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a b s t r a c t

A new jackknife method is introduced to remove the first order bias in unit root models.
It is optimal in the sense that it minimizes the variance among all the jackknife estimators
of the form considered in Phillips and Yu (2005) and Chambers and Kyriacou (2013) after
the number of subsamples is selected. Simulations show that the new jackknife reduces
the variance of that of Chambers and Kyriacou by about 10% for any selected number of
subsampleswithout compromising bias reduction. The results continue to hold true in near
unit root models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Many estimators suffer from finite sample bias in dynamic models. Subsampling methods have been found useful to
reduce the bias. The jackknifing method of Quenouille (1949) is a widely used approach to achieving bias reduction. The
basic idea of this method is to use a subsampling technique to estimate the bias, and then to subtract the bias estimate
from the initial (biased) estimator. The bias estimate is formed through linear combinations of full sample estimate and
subsample estimates. Under mild conditions, the jackknife estimator can remove the first order bias.

The bootstrap method of Efron (1979) generalizes the jackknife for bias reduction. It was subsequently found that the
bootstrap was more effective in reducing the bias than the jackknife; see for example, Hall (1992) and Shao and Tu (1995)
for more detailed discussions. Nevertheless, the jackknife remains appealing for its ease of implementation. In addition, it is
computationally notmuchmore expensive than the initial estimator.Moreover, it is often found that the jackknife continues
to reduce the bias when the error distribution is misspecified; see for example, Phillips and Yu (2005, PY hereafter).

In the context of a discrete time unit root model, Chambers and Kyriacou (2013, CK hereafter) pointed out that the
jackknife of PY cannot completely remove the first order bias. A revised jackknife was proposed in CK and was shown to
perform better than the PY estimator for bias reduction. While the jackknife of CK reduces the bias of the original estimator,
it tends to increase its variance, as other jackknife estimators. The variance increases over the original estimator because it
is constructed from the subsample estimates that have a larger variance.

In this paper, we propose an improved jackknife estimator for unit root models. Our estimator is optimal in the sense
that it not only removes the first order bias, but also leads to a smaller variance than that of CK. Unlike the estimators of CK,
theweights are not the same across different subsamples. Optimal weights are derived and the finite sample performance of
the new estimator is examined. It is found that the optimal jackknife estimator offers about 10% reduction in variance over
the CK estimator without compromising bias reduction. When the model is known to have a unit root, there is no need to
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estimate the persistent parameter. However, when the root is close to one, we provide evidence that our optimal jackknife
continues to work well in finite sample.

Let the parameter of interest be β . Letβ be the full sample estimator of β,βj be the estimator from the jth (j = 1, . . . ,m)

subsample of length l (i.e.,m× l = n and n is the sample size of the full sample), βPY ,βCK , βCY be the jackknife estimators of
PY, CK, and the present paper, respectively. Following CK, we define Z =

 1
0 WdW/

 1
0 W 2, Zj =

 j/m
(j−1)/m WdW/

 j/m
(j−1)/m W 2,

where W is a standard Brownian motion, µ = E(Z) and µj = E(Zj).

2. Optimal jackknife for unit root models

2.1. Jackknife methods of PY and CK

Considering a simple unit root model with initial value y0 = Op(1):

yt = βyt−1 + εt , εt ∼ iid(0, σ 2
ε ), t = 1, . . . , n, with β = 1. (1)

With the available data {yt}nt=0, the least squares (LS) estimator of β is

β =

n
t=1

yt−1yt

 n
t=1

y2t−1.

When εt is normally distributed,β is also the ML estimator of β , conditional on y0.
Following the original work of Quenouille (1949), PY (2005) suggests splitting the full sample into m subsamples and

utilizes the subsample estimators of β to achieve bias reduction with the following formula:

βPY
m =

m
m − 1

β −
1

m − 1


1
m

m
j=1

βj


= β −

1
m − 1


1
m

m
j=1

βj −β . (2)

To check the validity of this jackknife method, consider the following Nagar approximation:

E
β = β +

b1
n

+ o

n−1 , E

βj


= β +
b1
l

+ o

l−1 , (3)

which can be derived from a set ofmild conditions, as n, l → ∞. Taking the expectation in (2) and using (3), we have E
βPY

m


= β + o


n−1


, confirming the validity of this jackknife method. In essence, the jackknife method of PY estimates the bias

in the initial estimatorβ by 1
m−1

 1
m

m
j=1
βj −β. Particularly effective bias reduction can be achieved by splitting the full

sample into two subsamples (i.e.m = 2) and the estimator becomes:

βPY
= 2β −

1
2

β1 +β2

. (4)

Both PY and Chambers (2013) have reported evidence to support this method for the purpose of bias reduction in different
contexts.βPY

m tends to lead to a larger variance thanβ because the variance ofβj is larger than that ofβ . So in general there
is a bias–variance trade-off.

