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a b s t r a c t

Maximum likelihood (ML) estimation of the autoregressive parameter of a dynamic panel data model
with fixed effects is inconsistent under fixed time series sample size and large cross section sample
size asymptotics. This paper proposes a general, computationally inexpensive method of bias reduction
that is based on indirect inference, shows unbiasedness and analyzes efficiency. Monte Carlo studies
show that our procedure achieves substantial bias reductions with only mild increases in variance,
thereby substantially reducing root mean square errors. The method is compared with certain consistent
estimators and is shown to have superior finite sample properties to the generalized method of moment
(GMM) and the bias-corrected ML estimator.
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1. Introduction

It is well known to econometricians that in dynamic panel
modelswith fixed effects conventional estimation procedures such
as (Gaussian) maximum likelihood (ML) or least-squares dummy-
variable (LSDV) are asymptotically justified only when the number
of time series observations (T ) is large. For instance, when T is
small and fixed (a single digit number, say, as occurs in many
practical short time span panels), the ML estimator (MLE) is
inconsistent under large N asymptotics. Nickell (1981) derived
analytic formulae for the asymptotic bias under such fixed T , large
N asymptotics. Using this formula and related formulae for cases
with incidental trends (Phillips and Sul, 2007), it is easy to see
that in many practically relevant cases the magnitude of the bias
is considerable, and sometimes substantial enough to change the
sign of the autoregressive coefficient estimate. At a more general
level, the problem of estimation bias is of great importance in
the practical use of econometric estimates, for instance, in testing
theories and evaluating policies.
In the search for consistent estimators, much of the literature

in the past two decades has focused on generalized method
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of moment (GMM) procedures and estimation methods based
on instrumental variable (IV) methods, often involving lagged
variables as instruments. Important contributions include Holtz-
Eakin et al. (1988), Arellano and Bond (1991), Ahn and Schmidt
(1995), Hahn (1997), Blundell and Bond (1998), and Alvarez and
Arellano (2003). AlthoughGMM/IV estimators are consistentwhen
designed properly to take into account the number of lags in
the given model, consistency comes at a cost. In particular, the
reduction in asymptotic bias in various GMM/IV estimators is the
cost at an increase, which can be substantial, in the variance.
Moreover, most of the consistent GMM estimates proposed in the
literature are highly model specific. For example, the methods
fail when the dynamic lag order is misspecified, and it is difficult
to use the standard panel GMM estimators in more complicated
frameworks, for instance, when there is nonlinearity in the
dynamics (Hahn and Kuersteiner, 2002). Some new developments
addressing these particular issues involve generalized model
choice (Lee, 2008a) and nonparametric approaches (Lee, 2008b).
In the recent literature also, several improved estimation

methods have been proposed, some of them motivated by the
following idea. If a bias-corrected ML estimator can be found, such
an estimator may outperform the consistent GMM/IV estimator on
root mean squared error (RMSE) criteria (Bun and Carree, 2005;
Kiviet, 1995; Hahn and Kuersteiner, 2002). Consequently, some
attempts have been made to pursue this approach and correct for
bias in the ML estimator under various circumstances.

0304-4076/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2009.10.024



Author's personal copy

C. Gouriéroux et al. / Journal of Econometrics 157 (2010) 68–77 69

The present paper seeks to address the problem of bias
reduction in dynamic panel modeling by using the technique of
indirect inference. The indirect inference methodology was first
introduced by Smith (1993) and Gouriéroux et al. (1993). It has
proven to be a useful method for simulation-based estimation and
inference in intractable structural models. Effective applications
on indirect inference include Monfort (1996) to continuous time
models, Dridi and Renault (2000) to semi-parametric models,
Keane and Smith (2003) to discrete choice models, Garcia et al.
(2004) to stable distributions, and Monfardini (1998) to stochastic
volatility models. In the paper that is closest to the present
contribution, Gouriéroux et al. (2000) demonstrate that indirect
inference methods can be used in various time series models for
bias correction. However, we know of no earlier implementation
in the context of dynamic panel models.
Indirect inference has several advantages in dynamic panels.

Its primary advantage is its generality. Unlike other bias reduction
methods, such as those based on explicit analytic expressions for
the bias function or the leading terms in an asymptotic expansion
of the bias, the indirect inference technique calibrates the bias
function via simulation and hence does not require a given explicit
form for the bias function or its expansion. Consequently, the
method is applicable in a broad range of model specifications
including nonlinear models (but note also the recent work of Lee
(2008b) on alternative nonparametric estimation methods). Since
panelmodels are two-dimensional in the sample size, the bias term
is often of a complicated form and may in some cases be infeasible
to obtain, although Lee (2008a) provides some general expressions
for higher order dynamic specifications. Even the asymptotic bias
expansions can be complicated, especially as the model itself
becomes more complex and includes other incidental effects such
as trends. In all these cases, the versatility of indirect inference
is a significant advantage and makes the method well suited for
empirical implementation.
A second advantage of indirect inference is that the approach

to bias reduction can be used with many different estimation
methods, including general methods like ML or LSDV, and in
doing so may inherit some of the nice properties of the initial
estimators. For instance, it is well known that MLE has very small
dispersion relative to many consistent estimators and indirect
inference applied to the MLE should preserve its good dispersion
characteristic while at the same time achieving substantial bias
reductions. Accordingly, indirect inference can perform very well
on RMSE comparisons, as our own simulations later confirm.
Unlike some other bias correction techniques, which are designed
specifically for particular cases (such as when T is either small or
large), the method developed here is generic and works extremely
well for any values of N and T . Finally, although indirect inference
is a simulation-based method, which can in some cases be
computationally involved, it is computationally inexpensive in the
context of dynamic panelmodels. This is becausewepropose to use
theMLE as the base estimator, and since theMLEhas small variance
only a small number of simulated paths is sufficient to ensure
an accurate calibration of the bias function that is needed for the
implementation of indirect inference. This is in sharp contrast to
time series models.
Our findings indicate that indirect inference provides a very

substantial improvement over existing methods. For example,
when T = 5, and N = 100 in a simple dynamic panel model
with autoregressive coefficient φ = 0.9, the RMSE of the indirect
inference estimator is 85.5%, 57.2%, 82.9%, and 28% smaller than
that of a GMM estimator, the bias-corrected ML estimator of Hahn
and Kuersteiner (2002), the ML estimator, and the new estimator
of Han and Phillips (forthcoming), respectively.
Recently, an alternative simulation-based bias correction

method via the bootstrap has been proposed by Everaert and Pozzi

(2007). Gouriéroux et al. (2000) compared these two simulation-
based methods in the context of time series models and found no
theoretical evidence for the dominance of one of them.
The paper is organized as follows. Section 2 briefly reviews

various estimation methods in the context of a simple linear
dynamic panel model. Section 3 introduces a generic version of the
indirect inference procedure and gives some statistical properties
of the resulting estimator related to unbiasedness and efficiency. In
Section 4, the finite sample performance of the indirect inference
estimate is compared with that of some existing approaches.
Section 5 extends the method to more general specifications and
Section 6 concludes.

