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Abstract

Based on the Girsanov theorem, this paper obtains the exact distribution of
the maximum likelihood estimator of structural break point in a continuous time
model. The exact distribution is asymmetric and tri-modal, indicating that the
estimator is biased. These two properties are also found in the finite sample distri-
bution of the least squares (LS) estimator of structural break point in the discrete
time model, suggesting the classical long-span asymptotic theory is inadequate.
The paper then builds a continuous time approximation to the discrete time model
and develops an in-fill asymptotic theory for the LS estimator. The in-fill asymp-
totic distribution is asymmetric and tri-modal and delivers good approximations
to the finite sample distribution. To reduce the bias in the estimation of both the
continuous time and the discrete time models, a simulation-based method based
on the indirect estimation (IE) approach is proposed. Monte Carlo studies show
that IE achieves substantial bias reductions.
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1 Introduction

Statistical inference of structural breaks has received a great deal of attention both in

the econometrics and in the statistics literature over the last several decades. Tremen-

dous efforts have been made in developing the asymptotic theory for the estimation

of the fractional structural break point (the absolute structural break point divided

by the total sample size), including the consistency, the rate of convergence, and the

limiting distribution; see, for example, Yao (1987) and Bai (1994, 1997b), among oth-

ers. Asymptotic theory has been developed under the long-span asymptotic scheme

under which the time span of data is assumed to infinity. This long-span asymptotic

distribution is the distribution of the location of the extremum of a two-sided Brownian

motion with triangular drift over the interval (−∞,+∞). It is symmetric with the true
break point being the unique mode, indicating that the estimators have no asymptotic

bias. Interestingly and rather surprisingly, how well the asymptotic distribution works

in finite sample is largely unknown.

Focusing on simple models with a shift in mean, this paper systematically investi-

gates the performance of the long-span asymptotic distribution, the exact distributional

properties, and the bias problem in the estimation of the structural break point. To the

best of our knowledge, our study is the first systematic analysis of the exact distribution

theory in the literature.

Our paper makes several contributions to the literature. First, by using the Girsanov

theorem, we develop the exact distribution of the maximum likelihood (ML) estimator

of the structural break point in a continuous time model, assuming that a continuous

record over a finite time span is available. It is shown that the exact distribution is

asymmetric when the true break point is not in the middle of the sample. Moreover, the

exact distribution has trimodality when the signal-to-noise ratio (the break size over

the standard deviation of the error term) is not very large, regardless of the location of

the true break point. Asymmetry together with trimodality makes the ML estimator

biased and suggests that the long-span asymptotic distribution does not conform to

the exact distribution. It is also found that upward (downward) bias is obtained when

the fractional structural break point is smaller (larger) than 50%, and the further the

fractional structural break point away from 50%, the larger the bias.

Second, the properties of asymmetry and trimodality are found to be shared by the

finite sample distribution of the LS estimator of the structural break point in the dis-

crete time model, suggesting a substantial bias in the LS estimator and the inadequacy

of the long-span asymptotic distribution in finite sample approximations. To better ap-
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proximate the finite sample distribution, we consider a continuous time approximation

to the discrete time model with a structural break in mean and develop an in-fill asymp-

totic theory for the LS estimator. The developed in-fill asymptotic distribution retains

the properties of asymmetry and trimodality, and, hence, provides better approxima-

tions than the long-span asymptotic distribution. The in-fill asymptotic scheme leads

to a break size of a smaller order than that assumed in Bai (1994). It is this important

difference in the break size that leads to a different asymptotic distribution.

Third, an indirect estimation (IE) procedure is proposed to reduce bias in the es-

timation of the structural break point. One standard method for bias reduction is to

obtain an analytical form to approximate the bias and then bias-correct the original

estimator via the analytical approach as in Kendall (1954) and Yu (2012). However, it

is diffi cult to use the analytical approach here, as the bias formula is diffi cult to obtain

analytically. The primary advantage of IE lies in its merit in calibrating the binding

function via simulations and avoiding the need to obtain an analytical expression for

the bias function. It is shown that IE, without using the analytical form of the bias,

achieves substantial bias reduction.

The in-fill asymptotic treatment is not new in the literature.1 Recently, Yu (2014)

and Zhou and Yu (2015) demonstrated that the in-fill asymptotic distribution provides

better approximations to the finite sample distribution than the long-span asymptotic

distribution in persistent autoregressive models. To the best of our knowledge, it is the
first time in the literature of structural breaks that the in-fill asymptotic distribution

is derived. As in Yu (2014) and Zhou and Yu (2015), we also find that the in-fill

asymptotic distribution conforms better to the finite sample distribution than the long-

span counterpart.

The rest of the paper is organized as follows. Section 2 gives a brief review of

the literature and provides the motivations of the paper. Section 3 develops the ex-

act distribution of the ML estimator of structural break point in a continuous time

model. Section 4 establishes a continuous time approximation to the discrete time

model previously considered in the literature and develops the in-fill asymptotic theory

for the LS estimator under different settings. The IE procedure and its applications

in the continuous time and the discrete time models with a structural break are in-

troduced in Section 5. In Section 6, we provide simulation results and compare the

finite sample performance of IE with that of the traditional estimation methods and of

1Phillips (1987) and Perron (1991) developed the in-fill asymptotic distributions of the LS esti-
mator of the autoregressive parameter. Barndorff-Nielsen and Shephard (2004) developed the in-fill
asymptotic distribution of the LS estimator in regression models.
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other simulation-based methods. Section 7 concludes. All proofs are contained in the

Appendix.

2 Literature Review and Motivations

The literature on estimating structural break points is too extensive to review. A

partial list of contributions include Hinkley (1970), Hawkins et al. (1986), Yao (1987),

Bai (1994, 1995, 1997a, 1997b), Bai and Perron (1998) and Bai et al. (1998). In these

studies, large sample theories for different estimators under various model settings are

established.

A simplified model considered in Hinkley (1970) is

Yt =

{
µ+ εt if t ≤ k0

(µ+ δ) + εt if t > k0

, t = 1, . . . , T, (1)

where T denotes the number of observations, εt is a sequence of independent and iden-

tically distributed (i.i.d.) random variables with E (εt) = 0 and V ar (εt) = σ2. Let k

denotes the break point with true value k0. The condition of 1 ≤ k0 < T is assumed to

ensure that one break happens. The fractional break point is defined as τ = k/T with

true value τ 0 = k0/T . Constant µ measures the mean of Yt before break and δ is the

break size. Let the probability density function (pdf) of Yt be f(Yt, µ) for t ≤ k0 and

f(Yt, µ + δ) for t > k0. Under the assumption that the functional form of f (·, ·) and
the parameters µ and δ are all known, the ML estimator of k is defined as

k̂ML,T = arg max
k=1,...,T−1

{
k∑
t=1

log f(Yt, µ) +
T∑

t=k+1

log f(Yt, µ+ δ)

}
. (2)

The corresponding estimator of τ is τ̂ML,T = k̂ML,T/T . Yao (1987) developed a long-

span limiting distribution under the scheme of T →∞ followed by δ → 0 which takes

the form of

δ2I (µ)
(
k̂ML,∞ − k0

)
d−→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
, (3)

where I (µ) is the Fisher information of the density function f(y, µ), W (u) is a two-

sided Brownian motion which will be defined below, and d−→ denotes convergence in

distribution. The closed-form expressions for the pdf and the cumulative distribution

function (cdf) of the long-span limiting distribution were derived in Yao (1987).
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Figure 1: The pdfs of arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
and a standard normal distribution.

For the same model as in Equation (1) with unknown parameters µ and δ, Hawkins

et al. (1986) and Bai (1994) studied the long-span asymptotic behavior of the LS

estimator of the break point. The LS estimator takes the form of

k̂LS,T = arg min
k=1,...,T−1

{
S2
k

}
= arg max

k=1,...,T−1

{
[Vk (Yt)]

2} , (4)

where S2
k =

k∑
t=1

(
Yt − Y k

)2
+

T∑
t=k+1

(
Yt − Y

∗
k

)2

with Y k (Y
∗
k) being the sample mean

of the first k (last T − k) observations and [Vk (Yt)]
2 = T (T−k)

T 2

(
Y
∗
k − Y k

)2

. The cor-

responding estimator of τ is τ̂LS,T = k̂LS,T/T . Hawkins et al. (1986) showed that

Tα (τ̂LS,T − τ 0)
p−→ 0 for any α < 1/2, where

p−→ denotes convergence in probability.

Bai (1994) improved the rate of convergence by showing that τ̂LS,T − τ 0 = Op

(
1
Tδ2

)
.

In addition, by letting the break size depend on T (denoted by δT ), and assuming that

δT → 0 with
√
TδT√
log T
→∞ as T →∞, Bai (1994) derived an asymptotic distribution as

T (δT/σ)2 (τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
, (5)

which is the same as in (3). This long-span asymptotic distribution in (5) is widely used

as an approximation to the finite sample distribution for models with a small break.

Note that when εt is normally distributed, the Fisher information I (µ) in Equation (3)

is σ−2. In this case, the asymptotic theory for τ̂ML,T in Yao (1987) is exactly the same

as that for τ̂LS,T in Bai (1994). However, Bai’s results were obtained without assuming

Gaussian errors, and, hence, an invariance principle applies.

Figure 1 plots the pdf of the limiting distribution given in (3) and (5). For the

purpose of comparison, the pdf of a standard normal distribution is also plotted. It
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Figure 2: The pdf of the finite sample distribution of T
(
δT
σ

)2
(τ̂LS,T − τ 0) when T = 100,

δT = 0.2, σ = 1 and τ 0 = 0.3 in Model (1) and the pdf of arg max
u∈(−∞,∞)

{
W (u)− 1

2
|u|
}
.

can be seen that, relative to the standard normal distribution, the limiting distribution

obtained in the literature has much fatter tails and a much higher peak. More impor-

tantly, the limiting distribution has a unique mode at the origin and is symmetric about

it, suggesting that both the ML estimator and the LS estimator have no asymptotic

bias, no matter what the true value of the structural break point is.

