

log L̃(θ) = −1

2

T∑
t=1

log vt −
1

2

T∑
t=1

(Xt − ηt)
2

vt
,

where ηt = E (yt|yt−1) and vt = V ar (yt|yt−1). From Ramsey (1974, Theorem 2), we have

ηt =
t−1∑
j=1

ϕtjyt−j and vt = γy (0)Π
t−1
j=1

(
1− ϕ2

jj

)
,

where γy (k) is the autocovariance of yt given in (2) and ϕtj are the partial linear regression

coefficients, which are independent of σ2. The coefficients ϕtj and the normalised condi-

tional variance v̄t (i.e., assuming σ2 = 1) could be computed by the Durbin-Lenvinson

recursive algorithm (Brockwell and Davis, 1987, chp. 5). Then the ML estimator of σ2 has

a closed-form solution as σ̂2 = T−1
∑T

t=1 (Xt − ηt)
2 /v̄t. The conditional variance v̂t equals

v̄tσ̂
2. Finally, log L̃(θ) becomes only a function of H if we replace vt with v̂t. For fGn, there

is no approximation in the recursive approach for computing the log likelihood.

Since the TDML method do not use the spectral density, the approximation errors

in calculating the spectral density are irrelevant, unlike the two semiparametric methods

reviewed earlier and the Whittle ML method which will be reviewed next.

3.4 Whittle ML method

To avoid computing Σ−1
y and |Σy|, Whittle (1951) propose to employ the approximations

Σ−1
y ≈ [ajk]

T
j,k=1 and log |Σy| ≈ T (2π)−1 ∫ π

−π
log f (λ) dλ where ajk ≈ (2π)−2 ∫ π

−π
f (λ)−1 ei(j−k)λ dλ,

leading to the Whittle likelihood function:

logLW (θ) = − 1

m

m∑
j=1

log f(λj)−
1

m

m∑
j=1

I(λj)

f(λj)
, (15)
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where m = ⌊T/2⌋ and λj = 2πj/T with j = 1, ...,m. The Whittle estimator θ̂W is

θ̂W = argmax
θ

logLW (θ).

Suppose that f ∗ (λ) is a normalised spectral density that satisfies the property:

∫ π

−π

log f ∗ (λ) dλ = 0.

Since 1
m

∑m
j=1 log f

∗(λj) →
∫ π

−π
log f ∗ (λ) dλ = 0 as T → ∞, the Whittle likelihood function

can be simplified to

logLW (θ) = − 1

m

T∑
j=1

I(λj)

f ∗(λj)
.

Under some regularity conditions, Fox and Taqqu (1986) and Giraitis and Surgailis

(1990) show that for strongly dependent stationary Gaussian processes,

√
T
(
θ̂W − θ

)
d→ N

(
0, 4πW−1 (θ)

)
,

where W (θ) = [ωjk]
2
j,k=1 and ωjk =

∫ π

−π
f ∗ (λ) ∂2

∂H∂σ
[f ∗ (λ)]−1 dλ. Dahlhaus (1989) shows

that the Whittle ML estimator is asymptotic efficient in the sense of Fisher. More recently,

the LAN property of the Whittle estimator for fGn under the high frequency setting was

investigated in a few papers; see, for example, Brouste and Fukasawa (2018); Fukasawa

and Takabatake (2019a).

We compute the spectral density of fGn using either the analytical expression provided

in Theorem 2.1 (referred to as the exact Whittle ML or EWML) or Paxson’s approximation

(referred to as the approximate Whittle ML or AWML).
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3.5 Change-of-frequency method

The CoF approach (Brouste et al., 2020) estimates H from the quadratic generalised vari-

ations and takes the form of

ĤCoF =
1

2
log2

(∑T−3
i=1

(
y(i+2) + y(i+3) − y(i+1) − yi

)2∑T−1
i=1

(
y(i+1) − yi

)2
)
.

The limiting properties of ĤCoF for fGn was studied in Brouste et al. (2020).8 They

show that ĤCoF is rate-efficient but less efficient than the ML estimator. This finding was

echoed by Wang et al. (2021) where CoF is used to estimate H in fOU. Under the model

specification of fGn, the asymptotic distribution of ĤCoF is

√
T
(
ĤCoF −H

)
d→ N

(
0,

Σ11 + Σ22 − 2Σ12

(2 log 2)2

)
. (16)

where

Σ22 = 2 + 4
∞∑
j=1

ρ2j ,

Σ11 = 2 + 22−4H

∞∑
j=1

(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)2
,

Σ12 = 21−2H

(
4(ρ1 + 1)2 + 2

∞∑
j=0

(ρj+2 + 2ρj+1 + ρj)
2

)
,

with ρj =
1

2(4−22H)

(
− |j + 2|2H + 4 |j + 1|2H − 6 |j|2H + 4 |j − 1|2H − |j − 2|2H

)
.