2. Some existing estimationmethods in dynamic panel models

We start the discussion with a brief review of the well-known
bias result for the following simple dynamic panel model with
fixed effects:

yit = αi + φyit−1 + εit , (1)

where εit ∼ iid N(0, σ 2), i = 1, . . . ,N , t = 1, . . . , T , the true value
of φ is φ0 ∈ Φ withΦ being a compact set in the stable region and
|φ0| < 1. The initial condition is set to be

yi0 =
αi

1− φ
+

εi0√
1− φ2

,

where εi0 ∼ N(0, σ 2), independent of {εit , i = 1, . . . ,N, t =
1, . . . , T }, so that the distribution of yi0 follows the stationary
distribution of the AR(1) process (1).
The ML (fixed effects or within-group or LSDV) estimator of φ

is given by

φ̂MLNT = (y
′

−
Ay−)−1y′−Ay, (2)

where y = (y1, . . . , yN)′with yi = (yi1, . . . , yiT )′, A = IN⊗AT with
AT = IT− 1T ι

′

T ιT , y− = (y1−, . . . , yN−)
′with yi− = (yi0, . . . , yiT−1)′.

Nickell (1981) showed that the ML estimator is inconsistent
when N → ∞ and T is fixed. The reason for the inconsistency
comes from the endogeneity of the regressor in the de-meaned
regression,

yit − yi• = φ(yit−1 − yi•−1)+ (εit − εi•),

where yi• =
∑T
t=1 yit/T , yi•−1 =

∑T−1
t=0 yit/T , εi• =

∑T
t=1 εit/T .

Since the regressor and the disturbance term are correlated in this
regression and this correlation does not disappear as N → ∞

when T is finite, the ML estimator (2) is asymptotically biased.
Nickell (1981)’s expression for the asymptotic bias is

plimN→∞(φ̂
ML
NT − φ0) = −

(1− φ20)fT (φ0)
T − 1

(
1−

2φ0fT (φ0)
T − 1

)−1
= GT (φ0) , (3)

where fT (φ) = 1
1−φ

(
1− 1−φT

T (1−φ)

)
. The bias disappears as T →∞,

but may be considerable for small values of T , and the smaller T is,
the larger the bias. If φ0 > 0, the bias is always negative, and the
larger φ0 is, the larger the bias. But the bias does not disappear as
φ0 goes to zero.
Applying the first difference transformation to (1), we have

∆yit = φ∆yit−1 +∆εit , (4)

which gives rise to the following moment conditions:

E(∆yit−1 × yit−s) = 0, for s = 2, 3, . . . , t − 1. (5)

Eq. (5) suggests a GMM/IV approach to estimation for the equation
in first difference form. This GMM/IV procedure was introduced
and developed by Andersen and Hsiao (1981, 1982), Holtz-Eakin
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et al. (1988) and Arellano and Bond (1991), and the resulting
estimator is consistent as long as N → ∞ regardless of T . More
sophisticated GMM/IV procedures have been proposed in recent
years by, among others, Arellano and Bover (1995) and Blundell
and Bond (1998).
Despite the consistency property of GMM/IV, it is known that

its finite sample properties can be poor. A particular handicap of
this approach is that as the autoregressive parameter moves close
to unity the instruments become weak and attendant problems of
weak instrumentation arise. In such cases, the GMM/IV estimator
of the autoregressive parameter can suffer from substantial bias
and large variation. In other circumstances, when the number
of moment conditions becomes large, the GMM/IV estimator
also suffers from large finite sample bias (Bun and Kiviet, 2006;
Ziliak, 1997). Finally, the GMM/IV estimator is designed for linear
dynamic systems and is not readily applicable to nonlinearmodels.
To overcome the weak instrumentation problem that arises in

near unit root panels, Han and Phillips (forthcoming) replaced the
weak moment conditions (5) by a set of new moment conditions,
i.e.,

E(∆yit−1 × [(2∆yit +∆yit−1)− φ∆yit−1]) = 0. (6)

This approach leads to a new estimator of the form

φ̂HPNT =

N∑
i=1

T∑
t=1
∆yit−1(2∆yit +∆yit−1)

N∑
i=1

T∑
t=1
(∆yit−1)2

. (7)

Han and Phillips (forthcoming) established the following large N
and large T asymptotics for this estimator:
√
NT (φ̂HPNT − φ)⇒ N(0, 2(1+ φ)), (8)

and found that these asymptotics work very well when φ is close
to 1, even for T as small as 3.
Hahn and Kuersteiner (2002) also resorted to large N and T

asymptotics. In particular, they showed that when both N and T
approach infinity and 0 < lim N

T = c <∞,

√
NT
(
φ̂MLNT − (φ −

1
T
(1+ φ))

)
⇒ N(0, (1− φ2)). (9)

As T passes to infinity, the ML estimator becomes consistent.
However, the asymptotic distribution is not centered at the origin
and there is an asymptotic bias in the limiting distribution.
Accordingly, Hahn and Kuersteiner (2002) introduced a bias-
corrected ML estimator centered at the origin, which is a feasible
version of the bias-correctedML estimator of Kiviet (1995) because
it does not require that the true value φ0 be known. If the bias-
corrected MLE is denoted by φ̂HKNT , Hahn and Kuersteiner (2002)
showed that
√
NT (φ̂HKNT − φ)⇒ N(0, (1− φ

2)). (10)

Since 1 − φ2 < 2(1 + φ), φ̂HKNT always has a smaller asymptotic
variance than φ̂HPNT . Bun and Carree (2005) proposed alternative
bias-corrected ML estimators under the assumption that T may be
small.
Using simulations, Kiviet (1995) showed that, in many practi-

cally relevant cases, the bias-corrected ML estimator has smaller
RMSE than various GMM estimators. Hahn and Kuersteiner (2002)
also examined the finite sample properties of the bias-corrected
ML estimator andmade comparisons with GMM. From these stud-
ies, the superiority of the bias-correctedML estimator over GMM is
now documented inmany empirically relevant circumstances. The
improvement is particularly substantial when φ is close to unity.

The above-mentioned bias-corrected ML estimators rely on the
explicit formula for the bias or the explicit formula for the first
terms of the bias expansion. The computation of the bias can
also be achieved via simulation. In a recent contribution, Everaert
and Pozzi (2007) showed how the bootstrap estimator, introduced
initially by Efron (1979), can be used to compute the bias function.
The indirect inference estimator suggested here can be regarded as
an alternative way of computing the bias function via simulation.