Unfortunately, the long-span asymptotic distribution developed in the literature

does not perform well in many empirically relevant cases. To see this problem, in Figure

2 we plot the pdf of the long-span asymptotic distribution listed in (5) and the finite

sample distribution of T
(
δ
σ

)2
(τ̂LS,T − τ 0) when T = 100, δ = 0.2, σ = 1 and τ 0 = 0.3

in Model (1). The finite sample distribution is obtained from simulated data. It is clear

that the two distributions are very different from each other. Three striking distinctions

can be found. First, the finite sample distribution is asymmetric, whereas the long-span

asymptotic distribution is symmetric. Second, the finite sample distribution displays

trimodality while the long-span asymptotic distribution has a unique mode. Third, the

finite sample distribution indicates that the LS estimator τ̂LS,T is seriously biased. The

simulation result shows that the bias is 0.1704, which is about 57% of the true value.

In contrast, there is no bias suggested by the long-span asymptotic distribution. It is

this inadequacy of the long-span asymptotic distribution for approximating the finite

sample distribution that motivates us to develop an alternative distribution theory for

the estimation of the structural break point.
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3 A Continuous Time Model

In this section we focus our attention on a continuous time model with a structural

break in the drift function. The model considered here is

dX(t) =

(
µ+

(
δ∗

ε

)
1[t>τ0]

)
dt+ σdB(t), (6)

where t ∈ [0, 1], 1[t>τ0] is an indicator function, µ, δ
∗, ε and τ 0 are constants with δ

∗/ε

being the break size, σ is another constant capturing the noise level, and B(t) denotes a

standard Brownian motion. The condition of τ 0 ∈ [α, β] with 0 < α < β < 1 is assumed

to ensure that one break happens during the time interval (0, 1). We further assume

that a continuous record is available and all parameters are known except for τ 0. With

a continuous record, assuming a more complex structure for σ such as a time varying

diffusion will not change the analysis because the diffusion function can be estimated

by quadratic variation without estimation error.

The continuous time diffusion model is a natural choice to study the asymmetry of

the sample information before and after the break point. This is because it is well-known

in the continuous time literature that the longer the time span over which a continuous

record is available, the more information that the continuous record contains about

the parameters in the drift function; see Phillips and Yu (2009a, 2009b). Hence, when

τ 0 6= 1/2, the amount of information contained by observations over the time interval

[0, τ 0] is different from that over the time interval [τ 0, 1]. This difference is captured

by the asymmetry in the length of the time span before and after the break point.

Therefore, the exact distribution of the ML estimator of the structural break point is

expected to be asymmetric.

For any τ ∈ (0, 1) we can obtain the exact log-likelihood function of Model (6) via

the Girsanov Theorem as2

logL(τ) = log
dPτ
dPB

=
1

σ2

{∫ 1

0

(
µ+

(
δ∗

ε

)
1[t>τ ]

)
dX(t)− 1

2

∫ 1

0

(
µ+

(
δ∗

ε

)
1[t>τ ]

)2

dt

}
,

where Pτ is the probability measure corresponding to Model (6) with τ 0 being replaced

by τ for any τ ∈ (0, 1) and PB is the probability measure corresponding to B(t). This

leads to the ML estimator of τ 0 as

τ̂ML = arg max
τ∈(0,1)

logL(τ). (7)

2See also Phillips and Yu (2009b) for a recent usage of the Girsanov Theorem in estimating contin-
uous time models.
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Following the literature, we now define a two-sided Brownian motion as

W (u) =

{
W1 (−u) = B(τ 0)−B(τ 0 − (−u)) if u ≤ 0

W2 (u) = B(τ 0)−B(τ 0 + u) if u > 0
, (8)

whereW1 (s) = B(τ 0)−B(τ 0− s) andW2 (s) = B(τ 0)−B(τ 0 + s) are two independent

Brownian motions composed by increments of the standard Brownian motion B(·)
before and after τ 0, respectively. Theorem 3.1 reports the exact distribution of τ̂ML.

Theorem 3.1 Consider Model (6) with a continuous record being available. For the
ML estimator τ̂ML defined in (7),

(a) when ε is a constant, we have the exact distribution as(
δ∗

σε

)2

(τ̂ML − τ 0)
d
= arg max

u∈
(
−τ0( δ

∗
σε)

2
,(1−τ0)( δ∗σε)

2
)
{
W (u)− |u|

2

}
; (9)

(b) when ε→ 0, the break size δ∗/ε→∞, we have the small-ε distribution as(
δ∗

σε

)2

(τ̂ML − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− |u|

2

}
,

whereW (u) is the two-sided Brownian motion defined in (8), and d
= denotes equivalence

in distribution.

Part (a) of Theorem 3.1 gives the exact distribution of τ̂ML when a continuous

record over a finite time span is available. It is different from the long-span limiting

distribution developed in the literature as in (5) in two obvious aspects. First, the

limiting distribution in (5) corresponds to the location of the extremum of W (u)− 1
2
|u|

over the interval of (−∞,∞). As the interval is symmetric about zero, the limiting

distribution is symmetric too. However, the exact distribution in (9) corresponds to the

interval of
(
−τ 0

(
δ∗

σε

)2
, (1− τ 0)

(
δ∗

σε

)2
)
, which depends on the true value of the fractional

break point τ 0. Only when the true break point is exactly in the middle of the sample,

i.e., τ 0 = 1/2, does the interval become
(
−
(
δ∗

σε

)2
/2,
(
δ∗

σε

)2
/2
)
, being symmetric about

the origin. In this case the exact distribution is symmetric. However, if τ 0 is not 1/2,

the interval and hence the exact distribution will be asymmetric, indicating that τ̂ML

is biased. It is easy to see that the exact distribution in (9) suggests upward bias when

τ 0 < 1/2 and downward bias when τ 0 > 1/2, and the further τ 0 away from 1/2, the

larger the bias. In addition, the signal-to-noise ratio δ∗

σε
contributes to the degree of

asymmetry of the interval, and, hence, affects the exact distribution and the magnitude
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Figure 3: The density of τ̂ML − τ 0 given in Equation (9) when τ 0 = 0.4, 0.5, 0.6 (the
left, middle and right panel respectively) and the signal-to-noise ratio ( δ

∗

σε
) is 1.

of bias. These findings are confirmed by the simulation results reported in Figures 3-4,

in which we plot the density functions of the exact distribution when τ 0 = 0.4, 0.5, 0.6

(the left, middle and right panel respectively), ε = 1 and δ∗

σε
being 1 and 4, respectively.

Second, the interval to locate the argmax in the exact distribution in (9) is always

bounded. Whereas, the interval to locate the argmax in the long-span limiting distrib-

ution in (5) is unbounded. Such a difference has an implication for the modality of the

distribution. As shown in Figure 1, the long-span limiting distribution has a unique

mode at the origin. Whereas, Figures 3-4 shows that the exact distribution displays

trimodality. One mode is at the origin. The other two modes are at the two boundary

points, −τ 0

(
δ∗

σε

)2
and (1− τ 0)

(
δ∗

σε

)2
. When τ 0 = 1/2, the two modes at the boundary

points have the same height. When τ 0 6= 1/2, the two modes at the boundary points

do not have the same height. From the comparison of Figures 3-4, we can also find

that the modes at the two boundary points are higher when the signal-to-noise ratio is

smaller. As a result, for the case where τ 0 6= 1/2, the exact distribution is more skewed

and leads to a larger bias of τ̂ML when the signal-to-noise ratio is smaller.

The mode at the origin is well expected. This is because the drift term and the

random term inW (u)− 1
2
|u| are −1

2
|u| andW (u) = Op(

√
|u|), respectively. When |u| is

large, the negative drift term dominates the random term. As a result, the probability

for W (u) − 1
2
|u| to reach the maximum at a large value of |u| should be small, and

decreasing as |u| getting larger. In the mean time, because of the randomness in W (u),

it is still possible for W (u) − 1
2
|u| to reach the maximum at any large value of |u|.

This also explains the shape of the long-span limiting distribution in (5) as apparent in

Figure 1.

When the interval of the exact distribution in (9) is bounded with a comparatively

small value of δ
∗

σε
, 1

2
|u| takes small values even at the boundary points. This means that

the negative drift term becomes less dominant, hence, it is more likely for W (u)− 1
2
|u|
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to reach the maximum in the neighborhoods of the two boundary points. To explain

why there are two modes at the two boundary points, take the right boundary point

(1− τ 0)
(
δ∗

σε

)2
as an example. Being a mode at this boundary point means that it is

more likely for W (u)− 1
2
|u| to reach the maximum at (1− τ 0)

(
δ∗

σε

)2
than at any point

arbitrarily close to but strictly less than (1− τ 0)
(
δ∗

σε

)2
. Given the randomness ofW (u),

the probability for W (u)− 1
2
|u| to reach the maximum in any small left neighborhood

of (1− τ 0)
(
δ∗

σε

)2
is nonzero. Conditional on the event that W (u) − 1

2
|u| reaches the

maximum in a small left neighborhood, for (1− τ 0)
(
δ∗

σε

)2
to be the arg max point,

the value of W (u) − 1
2
|u| at (1− τ 0)

(
δ∗

σε

)2
only needs to be larger than the value of

W (u)− 1
2
|u| at the points smaller than (1− τ 0)

(
δ∗

σε

)2
. However, for any interior point

to be the arg max, we have to compare the value of W (u) − 1
2
|u| at this interior point

with that at both sides of this interior point. Therefore, (1− τ 0)
(
δ∗

σε

)2
is more likely to

be the arg max of W (u)− 1
2
|u| than any interior point. Similar arguments apply to the

other boundary point, −τ 0

(
δ∗

σε

)2
.

When the signal-to-noise ratio δ∗

σε
gets smaller, the values of the two boundary points

become smaller too. Hence, the probabilities of W (u)− 1
2
|u| reaching its maximum in

the neighborhoods of the two boundary points get larger, leading to larger values of

the modes at the two boundary points. Similar arguments explain the reason why the

boundary point closer to the origin has a larger mode than the other boundary point.