The Nagar approximation is a general result and can be verified by Sargan’s (1976) theorem. Given the mild conditions
under which Sargan’s theorem holds, it is rather surprising that the standard jackknife fails to remove the first order bias
in the unit root model. This failure was first documented in CK (2013). The basic argument of CK is that in (3), b1 is not
constant any more in the unit root model. Instead, it depends on the initial condition. As the initial condition varies across
subsamples, the jackknife cannot eliminate the first order bias. Specifically, the limit distribution of l(βj−1) is

 j/m
(j−1)/m WdW/

m
 j/m
(j−1)/m W 2


whose expectation depends on j. To eliminate the first order asymptotic bias, based on m subsamples, CK

proposes the following modified jackknife estimator:

βCK
m = bCKm β − δCK

m

m
j=1

βj, (5)

where

bCKm =

m
j=1

µj

m
j=1

µj − µ

, δCK
m =

µ

m


m
j=1

µj − µ

 . (6)

When µ1 = · · · = µm = µ, bCKm = m/(m− 1) = bPYm , and δCK
m = 1/


m2

− m

. Under model (1), CK showed that µ = µ1 =

−1.7814, µ2 = −1.1382, µ3 = −0.9319, µ4 = −0.8143, etc. That is, the bias becomes smaller and smaller as we go
deeper and deeper into subsampling. Substituting these expected values into the formula (6), we can calculate the weights.
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Table 1
Weights assigned to the full- and sub-sample estimators for alternative jackknife methods.

Methodology m = 2 m = 3
Full
sample

First
subsample

Second
subsample

Full
sample

First
subsample

Second
subsample

Third
subsample

Standard jackknife 2.0000 0.5000 0.5000 1.5000 1/6 1/6 1/6
Jackknife of CK 2.5651 0.7825 0.7825 1.8605 0.2868 0.2868 0.2868
Jackknife of CY 2.8390 0.6771 1.1619 2.0260 0.2087 0.3376 0.4797

Table 1 reports the weights whenm = 2 andm = 3. We also report the weights of PY for comparison. An important feature
in the CK jackknife is that the weight assigned to all subsample estimates is the same. Among all possible values of m, CK
proposed to choosem to minimize the root mean squared errors (RMSE).

2.2. Optimal jackknife

In this paper, we introduce a new jackknife estimator, which not only removes the first order bias but also minimizes
its variance for any given m, including the optimal m proposed by CK. To do so, we select the weights, bCYm and {aCYj,m}

m
j=1, to

minimize the variance of the new jackknife estimator defined byβCY
m = bCYm β −

m
j=1 a

CY
j,m
βj, i.e.,

min
bCYm ,{aCYj,m}

m
j=1

Var
βCY

m


, (7)

subject to two constraints:

bCYm =

m
j=1

aCYj,m + 1, (8)

bCYm µ = m
m
j=1

aCYj,mµj, (9)

whereµ = µ1. These two constraints are used to ensure the first order bias is fully removed. The first order conditions with
respect to aCYj,m are:

0 = bCYm


2
m(µ − µj)

(m − 1)µ
Var(β) − 2

µ − mµj

(m − 1)µ
Cov(β,β1) − 2Cov(β,βj)


+ aCY1,m

×


2

µ − mµj

(m − 1)µ
Var(β1) − 2

m(µ − µj)

(m − 1)µ
Cov(β,β1) + 2Cov(β,βj)


+ · · · +

m
i=2

aCYi,m

×


−2

m(µ − µi)

(m − 1)µ
Cov(β,βi) + 2

µ − mµi

(m − 1)µ
Cov(β1,βi) + 2Cov(βi,βj)


, (10)

for j = 2, . . . ,m. In addition, we have:

bCYm = aCY2,m
m(µ − µ2)

(m − 1)µ
+ · · · + aCYm,m

m(µ − µm)

(m − 1)µ
+

m
m − 1

,

aCY1,m = aCY2,m
µ − mµ2

(m − 1)µ
+ · · · + aCYm,m

µ − mµm

(m − 1)µ
+

1
m − 1

.