3. Estimating dynamic panel models via indirect inference

3.1. Estimating AR(1) models via indirect inference

The indirect inferenceprocedure, first introducedbyGouriéroux
et al. (1993) and independently proposed by Smith (1993) and Gal-
lant and Tauchen (1996), can be understood as a generalization of
the simulated method of moments approach of Duffie and Single-
ton (1993). It has been found to be a highly useful procedure when
themoments and the likelihood function of the truemodel are dif-
ficult to deal with, but the true model is amenable to data simula-
tion. Gouriéroux et al. (1993) provided conditions under which the
indirect inference estimator has desirable large sample properties,
such as consistency and asymptotic normality.
A carefully designed indirect inference estimator can have good

small sample properties, too, as shown by Gouriéroux et al. (2000)
in the time series context. Because our procedure is closely related
to that given in Gouriéroux et al. (2000), we first review that
method in the context of a simple AR(1) model.
Suppose we need to estimate the parameter φ in the AR(1)

model

yt = φyt−1 + εt ,

from observations y = {y0, y1, . . . , yT }, where the true value of
φ is φ0, which lies in a compact set Φ of the stable region and
|φ0| < 1. It is well known that standard procedures such asML and
least squares (LS) produce downward biased coefficient estimators
of φ in finite samples. Using analytic techniques in a simple case,
Hurwicz (1950) demonstrated this AR bias effect, and showed that
the bias does not go to zero as the AR coefficient goes to zero and
that the bias increases as the AR coefficient moves towards unity.
It is now well known that this bias is accentuated in models with
fitted intercept and trends (Orcutt and Winokur, 1969).
Various techniques have been proposed to correct the bias in

the ML estimator of φ in the AR(1). Examples include Kendall
(1954), Quenouille (1956), Efron (1979), and Andrews (1993).
Some of these methods, such as Kendall’s procedure, require
explicit knowledge of the first term of the asymptotic expansion
of the bias in powers of 1T .
The indirect inference method proposed by Gouriéroux et al.

(2000) makes use of simulations to calibrate the bias function
and requires neither the explicit form of the bias, nor the
bias expansion. This advantage seems important when the
computation of the bias expression is analytically involved, and
it becomes vital when the bias and the first term of the bias
asymptotic expansions are too difficult to compute explicitly.
The idea of indirect inference as it is used here is as follows.

Given a parameter choice φ, let ỹh(φ) = {ỹh0, ỹ
h
1, . . . , ỹ

h
T } be data

simulated from the true model, where h = 1, . . . ,H , with H being
the number of simulated paths. It should be emphasized that it is
important to choose the number of observations in ỹh(φ) to be the
same as the number of observations in the observed sequence y for
the purpose of the bias calibration.
The central idea is then to match various functions of the

simulated data with those of observed data in order to estimate
parameters. Suppose QT is the objective function of a certain
estimation method applied to an auxiliary model which is indexed
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by the parameter θ . Define the corresponding estimator based on
the observed data by

θ̂T = argmax
θ∈Θ

QT (y),

and the corresponding estimator based on the hth simulated path
by

θ̃hT (φ) = argmax
θ∈Θ

QT (ỹh(φ)),

whereΘ is a compact set.
The indirect inference estimator is defined by

φ̂IIT ,H = argmin
φ∈Φ

∥∥∥∥∥θ̂T − 1H
H∑
h=1

θ̃hT (φ)

∥∥∥∥∥ , (11)

where ‖ · ‖ is some finite-dimensional distance metric. In the case
whereH tends to infinity, the indirect inference estimator becomes

φ̂IIT = argmin
φ∈Φ

‖θ̂T − E(θ̃hT (φ))‖. (12)

It is useful to define the so-called binding function as

bT (φ) = E(θ̃hT (φ)).

In the case where the number of parameters in the auxiliarymodel
is the same as that in the true model (this is always the case when
the auxiliary model is chosen to be the true model), and bT is
invertible, the indirect inference estimator is given by

φ̂IIT = b
−1
T (θ̂T ).

The procedure essentially builds in a small-sample bias
correction to parameter estimation, with the bias being computed
directly by simulation. To see this, suppose that the true value
of φ is 0.9, and that the given estimator (like OLS in the present
case) has downward bias. For example, suppose that φ̂T = 0.85
is the realized value of the estimate. We do not use the value
0.85 to estimate φ, but instead use the value of φ that yields the
averaged estimated φ of 0.85 from simulated data. Since the bias
occurs in φ̂T , it should also occur in the binding function bT (φ).
Hence, with the bias correction that is built into the inversion
φ̂IIT = b

−1
T (φ̂T ), the estimator is exactly ‘‘bT -mean-unbiased’’ for φ.

That is, E(bT (φ̂IIT )) = bT (φ0). Gouriéroux et al. (2000) established
conditions under which the indirect inference estimator is ‘‘bT -
mean-unbiased’’, and related the indirect inference estimator
to the median unbiased estimator of Andrews (1993) and the
bootstrap estimator of Efron (1979).
In practice, three choices have to be made: the number of

simulated pathsH , the estimation criterionQT , and the distribution
of the data used in the simulation. Of course, H cannot be infinite
and the choice of H has to be made to ensure that E(θ̃hT (φ)) is well
approximated by 1H

∑H
h=1 θ̃

h
T (φ), which will be guaranteed by the

use of large H . When the true model is easy to estimate (although
the resulting estimator may be severely biased) – for example,
when the likelihood function has a closed-form expression – the
estimation criterion can be maximum likelihood applied to the
true model itself. The simulation results reported in Gouriéroux
et al. (2000) suggest that the indirect inferencemethod, whenH =
15,000 and estimation criterion is maximum likelihood, works as
well as the median unbiased estimator of Andrews (1993). Both
these methods are, of course, dependent on the validity of the
assumed data distribution for the validity of the finite sample
binding formula.
It is necessary to apply the Common Random Numbers (CRNs)

technique during the numerical optimization to enforce a smooth
surface for the objective function. That is, the H simulated paths
are always obtained from a fixed set of canonical randomnumbers,
which are typically uniform variates or standardized normals.

3.2. Estimating panel models via indirect inference

In the context of dynamic panel models, the bias correction
methods proposed by Kiviet (1995), Bun and Carree (2005), and
Hahn and Kuersteiner (2002) all work under linear specifications
and for a given first order lag structure. When the panel model
becomes more complicated, analytic derivations of the bias
function become much more involved, if not impossible. Some
recent generalizations for higher order dynamic structures and
nonlinear models have been developed by Lee (2008a,b). Use of
approaches to bias elimination that require knowledge of the
bias function imposes further challenges as the model complexity
increases. Moreover, when the model is nonlinear, GMM is not
readily available as the classical moment conditions are no longer
valid.
As a general principle to correct for bias, indirect inference

has the advantage that it can be applied to many models and
estimators. The present paper proposes indirect inference in
conjunction with the MLE as the baseline estimator and chooses
the auxiliary model to be the true model.
When applying ML to estimate the linear panel model (1) with

the observed data, we obtain φ̂MLNT defined by (2). Let the ML
estimator of (1) with the hth simulated path, given φ, be denoted
by φ̃ML,hNT (φ); that is,

φ̃
h,ML
NT (φ) = ((ỹh

−
)′Aỹh

−
)−1(ỹh

−
)′Aỹh, (13)

where ỹh = (ỹh1, . . . , ỹ
h
N)
′ with ỹhi = (ỹhi1, . . . , ỹ

h
iT )
′, ỹh
−
=

(ỹh1−, . . . , ỹ
h
N−)
′, with ỹhi− = (ỹ

h
i0, . . . , ỹ

h
iT−1)

′. Note that ỹh depends
on (φ). For the sake of presentation we simply write ỹh = ỹh(φ).
The indirect inference estimator is defined by

φ̂IINT = argmin
φ∈Φ

‖φ̂MLNT − bNT (φ)‖, (14)

where ‖ · ‖ is a distant metric and bNT (φ) is the binding function
defined by

bNT (φ) = E(φ̃
h,ML
NT (φ)).