4 Monte Carlo Studies

Many studies have examined the finite sample performance of alternative estimation meth-

ods in the context of ARFIMA; see, for example, Agiakloglou et al. (1993); Cheung and
8The CoF approach was also employed by Lang and Roueff (2001) for Gaussian processes with sta-

tionary increments and by Barndorff-Nielsen et al. (2013) for Brownian semi-stationary processes when
H ∈ (0, 0.75).
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Diebold (1994); Smith et al. (1997); Nielsen and Frederiksen (2005); Rea et al. (2013);

Nadarajah et al. (2021); Shi and Yu (2022) for a somewhat incomplete list. In that litera-

ture, it is often found that (1) the Whittle ML method performs as well as the time-domain

ML method; (2) the Whittle ML method is computationally much cheaper than the time-

domain ML method. See, for example, Tables 1-3 in Nielsen and Frederiksen (2005) for

a comparison of alternative estimation methods in estimating d in ARFIMA(0, d, 0). Rea

et al. (2013) find that TDML-HR performs well for d.

On the other hand, the list of studies that examine finite sample performance of alter-

native estimation methods for fGn is much shorter. Brouste and Fukasawa (2018) compare

the performance of CoF, TDML and a one-step TDML. Fukasawa and Takabatake (2019a)

examine the finite sample performance of the Whittle ML, where the spectral density is

approximated by Paxson’s method. Rea et al. (2013) only focus on the case of H > 0.5. In

this section, we provide a comprehensive study investigating the finite sample performance

of alternative estimation methods which were reviewed earlier.

Let Σy = LL′ be the Cholesky decomposition of the variance-covariance matrix of y.

To simulate fGn, we first simulate a T × 1 vector of independent standard normal variates,

denoted by z, then generate the data by y = Lz. In our Monte Carlo studies, we set H =

0.1, 0.2, 0.3, 0.7, 0.8, 0.9. The parameter σ is set to be one and assumed to be known. The

sample size T is 2, 000, and the number of replications is 1, 000. All six methods, including

the two versions of the Whittle ML method, are employed to estimate H from the simulated

data, yielding 1, 000 estimates of H for each method. The TDML method is implemented

with the recursive calculation of HR for the likelihood function. For the AWML method,

we set K = 50 in Paxson’s approximation. For the EWML method, we calculate the

Hurwitz zeta function ζ(s, q) using the MATLAB in-built function hurwitzZeta. For the

two semiparametric methods, we set the bandwidth parameter m = T 0.6, which implies an

upper bound of πm/T = 0.15 for the spectral frequency.
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4.1 H < 0.5

The setting of H < 0.5 is highly empirically relevant for modelling financial market volatil-

ity. Figure 6 plots the kernel densities of alternative estimates of H when the true model

is fGn with H = 0.1, 0.2, 0.3. Table 1 reports the bias, standard error (std), RMSE, and

CPU time of the estimation methods.9 Evidently, the ML methods perform much better

than CoF and the two semiparametric methods.10 The two Whittle methods (EWML and

AWML) perform equally well, suggesting that the approximation error of Paxson’s method

has almost no impact on the estimation outcome.

Figure 6: Kernel densities of estimated H
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Between the two semiparametric methods, LW outperforms GPH, as expected. How-

ever, both semiparametric methods have a noticeable downward bias (more than 20%)

when H = 0.1. This finding is consistent with our observation from Figure 5 that when

H = 0.1 the Taylor approximation of the spectral density is not very accurate when λ ≥ 0.1,

whereas the spectral frequencies used in the semiparametric methods are between zero and

0.15. The bias of GPH and LW is less visible when H = 0.2, 0.3. None of the four other

methods has significant bias.
9The CPU time is based on MacBook Pro M2 chip, 8-core CPU and 10-core GPU for one iteration and

in seconds.
10The CPU time of the traditional TDML implementation is substantially higher than that of TDML-

HR. For example, when H = 0.1, the computation time of TDML is 7.0932 seconds per iteration, as
opposed to 0.2465 of TDML-HR.
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Table 1: Bias, standard error, RMSE, and CPU time of alternative estimators when H =
0.1, 0.2, 0.3. For GPH and LW, m = T 0.6. The CPU time is for one iteration and measured
in seconds.