To eliminate the first order bias, one must first obtain µ, µ2, . . . , µm, as CK did. To minimize the variance of the new
estimator, one must calculate the exact variances and covariances of the finite sample distributions. However, it is known
in the literature that the exact moments are difficult to obtain analytically in dynamic models. To simplify the derivations,
we propose to approximate themoments of the finite sample distributions by those of the limit distributions, but will check
the quality of these approximations in simulations.

The variances can be computed by combining the techniques of White (1961) and CK. We refer to Chen and Yu (2013,
page 8) for more details. Note that:

n2Var(β) = E

 1
0 WdW 1
0 W 2

2

− µ2
+ o(1).

Similarly, the variance of the subsample estimators is:

l2Var(βj) = E

 j/m
(j−1)/m WdW

m
 j/m
(j−1)/m W 2

2

− µ2
j + o(1), j = 1, 2, . . . ,m.
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Table 2
Variances of subsample estimators.

jth subsample l2Var(βj) jth subsample l2Var(βj)

1 10.1123 7 2.8375
2 5.3612 8 2.6660
3 4.2839 9 2.5238
4 3.7065 10 2.4034
5 3.3268 11 2.2995
6 3.0507 12 2.2087

LetN(a, b) =
 b
a WdW ,D(a, b) =

 b
a W 2 (0 6 a < b 6 1), andMa,b(θ1, θ2) denote the jointmoment generating function

(MGF) of N(a, b) and D(a, b). Following Magnus (1986), we use the following expression in numerical integrations:

E

N(a, b)
D(a, b)

2

=


∞

0
θ2

∂2Ma,b(θ1, −θ2)

∂θ2
1


θ1=0

dθ2.

The above integration is computed numerically using the MATLAB functions quadgk and quad2dggen.
Using the expression for Ma,b(θ1, θ2) from CK, we obtain the approximate variance for the full sample estimator and

subsample estimators in the discrete time unit root model:

n2Var(β) = l2Var(β1) = 10.1123 + O(n−1).

l2Var(β2) = 5.3612 + O(n−1).

Table 2 lists the variances of all the subsample estimators for m = 1, . . . , 12. It can be seen that the variance of the
subsample estimator decreases as j increases. The largest difference occurs between j = 1 and j = 2. If m is allowed to go
to infinity, the limit distribution of the jackknife converges to that of the LS, as pointed out by CK.

To calculate the covariances, we note that:

n2Cov(β,βj) = E

 1
0 WdW 1
0 W 2

 j/m
(j−1)/m WdW j/m
(j−1)/m W 2


− mµµj + O(n−1), 1 6 j 6 m.

n2Cov(βi,βj) = E

 i/m
(i−1)/m WdW i/m
(i−1)/m W 2

 j/m
(j−1)/m WdW j/m
(j−1)/m W 2


− m2µiµj + O(n−1), 1 6 i < j 6 m.

Hence, we need to compute the covariance between the limit distribution of the full sample estimator and that of any sub-
sample estimator, and the covariance between any two subsample limit distributions. The following lemma and proposition
obtain the expression for the MGF of the covariances.

Lemma 2.1. Let Ma,b,c,d(θ1, θ2, ϕ1, ϕ2) denote the MGF of N(a, b),N(c, d),D(a, b) and D(c, d) with (0 6 a < b 6 1) and
(0 6 c < d 6 1). Then the expectation of N(a,b)

D(a,b)
N(c,d)
D(c,d) is given by:

E

N(a, b)
D(a, b)

N(c, d)
D(c, d)


=


∞

0


∞

0

∂2Ma,b,c,d(θ1, −θ2, ϕ1, −ϕ2)

∂θ1∂ϕ1


θ1=0,ϕ1=0

dθ2dϕ2. (11)

The following proposition obtains the expression for theMGF ofN(a, b),N(c, d),D(a, b) andD(c, d), and the covariances.