In practice, of course, we replace bNT (φ) in (14) by 1
H∑H

h=1 φ̃
h,ML
NT (φ). Since ML generally has small variance in dynamic

panel models because N is large, even small values of H appear
to be sufficient to ensure good finite sample performance of the
estimator, as shown in the simulation study below.
To discuss the ‘‘unbiasedness’’ property, we impose the

following condition.

Assumption 1. The binding function bNT (·), mapping from Φ to
bNT (Φ), is uniformly continuous and one-to-one.

By construction, when H = ∞, we have

E(bNT (φ̂IINT )) = E(φ̂
ML
NT ) = E(φ̃

h,ML
NT (φ0)) = bNT (φ0).

By Assumption 1, bNT is invertible and hence b−1NT (E(bNT (φ̂
II
NT ))) =

φ0, from which we deduce that φ̂IINT is ‘‘bNT -mean-unbiased’’.
1

Formally stated, we have the following result.

Theorem 1. If Assumption 1 holds, the indirect inference estimator
defined in (14) is ‘‘bNT -mean-unbiased’’; that is,

b−1NT (E(bNT (φ̂
II
NT ))) = φ0.

1 While it would be better to provide a set of primitive assumptions to ensure
the invertibility of bNT (φ), it is generally difficult to do so. We refer readers to
Andrews (1993) who acknowledged this difficulty in a similar but simpler context.
Following the suggestion by Andrews (1993), we show the invertibility of bNT (φ)
by simulations.
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Remark 1. The property of ‘‘bNT -unbiasedness’’ derived above
does not impose any restriction on N or T . This is in contrast
with the existing bias-corrected estimators which require either
large N , or large T , or both. But the procedure does make use of
explicit distributional assumptions on data generation — here the
normality of the inputs εit in (1). However, as N →∞, the binding
function bNT (φ)will depend on T and certain moments of the data
that will be consistently estimated in the simulations as N → ∞,
so that some robustness to the distribution of the input variables
can be expected in this case. Similarly, while limiting normality is
obtained for the Han and Phillips (forthcoming) estimator when
N → ∞ for fixed T , the expression for the variance in that limit
distribution depends on T and on certain moments of the data,
which again may be estimated consistently using the cross section
observations. So, the methods may be regarded as having similar
forms of distributional dependence, at least for large N .

Remark 2. The ‘‘bNT -unbiasedness ’’ in general does not imply
‘‘mean-unbiasedness’’ or vice versa. In the case where bNT (φ) is a
linear function in φ, however, these two concepts are equivalent.
When bNT (φ) is close to a linear function, which is perhaps a
practically relevant case, we may expect φ̂IINT to be close to ‘‘mean-
unbiasedness’’.

To develop an asymptotic theory for the indirect inference
estimator, we can adopt a double index asymptotic theory. In
particular, it is convenient to follow the framework of Hahn
and Kuersteiner (2002), so that asymptotic normality of the
base estimator, the autoregressive coefficient ML estimator (φ̂MLNT ),
applies. Theorem 2 develops the asymptotic theory and its proof is
given in the Appendix. The next condition is useful in this regard.

Assumption 2. (i) |φ0| < 1; (ii) N → ∞, T → ∞, and 0 <
lim(N/T ) ≡ c <∞; (iii) (1/N)

∑N
i=1 |αi|

2
= O(1).

Theorem 2. Under Assumptions 1 and 2, we have
√
NT (φ̂IINT − φ0)⇒ N(0, (1− φ

2
0)).

Remark 3. Under these double index asymptotics, the asymptotic
distribution of the indirect inference estimator is identical to that
of the bias-corrected MLE of Hahn and Kuersteiner. As shown by
Hahn and Kuersteiner using convolution theory, this asymptotic
variance achieves a lower bound for regular estimators (e.g.,
van de Vaart, 2000) and hence the indirect inference estimator
is asymptotically efficient in this sense under double index
asymptotics.

We now discuss the issue of efficiency for large N and finite
T . In this case, the estimator φ̂MLNT is asymptotically biased and
we do not know of a corresponding extension of the convolution
theory developed by Hahn and Kuersteiner under the double index
asymptotics and Gaussian errors. For the case of large N and finite
T we impose the following smoothness assumption on the function
bNT , which seems mild under the given distributional assumption
and the restriction to the stable regionΦ .

Assumption 3. The binding function bNT (·) and its inverse b−1NT (·)
are continuously differentiable onΦ .

Notwithstanding the absence of a suitable asymptotic theory
under finite T , we may formally apply the standard Cramér–Rao
bound theory in this framework as follows. Under Assumption 3,
the variance of an unbiased estimator of b(φ) is no less than

Bound(b) =
(
∂b(φ0)
∂φ

)2
Iφφ,

where Iφφ is the element of the inverse of the information matrix
corresponding to parameter φ. Note that the information matrix
in this case involves all the parameters in the model, namely,
φ, α1, . . . , αN , σ

2.
Any biased estimator of the parameter φ can be considered as

an unbiased estimator of its mean. Accordingly, assume that the
estimator φ̂ has mean bNT (φ) which is dependent only on φ and
the sample sizes.2 Then, according to the above, we have

Var(φ̂) ≥
(
∂bNT (φ0)
∂φ

)2
Iφφ,

and its ‘‘lack of efficiency’’ can be measured by(
∂bNT (φ0)
∂φ

)−2 Var(φ̂)
Iφφ

.

Similarly, the lack of efficiency of any unbiased estimator φ̂ of φ
may be measured by Var(φ̂)

Iφφ
.

Consider the indirect inference estimator φ̂IINT associated with
φ̂MLNT . We have

φ̂IINT = b
−1
NT (φ̂

ML
NT ).

Let us now assume that N is large, in which case the estimator
φ̂MLNT converges to a limit bT (φ0) as N → ∞. By virtue of the delta
method applied to

φ̂IINT = b
−1
NT (φ̂

ML
NT ) = b

−1
NT (bNT (φ0)+ φ̂

ML
NT − bNT (φ0)),

we have

Var(φ̂IINT ) ≈
(
∂bT (φ0)
∂φ

)−2
Var(φ̂MLNT ), (15)

and hence

Var(φ̂IINT )
Iφφ

≈

(
∂bT (φ0)
∂φ

)−2 Var(φ̂MLNT )
Iφφ

. (16)

The asymptotic approximation (16) suggests that the indirect in-
ference estimator should inherit some of the ‘‘efficiency’’ proper-
ties of the initial estimator treated as an estimator of its mean.