Moreover, when δ∗

σε
is very small, the length of the interval over which W (u) − 1

2
|u| is

maximized is very small. In this case, the negative drift term is stochastically dominated

by the random term inW (u)− 1
2
|u|. This explains why the origin may not be the highest

mode when the signal-to-noise ratio is very small, as apparent in Figure 3.

Part (b) of Theorem 3.1 shows that the asymptotic distribution of τ̂ML when ε→ 0

is the same as the long-span asymptotic distribution developed in Yao (1986) and Bai

(1994). The same small-ε asymptotic distribution is also obtained in Ibragimov and

Has’minskii (1981).

4 Continuous Time Approximation to Discrete Time
Models

Motivated by the findings in the exact distribution in the continuous time model, in this

section we first build a continuous time approximation to the discrete time structural

break model widely studied in the literature. Then, we develop the in-fill asymptotic

theory for the LS estimator of the break point, and show that the in-fill asymptotic

distribution provides better approximations to the finite sample distribution than the

10
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Figure 4: The density of τ̂ML − τ 0 given in Equation (9) when τ 0 = 0.4, 0.5, 0.6 (the
left, middle and right panel respectively) and the signal-to-noise ratio δ∗

σε
is 4.

long-span asymptotic distribution developed in the literature.

Consider the continuous time process X (t) defined in (6). We now assume that the

observations are only available at discrete time points, say at T equally spaced points

{th}Tt=1, where h is the sampling interval and T = 1/h is the sample size. For simplicity,

we assume the structural break point Tτ 0 to be an integer, denoted by k0. Let {Xth}Tt=1

denote the discrete time observations. Then, the exact discretization of the continuous

time process defined in (6) can be written as

Xth −X(t−1)h =

{
µh+

√
hεt for t = 1, · · · , k0,

(µ+ δ∗/ε)h+
√
hεt for t = k0 + 1, · · · , T,

where εt
iid∼ N(0, σ2). Letting Zt =

(
Xth −X(t−1)h

)
/
√
h, we have

Zt =

{
µ
√
h+ εt if t ≤ k0,

(µ+ δ∗/ε)
√
h+ εt if t > k0.

(10)

It can be seen that, whenever h is fixed, the discrete time model in Equation (10) is

the same as the one studied in Yao (1987) and Bai (1994) given in Equation (1) with

εt being normally distributed and the shift in mean being δ = (δ∗/ε)
√
h.

We now develop the asymptotic theory of the LS estimator of τ 0 = k0/T under the

in-fill asymptotic scheme where h→ 0 with a fixed time span Th = 1. Clearly, if h→ 0,

the sample size T → ∞. In the limit of h → 0, a continuous record is available. As it

can be seen clearly in the proofs in Appendix, the development of the in-fill asymptotic

theory does not require the assumption of Gaussian errors. Therefore, an invariance

principle applies. Moreover, the in-fill asymptotic theory continues to hold when µ
√
h in

Model (10) is replaced with µ. In other words, making the means of Zt before and after
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break to be around a constant different from zero, instead of converging to zero when

h→ 0 as required in Model (10), would not change the in-fill asymptotics developed in

the section.

With a fixed ε, the in-fill asymptotic scheme implies that the break size (δ∗/ε)
√
h

goes to zero at the rate of 1/
√
T . This rate is faster than that assumed in Bai (1994).

This key difference makes our in-fill asymptotic theory different from the long-span

asymptotic theory developed in Bai (1994). When µ and δ∗/ε are known, the in-fill

asymptotic distribution is shown to be the same as the exact distribution of the ML

estimator when a continuous record is available, as given in Part (a) of Theorem 3.1.

When µ and δ∗/ε are unknown, we derive an in-fill asymptotic distribution which is

asymmetric if τ 0 6= 1/2, and has trimodality. In both cases, simulation results show that

the in-fill asymptotic distribution provides better approximations to the finite sample

distribution.

We also consider the in-fill asymptotic scheme with ε → 0 and (δ∗/ε)
√
h → 0. In

this case the break size goes to zero but at a rate slower than 1/
√
T . It is shown that

the in-fill asymptotic distribution with ε→ 0 is the same as the long-span asymptotic

distribution obtained in Yao (1987) and Bai (1994). Hence, our setup and results

generalize and connect naturally with those in the literature.

4.1 In-fill asymptotics when only τ is unknown

When µ and δ∗/ε are known, the LS estimator of k is defined as

k̂LS,T = arg min
k=1,...,T−1

{
k∑
t=1

(
Zt − µ

√
h
)2

+
T∑

t=k+1

(
Zt − (µ+ δ∗/ε)

√
h
)2
}

= arg max
k=1,...,T−1

{
−(δ∗/ε)

√
h

k∑
t=1

(
Zt − µ

√
h
)

+ (δ∗/ε)2 hk/2

}
. (11)

The corresponding estimator of τ is τ̂LS,T = k̂LS,T/T . When the errors in Model (10) are

normally distributed, the LS estimators of k and τ are identical to the ML estimators

as defined in Yao (1987). Compared to Yao’s long-span asymptotic distribution, the

in-fill asymptotic distribution given in Part (a) of Theorem 4.1 provides an alternative

asymptotic approximation to the finite sample distribution of τ̂LS,T . Part (b) of the

theorem connects our in-fill asymptotics to Yao’s long-span asymptotics.

Theorem 4.1 Consider Model (10) with known µ and δ∗/ε. Denote the LS estimator
τ̂LS,T = k̂LS,T/T with k̂LS,T defined in (11). Then,

12



(a) when h→ 0 with a fixed ε, we have the in-fill asymptotic distribution as

T

(
δ∗

σε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

u∈
(
−τ0( δ

∗
σε)

2
,(1−τ0)( δ∗σε)

2
)
{
W (u)− |u|

2

}
;

(b) when h → 0 and ε → 0 simultaneously with (δ∗/ε)
√
h → 0, we have the small-ε

in-fill asymptotic distribution as

T

(
δ∗

σε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− |u|

2

}
,

where W (u) is the two-sided Brownian motion defined in (8).

Remark 4.1 Note that T = 1/h implies T
(
δ∗

σε

√
h
)2

= (δ∗/ (σε))2. Hence, the in-fill

asymptotic distribution of τ̂LS,T in Theorem 4.1 is the same as the exact distribution of

τ̂ML obtained in Theorem 3.1.

Remark 4.2 When h → 0 with a fixed ε, T
(
δ∗

σε

√
h
)2

= (δ∗/ (σε))2 is a constant. In

this case, Part (a) of Theorem 4.1 shows that τ̂LS,T is inconsistent and k̂LS,T−k0 diverges

at the rate of T . When h→ 0 and ε→ 0 simultaneously with (δ∗/ε)
√
h→ 0, the break

size shrinks to zero but at a rate slower than 1/
√
T . In this case, T

(
δ∗

σε

√
h
)2

→ ∞
and τ̂LS,T becomes consistent as shown by Part (b) of Theorem 4.1. Moreover, the

small-ε in-fill asymptotic distribution obtained in Part (b) of Theorem 4.1 is the same

as the long-span asymptotic distribution obtained in Bai (1994). Clearly, by relaxing

the assumption of Bai, we get the same asymptotic distribution.

Remark 4.3 The proof of Theorem 4.1 does not depend on the assumption of Gaussian
errors. Therefore, an invariance principle applies to the in-fill asymptotics. Moreover,

the proof of Theorem 4.1 can be easily extended to the case where the errors in Model

(10) follow a weakly stationary process with a long-run variance [a (1)]2. In this case,

the results in Theorem 4.1 still hold but with σ2 being replaced by [a (1)]2.

Figure 5 plots the finite sample distribution of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0) when τ 0 =

0.3, 0.5, 0.7 (the left, middle and right panel respectively) obtained from simulations,

the density of the in-fill asymptotic distribution given in Part (a) of Theorem 4.1 and

the density of the long-span limiting distribution given in Yao (1987). The data are

simulated from Model (10) with µ = 0, δ∗ = 2, ε = 1, σ = 1 and h = 1/100. So

the break size is
(
δ∗

ε

)√
h = 0.2. The experiment is replicated 100,000 times to obtain

the density. The first part of Table 1 reports the finite sample bias of τ̂LS,T , the bias

13



Table 1: The table shows the finite sample bias of τ̂LS,T , the bias from the in-fill asymp-
totic distribution, and the bias from the long-span asymptotic distribution. These three
kinds of bias are denoted by FS1, IF1, LS1, respectively, when τ 0 is the only unknown
parameter; and are denoted by FS2, IF2, LS2, respectively, when more parameters are
unknown. The number of replications is 100,000.

δ∗

σε
2 2 4 4 6 6

τ 0 0.3 0.7 0.3 0.7 0.3 0.7
FS1 .0909 -.0921 .0307 -.0305 .0078 -.0080
IF1 .0911 -.0903 .0299 -.0302 .0073 -.0072
LS1 0 0 0 0 0 0
FS2 .1704 -.1717 .1068 -.1062 .0511 -.0495
IF2 .1738 -.1741 .1140 -.1142 .0549 -.0555
LS2 0 0 0 0 0 0
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Figure 5: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle

and right panel respectively) and δ∗

σε
= 2. The blue solid line is the finite sample

distribution when T = 100; the black broken line is the density given in Part (a)
of Theorem 4.1; and the red dotted line is the long-span limiting distribution in Yao
(1987).
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implied by the in-fill asymptotic distribution in Part (a) of Theorem 4.1, and the bias

implied by the long-span limiting distribution in Yao (1987), for the cases where the

signal-to-noise ratio δ∗

σε
= 2, 4, 6, respectively.