H GPH LW TDML-HR EWML AWML CoF
0.1 Bias -.0231 -.0271 -.0002 .0013 .0013 -.0028

Std .0741 .0616 .0073 .0078 .0078 .0356
RMSE .0775 .0672 .0073 .0079 .0079 .0357

CPU time .0223 .0251 .2465 254.3901 .0962 .0025
0.2 Bias -.0029 -.0080 -.0009 .0001 .0001 -.0015

Std .0725 .0589 .0098 .0099 .0099 .0322
RMSE .0726 .0595 .0098 .0099 .0099 .0323

CPU time .0059 .0031 .1866 253.8134 .0632 .0016
0.3 Bias -.0005 -.0066 -.0004 -.0001 -.0001 -0.0021

Std .0708 .0587 .0121 .0121 .0121 .0319
RMSE .0709 .0591 .0121 .0121 .0121 .0320

CPU time .0004 .0030 .1434 190.2094 .0494 .0003

According to RMSE, when H = 0.1, TDML is the best estimation method, outper-

forming the two Whittle methods by approximately 8.2%. It overwhelmingly outperforms

the rest. The performance of TDML, and the two Whittle ML methods are similar when

H = 0.2, 0.3. In terms of computation time, the CoF method is the cheapest to imple-

ment, followed by the two semiparametric methods, then by AWML, TDML-HR, EWML,

in this order. In particular, it takes less than one second to implement AWML and TDML,

and around seven minutes for EWML. Given the trade-off between accuracy (measured by

RMSE) and computational cost (measured by the CPU time), we recommend using either

TDML-HR or AWML when H is close to zero.

4.2 H > 0.5

We report simulation results for the cases of H = 0.7, 0.8, 0.9 in this subsection. Figure 7

displays kernel densities of alternative estimates of H from 1, 000 replications when H =

0.7, 0.8, 0.9. Summary statistics of those estimates (bias, standard error, RMSE), along

with the computation time for each replication, are presented in Table 2.

The general conclusions for H > 0.5 are the same as those for H = 0.2, 0.3. Specifically,

the three ML methods have similar performance and significantly outperform the CoF and
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Figure 7: Kernel densities of estimated H
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Table 2: Bias, standard error, RMSE, and CPU time of alternative estimators when H =
0.7, 0.8, 0.9. For GPH and LW, m = T 0.6. The CPU time is measured in seconds.

H GPH LW TDML-HR EWML AWML CoF
0.7 Bias .0068 .0025 .0004 .0006 .0006 .0003

Std .0706 .0548 .0116 .0117 .0117 .0276
RMSE .0710 .0549 .0116 .0117 .0117 .0276

CPU time .0002 .0018 .1713 233.1205 .0606 .0001
0.8 Bias .0047 -.0009 -.0000 -.0000 -.0000 -.0013

Std .0729 .0561 .0077 .0078 .0078 .0259
RMSE .0731 .0561 .0078 .0078 .0078 .0259

CPU time .0060 .0033 .1719 232.6733 .0595 .0024
0.9 Bias .0050 -.0007 -.0000 -.0001 -.0001 -.0014

Std .0736 .0575 .0037 .0037 .0037 .0254
RMSE .0738 .0575 .0037 .0037 .0037 .0254

CPU time .0019 .0014 .2239 296.3792 .0729 .0001

semiparametric methods in terms of RMSE. Among the three ML methods, AWML is

the most computationally efficient, followed by TDML and EWML, in this order. We

recommend using AWML when H > 0.5. Since cases of H = 0.1, 0.2 are more empiri-

cally relevant for modelling log volatility, we focus on these two settings when conducting

robustness checks in the following subsection.
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4.3 Robustness Checks

We conduct a few robustness checks in this subsection. Section 4.3.1 shows the finite sample

performance of the Whittle ML method when the spectral density of fGn is obtained by the

truncation method. Section 4.3.2 reports the performance of the semiparametric methods

with alternative settings of the tuning parameter m.