Remark 4. The change in the mean squared error (MSE) of ˆφIINT
over that of φ̂MLNT is due to the reduction (often substantial) that
takes place in the bias of the estimator and to the fact that the
change in variance is oftenminor. In fact, the change in the variance
depends largely on ∂bT (φ0)

∂φ
, as seen above. For

∣∣∣ ∂bT (φ0)∂φ

∣∣∣ > 1, ˆφIINT has
a smaller variance than the initial estimator, and for

∣∣∣ ∂bT (φ0)∂φ

∣∣∣ < 1,
ˆφIINT has a larger variance than the initial estimator. For the present
model, the following expression for bT (φ) follows from the Nickell
bias formula (6) and the asymptotic expansion of this bias for large
T given in Phillips and Sul (2007):

bT (φ) = φ + GT (φ)

=


φ −

1+ φ
T
+ O

(
T−2

)
for |φ| < 1

φ −
3
T

for |φ| = 1.
(17)

Note that although bT (φ) is continuous in φ as φ passes through
unity, its asymptotic expansion as T → ∞ is not, and the

2 This is justified by formula (13) and holds for the present simple panel dynamic
model.
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bias expression given in (17) for the case φ = 1 is exact. The
derivative ∂bT (φ0)

∂φ
= 1 + O

(
T−1

)
is well behaved and for large

T has a magnitude that is less than unity in the stationary case.
Hence, according to this asymptotic expression, the variance of ˆφIINT
should be greater than that of the initial ML estimator, an outcome
confirmed in the simulations below.3

4. Monte Carlo results

This section reports the results of some simulation experiments
examining the relative performance of the proposed procedure
against certain alternative methods. Following Hahn and Kuer-
steiner (2002), the data are generated from the following linear
dynamic panel model,

yit = αi + φ0yit−1 + εit ,

where εit ∼ iid N(0, 1), αi ∼ iid N(0, 1), φ0 = 0, 0.3, 0.6, 0.9 and
αi and εit are assumed to be independently distributed. The initial
condition is

yi0|αi ∼ N

 αi

1− φ0
,

1√
1− φ20

 .
We choose N = 100, 200 and T = 5, 10, 20. For each combination
of N and T , we employ five methods to estimate φ: ML, GMM,
the method proposed by Han and Phillips (forthcoming), the
bias-corrected ML method of Hahn and Kuersteiner (2002), and
the indirect inference method developed here. The design of the
experiment is identical to that in Hahn and Kuersteiner (2002)
to aid comparisons. Although a linear model is considered in
these experiments so that GMM, the Han–Phillips method and the
Hahn–Kuersteiner method can be compared, it is worth pointing
out that the indirect inference approach can be applied to more
complicated models. For GMM and the bias-corrected ML, we
simply report the results of Hahn and Kuersteiner (2002). For the
indirect inference method, we first choose H = 10 and later
investigate the performance of our estimator for larger values ofH .
During data simulation, it is assumed that we know the variance
of εit and the distribution of αi. However, this assumption is not
needed as the ML estimator (2) does not depend on it.
Table 1 reports the biases and RMSEs of all five estimates

obtained from 5000 replications. The following general results
emerge. First, ML has serious bias problems in all cases. In general,
the ML bias becomes larger as φ moves closer to unity or N
gets larger, but becomes smaller as T gets larger, all of which
corroborates the asymptotic theory.
Second, although GMM alleviates the bias problems in all cases,

the biases remain substantial when φ is close to unity. Compared
with ML, GMM generally has smaller RMSEs. However, some
exceptions to this occur when T is small and φ is close to unity.
The large values of the variance and bias in cases where φ is close
to unity are evidence of theweak instrumentation of GMM in these
cases. It is interesting that these effects are strongly manifested
even at φ = 0.9, which is some distance from unity.
Third, the bias-corrected ML substantially alleviates the bias

problems in all cases, as it is designed to do, at least when T is
modestly large. Like ML and GMM, the bias in the bias-corrected
ML becomes larger when φ gets larger, but becomes smaller when
T is larger. Interestingly, the bias is still substantial in this bias-
corrected version for φ = 0.9. However, the bias-correctedML has

3 Recently, Phillips and Yu (2009a, 2009b) have found evidence of variance
reduction by indirect inference in the context of parameter estimation and asset
price estimation of continuous time models, respectively, when data are very
persistent.

smaller RMSE thanML in all cases and has smaller RMSE thanGMM
in almost all cases.
Fourth, the Han–Phillips estimator provides very good bias cor-

rection in all cases, including those cases where φ is close to unity.
This is not surprising as the problem of weak instrumentation is
avoided in this approach. Like the three methods discussed above,
the RMSE becomes larger asφ gets larger. Unlike these othermeth-
ods, however, the bias does not seem to depend on φ. Moreover,
the method dominates ML in terms of RMSEs in all cases due to
its ability to remove the bias. It also dominates GMM and bias-
corrected ML in terms of RMSE when φ is close to unity except
when T is large. This result is interesting and somewhat surprising
as the bias-correctedML estimator is asymptoticallymore efficient
than the Han–Phillips estimator.
Finally, the most important comparisons are between the

indirect inference estimates with the other four estimates. With
H = 10, the indirect inference procedure removes the bias more
successfully than GMM, ML and the bias-corrected ML except
possibly when φ = 0, but less successfully than the Han–Phillips
method. As shown later, however, with increased values for H ,
the indirect inference method is much more effective in removing
bias and has performance that is comparablewith the Han–Phillips
method in terms of bias correction. Like Han–Phillips, the bias does
not seem to depend on φ. In terms of RMSE, indirect inference
estimates clearly dominate all the other estimates in almost all
cases. The larger φ is, themore substantial the improvement of the
indirect inferencemethod over the existingmethods. For example,
when T = 5, N = 100, φ = 0.9, the RMSE of the indirect
inference estimates is 85.5%, 57.2%, 82.9%, and 28% smaller than
that of GMM, the bias-corrected ML, ML, and Han and Phillips’s
estimates, respectively. When T = 10, N = 200, φ = 0.9, the
RMSE of the indirect inference estimates is 84.7%, 66.2%, 88.7%, and
41.8% smaller than that of the other four estimates, respectively.
To investigate the sensitivity of the performance of the indirect

inference method to the choice of H , Table 2 reports the biases
and the RMSEs when H = 10, 50, 250. With large values of
H , we expect indirect inference to have better finite sample
properties. This is confirmed in Table 2. When H = 250, the
biases almost completely disappear. However, the improvement
in terms of RMSE is marginal, especially from H = 50 to
H = 250. This finding suggests that the initial estimator
(ML) indeed has a small variance and hence a small value of
H delivers satisfactory approximation of the binding function
by H−1

∑H
h=1 φ̃

h,ML
NT (φ). Consequently, despite being a simulation-

based estimation procedure, the indirect inference method is not
computationally expensive in the context of simple first order
linear dynamic panel models.
To understand why the indirect inference method can success-

fully remove the bias with only mild increase in variance, we plot
the binding functions in Figs. 1 and2. Fig. 1 corresponds to the cases
where T = 5, 10, 20 and N = 100 whereas Fig. 2 corresponds to
the cases where T = 5, 10, 20 and N = 200. First, the binding
functions are seen to be invertible and so Assumption 1 holds by
simulation verification. Second, the binding functions are virtually
linear, implying that the indirect inference estimator should be ex-
actly mean unbiased. Third, the slopes of the binding functions are
slightly less than 1, suggesting that the variance of the indirect in-
ference estimator should be slightly larger thanMLE. All the results
have been confirmed by simulation.

