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a b s t r a c t

Two test statistics are proposed to determinemodel specification after amodel is estimated
by an MCMC method. The first test is the MCMC version of IOSA test and its asymptotic
null distribution is normal. The second test is motivated from the power enhancement
technique of Fan et al. (2015). It combines a component (J1) that tests a null point
hypothesis in an expandedmodel and a power enhancement component (J0) obtained from
the first test. It is shown that J0 converges to zerowhen the null model is correctly specified
and diverges when the null model is misspecified. Also shown is that J1 is asymptotically
χ2-distributed, suggesting that the second test is asymptotically pivotal, when the null
model is correctly specified. Themain feature of the first test is that no alternativemodel is
needed. The second test has several properties. First, its size distortion is small and hence
bootstrap methods can be avoided. Second, it is easy to compute from MCMC output and
hence is applicable to a wide range of models, including latent variable models for which
frequentist methods are difficult to use. Third, when the test statistic rejects the null model
and J1 takes a large value, the test suggests the source ofmisspecification. The finite sample
performance is investigated using simulated data. The method is illustrated in a linear
regression model, a linear state-space model, and a stochastic volatility model using real
data.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Economic theory has long been used to justify a particular choice of econometric models. These so-called structural
econometric models are often based on a set of economic assumptions used to develop the underlying economic theory.
When some of the assumptions are invalid, the corresponding structural econometric models may be misspecified. In many
cases, economic theory may not be available and the choice of econometric models may be arbitrary. Consequently, models
in reduced forms are used and reduced-form models are vulnerable to specification errors.

In general misspecification of econometric models can potentially lead to inconsistent estimation, which in turn may
have serious implications for statistical inferences such as hypothesis testing and out-of-sample forecasting and for
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economic decision makings such as policy recommendation and investment decision. Consequently and not surprisingly,
a considerable amount of strenuous effort has been devoted in econometrics to detect model misspecification.

One strand of the literature on specification tests unifies under the m-test of Newey (1985), Tauchen (1985) and White
(1987). These tests include as a special case of the Lagrangemultiplier (LM) test, the tests of Sargan (1958) andHansen (1982),
the tests of Cox (1961, 1962), the Hausman (1978) test, the conditionalmoment test of Newey (1985), the informationmatrix
test of White (1982), the IOS test of Presnell and Boos (2004), the information ratio (IR) test of Zhou et al. (2012). These
tests are in the frequentist paradigm, typically requiring parameters in the null hypothesis be estimated by the maximum
likelihood (ML) method or by generalized method of moments (GMM).

Another strand of the literature is based on tests that rely on the distances between nonparametric and parametric
counterparts. The idea originated from the Kolmogorov–Smirnov test or the closely related family such as the Cramer–von
Mises and Anderson–Darling tests. Examples in this case include Eubank and Spiegelman (1990), Wooldridge (1992), Fan
and Li (1996), Gozalo (1993), Zheng (2000), Aït-Sahalia (1996), and Hong and Li (2005). All the tests in this category are also
in the frequentist paradigm, but requiring either a nonparametric estimate of a function or a density.

Formanywidely usedmodels in economics, such as latent variablemodels and structural dynamic choicemodels (Imai et
al., 2009;Norets, 2009), it is not easy to obtain theMLestimate (MLE) or construct a nonparametric estimate. Not surprisingly,
it is difficult to apply any of the specification testsmentioned above. On the other hand, there has been an increasing interest
in using Markov chain Monte Carlo (MCMC) methods to conduct Bayesian posterior analysis of econometric models. With
the rapid growth in computer capability, fitting models of increasing complexity has become easier and easier by MCMC.

In addition, it is well-known that specification tests that are based on the information matrix, including the information
matrix test (IMT) of White (1982), the IOS test of Presnell and Boos (2004), the IR test of Zhou et al. (2012), are subject to
severe size distortions. To reduce the size distortion, bootstrap methods have been used; see for example, Horowitz (1994),
Presnell and Boos (2004), Zhou et al. (2012). For models where MCMC is a popular estimation method, it is computationally
infeasible to do bootstrap.