Several features are apparent in Figure 5 and the first part of Table 1. First, the
finite sample distribution is not symmetric about 0 when τ 0 6= 1/2. In particular, if τ 0

is smaller (larger) than 1/2, the density is positively (negatively) skewed, indicating an

upward (downward) bias in τ̂LS,T . The bias is 30% above the true value when τ 0 = 0.3

which is substantial. Second, the finite sample distribution has trimodality. The origin

is one of the three modes and the two boundary points, −τ 0

(
δ∗

σε

)2
and (1− τ 0)

(
δ∗

σε

)2
,

are the other two. Third and most importantly, the in-fill asymptotic distribution

given in Part (a) of Theorem 4.1 shares the two important features of the finite sample

distribution, namely, asymmetry and trimodality, and captures the finite sample bias

very well. Not surprisingly, it provides much better approximations to the finite sample

distribution than the long-span asymptotic distribution. Fourth, as revealed by the first

part of Table 1, as the signal-to-noise ratio δ∗

σε
increases, the magnitude of asymmetry

in the finite sample distribution decreases, and, hence, the finite sample bias becomes

smaller. This property is also well captured by the in-fill asymptotics.

4.2 In-fill asymptotics with more unknown parameters

When µ and δ∗/ε are unknown, the means before and after the break point have to be

estimated. As in Bai (1994), the LS estimator of the break point is now defined as,

k̂LS,T = arg min
k=1,...,T−1

{
k∑
t=1

(
Zt − Zk

)2
+

T∑
t=k+1

(
Zt − Z

∗
k

)2
}

= arg max
k

{
[Vk (Zt)]

2} ,
(12)

where Zk (Z
∗
k) is the sample mean of the first k (last T−k) observations and [Vk (Zt)]

2 =
T (T−k)
T 2

(
Z
∗
k − Zk

)2

. Similarly, τ̂LS,T = k̂LS,T/T .

Theorem 4.2 Consider Model (10) with unknown parameters of µ and δ∗/ε. For the
LS estimator τ̂LS,T = k̂LS,T/T with k̂LS,T defined in (12),

(a) when h→ 0 with a fixed ε, we have the in-fill asymptotic distribution as

T

(
δ∗

σε

√
h

)2

(τ̂LS,T − τ 0)
d−→
(
δ∗

σε

)2

arg max
u∈(−τ0,1−τ0)

[
B̃ (u)

]2

, (13)

with

B̃ (u) =

{
B1 (1− τ 0 − u)−B2 (τ 0 + u)− (1−τ0)

√
τ0+u√

1−τ0−u
δ∗

σε
for u ≤ 0

B1 (1− τ 0 − u)−B2 (τ 0 + u)− τ0
√

1−τ0−u√
τ0+u

δ∗

σε
for u > 0

,
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where B1 (s) is a standard Brownian motion and B2 (1− s) ≡ B1 (1)−B1 (s);

(b) when h → 0 and ε → 0 simultaneously with (δ∗/ε)
√
h → 0, we have the small-ε

in-fill asymptotic distribution as

T

(
δ∗

σε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

u∈(−∞,∞)

{
W (u)− |u|

2

}
,

where W (u) is the two-sided Brownian motion defined in (8).

Remark 4.4 The in-fill asymptotic distribution reported in Part (a) of Theorem 4.2 is
new to the literature. When τ 0 6= 1/2, the interval (−τ 0, 1− τ 0) is asymmetric about

zero and, not surprisingly, the in-fill asymptotic distribution is asymmetric too. When

τ 0 = 1/2, the interval becomes symmetric, and we have

B̃ (u) =

{B1 (1/2− u)−B2 (1/2 + u)−
√

1/2+u

2
√

1/2−u
δ∗

σε
for u ≤ 0

B1 (1/2− u)−B2 (1/2 + u)−
√

1/2−u
2
√

1/2+u

δ∗

σε
for u > 0

,

which is symmetrically distributed about zero. As a result, the distribution in Part (a)

of Theorem 4.2 is symmetric about zero when τ 0 = 1/2. In practice, one needs to

estimate τ and the signal-to-noise ratio δ∗

σε
and then insert the estimated values into the

in-fill asymptotic distribution reported in Part (a) of Theorem 4.2 for the purpose of

making statistical inference.

Remark 4.5 By using the Beveridge-Nelson decomposition and the functional central
limit theory for serially dependent processes, Theorem 4.2 can be extended to the case

where the errors in Model (10) follow a weakly stationary process with a long-run vari-

ance [a (1)]2. In this case, the results in Theorem 4.2 still apply with σ2 being replaced

by [a (1)]2.

Figures 6 and 7 plot the finite sample distribution of T
(
δ∗

σε

√
h
)2

(τ̂LS,T − τ 0), ob-

tained from simulated data, when τ 0 = 0.3, 0.5, 0.7 (the left, middle and right panel

respectively), the density of the in-fill asymptotic distribution given in Part (a) of The-

orem 4.2 and the density of the long-span limiting distribution given in Bai (1994). The

data are simulated from Model (10) with µ = 0, δ∗ = 2, ε = 1, σ = 1 and h = 1/100

and so the break size is
(
δ∗

ε

)√
h = 0.2 in Figure 6. Figure 7 corresponds to δ∗

ε
= 4 and

so the break size is
(
δ∗

ε

)√
h = 0.4. The experiment is replicated 100,000 times. The

finite sample bias of τ̂LS,T , the bias implied by the in-fill asymptotic distribution, and

the bias implied by the long-span limiting distribution are reported in the second part

of Table 1.
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Figure 6: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and δ∗

σε
= 2. The blue solid line is the finite sample distribution

when T = 100; the black broken line is the density given in Part (a) of Theorem 4.2;
and the red dotted line is the long-span limiting distribution in Bai (1994).

Several features are apparent in Figures 6-7 and the second part of Table 1. First,

the finite sample distribution is asymmetric about 0 when τ 0 6= 1/2, and, hence, τ̂LS,T is

biased. In particular, if τ 0 is less (greater) than 1/2, the density is positively (negatively)

skewed, leading to an upward (downward) bias in τ̂LS,T . The bias is more than 50%

of the true value if τ 0 = 0.3, which is very substantial. Second, the finite sample

distribution is not as concentrated around zero as suggested by the long-span limiting

distribution. The finite sample distribution has trimodality. The origin is one of the

three modes and the two boundary points, −
(
δ∗

σε

)2
τ 0 and

(
δ∗

σε

)2
(1− τ 0), are the other

two. The peak at the origin can be smaller than those at the boundary points when
δ∗

σε
is small. Third and most importantly, the in-fill asymptotic distribution given in

Part (a) of Theorem 4.2 has trimodality, and is asymmetric about zero when τ 0 6= 1/2.

It provides better approximations to the finite sample distribution than the long-span

limiting distribution. Comparing two parts in Table 1, it can be seen that when other

parameters are unknown, the bias in τ̂LS,T increases. In spite of the increased bias

in τ̂LS,T , it can be seen from the second part of Table 1 that the in-fill asymptotic

distribution also captures the finite sample bias very well.

5 Bias Correction via IE

Indirect estimation (IE) is a simulation-based method, first introduced by Smith (1993),

Gouriéroux et al. (1993), and Gallant and Tauchen (1996). This method is particularly

useful for estimating parameters of a model where moments and likelihood function are
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Figure 7: The pdf of T
(
δ∗

σε

√
h
)2

(τ̂LS − τ 0) when τ 0 = 0.3, 0.5, 0.7 (the left, middle and

right panel respectively) and δ∗

σε
= 4. The blue solid line is the finite sample distribution

when T = 100; the black broken line is the density given in Part (a) of Theorem 4.2;
and the red dotted line is the long-span limiting distribution in Bai (1994).

diffi cult to calculate, but the model is easy to simulate. It uses an auxiliary model to

capture aspects of the data upon which to base the estimation. The parameters of the

auxiliary model can be estimated using either the observed data or the data simulated

from the true model. Then, IE estimates are obtained by minimizing the distance

between the two sets of parameter estimates. Typically, one chooses an auxiliary model

that is amenable to estimate and well approximates the true model at the same time.

To improve finite sample properties of the original estimator, McKinnon and Smith

(1998) and Gouriéroux et al. (2000) developed an IE procedure, where the auxiliary

model is chosen to be the true model. In this section, we apply this IE procedure to

do bias correction in estimating τ and k. It is important to obtain the bias function

via simulations because the bias formula and the bias expansion of the ML and LS

estimators studied in this paper are diffi cult to obtain. The same IE procedure was also

used to do bias correction in continuous time models by Phillips and Yu (2009a, c) and

in dynamic panel data models by Gouriéroux et al. (2010).

The application of IE for estimating the structural break point proceeds as follows.

Given a parameter θ (say τ), we simulate data ỹ(θ) = {ỹs0, ỹs1, . . . , ỹsT} from the true

model, such as, Equation (6) or (10), where s = 1, ..., S, and S is the number of

simulated paths. Note that T in ỹ(θ) should be chosen as the same number of the

actual data under analysis so that the bias of the original estimator from the actual

observations can be calibrated by simulated data. IE then matches the estimate from

the actual data with that from the simulated data. To be specific, let θ̂T be an estimator

of θ from the actual data and θ̃
s

T (θ) be the estimator of θ based on the sth simulated
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path for some fixed θ. The IE estimator is then defined as

θ̂IE,T,S = arg min
θ∈Θ

∥∥∥∥∥θ̂T − 1

S

S∑
s=1

θ̃
s

T (θ)

∥∥∥∥∥ , (14)

where ‖·‖ is some finite-dimensional distance metric and Θ is the compact parame-

ter space. When S → ∞, it is expected that 1
S

∑S
s=1 θ̃

s

T (θ)
p→ E(θ̃

s

T (θ)) := bT (θ),

where bT (θ) is known as the binding function. Then the IE estimator becomes θ̂IE,T =

arg minθ∈Θ

∥∥∥θ̂T − bT (θ)
∥∥∥. Gouriéroux et al (2000) showed that if bT (θ) is an affi ne

function in θ for any T , θ̂IE,T is exactly mean-unbiased. When the auxiliary model is

identical to the true model and θ̂T is consistent, Gouriéroux et al (2000) gives non prim-

itive conditions for the second order bias corrections by θ̂IE,T . Arvanitis and Demos

(2014) provided more primitive conditions to ensure the validity of moment expansions

and the second order bias correction by θ̂IE,T .