Proposition 2.1. The MGF M0,a,b,1(θ1, θ2, ϕ1, ϕ2) is given by

M0,a,b,1(θ1, θ2, ϕ1, ϕ2) = exp

aλ − θ1 − sϕ1

2


[1 − (2p + η − λ)ϖ 2

]
−1/2

×


cosh(eλ) −

θ1

λ
sinh(eλ)

−1/2 
cosh(sη) −

(θ1 − λ)κb + ϕ1 + λ

η
sinh(sη)

−1/2

, (12)

with e = 1 − b, s = b − a, ξ = λ =
√

−2θ2, η =
√

−2θ2 − 2ϕ2, ϖ
2
b =

exp(2λe)−1
2λ , κb =


1 − (θ1 − λ)ϖ 2

b

−1 exp (2λe) ,

κa =
exp(2ηs)

1−[ϕ1+(θ1−λ)κb+(λ−η)]ϖ 2
a
, p =

[ϕ1+(θ1−λ)κb+(λ−η)]κa−ϕ1
2 , ϖ 2

a =
exp(2ηs)−1

2η , and ϖ 2
=

exp(2aλ)−1
2λ .

The MGF Ma,b,c,d(θ1, θ2, ϕ1, ϕ2) is given by

Ma,b,c,d(θ1, θ2, ϕ1, ϕ2) = exp


−eϕ1 − sθ1
2


{1 − a [(2p + θ1 − η)κa − θ1 + η]}−1/2

× [1 − (c − b)(ϕ1 − λ) (κc − 1)]−1/2

cosh(eλ) −

ϕ1

λ
sinh(eλ)

−1/2

cosh(sη) −

2p + θ1

η
sinh(sη)

−1/2

,
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Table 3
Approximate variances and covariances for the full sample and subsamples whenm = 2, 3.

Subsamples m = 2 m = 3
Covariance nβ lβ1 lβ2 nβ lβ1 lβ2 lβ3

nβ 10.1123 5.0188 5.7932 10.1123 3.3443 4.0769 4.3796
lβ1 5.0188 10.1123 1.1053 3.3443 10.1123 1.1053 0.4287
lβ2 5.7932 1.1053 5.3612 4.0769 1.1053 5.3612 0.8978
lβ3 4.3796 0.4287 0.8978 4.2839

with e = d− c, s = b−a, ϖ 2
c =

exp(2eλ)−1
2λ , ϖ 2

a =
exp(2ηs)−1

2η , κa =

1 − (2p + θ1 − η)ϖ 2

a

−1 exp (2ηs) , κc =

1− (ϕ1 −λ)

ϖ 2
c

−1
exp(2eλ) and p =

(ϕ1−λ)(κc−1)
2[1−(c−b)(ϕ1−λ)(κc−1)] .

Chen and Yu (2013, page 22–23) gives the expression of the second derivative of the MGF M0,a,b,1(θ1, θ2, ϕ1, ϕ2) and
Ma,b,c,d(θ1, θ2, ϕ1, ϕ2), which is used to compute the numerical value of covariance. When m = 2, we have following ap-
proximate covariances between the full sample estimator and the two subsample estimators:

n2Cov(β,β1) = 10.0376 + O(n−1); (13)

n2Cov(β,β2) = 11.5863 + O(n−1); (14)

n2Cov(β1,β2) = 4.4212 + O(n−1). (15)

There are several interesting findings here. First, the covariances between the full sample estimator and the second sub-
sample estimator are similar to, but slightly larger than that between the full sample estimator and the first subsample
estimator, although the variance of the second subsample estimator is smaller. This is because the correlation between the
full sample estimator and the second subsample estimator is larger due to the increased order of magnitude of the initial
condition. Second, these two covariances are much larger than the covariance between the two subsample estimators. This
is not surprising as the data used in the two subsamples estimators do not overlap.

Table 3 summarizes the approximate values of the variances and covariances when m = 2, 3. Given the values of vari-
ances and covariances, we further compute the optimal jackknife estimator whenm = 2:βCY

JK = 2.8390β − (0.6771β1 + 1.1619β2). (16)

and the optimal jackknife estimator whenm = 3:βCY
JK = 2.0260β − (0.2087β1 + 0.3376β2 + 0.4797β3). (17)

Clearly the weights assigned to the subsample estimates are not the same in our method.
It can be easily shown that the results derived for the discrete time unit root model can be adapted to the following

continuous time unit root model:

dyt = −κydt + σdWt , with κ = 0. (18)

The bias inκ is substantial as shown in Yu (2012). Although it was recently shown in Bao et al. (2013) that the exact moment
of LS estimator of κ does not exist, the moment we try to approximate can be thus understood as the pseudomoment. Chen
and Yu (2013) derives the optimal jackknife weights for the LS estimator of κ using long span asymptotics forκ .
3. Simulation studies

We design three experiments to evaluate the performance of alternative jackknife methods under different sample sizes
with the number of replications being 10,000. It is reasonable to consider small sample sizes since we focus on the finite
sample property. As a benchmark, we always report the original full sample estimator which is the LS estimator.