4.3.1 Whittle ML based on truncation

For the Whittle ML method, instead of using Paxson’s approximation of the spectral density

as in AWML, one could use the truncation-based method (see Section 2). Table 3 reports

the bias, standard error, RMSE, and CPU time of the truncation-based Whittle ML method

with K = 2000, 5000, 20000 when H = 0.1, 0.2.

Table 3: Bias, standard error, RMSE and CPU time of EWML, AWML, and the Whittle
ML method based on the truncation method with K = 2000, 5000, 20000. The CPU time
is measured in seconds.

H EWML AWML Truncation-based Whittle ML
K = 2000 K = 5000 K = 20000

0.1 Bias .0013 .0013 .0148 .0120 .0088
Std .0078 .0078 .0060 .0062 .0064

RMSE .0079 .0079 .0160 .0135 .0109
CPU time 254.3901 .0962 2.2940 4.8473 19.8905

0.2 Bias .0001 .0001 .0006 .0003 .0002
Std .0099 .0099 .0097 .0098 .0099

RMSE .0099 .0099 .0097 .0098 .0099
CPU time 253.8134 .0632 2.3049 5.7312 21.2280

Results for EWML and AWML are duplicated here for ease of comparison. When

H = 0.1, the truncation method leads to a noticeable upward bias under all three settings

of K. Although the bias decreases as K increases, it is still around 9% when K = 20000.

This is consistent with our observation in Figure 2 that when H = 0.1 the gap between

the truncation-based approximation of the spectral density and the true spectral density

remains sizeable even with K = 20000. The inaccurate approximation of the spectral

density leads to biased estimates of H.
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Interestingly, the standard errors of the three truncation-based estimates are slightly

smaller than that of the exact counterpart and AWML. However, due to the significant

biases, the truncation-based methods have larger RMSEs than EWML and AWML. More-

over, as expected, the computational cost increases substantially as K increases and is

much higher than that of AWML (based on Paxson’s approximation).

When H = 0.2, the bias of the truncation-based Whittle method becomes negligible.

The standard errors and the RMSEs of the three truncation methods are comparable to

those of EWML and AWML. Once again, this finding is consistent with that in Figure 2.

Although we have not carried out a simulation study for larger values of H, we expect the

three truncation methods to perform similarly to the case of H = 0.2.

4.3.2 Semiparametric methods with alternative tuning parameters

In this subsection, we consider several alternative settings of the bandwidth parameter

m = T δ for the two semiparametric methods: δ = 0.5, 0.6, 0.7, 0.8. Recall that the

semiparametric methods are based on the Taylor approximation of the spectral density

at the near-zero frequency (see Section 2) . The larger the approximation error, the

larger the estimation bias is expected. The bandwidth parameter m regulates the up-

per bound of the near-zero frequencies, which are 0.07, 0.15, 0.32, 0.69, respectively, when

m = T 0.5,m = T 0.6,m = T 0.7,m = T 0.8. When a larger value of m is chosen, the Taylor

approximation becomes less accurate (see Figure 5) but the sample size increases. Conse-

quently, a larger bias and a smaller variance are expected.

Table 4: Bias, standard error and RMSE of GPH and LW for alternative choices of δ when
H = 0.1, 0.2. The number in boldface corresponds to the smallest RMSE value.

H GPH LW
δ 0.5 0.6 0.7 0.8 0.5 0.6 0.7 0.8

0.1 Bias .0035 -.0231 -.0626 -.1174 -.0030 -.0271 -.0635 -.1132
Std .1157 .0739 .0485 .0325 .0955 .0615 .0409 .0284

RMSE .1158 .0775 .0792 .1218 .0956 .0672 .0755 .1167
0.2 Bias .0094 -.0029 -.0229 -.0548 -.0019 -.0080 -.0252 -.0546

Std .1151 .0725 .0486 .0320 .0947 .0589 .0389 .0251
RMSE .1155 .0726 .0538 .0634 .0947 .0595 .0464 .0601
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Table 4 reports the bias, standard deviations, and RMSE of GPH and LW under the

various settings of m when H = 0.1, 0.2. The number in boldface corresponds to the

smallest RMSE value. When H = 0.1, the bias of both methods rises with δ and becomes

noticeable when δ ≥ 0.6. For the case of H = 0.2, the biases of the two semiparametric

methods are small when δ = 0.5, 0.6 but grow as δ becomes larger. These findings are

consistent with our observation in Figure 5 where the Taylor approximation does not work

well for λ ≥ 0.1 when H = 0.1 and for λ ≥ 0.2 when H = 0.2.