In our setup, if τ is the only unknown parameter, we can easily obtain τ̂ IE,T based

on Equation (14). And the IE estimator of k can be obtained as k̂IE,T = τ̂ IE,T ×T . Let
the corresponding binding function be bT (k) = bT (τ)× T . Since τ̂ML in the continuous

time model and τ̂LS,T in the discrete time model are consistent when ε → 0, we can

establish the second order bias correction by the IE estimator under some regularity

conditions. To derive the asymptotic distribution of the IE estimator, one needs to verify

that the binding function is asymptotically locally relatively equicontinuous (Phillips,

2012). If the binding function is indeed asymptotically locally relatively equicontinuous

and limT→∞E(τ̂T ) = τ 0 where τ̂T is either τ̂ML or τ̂LS,T , the Delta method can be

applied to the original estimator τ̂ML and τ̂LS,T and the asymptotic theory (including

the rate of convergence and the limiting distribution) should be the same as that of the

original estimator. Unfortunately, since the pdf of τ̂T is unknown analytically, finding

the binding function is only possible numerically. As a result, calculating the derivative

of the binding function and verifying asymptotically locally relative equicontinuity of

the binding function are very diffi cult, if not impossible.

When ε is fixed, if the binding function is invertible, that is, τ̂ IE,T = b−1
T (τ̂T ), one

may informally apply the Delta method to study the effi ciency of the indirect estimator

as Var(τ̂ IE,T ) ≈
(
∂bT (τ0)
∂τ

)−2

Var(τ̂T ). Hence, the effi ciency loss (or gain) is measured by
∂bT (τ0)
∂τ

. If
∣∣∣∂bT (τ0)

∂τ

∣∣∣ < 1, τ̂ IE,T has a bigger variance than τ̂T . However, if
∣∣∣∂bT (τ0)

∂τ

∣∣∣ > 1,

τ̂ IE,T will have a smaller variance than τ̂T . As both the simulation results and the large

sample theory suggest that τ is over estimated when τ 0 < 1/2 and is under estimated

when τ 0 > 1/2, the binding function is expected to be flatter than the 45 degrees line.

As a result, τ̂ IE,T is expected to lose some effi ciency compared to τ̂T .
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As suggested by a referee, we also consider other simulation-based methods to do

bias correction, and compare their performance to the IE approach. One alternative

bias correction method is the so-called median unbiased estimator (denoted by τ̂MU,T )

as in Andrews (1993) which is obtained by replacing the sample mean in Equation

(14) with the sample median. As the finite sample distribution of τ̂T is asymmetric,

median might be able to better measure the location than the mean. When the binding

function is invertible and monotonic, τ̂MU,T is exactly median unbiased. Another bias

correction method is the bootstrap method of Efron (1979). Hall (1992) showed that

the parametric bootstrap method is an effective method for bias correction. The idea of

parametric bootstrap is to generate many bootstrap sample paths, each of which having

the same structure as the estimated path from the initial estimation, and then to obtain

a new estimate from each bootstrap sample path by applying the same estimation

procedure, denoted as τ s∗T (τ̂T ) for s = 1, ..., S. Let τ ∗T (τ̂T ) = 1
S

∑S
s=1 τ

s
∗T (τ̂T ). Then,

the bias of τ̂T when τ 0 = τ̂T is approximated by τ ∗T (τ̂T )− τ̂T , and, hence, the bootstrap
estimator is defined as τ̂BS,T = τ̂T − (τ ∗T (τ̂T )− τ̂T ) = 2τ̂T − τ ∗T (τ̂T ). Many other

simulation-based methods and their comparisons are discussed in Forneron and Ng

(2015).

In Model (10) with unknown parameters other than τ 0, using Equation (14) to obtain

τ̂ IE,T and the IE estimators of other parameters simultaneously will be numerically

very time consuming. This is because the binding function now becomes a system of

multivariate functions and has to be computed via simulations for combinations of some

chosen values of all parameters. Given that τ is the parameter of interest, we propose a

way to reduce the computational cost in calculating the binding function bT (τ). First, it

has been shown in the subsection 4.2 that the developed in-fill asymptotic distribution

well approximates the finite sample distribution. We therefore suggest to approximate

the binding function bT (τ) by its limit under the in-fill asymptotic scheme, which is

b(τ) = E

(
τ + arg maxu∈(−τ ,1−τ)

[
B̃ (u)

]2
)
where B̃ (u) is defined as in (13). To reduce

the dimensionality of the binding function, note that the in-fill asymptotic distribution

of τ̂LS,T given in (13) depends on the signal-to-noise ratio δ
∗/(σε) as a whole, not on the

break size δ∗/ε and the standard variance σ individually. We hence propose to replace

δ∗/(σε) in B̃ (u) with its LS estimate, and treat it as known when B̃ (u) and b(τ) are

simulated.
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6 Monte Carlo Results

In this section, we design three Monte Carlo experiments to examine the bias of the

ML estimator of τ in the continuous time model (6) and the LS estimator of k in the

discrete time model (1), and compare their performance to the estimators from IE and

other simulation-based bias-correction methods.

In the first experiment, data are generated fromModel (6), with µ = 0, σ = 1, ε = 1,
δ∗ = 2, 4, 6, τ 0 = 0.3, 0.5, 0.7, dB(t)

iid∼ N(0, h) and h = 1
10000

. For each combination
of δ∗ and τ 0, we obtain the ML estimate of τ from (7) and several biased corrected

estimates of τ with S = 10, 000.3 Table 2 reports the bias, the standard error, and the

root mean squared errors (RMSE) of the ML estimator, the IE estimator, the median

unbiased (MU) estimator, and the parametric bootstrap (PB) estimator, obtained from

100,000 replications. Some observations can be obtained from the table. First, when

τ 0 = 0.5, the ML estimator does not have any noticeable bias in all cases. However,

when τ 0 6= 0.5, the ML estimator suffers from a bias problem. For example, when

τ 0 = 0.3 and δ∗

σε
= 2, the bias is 0.0912, which is about 30% of the true value. This is

very substantial. In general, the bias becomes larger when τ 0 is further away from 0.5,

or when the signal-to-noise ratio gets smaller. To the best of our knowledge, such a

bias has not been discussed in the literature. Second, in all cases when τ 0 6= 0.5, the IE

approach substantially reduces the bias. For example, when δ∗

σε
= 2 and τ 0 = 70%, IE

removes about two thirds of the bias in the ML estimator. Third, the bias reduction by

IE comes with a cost of a higher variance, which causes the RMSE of the IE estimator

slightly higher than its ML counterpart. Finally. compared with IE, the MU estimator

is less effective for bias reduction but is more effi cient in terms of variance. In terms

of RMSE, the MU estimator performs better. This finding is consistent with what was

reported in Tables 7-8 of Phillips and Yu (2009a) for a continuous time model. However,

compared with IE, the PB estimator performs similarly in terms of bias reduction but

increases the variance more in almost all cases.

In the second experiment, data are generated from Model (1), with µ = 0, σ = 1,

δ = 0.2, 0.4, 0.6, τ 0 = 0.3, 0.5, 0.7, εt
iid∼ N(0, 1), T = 100.4 For each combination of δ

and τ 0, we obtain the LS estimate of k from (11) and several biased corrected estimates

of k with S = 10, 000. Table 3 reports the bias, the standard error, and the RMSE of

the LS estimator, defined in (11), and the three simulation-based estimators, obtained

3We also try other values for H, such as H = 1, 000 and 5, 000. The results are almost unchanged.
4We also try other values for T in the second and the third experiments, such as T = 80 and 120.

The results remain qualitatively unchanged.
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Figure 8: Binding functions of the LS estimator for discrete time model with T = 100

from 100,000 replications. The conclusions drawn from Table 3 are nearly identical to

those from Table 2.

To understand why IE increases the variance relative to the original estimator in

these two experiments, we plot the binding function in the second experiment in Figure

8. In Figure 8 we also plot the 45 degrees line for the purpose of comparison. Several

conclusions can be made. First, every binding function passes through the 45 degrees

line when τ 0 = 0.5, suggesting that no bias exists when τ 0 = 0.5. Second, the binding

functions are flatter than the 45 degrees line in all cases, explaining why the variance

of the IE estimator is larger than that of the ML estimator. The smaller the signal-to-

noise ratio, the flatter the binding function and hence the bigger the loss in effi ciency.

Third, no binding function is exactly a straight line. Nonlinearity can be found near

the two boundary points. Consequently, according to Gouriéroux et al. (2000), the IE

estimator is not exactly mean unbiased. Although not plotted, the binding function in

the first experiment shares the same characteristics.

In the third experiment, data are generated from Model (1), with µ = 0, σ = 1,

δ = 0.2, 0.4, 0.6, τ 0 = 0.3, 0.5, 0.7, εt
iid∼ N(0, 1), T = 100. Different from the second

experiment, all the parameters, including τ , are assumed to be unknown. For each

combination of δ
σ
and τ 0, we obtain the LS estimate of k from (12) and the indirect

estimate of k with S = 10, 000. Table 4 reports the bias, the standard error, and the

RMSE of k̂LS,T defined in (12) and k̂IE,T proposed in the end of Section 5, obtained

from 10,000 replications. Several conclusions can be made from Table 4. First, when

τ 0 = 0.5, the LS estimator does not have any noticeable bias. However, when τ 0 6= 0.5,

the LS estimator suffers from a severe bias problem. In general, the bias becomes larger

when τ 0 is further away from 0.5 or when the signal-to-noise ratio gets smaller. Second,
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Table 4: Monte Carlo comparisons of bias, standard error and RMSE of the LS estimator
and the IE estimator when more parameters other than τ 0 are unknown. The sample
size is set to be T = 100. The number of simulated paths is set at 10,000 for indirect
estimation. The number of replications is set at 10,000.