In Table 4,we simulate data fromModel (1)with aGaussian error εt . In the first experiment,we setm = 2which is chosen
by CK to minimize the bias. We compare the CK jackknife method based on weights from Table 1, the CY jackknife method
based on (16) where the weights are derived from the approximate variances and covariances, the CY jackknife method
where the weights are calculated from the exact variances and covariances obtained from the finite sample distributions.
We measure the efficiency gain of the proposed method over the CK method based on the ratio of variances as well as the
ratio of RMSEs. Since theweights are obtained based on the variances and the covariances of the limit distributions but not on
the finite sample distributions, it is useful to examine the approximation error from using the limit distributions. Although
it is difficult to obtain the analytical expressions for the variances and the covariances of the finite sample distribution, they
can be computed using simulated data in aMonte Carlo study, provided the number of replications is large enough. The bias,
variance, RMSE, and relative efficiency for the estimates of β are reported in the second block of Table 4. The bias is very
similar for the CK method and the two CY methods in all cases. The variance of the two CY methods is significantly smaller
than that of CK in all cases with the reduction in variance being about 10%. Consequently, the RMSE is smaller for the CY
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Table 4
Finite sample performance of alternative jackknife estimators for discrete time unit root models.

n Statistics Bias-minimizing values of m RMSE-minimizing values ofm
m LS CK CY RE Exact CY m CK Exact CY RE

24 2 Bias −0.068 −0.012 −0.013 −0.014 4 −0.025 −0.027
100 ∗ Var 1.538 3.635 3.186 0.876 3.159 2.230 1.978 0.887
10 ∗ RMSE 1.415 1.910 1.790 0.937 1.783 1.513 1.431 0.946

48 2 Bias −0.036 −0.003 −0.004 −0.004 6 −0.009 −0.009
100 ∗ Var 0.405 0.903 0.791 0.876 0.787 0.449 0.400 0.891
10 ∗ RMSE 0.729 0.951 0.890 0.936 0.888 0.676 0.639 0.946

96 2 Bias −0.018 −0.001 −0.001 −0.001 8 −0.003 −0.003
100 ∗ Var 0.106 0.235 0.208 0.888 0.208 0.104 0.092 0.880
10 ∗ RMSE 0.374 0.485 0.457 0.942 0.456 0.324 0.304 0.939

192 2 Bias −0.009 0.000 0.000 0.000 8 −0.001 −0.001
100 ∗ Var 0.028 0.061 0.054 0.887 0.054 0.027 0.024 0.882
10 ∗ RMSE 0.191 0.247 0.233 0.942 0.233 0.165 0.155 0.939

methods. Although the exact CY method provides a smaller variance, the difference between the two CY methods is very
small, suggesting that the CY based on the limit distributions works well. Table 4 of Chen and Yu (2013) gives the simulation
results whenm = 3.

In the second experiment, the samemodel is estimated but we follow CK by choosingm to minimize the RMSE. We then
compare the CK jackknife and the CY jackknife based on the samem. The CY jackknife is computed using the exact variances
and covariances for the purpose of easy implementation. The bias, variance, RMSE, and relative efficiency for the estimates
of β are reported in the third block of Table 4. It can be seen that the optimal value for m changes with the sample size.
With the RMSE-minimizing m being used, however, the variance of the new jackknife continues to be smaller than that of
CK with the reduction in variance being about 10%.