Figure 8: The Taylor approximation and the true spectral densities of fGn and fIn when
λ ∈ (0, 0.5].

While the large bias is not surprising in light of Figure 5, it is remarkably different from

what has been reported in the ARFIMA literature. For example, Nielsen and Frederiksen

(2005) did not report any visible bias for the two semiparametric methods when m =

T 0.5, T 0.6. To see why the bias is more an issue for fGn than fIn, Figure 8 compares the

Taylor approximated and the true spectral densities, with the top row corresponding to

fGn and the bottom row for fIn. Clearly, the Taylor approximation performs much better

for fIn than for fGn, at least when H = 0.1, 0.2. This explains why the large bias problem

has not been seen in the fIn literature.

As expected, the standard errors of both methods decline as the sample size m expands.
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The selection of m represents a trade-off between bias and standard error. From Table 4,

the smallest RMSE value takes place when δ = 0.6 or 0.7. This explains why we set δ = 0.6

in our main simulation design.

5 Modelling Log Realised Volatility

Volatility modelling has been a subject of significant interest over many decades. In the

more recent continuous-time finance literature, log volatilities are found to follow a rough

fBm or fOU process using various calibration or estimation methods. Although the volatil-

ity dynamic is generally agreed to be rough (i.e., H < 0.5) in the continuous-time literature,

the exact degree of roughness (i.e., magnitude of H) varies depending on the financial as-

sets and estimation methods employed (Gatheral et al., 2018; Fukasawa and Takabatake,

2019a; Wang et al., 2021; Bolko et al., 2022; Bennedsen et al., 2021).

In this section, we compare estimates of H from alternative methods for log volatility

using a comprehensive dataset. The log volatilities are modelled as an fBm process σBH(t).

While fOU is a more general model specification, the additional drift component in fOU is

often found negligible (Wang et al., 2021; Bolko et al., 2022).11 We consider six different

estimation techniques (GPH, LW, TDML, EWML, AWML, and CoF) whose finite sample

performance has been studied carefully in our simulations.12 The bandwidth parameter of

the semiparametric methods m is set to be T 0.6.

The data examined are the daily realized volatility of the S&P 500 index ETF, nine in-

dustry index ETF, and Dow Jones 30 (DJ30) stocks13 from 2012 to 2019, provided by Risk

Lab.14 The sample spans over a long period (8 years) and is chosen to avoid significant finan-
11In the context of ARFIMA(1, d, 0), Li et al. (2022) raise a weak identification issue between a long

memory model (with the autoregressive coefficient α close to zero and d > 0.5) and a rough model (α → 1
and d < 0.5). It is unclear whether the weak identification also applies to fOU. An investigation of this
question involves a careful study of the spectral density of fOU, which is quite complicated and hence left
for a separate paper.

12For TDML, we assume the population mean is zero and known.
13We replace Dow Inc. (NYSE: DOW) with Exxon Mobil Co. (NYSE: XOM) as in Li et al. (2022),

because DOW has a small number of observations available within the sample period .
14See https://dachxiu.chicagobooth.edu/#risklab.
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Table 5: Estimation results: S&P 500 and industry ETFs. We set K = 50 for AWML and
m = T 0.6 for GPH and LW. CPU time is measured in seconds.

ETF H GPH LW TDML-HR EWML AWML CoF
SPY Estimate -.026 .041 .216 .217 .217 .287

Std. error .131 .051 .012 .012 .012 .032
CPU time .014 .036 .353 1107 .282 .003

XLB Estimate .043 .064 .154 .155 .155 .250
Std. error .132 .051 .011 .011 .011 .033
CPU time .004 .008 .353 1336 .307 .001

XLE Estimate .115 .128 .196 .197 .197 .339
Std. error .132 .051 .012 .012 .012 .032
CPU time .001 .006 .264 1317 .302 .000

XLF Estimate .040 .031 .169 .171 .171 .245
Std. error .132 .051 .011 .011 .011 .033
CPU time .000 .005 .330 1212 .272 .000

XLI Estimate .027 .043 .174 .175 .175 .237
Std. error .132 .051 .011 .011 .011 .033
CPU time .006 .010 .304 1191 .274 .002

XLK Estimate -.076 -.022 .182 .183 .183 .258
Std error .132 .051 .012 .012 .012 .033
CPU time .001 .004 .299 1170 .267 .001