Case Bias Standard Error RMSE
δ
σ

τ 0 k0 LS IE LS IE LS IE
0.2 0.3 30 17.6198 16.8012 34.3571 33.0711 38.6117 37.0941
0.2 0.5 50 0.5371 0.5797 33.2781 31.8026 33.2824 31.8078
0.2 0.7 70 -16.6796 -15.6972 34.2376 32.9234 38.0844 36.4741
0.4 0.3 30 10.7315 8.1827 28.3439 28.8414 30.3074 29.9797
0.4 0.5 50 0.1786 0.2900 25.8011 25.9128 25.8017 25.9144
0.4 0.7 70 -11.0609 -8.4541 28.5325 28.8550 30.6015 30.0679
0.6 0.3 30 5.2745 2.1591 20.3822 21.4932 21.0536 21.6014
0.6 0.5 50 0.0426 0.0837 17.5939 18.3072 17.5939 18.3073
0.6 0.7 70 -5.2904 -2.1938 20.4234 21.3943 21.0975 21.5064

IE can reduce the bias in all cases. For example, when δ
σ

= 0.6 and τ 0 = 0.7, IE

removes about 59% of the bias of the LS estimator. Moreover, the variance of the IE

estimator is comparable to that of the LS estimator. Overall, the RMSE of the IE

estimator is similar to its LS counterpart. Unfortunately, analyzing the behavior of the

binding function here is complicated for two reasons. First, we replace the signal-to-

noise ratio δ∗/(σε) by its LS estimator which inevitably changes the curvature of the

binding function in obtaining the IE estimator. Second, in general the binding function

is a system of functions that depend on all unknown parameters.

7 Conclusions

This paper is concerned about the in-fill asymptotic approximation to the exact dis-

tribution in the estimation of structural break point in mean. We find that the exact

distributions of the traditional estimators of structural break point are often asymmet-

ric and have trimodality both in the continuous time model and in the discrete time

model. It is also found that the traditional estimators are biased. Unfortunately, the

literature on structural breaks has always focused the attention on developing asymp-

totic theory with a time span being assumed to go to infinity. The long-span limiting

distribution developed in the literature is symmetric and has the true break point as

the unique mode. As a result, it provides poor approximations to the exact distribution

in many empirically relevant cases.

In this paper we address the finite sample problem in several aspects. First, we
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derive the exact distribution of the ML estimator of the structural break point in a

continuous time model when a continuous record is available. It is shown that the

exact distribution has trimodality, regardless of the location of the break. When the

true break point is in the middle of the sample, the exact distribution is symmetric.

However, when the true break point occurs earlier (later) than the middle of the sample,

the exact distribution is skewed to the right (left), leading to a positive (negative) bias

in the ML estimator.

In a discrete time model with a break in mean, we continue to find the trimodality

and asymmetry in the finite sample distribution of the LS estimator of the structural

break point. To better approximate the finite sample distribution, we deviate from the

literature by considering a continuous time approximation to the discrete time model

and developing an in-fill asymptotic theory. For the discrete time model with the break

point being the only unknown parameter, the in-fill asymptotic distribution is the same

as the exact distribution in the continuous time model. For the discrete time model with

more unknown parameters, the in-fill asymptotic distribution is new to the literature.

We show that this distribution has trimodality and is asymmetric when the true break

point is not in the middle of the sample and the in-fill asymptotic distribution better

approximates the finite sample distribution than the long-span limiting distribution

developed in the literature.

Given that the exact distribution suggests a substantial bias in the ML/LS esti-

mators, to reduce the bias, we propose to use the IE technique to estimate the break

point. Indirect estimation inherits the asymptotic properties of the original estimator

but reduces the finite sample bias. Monte Carlo results show that the IE procedure is

effective in reducing the bias in the commonly used break point estimators.

The models considered in this paper are very simple in nature. Also, the estimators

considered are based on the full sample. Real time (and hence subsample) estimators

tend to have more serious finite sample problems. Further studies on developing better

approximations to the finite sample distribution for more realistic models and real time

estimators are needed.

Appendix
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Proof of Theorem 3.1: (a) Note that

τ̂ML = arg max
τ∈(0,1)

{logL(τ)} = arg max
τ∈(0,1)

log

(
dPτ
dBt

)
= arg max

τ∈(0,1)

[
log

(
dPτ
dBt

)
− log

(
dPτ0
dBt

)]
= arg max

τ∈(0,1)
log

(
dPτ
dPτ0

)
,

where log
(
dPτ
dPτ0

)
is the log-likelihood ratio with the expression

log

(
dPτ
dPτ0

)
=

∫ 1

0

δ∗

σε

(
1[t>τ ] − 1[t>τ0]

)
dB(t)− 1

2

∫ 1

0

(
δ∗

σε

)2 (
1[t>τ ] − 1[t>τ0]

)2
dt.

When τ ≤ τ 0, we have

log

(
dPτ
dPτ0

)
=

δ∗

σε

∫ 1

0

1[τ<t≤τ0]dB(t)− 1

2

(
δ∗

σε

)2 ∫ 1

0

1[τ<t≤τ0]dt

=
δ∗

σε

∫ τ0

τ

dB(t)− 1

2

(
δ∗

σε

)2 ∫ τ0

τ

dt

=
δ∗

σε
(B(τ 0)−B(τ))− 1

2

(
δ∗

σε

)2

(τ 0 − τ).

When τ > τ 0, we have

log

(
dPτ
dPτ0

)
= − δ

∗

σε

∫ 1

0

1[τ0<t≤τ ]dB(t)− 1

2

(
δ∗

σε

)2 ∫ 1

0

1[τ0<t≤τ ]dt

= − δ
∗

σε

∫ τ

τ0

dB(t)− 1

2

(
δ∗

σε

)2 ∫ τ

τ0

dt

=
δ∗

σε
(B(τ 0)−B(τ))− 1

2

(
δ∗

σε

)2

(τ − τ 0).

Therefore, the exact log-likelihood ratio can be written as

log

(
dPτ
dPτ0

)
=
δ∗

σε
(B(τ 0)−B(τ))− 1

2

(
δ∗

σε

)2

|τ − τ 0|.

This implies that the ML estimator of break point is

τ̂ML = arg max
τ∈(0,1)

{
δ∗

σε
(B(τ 0)−B(τ))− 1

2

(
δ∗

σε

)2

|τ − τ 0|
}
,

which leads to

τ̂ML − τ 0 = arg max
s∈(−τ0,1−τ0)

{
δ∗

σε
(B(τ 0)−B(τ 0 + s))− 1

2

(
δ∗

σε

)2

|s|
}
.
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Let W (·) be the two-sided Brownian motion defined in (8). We then have

τ̂ML − τ 0 = arg max
s∈(−τ0,1−τ0)

{
δ∗

σε
W (s)− 1

2

(
δ∗

σε

)2

|s|
}

d
= arg max

s∈(−τ0,1−τ0)

{
W

(
s

(
δ∗

σε

)2
)
− 1

2

∣∣∣∣∣s
(
δ∗

σε

)2
∣∣∣∣∣
}

d
=

(
δ∗

σε

)−2

arg max
u∈
(
−τ0( δ

∗
σε)

2
,(1−τ0)( δ∗σε)

2
)
{
W (u)− |u|

2

}
,

which gives the result in Part (a) of Theorem 3.1 immediately.

(b) It is a straightforward result of Part (a).

Proof of Theorem 4.1: (a) Let Γ (k) = −( δ
∗

ε
)
√
h

k∑
t=1

(
Zt − µ

√
h
)

+
(
δ∗

ε

)2
hk/2. Then,

the LS estimator k̂LS,T defined in (11) can be expressed as

k̂LS,T = arg max
k=1,...,T−1

{Γ (k)} = arg max
k=1,...,T−1

{Γ (k)− Γ (k0)} .

As T = 1/h,
(
δ∗

ε

√
h
)2 (

k̂LS,T − k0

)
= (δ∗/ε)2 (τ̂LS,T − τ 0) = Op (1) takes values in

the interval of
(
−τ 0 (δ∗/ε)2 , (1− τ 0) (δ∗/ε)2). Therefore, to study the in-fill asymp-

totic distribution of k̂LS,T we only need to examine the behavior of Γ (k) − Γ (k0)

for those k in the neighborhood of k0 such that k =

⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋
with s ∈(

−τ 0 (δ∗/ε)2 , (1− τ 0) (δ∗/ε)2), where b·c is the integer-valued function.
When k ≤ k0, h→ 0 with a fixed ε, we have, for any s ∈

(
−τ 0 (δ∗/ε)2 , 0

]
,

Γ (k)− Γ (k0)

= (δ∗/ε)
√
h

k0∑
t=k+1

(
Zt − µ

√
h
)
− (δ∗/ε)2 k0 − k

2
h

= (
δ∗

ε
)
√
h

k0∑
t=
⌊
k0+s( δ∗ε

√
h)

−2⌋
+1

εt −
(
δ∗

ε

)2

(
k0 −

⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋)

2
h

⇒ σW1 (−s)− |s|
2
,

where W1 (·) is a standard Brownian motion, the second equation is from the fact that

Zt − µ
√
h = εt ∼ i.i.d.(0, σ2) for t ≤ k0, and the last convergence result comes from a

straightforward application of the functional central limit theory (FCLT) for the i.i.d.

sequence.
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When k > k0, for any s ∈
(
0, (1− τ 0) (δ∗/ε)2), we have

Γ (k)− Γ (k0)

= −(δ∗/ε)
√
h

k∑
t=k0+1

(
Zt − µ

√
h
)

+ (δ∗/ε)2 k − k0

2
h

= −(δ∗/ε)
√
h

k∑
t=k0+1

(
Zt − µ

√
h− (δ∗/ε)

√
h
)
− (δ∗/ε)2 k − k0

2
h

= −(
δ∗

ε
)
√
h

⌊
k0+s( δ

∗
ε

√
h)

−2⌋∑
t=k0+1

εt −
(
δ∗

ε

)2

(⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋
− k0

)
2

h

⇒ −σW2 (s)− |s|
2

d
= σW2 (s)− |s|

2
,

where W2 (·) is a standard Brownian motion, and the third equation comes from the

fact that Zt − µ
√
h− (δ∗/ε)

√
h = εt ∼ i.i.d.(0, σ2) for t > k0.