5. Extensions

In this section, we show that the indirect inference method is
quite general and can be applied in many other panel models with
little modification. In particular, we will discuss the applicability
on the indirect inference method in the context of a dynamic
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Table 1
Monte Carlo comparison of the bias and RMSE of the GMM estimator of Arellano and Bover, the corrected ML estimator of Hahn and Kuersteiner (HK), ML, the new GMM
estimator of Han and Phillips (HP), and the indirect inference (II) estimator of φ for the dynamic panel model. The number of simulated paths is set to be 10 for indirect
inference. The number of replications is set at 5000.

Case Bias in φ̂ RMSE of φ̂
T N φ GMM HK ML HP II GMM HK ML HP II

5 100 0 −0.011 −0.039 −0.1993 0.0038 −0.0297 0.074 0.065 0.2041 0.0877 0.0635
5 100 0.3 −0.027 −0.069 −0.2741 0.0041 −0.0384 0.099 0.089 0.2779 0.0948 0.0868
5 100 0.6 −0.074 −0.115 −0.3619 0.0044 −0.0291 0.160 0.129 0.3650 0.1021 0.0761
5 100 0.9 −0.452 −0.178 −0.4642 0.0039 −0.0282 0.552 0.187 0.4667 0.1111 0.0799
5 200 0 −0.006 −0.041 −0.2002 −0.0003 0.0117 0.053 0.055 0.2026 0.0624 0.0433
5 200 0.3 −0.014 −0.071 −0.2751 −0.0004 0.0068 0.070 0.081 0.2771 0.0676 0.0770
5 200 0.6 −0.038 −0.116 −0.3631 −0.0008 0.0233 0.111 0.124 0.3647 0.0729 0.0564
5 200 0.9 −0.337 −0.178 −0.4654 −0.0021 0.0273 0.443 0.183 0.4668 0.0792 0.0616
10 100 0 −0.011 −0.010 −0.0996 0.0023 −0.0198 0.044 0.036 0.1044 0.0512 0.0407
10 100 0.3 −0.021 −0.019 −0.1350 0.0022 −0.0147 0.053 0.040 0.1387 0.0572 0.0404
10 100 0.6 −0.045 −0.038 −0.1791 0.0021 −0.0046 0.075 0.051 0.1818 0.0626 0.0392
10 100 0.9 −0.218 −0.079 −0.2448 0.0016 0.0052 0.248 0.085 0.2465 0.0682 0.0408
10 200 0 −0.006 −0.011 −0.1001 0.0004 0.0038 0.031 0.027 0.1025 0.0366 0.0253
10 200 0.3 −0.011 −0.019 −0.1352 0.0001 0.0054 0.038 0.032 0.1371 0.0406 0.0263
10 200 0.6 −0.025 −0.037 −0.1789 −0.0003 0.0034 0.051 0.045 0.1802 0.0441 0.0262
10 200 0.9 −0.152 −0.079 −0.2439 −0.0006 0.0041 0.181 0.082 0.2447 0.0476 0.0277
20 100 0 −0.011 −0.003 −0.0497 0.0012 −0.0050 0.029 0.024 0.0545 0.0338 0.0239
20 100 0.3 −0.017 −0.005 −0.0663 0.0012 −0.0025 0.033 0.024 0.0699 0.0383 0.0240
20 100 0.6 −0.029 −0.011 −0.0859 0.0011 0.0018 0.042 0.024 0.0883 0.0423 0.0224
20 100 0.9 −0.100 −0.032 −0.1203 0.0010 −0.0044 0.109 0.037 0.1215 0.0460 0.0209
20 200 0 −0.006 −0.003 −0.0501 0.0002 0.0056 0.020 0.017 0.0525 0.0240 0.0175
20 200 0.3 −0.009 −0.005 −0.0605 0.0000 0.0059 0.022 0.017 0.0683 0.0270 0.0174
20 200 0.6 −0.016 −0.010 −0.0858 −0.0002 0.0057 0.027 0.018 0.0869 0.0296 0.0163
20 200 0.9 −0.065 −0.031 −0.1199 −0.0002 0.0058 0.074 0.034 0.1204 0.0317 0.0152

Table 2
Monte Carlo comparison of the bias and RMSE of the indirect inference estimator of φ for the dynamic panel model with different numbers (H) of simulated paths. The
number of simulated paths is set to be H = 10, 50, and 250. The number of replications is set at 5000.

Case Bias in φ̂ RMSE of φ̂
T N φ H = 10 H = 50 H = 250 H = 10 H = 50 H = 250

5 100 0 −0.0297 −0.0082 0.0007 0.0635 0.0571 0.0570
5 100 0.3 −0.0384 −0.0181 −0.0074 0.0868 0.0817 0.0814
5 100 0.6 −0.0291 −0.0112 0.0005 0.0761 0.0706 0.0696
5 100 0.9 −0.0282 −0.0088 0.0000 0.0799 0.0777 0.0760
5 200 0 0.0117 −0.0043 −0.0002 0.0433 0.0413 0.0408
5 200 0.3 0.0068 −0.0126 −0.0102 0.0770 0.0742 0.0741
5 200 0.6 0.0233 −0.0023 −0.0003 0.0564 0.0503 0.0503
5 200 0.9 0.0273 −0.0058 −0.0030 0.0616 0.0540 0.0542
10 100 0 −0.0198 −0.0068 0.0009 0.0407 0.0357 0.0353
10 100 0.3 −0.0147 −0.0087 0.0004 0.0404 0.0376 0.0366
10 100 0.6 −0.0046 −0.0088 0.0001 0.0392 0.0386 0.0375
10 100 0.9 0.0052 −0.0066 −0.0011 0.0408 0.0412 0.0395
10 200 0 0.0038 −0.0030 0.0001 0.0253 0.0251 0.0248
10 200 0.3 0.0054 −0.0014 −0.0001 0.0263 0.0259 0.0258
10 200 0.6 0.0034 0.0003 0.0002 0.0262 0.0265 0.0264
10 200 0.9 0.0041 0.0027 0.0021 0.0277 0.0285 0.0286
20 100 0 −0.0050 0.0025 0.0010 0.0239 0.0233 0.0235
20 100 0.3 −0.0025 0.0028 0.0007 0.0240 0.0235 0.0237
20 100 0.6 0.0044 0.0025 0.0004 0.0224 0.0220 0.0221
20 100 0.9 0.0052 0.0032 0.0001 0.0209 0.0205 0.0209
20 200 0 0.0038 −0.0011 0.0003 0.0175 0.0166 0.0165
20 200 0.3 0.0054 −0.0003 0.0001 0.0174 0.0165 0.0164
20 200 0.6 0.0034 0.0010 0.0000 0.0163 0.0154 0.0153
20 200 0.9 0.0041 0.0022 0.0002 0.0152 0.0144 0.0142

model with exogenous variables, followed by a simulation study
for the estimation of the dynamic panel model with an incidental
trend.
Consider first the following dynamic panel model with fixed

effects and exogenous variables:

yit = αi + β ′xit + φyit−1 + εit , (18)

where εit ∼ iid N(0, σ 2), i = 1, . . . ,N , t = 1, . . . , T . If the
parameter of interest is φ, then upon transformation the model

(18) can be rewritten as

Piyi = φPiyi− + Piεi, (19)

where Pi = I − Z ′i (Z
′

i Zi)
−1Zi, Zi = [ιT Xi], X ′i = [xi1, . . . , xiT ]. This

specification is asymptotically equivalent to the simple dynamic
model considered above and hence the indirect inference method
may be directly applied to (19).
In the second extension, we consider a dynamic panel model

with an incident trend:

yit = αi + βit + φyit−1 + εit , (20)
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Fig. 1. Binding functions of ML for the simple dynamic panel model when N is 100.
The 45 degree line is plotted for comparison.