Given the increasing popularity of MCMC in practical applications, it is therefore natural to introduce specification tests
to assess the adequacy of a candidate model after it is estimated by MCMC. We seek to answer two questions in the present
paper. First, how we can assess the validity of a model specification? Second, is it possible to tell the source of model
misspecification if the null model is rejected?

We propose two new specification tests based on MCMC output. The first test is the MCMC version of IOSA of Presnell
and Boos (2004) and its asymptotic null distribution is normal. The second test is our main statistic which is motivated by
the power enhancement technique of Fan et al. (2015) and based on a model expansion strategy. It combines a component
(J1) that tests a null point hypothesis in an expanded model and a power enhancement component (J0) obtained from the
first test. It is shown that J0 converges to zero when the null model is correctly specified and diverges when the null model
is misspecified. Also shown is that J1 is asymptotically χ2-distributed, suggesting that the proposed test is asymptotically
pivotal, when the null model is correctly specified.

The main feature of the first test is that no alternative model is needed. The second test has several properties. First,
its size distortion is small and hence bootstrap methods can be avoided. Second, it is easy to compute from MCMC output
and hence is applicable to a wide range of models, including latent variable models for which ML and bootstrap methods
are difficult to use. Third, when the test statistic rejects the specification of a null model and J1 takes a large value, our test
suggests the source of misspecification. However, the proposed test has a lower local power. This is the price we pay for
avoiding using a bootstrap method.

The paper is organized as follows. Section 2 proposes the two test statistics based on MCMC output and establishes their
asymptotic properties. Section 3 illustrates the method using two simulation studies and three empirical studies. Section 4
concludes the paper. Appendix A collects the proof of the theoretical results in the paper and discusses how to compute the
two test statistics in the context of state-spacemodels. Proofs of Theorem2.2 are provided in an online technical supplement.

2. Two specification tests based on MCMC output

After a candidate model is estimated by a Bayesian MCMC method, a natural way to check the validity of the model is to
construct an MCMC version of an ML-based specification test. This is a reasonable way to proceed as both ML andMCMC are
full-likelihood-based approaches.

2.1. An MCMC-based information matrix test

In this subsection, we propose an MCMC-based information matrix test. First we need to introduce some notations. Let
y = (y1, . . . , yn) denote observed variables from a probability measure P0 on the probability space (Ω, F , P0). Let model P
be a collection of candidate models indexed by parameters θ whose dimension is q. Let Pθ denote P indexed by θ. Following
White (1987), if there exists θ, such that P0 ∈ Pθ , we say the model P is correctly specified. However, if for all θ, P0 ̸∈ Pθ , we
say the model P is misspecified. We would like to test the null hypothesis that the model in concern is correctly specified.
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Define lt (θ) = log p
(
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Jn (θ) :=

∫
Ĵn (θ) g(y)dy,Hn (θ) :=

∫
Ĥn (θ) g(y)dy

Ln (θ) := log p(θ|y), L(j)n (θ) := ∂ j log p (θ|y) /∂θj.

In this paper, we assume that the following mild regularity conditions are satisfied.

Assumption 1. Let θ̂ be the posterior mode such that L(1)n (θ̂) = 0. There exists an integer N1 and some δ > 0 such that for
n > N1 and θ ∈ H(θ̂, δ) = {θ : ∥θ − θ̂∥ ≤ δ}, L(2)n (θ̂) is negative definite with probability approaching one.

Assumption 2. The largest eigenvalue of
[
−L(2)n

(
θ̂
)]−1

goes to zero in probability as n → ∞.