It can be seen that W1 (·) and W2 (·) are determined by εt before and after k0

respectively. Therefore, they are two independent Brownian motions. Let W (·) be the
two-sided Brownian motion defined in (8). We then have

Γ (k)− Γ (k0) = Γ

(⌊
k0 + s

(
δ∗

ε

√
h

)−2
⌋)
− Γ (k0)⇒ σW (s)− |s|

2
.

Applying the continuous mapping theorem to the arg max function leads to

T

(
δ∗

ε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

s∈(−τ0(δ∗/ε)2,(1−τ0)(δ∗/ε)2)

{
σW (s)− |s|

2

}
= arg max

s∈(−τ0(δ∗/ε)2,(1−τ0)(δ∗/ε)2)

{
W
(
s/σ2

)
− |s|

2σ2

}
d
= σ2 arg max

u∈
(
−τ0( δ

∗
σε)

2
,(1−τ0)( δ∗σε)

2
)
{
W (u)− |u|

2

}
,

which gives the final result in Part (a) of Theorem 4.1 immediately. For a rigorous

treatment of the continuous mapping theorem for the arg max function, see Kim and

Pollard (1990).

(b) It takes three steps to derive the in-fill asymptotic distribution under the scheme

that h → 0 and ε → 0 simultaneously and (δ∗/ε)
√
h → 0. The first step is to prove

that τ̂LS,T
p−→ τ 0.

Note that when k ≤ k0,

E (Γ (k)) = −(
δ∗

ε
)
√
h

k∑
t=1

E
(
Zt − µ

√
h
)

+

(
δ∗

ε

)2
k

2
h =

(
δ∗

ε

)2
k

2
h,
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and when k > k0,

E (Γ (k)) = −(
δ∗

ε
)
√
h

k∑
t=1

E
(
Zt − µ

√
h
)

+

(
δ∗

ε

)2
k

2
h

= −(
δ∗

ε
)
√
h

k∑
t=k0+1

E
(
Zt − µ

√
h
)

+

(
δ∗

ε

)2
k

2
h

= −(
δ∗

ε
)2 (k − k0)h+

(
δ∗

ε

)2
k

2
h =

(
δ∗

ε

)2
(2k0 − k)

2
h.

We then have,

E (Γ (k0))− E (Γ (k)) =

{
(δ∗/ε)2 (k0 − k)h/2 = (δ∗/ε)2 (τ 0 − τ) /2 if k ≤ k0

(δ∗/ε)2 (k − k0)h/2 = (δ∗/ε)2 (τ − τ 0) /2 if k > k0

which leads to E (Γ (k0))− E (Γ (k)) = (δ∗/ε)2 |τ − τ 0| /2 for any 1 ≤ k < T .

It is easy to see that for any k

Γ (k)− Γ (k0) = Γ (k)− E (Γ (k)) + E (Γ (k))− E (Γ (k0))− Γ (k0) + E (Γ (k0))

≤ |Γ (k)− E (Γ (k))|+ |Γ (k0)− E (Γ (k0))|+ E (Γ (k))− E (Γ (k0)) .

As a result, E (Γ (k0))−E (Γ (k)) ≤ |Γ (k)− E (Γ (k))|+|Γ (k0)− E (Γ (k0))|−{Γ (k)− Γ (k0)}.
Given that k̂LS,T = arg max {Γ (k)}, we then have,

(δ∗/ε)2 |τ̂LS,T − τ 0| /2 ≤
∣∣∣Γ(k̂LS,T)− E (Γ

(
k̂LS,T

))∣∣∣+ |Γ (k0)− E (Γ (k0))| .

Note that, for any 1 ≤ k < T , Γ (k)−E (Γ (k)) = −( δ
∗

ε

√
h)

k∑
t=1

εt where εt ∼i.i.d.(0, σ2).

Because V ar

(
−( δ

∗

ε

√
h)

k∑
t=1

εt

)
= ( δ

∗

ε

√
h)2kσ2 = (δ∗/ε)2τσ2 with τ = k/T ∈ (0, 1), we

have Γ (k)− E (Γ (k)) = Op (δ∗/ε) as ε→ 0. Therefore, as ε→ 0,

|τ̂LS,T − τ 0| ≤ 2 (δ∗/ε)−2
{∣∣∣Γ(k̂LS,T)− E (Γ

(
k̂LS,T

))∣∣∣+ |Γ (k0)− E (Γ (k0))|
}

= 2 (δ∗/ε)−2 {Op (δ∗/ε) +Op (δ∗/ε)} = Op (ε/δ∗)
p−→ 0.

The first step is done.

The second step is to prove that τ̂LS,T − τ 0 = Op

((√
T δ∗

ε

√
h
)−2
)
. Choose a γ > 0

such that τ 0 ∈ (γ, 1− γ). Since τ̂LS,T is consistent, for every∆ > 0, Pr {τ̂LS,T /∈ (γ, 1− γ)} <
∆ when h→ 0 and ε→ 0 simultaneously with (δ∗/ε)

√
h→ 0. Thus, we now only need

to examine the behavior of Γ (k) over those k for which Tγ < k < T (1− γ). To prove
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τ̂LS,T−τ 0 = Op

((√
T δ∗

ε

√
h
)−2
)
, we shall prove Pr

{
|τ̂LS,T − τ 0| ≥M

(√
T δ∗

ε

√
h
)−2
}
→

0 when M →∞, h→ 0 and ε→ 0 simultaneously with (δ∗/ε)
√
h→ 0.

For everyM > 0, defineDT,M =

{
k | Tγ < k < T (1− γ) , |k − k0| ≥M

(
δ∗

ε

√
h
)−2
}
.

We then have

Pr

{
|τ̂LS,T − τ 0| ≥M

(√
T
δ∗

ε

√
h

)−2
}

≤ Pr {τ̂LS,T /∈ (γ, 1− γ)}+ Pr

{
τ̂LS,T ∈ (γ, 1− γ) , |τ̂LS,T − τ 0| ≥M

(√
T
δ∗

ε

√
h

)−2
}

< ∆ + Pr

{
sup

k∈DT,M
{Γ (k)} ≥ Γ (k0)

}

= ∆ + P1 with P1 = Pr

{
sup

k∈DT,M
{Γ (k)− Γ (k0)} ≥ 0

}
.

The event Γ (k)− Γ (k0) ≥ 0 implies

Γ (k)− E (Γ (k))− {Γ (k0)− E (Γ (k0))} ≥ E (Γ (k0))− E (Γ (k))

=

(
δ∗

ε

)2 |τ − τ 0|
2

=

(
δ∗

ε

)2 |k − k0|
2T

.

Note that

Γ (k)− E (Γ (k))− {Γ (k0)− E (Γ (k0))}

= −(
δ∗

ε

√
h)

k∑
t=1

εt + (
δ∗

ε

√
h)

k0∑
t=1

εt =

{ ( δ
∗

ε

√
h)

k0∑
t=k+1

εt when k < k0

−( δ
∗

ε

√
h)

k∑
t=k0+1

εt when k > k0

.

Then

P1 ≤ Pr

{
sup

k∈DT,M

1

|k − k0|

(
−(
δ∗

ε

√
h)

k∑
t=1

εt + (
δ∗

ε

√
h)

k0∑
t=1

εt

)
≥
(
δ∗

ε

)2
1

2T

}
≤ P1 (k < k0) + P1 (k > k0)

where P1 (k < k0) = Pr

{
sup{k<k0 and k∈DT,M}

1
|k−k0|

(
( δ

∗

ε

√
h)

k0∑
t=k+1

εt

)
≥
(
δ∗

ε

)2
/2T

}
and

P1 (k > k0) = Pr

{
sup{k>k0 and k∈DT,M}

1
|k−k0|

(
−( δ

∗

ε

√
h)

k∑
t=k0+1

εt

)
≥
(
δ∗

ε

)2
/2T

}
.
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For the case of k < k0 and k ∈ DT,M , we have Tγ < k < Tτ 0−M
(
δ∗

ε

√
h
)−2

. Then

P1 (k < k0) = Pr

 sup
Tγ<k<Tτ0−M( δ∗ε

√
h)

−2

1

|k − k0|

(
δ∗

ε

√
h

k0∑
t=k+1

εt

)
≥
(
δ∗

ε

)2
1

2T


= Pr


(
δ∗

ε

√
h

)−1

sup
Tγ<k<Tτ0−M( δ∗ε

√
h)

−2

(
1

|k − k0|

k0∑
t=k+1

εt

)
≥ 1

2


≤ Pr


(
δ∗

ε

√
h

)−1

sup
|k−k0|>M( δ∗ε

√
h)

−2

(
1

|k − k0|

k0∑
t=k+1

εt

)
≥ 1

2

 .
From the Hájek and Rényi inequality as in Hájek and Rényi (1955), it is easy to get

that, when M →∞ and (δ∗/ε)
√
h→ 0,

sup{
|k−k0|>M( δ∗ε

√
h)

−2}
(

1

|k − k0|

k0∑
t=k+1

εt

)
= Op

((
δ∗

ε

√
h

)
/
√
M

)
,

which leads to(
δ∗

ε

√
h

)−1

sup{
|k−k0|>M( δ∗ε

√
h)

−2}
(

1

|k − k0|

k0∑
t=k+1

εt

)
= Op

(
1/
√
M
)
→ 0.

Therefore, P1 (k < k0)→ 0.

Similar method can be used to prove P2 (k < k0) → 0. Then we get P1 → 0, and,

therefore, τ̂LS,T − τ 0 = Op

((√
T δ∗

ε

√
h
)−2
)
when h → 0 and ε → 0 simultaneously

with (δ∗/ε)
√
h→ 0. The second step in done.

Given τ̂LS,T − τ 0 = Op

((√
T δ∗

ε

√
h
)−2
)
, we have k̂LS,T − k0 = Op

((
δ∗

ε

√
h
)−2
)
.