The simulation results obtained above are based on the assumption that the true model has a unit root. In practice, how-
ever, the persistence parameter is often unknown and has to be estimated although the unit root model is very popular
empirically. Based on the estimator of slope coefficient, it is not easy to tell whether the true value is one or not. To check
the robustness of our results in the persistent case, we now compare the finite sample performance of three jackknife esti-
mators in the context of an ARmodel with a root local to unity. Following Phillips (1987) and Chan andWei (1988), the data
generating process considered is:

yt = βyt−1 + εt , εt ∼ iid N(0, 1), t = 1, 2, . . . , n,

with β = 1 + c/n, (−∞ < c < ∞). We investigate the finite sample performance of alternative estimates of β using a
sample size ranging from 12 to 108. The local to unity parameter c is set at 0.1, 0.5 and 1 for the local to unity from the explo-
sive side, and −0.1, −0.5 and −1 for the local to unity from the stationary side. Table 5 reports the bias, variance and RMSE
of the CK method and the two CY methods. In all cases, the bias is always close to zero, suggesting the jackknife methods
continue to work well for reducing the bias in the local to unit root case. The variance for the two CY methods continues to
be smaller than that for the CK method in all cases. Moreover, although the exact CY method provides a smaller variance,
the difference between the two CY methods is quite small, suggesting that the weights obtained from the unit root model
approximate well the exact weights in the local to unit root models.1

4. Conclusion

This paper has introduced a new jackknife procedure for unit root models that offers an improvement over the jackknife
methodology of CK (2013). The proposed estimator is optimal in the sense that it minimizes the variance of the jackknife
estimator while removing the first order bias. The new method works well both in the unit root model and in the local to
unit root model. Simulations have shown that the new method reduces the variance by about 10% relative to the estimator
of CKwithout compromising the bias. The results hold truewhen an optimal number of subsamples is used in both jackknife
methods. There exist some other models for which the asymptotic theory depends on the initial condition, i.e. (Phillips and
Magdalinos, 2009). Examples include explosive processes. It may be interesting to extend the results in the present paper to
cover these models, although it is not pursued in the present paper. It is useful to point out that for a unit root model with
an unknown intercept case, although fitting an intercept increases the bias of LS estimator, the asymptotic theory does not
depend on the initial value.

1 However, as pointed out by a referee, the limit distribution depends on the localization parameter. Hence, it is expected that the jackknife weight
should also depend on this parameter.
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Table 5
Finite sample performance of alternative jackknife methods for the discrete time local to unit root model for m = 2, where RE means the efficiency of CK
relative to CY and the Exact CY (ExCY).

n c −0.1 −0.5 −1
Statistics LS CK CY RE ExCY LS CK CY RE ExCY LS CK CY RE ExCY

12 Bias −0.128 −0.057 −0.060 −0.061 −0.128 −0.055 −0.056 −0.056 −0.125 −0.050 −0.048 −0.048
100 ∗ Var 5.616 17.493 15.539 0.888 15.425 5.738 17.354 15.571 0.897 15.521 5.903 17.413 16.093 0.924 16.092
10 ∗ RMSE 2.695 4.221 3.988 0.945 3.975 2.714 4.201 3.985 0.949 3.979 2.734 4.202 4.040 0.961 4.040

36 Bias −0.047 −0.005 −0.006 −0.006 −0.048 −0.005 −0.004 −0.004 −0.048 −0.003 −0.001 −0.001
100 ∗ Var 0.723 1.611 1.401 0.870 1.390 0.758 1.629 1.454 0.892 1.452 0.804 1.677 1.572 0.938 1.566
10 ∗ RMSE 0.971 1.270 1.185 0.933 1.180 0.993 1.277 1.206 0.945 1.206 1.018 1.295 1.254 0.968 1.251

48 Bias −0.036 −0.003 −0.003 −0.003 −0.036 −0.002 −0.001 −0.001 −0.037 −0.001 0.001 0.001
100 ∗ Var 0.410 0.908 0.803 0.884 0.801 0.430 0.925 0.844 0.913 0.844 0.456 0.950 0.903 0.951 0.895
10 ∗ RMSE 0.734 0.953 0.896 0.940 0.895 0.750 0.962 0.919 0.955 0.919 0.770 0.974 0.950 0.975 0.946

96 Bias −0.019 −0.001 −0.001 −0.001 −0.019 −0.001 0.000 0.000 −0.019 0.000 0.001 0.000
100 ∗ Var 0.107 0.236 0.211 0.894 0.211 0.114 0.243 0.224 0.923 0.224 0.122 0.252 0.241 0.956 0.238
10 ∗ RMSE 0.377 0.486 0.459 0.945 0.459 0.387 0.493 0.473 0.960 0.473 0.399 0.502 0.491 0.978 0.488