Fig. 2. Binding functions of ML for the simple dynamic panel model when N is 200.
The 45 degree line is plotted for comparison.

where εit ∼ iid N(0, σ 2), i = 1, . . . ,N , t = 1, . . . , T . The ML
estimate of φ is given by φ̂MLNT = C

y
NT/DNT , where

CyNT =
N∑
i=1

 T∑
t=1

(yit − yi•)(yit−1 − yi•−1)

−

T∑
t=1
[(t − t)(yit − yi•)]

T∑
t=1
[(t − t)(yit−1 − yi•−1)]

T∑
t=1
(t − t)2

 ,
and

DNT =
N∑
i=1

T∑
t=1

(yit−1 − yi•−1)2 −

N∑
i=1

(
T∑
t=1
(t − t)(yit−1 − yi•−1)

)2
T∑
t=1
(t − t)2

.

Phillips and Sul (2007) examined the finite sample performance of
φ̂MLNT and found that when T is small and the true value of φ is much
larger than 0, the ML estimator of φ is often negative.
To examine the performance of the indirect inference estimator,

we simulate the data from the following linear dynamic panel

Fig. 3. Binding functions of ML for themodel with incidental trends whenN is 100.
The 45 degree line is plotted for comparison.

model:

yit = αi + βit + φ0yit−1 + εit ,

where εit ∼ iid N(0, 1), αi = βi = 0, and φ0 = 0, 0.3, 0.6, 0.9.
This design is the same as in Phillips and Sul (2007). Moreover,
N is set at 100 or 200, and T is set at 5, 10, or 20. For each
combination of N and T , we employ ML and the indirect inference
method to estimate φ. For indirect inference, we set H = 10.
Table 3 reports the biases and RMSEs of ML and indirect inference
estimates obtained from 1000 replications. In general, we identify
the substantial bias in ML and the bias in ML is consistent with
Table 1 in Phillips and Sul (2007). For example, when T = 5,
N = 100,φ0 = 0.6, themeanofML estimates ofφ is−0.1663, from
which one would claim a spurious negative relationship between
yit and yit−1. On the other hand, the indirect inference method
substantially reduces the bias in all cases and hence leads to much
smaller values for RMSE. Figs. 3 and 4 plot the binding functions for
N = 100, 200 when the true value of φ is from the interval [0, 1].
In both cases, there is a big gap between the binding function and
the 45 degree line, indicating the substantial negative bias in MLE.
In particular, when T is 5, the entire binding function is located
below the x-axis. Moreover, the binding function is virtually
linear when φ is far away from zero but becomes nonlinear with
the slope smaller than one when φ is sufficiently close to one,
suggesting that φ is more difficult to estimate when it is near
the unit root. All these results are consistent with our findings in
simulations.

6. Conclusions

Bias in the estimation of the parameters of dynamic panel
models by standardmethods such asML is generally not negligible
in short (time span) panels and conventional GMM approaches
encounter difficulties of bias and variancewhen the autoregressive
coefficient is close to unity, as it commonly is in practical work.
The procedure we propose here for reducing the bias involves
the use of indirect inference to calibrate the bias function and
operates with only small increases in variance. Simulations show
the procedure to be highly effective in the linear dynamic panel
model with and without an incidental trend. We show that the
technique itself is quite general and can be applied in many other
panel models with little modification. In a recent article, Hahn
and Newey (2004) demonstrated how the jackknife procedure can
be used to reduce the bias in ML estimation for nonlinear panel
models. We believe indirect inference has similar potential for
application in such nonlinear panel models. While the present
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Fig. 4. Binding functions of ML for themodel with incidental trends whenN is 200.
The 45 degree line is plotted for comparison.

Table 3
Monte Carlo comparison of the bias and RMSE of ML and the indirect inference
estimator of φ for the dynamic panel model with incidental trends. The number
of simulated paths (H) is 10 and the number of replications is 1000.

Case Bias in φ̂ RMSE of φ̂
T N φ ML II (H = 10) ML II (H = 10)

5 100 0.0 −0.4592 −0.0192 0.4612 0.0783
5 100 0.3 −0.6062 −0.0348 0.6092 0.0835
5 100 0.6 −0.7663 −0.0372 0.7680 0.1510
5 100 0.9 −0.9774 −0.0505 0.9789 0.2523
10 100 0.0 −0.2172 −0.0342 0.2196 0.0544
10 100 0.3 −0.2977 −0.0490 0.2997 0.0867
10 100 0.6 −0.3998 −0.0340 0.4012 0.0676
10 100 0.9 −0.5451 0.0073 0.5463 0.1231
20 100 0.0 −0.1052 −0.0078 0.1077 0.0271
20 100 0.3 −0.1423 −0.0088 0.1442 0.0283
20 100 0.6 −0.1905 −0.0100 0.1918 0.0295
20 100 0.9 −0.2759 −0.0159 0.2767 0.0400
5 200 0.0 −0.4613 −0.0037 0.4621 0.0541
5 200 0.3 −0.6093 0.0031 0.6101 0.0633
5 200 0.6 −0.7700 0.0114 0.7708 0.1281
5 200 0.9 −0.9808 −0.0579 0.9815 0.2119
10 200 0.0 −0.2179 0.0047 0.2191 0.0314
10 200 0.3 −0.2984 −0.0099 0.2993 0.0806
10 200 0.6 −0.3996 0.0098 0.4003 0.0415
10 200 0.9 −0.5432 0.0304 0.5438 0.0968
20 200 0.0 −0.1049 0.0004 0.1062 0.0184
20 200 0.3 −0.1418 0.0004 0.1428 0.0190
20 200 0.6 −0.1901 0.0008 0.1907 0.0198
20 200 0.9 −0.2760 0.0099 0.2764 0.0322

contribution only applies indirect inference in connection with
the ML estimator, the technique can be used with other base
estimation methods in the same manner.
Being a simulation-based estimation method, the indirect

inference procedure is computationally more involved than other
methods. However, since the base estimator employed here has a
small variance, only a small number of simulated paths are needed
for the indirect inference estimator to have good finite sample
properties. Therefore, the computational cost of the indirect
inference procedure is relatively low and its finite sample gains are
substantial enough to warrant the additional computation.
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Appendix. Proof of Theorem 2

Under Assumption 2, Hahn and Kuersteiner (2002) showed that
√
NT
(
φ̂MLNT − (φ −

1
T
(1+ φ))

)
⇒ N(0, (1− φ2)).