XLP Estimate -.158 -.002 .145 .146 .146 .167
Std. error .132 .051 .010 .010 .010 .034
CPU time .000 .002 .365 1269 .291 .000

XLU Estimate .120 .090 .135 .142 .142 .173
Std. error .132 .051 .010 .010 .010 .034
CPU time .000 .001 .356 1611 .364 .000

XLV Estimate .013 .031 .176 .177 .177 .225
Std. error .132 .051 .011 .011 .011 .033
CPU time .000 .002 .302 1191 .270 .000

XLY Estimate -.017 .048 .172 .173 .173 .232
Std. error .132 .051 .011 .011 .011 .033
CPU time .000 .002 .300 1150 .259 .000

cial market interruptions such as the subprime mortgage crisis and the financial turbulence

at the onset of Covid-19 (March 2020). The estimation techniques are applied to the first

differenced log RV, which is assumed to follow an fGn process, i.e., σ(BH(t)−BH(t− 1)).

Summary statistics of the log RVs and their first differences are provided in the Appendix.

Table 5 reports the estimated H from various approaches, their asymptotic standard errors,

and the computation time required for the ten index EFTs. Estimation results of the DJ30

stocks are provided in Table 6. The computation time for DJ30 stocks is similar to those

of the ETFs and hence omitted for brevity.

The three outperforming ML methods (TDML, EWML, and AWML) always yield sim-

ilar estimates with small standard errors, which is consistent with our simulation results.

The estimated H is the largest for the S&P 500 market index ETF (approximately 0.22),

implying a smoother dynamic. Volatility dynamics are believed to be driven by information
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Table 6: Estimated H and standard errors (in parentheses): DJ30 individual stocks. We
set K = 50 for AWML and m = T 0.6 for GPH and LW.

Ticker GPH LW TDML-HR EWML AWML CoF
AAPL .066 (.132) .020 (.052) .194 (.012) .195 (.012) .195 (.012) .364 (.032)
ALD -.040 (.132) .019 (.052) .152 (.011) .153 (.011) .153 (.011) .241 (.033)
AMGN .071 (.132) .030 (.052) .144 (.010) .145 (.010) .145 (.010) .216 (.034)
AXP .006 (.132) .039 (.052) .133 (.010) .134 (.010) .134 (.010) .235 (.033)
BA -.021 (.132) -.042 (.052) .153 (.011) .154 (.011) .154 (.011) .310 (.033)
BEL -.007 (.133) -.049 (.052) .123 (.010) .124 (.010) .124 (.010) .187 (.034)
CAT .181 (.132) .164 (.052) .130 (.010) .131 (.010) .131 (.010) .259 (.033)
CHV .129 (.132) .130 (.052) .187 (.011) .188 (.011) .188 (.011) .225 (.034)
CRM .012 (.132) .040 (.052) .166 (.012) .167 (.012) .167 (.012) .311 (.033)
CSCO .043 (.132) .060 (.052) .165 (.011) .167 (.011) .167 (.011) .275 (.033)
DIS -.019 (.132) -.054 (.052) .156 (.011) .158 (.011) .158 (.011) .251 (.033)
GS .095 (.132) .041 (.052) .187 (.012) .188 (.012) .188 (.012) .297 (.033)
HD .033 (.132) .043 (.052) .148 (.010) .150 (.011) .150 (.011) .250 (.033)
IBM .069 (.132) .096 (.052) .148 (.011) .150 (.011) .150 (.011) .291 (.033)
INTC .023 (.132) .047 (.052) .167 (.012) .168 (.012) .168 (.012) .256 (.033)
JNJ .126 (.132) .115 (.052) .127 (.009) .131 (.009) .131 (.009) .123 (.035)
JPM .009 (.132) .016 (.052) .181 (.012) .181 (.012) .181 (.012) .261 (.033)
KO .022 (.132) .044 (.052) .140 (.010) .142 (.010) .142 (.010) .211 (.034)
MCD .052 (.132) .077 (.052) .122 (.010) .126 (.010) .126 (.010) .288 (.033)
MMM .088 (.132) .075 (.052) .151 (.011) .153 (.011) .153 (.011) .257 (.033)
MRK -.014 (.132) .007 (.052) .130 (.010) .130 (.010) .130 (.010) .206 (.034)
MSFT -.082 (.132) -.003 (.052) .190 (.012) .191 (.012) .191 (.012) .292 (.033)
NIKE .039 (.132) .020 (.052) .140 (.011) .142 (.011) .142 (.011) .266 (.033)
PG -.023 (.132) .003 (.052) .141 (.010) .141 (.010) .141 (.010) .182 (.034)
SPC -.077 (.133) -.036 (.052) .110 (.009) .111 (.009) .111 (.009) .174 (.034)
UNH .032 (.133) .020 (.052) .121 (.010) .125 (.010) .125 (.010) .206 (.034)
V .046 (.133) .078 (.052) .142 (.010) .144 (.010) .144 (.010) .226 (.034)
WAG -.020 (.133) -.048 (.052) .133 (.011) .134 (.011) .134 (.011) .272 (.033)
WMT .038 (.133) .011 (.052) .122 (.010) .123 (.010) .123 (.010) .263 (.033)
XOM .012 (.132) .051 (.051) .177 (.011) .178 (.011) .178 (.011) .253 (.033)