108 Bias −0.017 −0.001 −0.001 −0.001 −0.017 −0.001 −0.001 −0.001 −0.017 0.000 0.000 0.000
100 ∗ Var 0.087 0.182 0.163 0.898 0.163 0.092 0.188 0.175 0.932 0.175 0.099 0.195 0.189 0.970 0.187
10 ∗ RMSE 0.338 0.427 0.404 0.948 0.404 0.348 0.434 0.418 0.965 0.418 0.359 0.442 0.435 0.985 0.432

n c 0.1 0.5 1
Statistics LS CK CY RE ExCY LS CK CY RE ExCY LS CK CY RE ExCY

12 Bias −0.128 −0.058 −0.062 −0.063 −0.127 −0.058 −0.065 −0.067 −0.124 −0.056 −0.065 −0.072
100 ∗ Var 5.558 17.636 15.694 0.890 15.577 5.446 17.888 15.947 0.891 15.814 5.306 17.729 15.231 0.859 14.648
10 ∗ RMSE 2.684 4.239 4.010 0.946 3.997 2.659 4.269 4.045 0.948 4.032 2.617 4.247 3.957 0.932 3.895

36 Bias −0.046 −0.006 −0.007 −0.007 −0.045 −0.006 −0.008 −0.009 −0.042 −0.005 −0.008 −0.012
100 ∗ Var 0.706 1.604 1.380 0.861 1.361 0.672 1.595 1.353 0.848 1.315 0.632 1.570 1.293 0.824 1.203
10 ∗ RMSE 0.959 1.268 1.177 0.928 1.169 0.934 1.264 1.166 0.922 1.150 0.900 1.254 1.140 0.909 1.103

48 Bias −0.035 −0.004 −0.004 −0.004 −0.034 −0.004 −0.005 −0.006 −0.032 −0.003 −0.006 −0.008
100 ∗ Var 0.400 0.898 0.779 0.867 0.772 0.382 0.884 0.746 0.844 0.726 0.359 0.868 0.718 0.827 0.677
10 ∗ RMSE 0.725 0.948 0.883 0.932 0.880 0.707 0.941 0.866 0.920 0.854 0.681 0.932 0.849 0.911 0.826

96 Bias −0.018 −0.001 −0.001 −0.001 −0.018 −0.001 −0.002 −0.002 −0.016 −0.001 −0.002 −0.003
100 ∗ Var 0.104 0.234 0.206 0.883 0.206 0.098 0.229 0.197 0.862 0.195 0.090 0.222 0.184 0.830 0.174
10 ∗ RMSE 0.371 0.484 0.454 0.940 0.454 0.359 0.479 0.445 0.929 0.442 0.342 0.471 0.429 0.912 0.419

108 Bias −0.016 −0.001 −0.001 −0.001 −0.016 −0.001 −0.002 −0.002 −0.015 −0.001 −0.002 −0.003
100 ∗ Var 0.085 0.180 0.160 0.889 0.160 0.080 0.178 0.156 0.880 0.155 0.073 0.172 0.146 0.848 0.142
10 ∗ RMSE 0.334 0.425 0.400 0.943 0.400 0.323 0.422 0.396 0.939 0.395 0.308 0.415 0.382 0.922 0.377
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Appendix

Proof of Lemma 2.1. Taking the derivative of MGF with respect to θ1, we get:

∂Ma,b,c,d(θ1, −θ2, ϕ1, −ϕ2)

∂θ1
= E [N(a, b) exp(θ1N(a, b) − θ2D(a, b) + ϕ1N(c, d) − ϕ2D(c, d))] .

Setting θ1 = 0, taking the derivative with respect to ϕ1, and then evaluating it at ϕ1 = 0, we have,
∂


∂Ma,b,c,d(θ1, −θ2, ϕ1, −ϕ2)

∂θ1


θ1=0


∂ϕ1

 
ϕ1=0

= E {N(a, b)N(c, d) exp [−θ2D(a, b) − ϕ2D(c, d)]} .

Consequently,
∞

0


∞

0


∂


∂Ma,b,c,d(θ1, −θ2, ϕ1, −ϕ2)

∂θ1


θ1=0


∂ϕ1


ϕ1=0


dθ2dϕ2 = E


N(a, b)
D(a, b)

N(c, d)
D(c, d)


.

Proof of Proposition 2.1. It can be found in Chen and Yu (2013, page 21–28).
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