Therefore, to derive the in-fill asymptotic distribution of k̂LS,T , we only need to examine

the behavior of Γ (k) − Γ (k0) for those k in the neighborhood of k0 such that k =⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋
, where s varies in an arbitrary bounded interval. Then, for any

M > 0 and s = uσ2 ∈ (−M,M), repeating the procedure in the proof of (a), which is

counted as the third step of this proof, gives

T

(
δ∗

ε

√
h

)2

(τ̂LS,T − τ 0)
d−→ arg max

s∈(−M,M)

{
σW (s)− |s|

2

}
d
= σ2 arg max

u∈(−M/σ2,M/σ2)

{
W (u)− |u|

2

}
.
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As M can be chosen arbitrarily, the result in part (b) of Theorem 4.1 is proved.

Proof of Theorem 4.2: (a) From Model (10) we have Zt − µ
√
h = εt ∼ i.i.d.(0, σ2)

for t ≤ k0 and Zt − µ
√
h− (δ∗/ε)

√
h = εt ∼ i.i.d.(0, σ2) for t > k0. Then, for k ≤ k0,

Zk − Z
∗
k

=
1

k

k∑
t=1

Zt −
1

T − k

T∑
t=k+1

Zt =
1

k

k∑
t=1

Zt −
1

T − k

(
k0∑

t=k+1

Zt +
T∑

t=k0+1

Zt

)

=
1

k

k∑
t=1

εt + µ
√
h− 1

T − k

(
(k0 − k)µ

√
h+ (T − k0)

(
µ+

δ∗

ε

)√
h+

T∑
t=k+1

εt

)

=
1

k

k∑
t=1

εt −
1

T − k

T∑
t=k+1

εt −
T − k0

T − k
δ∗

ε

√
h.

Similarly, for k > k0 we have

Zk − Z
∗
k =

1

k

k∑
t=1

εt −
1

T − k

T∑
t=k+1

εt −
k0

k

δ∗

ε

√
h.

The LS estimator defined in (12) can be identically expressed as

k̂LS,T = arg max
k=1,...,T−1

{[√
TVk (Zt)

]2
}

with [Vk (Zt)]
2 =

k (T − k)

T 2

(
Zk − Z

∗
k

)2

.

When h → 0 with a fixed ε, we have
(
δ∗

ε

√
h
)2 (

k̂LS,T − k0

)
= (δ∗/ε)2 (τ̂LS,T − τ 0) =

Op (1) taking values in the interval of
(
−τ 0 (δ∗/ε)2 , (1− τ 0) (δ∗/ε)2). Therefore, to

study the in-fill asymptotic distribution of k̂LS,T we only need to examine the behavior

of
[√

TVk (Zt)
]2

for those k in the neighborhood of k0 such that k =

⌊
k0 + s

(
δ∗

ε

√
h
)−2
⌋

with s ∈
(
−τ 0 (δ∗/ε)2 , (1− τ 0) (δ∗/ε)2). Then, for any fixed s, when h → 0, it has

k → ∞ with k/T → τ 0 + s
(
δ∗

ε

)−2
= τ 0 + u and T − k → ∞ with (T − k) /T →

1− τ 0− s
(
δ∗

ε

)−2
= 1− τ 0−u, where u = s

(
δ∗

ε

)−2 ∈ (−τ 0, 1− τ 0). Applying the FCLT

to partial sums of the i.i.d. sequence of εt gives
√
T

k

k∑
t=1

εt =
T

k

1√
T

k∑
t=1

εt ⇒
σ

τ 0 + u
B1 (τ 0 + u) ,

and
√
T

T − k

T∑
t=k+1

εt =
T

T − k
1√
T

T∑
t=k+1

εt ⇒
σ

1− τ 0 − u
[B1 (1)−B1 (τ 0 + u)]

≡ σ

1− τ 0 − u
B2 (1− τ 0 − u) ,
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whereB1 (s) is a standard Brownian motion and be independent ofB2 (1− s) ≡ B1 (1)−
B1 (s) whenever s is fixed. Consequently, for k ≤ k0,[√

TVk (Zt)
]2

=
k (T − k)

T 2

[√
T
(
Zk − Z

∗
k

)]2

=
k (T − k)

T 2

(√
T

k

k∑
t=1

εt −
√
T

T − k

T∑
t=k+1

εt −
T − k0

T − k
δ∗

ε

)2

⇒
(
σ
√

1− τ 0 − u√
τ 0 + u

B1 (τ 0 + u)− σ
√
τ 0 + u√

1− τ 0 − u
B2 (1− τ 0 − u)− (1− τ 0)

√
τ 0 + u√

1− τ 0 − u
δ∗

ε

)2

d
=

(
σB1 (1− τ 0 − u)− σB2 (τ 0 + u)− (1− τ 0)

√
τ 0 + u√

1− τ 0 − u
δ∗

ε

)2

.

Similarly, for k > k0,[√
TVk (Zt)

]2

⇒
(
σB1 (1− τ 0 − u)− σB2 (τ 0 + u)− τ 0

√
1− τ 0 − u√
τ 0 + u

δ∗

ε

)2

.

Therefore, with B̃ (·) defined as in Part (a) of Theorem 4.2, we have,

T

(
δ∗

ε

√
h

)2

(τ̂LS,T − τ 0)
d−→
(
δ∗

ε

)2

arg max
u∈(−τ0,1−τ0)

[
B̃ (u)

]2

,

which leads to the result in Part (a) of Theorem 4.2 immediately.

(b) We first prove that, when ε→ 0, τ̂LS,T
p−→ τ 0. Let

Vk (Zt) =

√
k (T − k)

T 2

(
Z
∗
k − Zk

)
=

√
k (T − k)

T 2

(
1

T − k

T∑
t=k+1

Zt −
1

k

k∑
t=1

Zt

)
.

In the following we only consider the case k ≤ k0 because of the symmetry. We assume

without loss of generality that δ∗/ε > 0 (otherwise consider the series −Zt). We then
have

E [Vk (Zt)] =
√
τ (1− τ)

(
T − k0

T − k

(
µ+

δ∗

ε

)√
h+

k0 − k
T − k µ

√
h− µ

√
h

)
=

√
τ (1− τ)

T − k0

T − k
δ∗

ε

√
h =

√
τ (1− τ)

1− τ 0

1− τ
δ∗

ε

√
h > 0,
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where τ = k/T . Hence,

E [Vk0 (Zt)]− E [Vk (Zt)]

=
√
τ 0 (1− τ 0)

δ∗

ε

√
h−

√
τ (1− τ)

1− τ 0

1− τ
δ∗

ε

√
h

= (1− τ 0)
δ∗

ε

√
h

( √
τ 0√

1− τ 0

−
√
τ√

1− τ

)
= (1− τ 0)

δ∗

ε

√
h

(
τ 0

1− τ 0

− τ

1− τ

)( √
τ 0√

1− τ 0

+

√
τ√

1− τ

)−1

=
τ 0 − τ
1− τ

δ∗

ε

√
h

( √
τ 0√

1− τ 0

+

√
τ√

1− τ

)−1

≥ |τ − τ 0|
δ∗

ε

√
h

(
2

√
τ 0√

1− τ 0

)−1

,

where the last inequality comes from the fact that 1 − τ < 1, and τ/ (1− τ) is an

increasing function over the interval of (0, τ 0). Note that

|Vk (Zt)| − |Vk0 (Zt)|
= |Vk (Zt)− E [Vk (Zt)] + E [Vk (Zt)]| − |Vk0 (Zt)− E [Vk0 (Zt)] + E [Vk0 (Zt)]|
≤ |Vk (Zt)− E [Vk (Zt)]|+ |E [Vk (Zt)]| − {|Vk0 (Zt)− E [Vk0 (Zt)]| − |E [Vk0 (Zt)]|}
= |Vk (Zt)− E [Vk (Zt)]| − |Vk0 (Zt)− E [Vk0 (Zt)]|+ E [Vk (Zt)]− E [Vk0 (Zt)] .

We then have

|τ̂LS,T − τ 0|
δ∗

ε

√
h

(
2

√
τ 0√

1− τ 0

)−1

≤
∣∣∣Vk̂LS,T (Zt)− E

[
Vk̂LS,T (Zt)

]∣∣∣− |Vk0 (Zt)− E [Vk0 (Zt)]| −
{∣∣∣Vk̂LS,T (Zt)

∣∣∣− |Vk0 (Zt)|
}

≤
∣∣∣Vk̂LS,T (Zt)− E

[
Vk̂LS,T (Zt)

]∣∣∣− |Vk0 (Zt)− E [Vk0 (Zt)]| = Op

(
1/
√
T
)
,

where the second inequality is due to k̂LS,T = arg max
{

[Vk (Zt)]
2}, and the third equal-

ity comes from the fact that for any 1 ≤ k < T,

Vk (Zt)− E [Vk (Zt)] =

√
k (T − k)

T 2

(
1

T − k

T∑
t=k+1

εt −
1

k

k∑
t=1

εt

)

=
1√
T

(√
k

T

1√
T − k

T∑
t=k+1

εt −
√
T − k
T

1√
k

k∑
t=1

εt

)

=
1√
T
Op (1) .
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Therefore, when ε→ 0,

|τ̂LS,T − τ 0| ≤ 2

√
τ 0√

1− τ 0

(
δ∗

ε

√
h

)−1

Op

(
1√
T

)
= 2

√
τ 0√

1− τ 0

ε

δ∗
Op (1)→ 0.

Then, following the procedure in the proof of Proposition 3 in Bai (1994), it can

be proved that τ̂LS,T − τ 0 = Op

(√
T δ∗

ε

√
h
)−2

, when h→ 0 and ε→ 0 simultaneously

with the condition of (δ∗/ε)
√
h → 0. Finally, following the procedure in the proof

of Theorem 1 in Bai (1994), the limiting distribution in Part (b) of Theorem 4.2 is

obtained. The details of these two steps are omitted for simplicity.
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