flow (Clark, 1973; Tauchen and Pitts, 1983; Andersen, 1996). The market index volatility

reflects the aggregated information flow, whereas the volatility dynamics of industry ETF

(individual stock) are driven by both the market-wide information and industry (industry

and company) specific information. It is, therefore, reasonable to see that the industry or

individual stock volatilities are noisier or rougher (i.e., smaller H). The estimated H for

the industry ETFs ranges between 0.13 to 0.19, with the dynamics of the utility sector

ETF (XLU) being the roughest. Results for the DJ30 stocks are similar to those of the

industry ETFs. The estimated H from the three ML methods falls between 0.12 and 0.2.

Our estimation results provide further evidence supporting the rough volatility argument.

Estimation results from the two semiparametric and CoF methods are substantially

different from those of the TDML, EWML, and AWML methods. Figure 9 displays sum-

mary statistics of the 39 estimated Hs (across the nine industry ETFs and 30 individual
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stocks) from the seven different estimation methods using box plots. One can see that

the semiparametric estimates are systematically lower than those of the ML methods, with

only one exception (CAT). In contrast, the CoF estimates are almost always higher than

those of the three outperforming ML methods (with the exception of JNJ). Since those

financial assets are subject to common macroeconomics and market factors, the volatilities

of those assets are highly correlated. As such, it is not surprising to observe a pattern of

systematic under- and over-estimation of the H parameter from the semiparametric and

CoF methods, respectively.

Figure 9: Summary statistics of the estimated H across the nine industry ETF and DJ30
stocks

6 Conclusion

In this paper, we derive the analytical expression for the spectral density of the fGn pro-

cess. The analytical expression allows us to examine the approximation errors introduced

by alternative methods, including Paxson’s method and the truncation method. It also

allows us to compare the statistical performance of the Whittle ML methods based on the

analytical expression and that based on the alternative approximation methods.

We compare the finite sample performance of several estimation methods for the frac-

tional parameter H in fGn, including two semiparametric methods, one time-domain ML

method (TDML), two Whittle ML methods (EWML and AWML), and the CoF method.

EWML is based on the analytical expression of the spectral density that we derive in the

present paper, while AWML is based on Paxson’s approximation. We find that, in terms of
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RMSE, the three ML methods significantly outperform the CoF and two semiparametric

methods. Among the three ML methods, TDML is the best performing method , while the

performance of AWML and EWML are almost identical to each other. Specifically, when H

is close to zero, TDML is slightly more efficient than the two Whittle ML methods. When

H takes larger values, the two Whittle ML methods yield estimates very close to TDML.

However, there is a vast difference in computational cost among the three ML methods.

The AWML method is computationally most efficient, followed by TDML-HR. The EWML

is very computationally intensive compared with the other three ML methods. Taking into

account of the trade-off between the statistical efficiency and computational efficiency and

the empirical relevance of small H, we recommend using AWML and TDML-HR to estimate

parameters in fGn.

The fBm specification is applied to the log realized volatility of 40 financial assets

(including ten index ETFs and 30 Dow Jones stocks running from 2012 to 2019) and is es-

timated with six different methods. While all estimation methods suggest a rough volatility

dynamic, the degree of roughness implied by the alternative methods varies substantially,

emphasising the importance of understanding the finite sample performance of different

estimation methods. Estimates of the three outperforming ML methods (TDML, EWML,

and AWML) are similar for all assets and fall between 0.1 and 0.22 (with an average of

0.15). In contrast, the two semiparametric methods suggest that the self-similar parameter

H is even closer to zero and could take negative values. The CoF method, on the other

hand, finds that the averaged values of H (across all assets considered) are 0.25.