The definition of φ̂IINT leads to the relation
√
NT
(
φ̂MLNT − (φ −

1
T
(1+ φ))

)
=
√
NT
(
bNT (φ̂IINT )− (φ −

1
T
(1+ φ))

)
.

As |φ| < 1, Eq. (17) implies that

bNT (φ) = φ −
1+ φ
T
+ O(T−2).

So,
√
NT
(
φ̂MLNT − (φ −

1
T
(1+ φ))

)
=
√
NT
(
φ̂IINT − φ −

1
T
(1+ φ)+

1
T
(1+ φ̂IINT )+ Op(T

−2)

)
=
√
NT
(
1−

1
T

)(
φ̂IINT − φ

)
+ Op(T−1).

Since 1− 1
T → 1 as T →∞, we have

√
NT (φ̂IINT − φ)⇒ N(0, (1− φ

2)). (21)

References

Ahn, S., Schmidt, P., 1995. Efficient estimation of models for dynamic panel data.
Journal of Econometrics 68, 5–27.

Alvarez, J., Arellano, M., 2003. The time series and cross-section asymptotics of
dynamic panel data estimators. Econometrica 71, 1121–1159.

Andersen, T.W., Hsiao, C., 1981. Estimation of dynamic models with error
components. Journal of the American Statistical Association 76, 598–606.

Andersen, T.W., Hsiao, C., 1982. Formulation and estimation of dynamic models
using panel data. Journal of Econometrics 18, 47–82.

Andrews, D.W.K., 1993. Exactly median-unbiased estimation of first-order autore-
gressive/unit root models. Econometrica 61, 139–166.

Arellano, M., Bover, O., 1995. Another look at the instrumental-variable estimation
of error-components models. Journal of Econometrics 68, 29–51.

Arellano, M., Bond, S., 1991. Some tests of specification for panel data: Monte Carlo
evidence and an application to employment equations. Review of Economic
Studies 58, 277–297.

Blundell, R., Bond, S., 1998. Initial conditions and moment restrictions in dynamic
panel data models. Journal of Econometrics 87, 115–143.

Bun, M.J., Carree, M.A., 2005. Bias-corrected estimation in dynamic panel data
models. Journal of Business and Economic Statistics 23, 200–210.

Bun, M., Kiviet, J., 2006. The effects of dynamic feedbacks on LS and MM estimator
accuracy in panel data model. Journal of Econometrics 132, 409–444.

Dridi, R., Renault, E., 2000. Semi-Parametric Indirect Inference. In: Econometrics
Paper Series, vol. 392. London School of Economics.

Duffie, D., Singleton, K.J., 1993. Simulated moments estimation of Markov models
of asset prices. Econometrica 61, 929–952.

Efron, B., 1979. Bootstrap methods: Another look at the jackknife. Annals of
Statistics 7, 1–26.

Everaert, G., Pozzi, L., 2007. Bootstrap based bias correction for homogeneous
dynamic panels. Journal of Economic and Dynamics Control 31, 1160–1184.

Gallant, A.R., Tauchen, G., 1996.Whichmoments tomatch? Econometric Theory 12,
657–681.



Author's personal copy

C. Gouriéroux et al. / Journal of Econometrics 157 (2010) 68–77 77

Garcia, R., Renault, E., Veredas, D., 2004. Estimation of stable distributions by
indirect inference. University of North Carolina at Chapel Hill (manuscript).

Gouriéroux, C., Monfort, A., Renault, E., 1993. Indirect inference. Journal of Applied
Econometrics 8, S85–S118.

Gouriéroux, C., Renault, E., Touzi, N., 2000. Calibration by simulation for small
sample bias correction. In: Mariano, R.S., Schuermann, T., Weeks, M. (Eds.),
Simulation-Based Inference in Econometrics: Methods and Applications.
Cambridge University Press, pp. 328–358.

Hahn, J., 1997. Efficient estimation of panel data models with sequential moment
restrictions. Journal of Econometrics 79, 1–21.

Hahn, J., Kuersteiner, G., 2002. Asymptotically unbiased inference for a dynamic
model with fixed effects when both n and T are large. Econometrica 70,
1639–1657.

Hahn, J., Newey, W., 2004. Jackknife and analytical bias reduction for nonlinear
panel models. Econometrica 72, 1295–1319.

Han, C., Phillips, P.C.B., 2009. GMM estimation for dynamic panels with fixed effects
17 and strong instruments at unity. Econometric Theory (forthcoming).

Holtz-Eakin, D., Newey, W., Rosen, H.S., 1988. Estimating vector autoregressions
with panel data. Econometrica 56, 1371–1395.

Hurwicz, L., 1950. Least square bias in time series. In: Koopmans, T. (Ed.),
Statistical Inference in Dynamic Economic Models. Wiley, New York, pp.
365–383.

Keane, M., Smith, A.A., 2003. Generalized indirect inference for discrete choice
models. Department of Economics, Yale University (manuscript).

Kendall, M.G., 1954. Notes on bias in the estimation of autocorrelation. Biometrika
41, 403–404.

Kiviet, I., 1995. On bias, inconsistency and efficiency of various estimators in
dynamic panel data models. Journal of Econometrics 68, 53–78.

Lee, Y., 2008a. Bias correction in dynamic panels under time seriesmisspecification.
University of Michigan, mimeographed.

Lee, Y., 2008b. Nonparametric estimation of dynamic panel models with fixed
effects. University of Michigan, mimeographed.

Monfardini, C., 1998. Estimating stochastic volatility models through indirect
inference. The Econometrics Journal 1, C113–C128.

Monfort, A., 1996. A reappraisal of misspecified econometric models. Econometric
Theory 12, 597–619.

Nickell, S., 1981. Biases in dynamic models with fixed effects. Econometrica 49,
1417–1426.

Orcutt, G.H., Winokur, H.S., 1969. First order autoregression: Inference, estimation
and prediction. Econometrica 37, 1–14.

Phillips, P.C.B., Sul, D., 2007. Bias in dynamic panel estimation with fixed effects,
incidental trends and cross section dependence. Journal of Econometrics 137,
162–188.

Phillips, P.C.B., Yu, J., 2009a. Maximum likelihood and Gaussian estimation of
continuous time models in finance. In: Andersen, T., Davis, R.A., Kreiss, J.P.,
Mikosch, T. (Eds.), Handbook of Financial Time Series. Springer, New York,
pp. 497–530.

Phillips, P.C.B., Yu, J., 2009b. Simulation-based estimation of contingent-claims
prices. Review of Financial Studies 22, 3669–3705.

Quenouille, M.H., 1956. Notes on bias in estimation. Biometrika 43, 353–360.
Smith, A.A., 1993. Estimating nonlinear time-series models using simulated vector
autoregressions. Journal of Applied Econometrics 8, S63–S84.

van de Vaart, A.W., 2000. Asymptotic Statistics. Cambridge University Press, New
York.

Ziliak, J.P., 1997. Efficient estimation with panel data when instruments are
predetermined: An empirical comparison of moment-condition estimators.
Journal of Business and Economic Statistics 15, 419–431.