The fOU specification is a generalisation to fBm and allows for short-run dynamics.

Although the additional drift term in fOU is often found negligible for log RV, one might

still want to employ this more general model specification. The semiparametric methods

that only require information on the spectral density in the local-to-zero frequencies are, to

some extent, robust to short-run dynamics; hence, the estimation results will not change.

In contrast, the ML methods, which require a full specification of the likelihood or spectral

density, might lead to different estimation outcomes when the drift component is nonzero.
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How to implement the Whittle ML estimation method for fOU and how alternative esti-

mation methods perform under the fOU specification will be studied in a separate paper.
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Appendix

Table 7: Summary statistics of log RVs and the first differences of log RV
log RV first differenced log RV

Ticker Mean Std. Skew Kurto Mean Std. Skew. Kurto.
ETFs

SPY -2.53 .42 .36 3.23 -.0002 .26 .18 3.32
XLB -2.20 .35 .30 3.44 -.0003 .24 .10 3.95
XLE -1.95 .35 .58 3.41 -.0002 .20 .08 3.28
XLF -2.18 .34 .79 7.71 -.0003 .25 .42 14.92
XLI -2.32 .36 .40 3.56 -.0002 .26 .16 3.60
XLK -2.30 .39 .61 4.69 .0000 .28 .17 4.91
XLP -2.50 .34 .67 4.64 .0000 .26 .21 4.65
XLU -2.16 .29 .17 3.56 -.0003 .22 .39 4.74
XLV -2.32 .37 .80 4.74 .0000 .25 .29 6.57
XLY -2.36 .38 .57 3.76 -.0001 .27 .10 3.27

DJ30 stocks
AAPL -1.80 .36 .47 3.12 .0003 .25 .53 4.55
ALD -2.02 .34 .57 3.80 -.0002 .27 .19 4.17
AMGN -1.68 .34 .59 3.39 -.0001 .25 .19 4.56
AXP -1.94 .31 .66 4.20 -.0005 .26 .39 5.25
BA -1.81 .34 .88 4.95 .0000 .26 .43 5.53
BEL -1.99 .28 .90 7.28 .0000 .25 .53 9.84
CAT -1.71 .33 .60 3.76 -.0003 .24 .54 5.36
CHV -1.90 .34 .83 4.05 -.0002 .21 .23 3.75
CRM -1.50 .35 .26 3.46 -.0003 .25 .25 5.18
CSCO -1.82 .31 .52 4.16 -.0002 .23 .22 5.16
DIS -1.94 .31 .75 4.63 .0000 .25 .21 4.64
GS -1.72 .30 .45 3.53 -.0003 .21 .21 3.49
HD -1.92 .31 1.08 6.60 -.0001 .25 .60 9.77
IBM -2.03 .30 .78 4.30 -.0003 .24 .16 4.22
INTC -1.73 .31 .70 4.60 -.0002 .23 .29 5.24
JNJ -2.12 .33 1.07 6.13 -.0002 .26 .59 6.92
JPM -1.82 .32 .90 6.64 -.0004 .23 .53 14.10
KO -2.14 .30 .71 4.61 -.0002 .23 .39 5.60
MCD -2.12 .30 .88 4.95 -.0003 .25 .35 4.96
MMM -2.07 .36 .58 3.72 -.0001 .26 .34 4.17
MRK -1.92 .31 .96 5.94 -.0001 .26 .44 7.34
MSFT -1.83 .32 .60 4.10 -.0001 .22 .17 3.92
NIKE -1.82 .29 .90 4.64 -.0003 .24 .07 4.23
PG -2.13 .29 .73 5.03 .0000 .23 .48 7.11
SPC -2.07 .30 .55 4.12 -.0003 .27 .44 5.28
UNH -1.79 .32 .71 4.84 -.0001 .26 .57 6.13
V -1.91 .32 .70 4.64 -.0003 .25 .38 5.40
WAG -1.71 .32 .57 4.38 -.0002 .28 .35 4.34
WMT -2.05 .30 .90 4.92 -.0002 .26 .60 6.15
XOM -2.01 .32 .74 4.21 -.0001 .21 .15 3.95
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