Assumption 3. For any ε > 0, there exists a positive number δ, such that

lim
n→∞

P
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θ∈B

(
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)
[

−L(2)n

(
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)]−1 [
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(
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where B
(
θ̂, δ

)
is the neighborhood of θ̂.

Assumption 4. For any δ > 0, as n → ∞,∫
Θ−B

(
θ̂, δ

) p (θ|y) dθ = Op
(
n−3) ,

whereΘ is the support space of θ.

Assumption 5. Let g(y) be the true data generating process (DGP), and denote θ0 ∈ Θ ⊂ Rq the pseudo-true value that
minimizes the Kullback–Leibler (KL) loss between the DGP and the parametric model,

θ0 = argmin
θ

∫
log

g(y)
p (y|θ)

g(y)dy.

where θ0 is a unique minimizer.

Assumption 6. The prior p(θ) is Op(1) for all θ ∈ Θ .

Assumption 7. Assume

H (θ0) := lim
n→∞

Hn (θ0) and J (θ0) := lim
n→∞

Jn (θ0)

exist and are nonsingular, and limn→∞n−1
∫ ∑n

t=1▽
3lt (θ0) g(y)dy exists.

Assumption 8. θ0 ∈ int (Θ)whereΘ is a compact, separable metric space.

Assumption 9. {yt , t = 1, 2, 3, . . .} is an α mixing sequence that satisfies, for F t
−∞

= σ (yt , yt−1, . . .) and F∞
t+m =

σ (yt+m, yt+m+1, . . .), the mixing coefficient α (m) = O
(
m

−2r
r−2 −ε

)
for some ε > 0 and r > 2.

Assumption 10. There exists a function Mt (yt ) such that for 0 ⩽ j ⩽ 8, all θ ∈ G where G is an open, convex set containing
Θ , ▽jlt (θ) exists, supθ∈G

▽
jlt (θ)

 ⩽ Mt (yt ), and suptE ∥Mt (yt)∥r+δ
≤ M < ∞ for some δ > 0.

Assumption 11.
{
▽

jlt (θ)
}
is L2-near epoch dependent with respect to {yt} of size −1 for 0 ⩽ j ⩽ 1 and −

1
2 for j = 2,3

uniformly onΘ .
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Assumption 12. For all θ, θ′
∈ Θ ,

▽
jlt (θ)− ▽

jlt
(
θ′

) ≤ ct
(
yt

) θ − θ′
 for 0 ⩽ j ⩽ 3 in probability, where ct

(
yt

)
is a

positive random variable, suptE
ct (yt) < ∞ and limn→∞

1
n

∑n
t=1 (ct − Ect)

p
→ 0.

Remark 2.1. Assumptions 1–4 have been used to develop Bayesian large sample theory; see, for example, Chen (1985),
Kim (1994, 1998), Geweke (2005). Similar assumptions have been used to develop asymptotic properties of the Laplace
type estimator in Chernozhukov and Hong (2003). The order condition in Assumption 4 is used to develop higher order
expansions; see, for example, Miyata (2004, 2010). Assumption 5 is a standard regularity condition to define the pseudo-
true value; see Huber (1967), White (1982) and Müller (2013). Assumption 6 ensures that when the sample size increases,
the likelihood information dominates the prior information so that the prior information can be ignored asymptotically.
Assumptions 7–12 are similar to those made in Rilstone et al. (1996), Newey and Smith (2004), and Bester and Hansen
(2006) for developing higher order expansions. Based on these assumptions, Li et al. (2017) showed that,

θ̄ = E [θ|y] =

∫
p (θ|y) θdθ = θ̂ + Op(n−1),

V
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)

=
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)(
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p (θ|y) dθ = −L−(2)
n

(
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)

+ Op(n−2).

Before we introduce our test statistics, it is important to review some leading specification tests based onMLE. One of the
earliest specification tests is based on the information matrix equivalence due to White (1982). Under the null hypothesis
that themodel is correctly specified, it is well-known thatH(θ)+ J(θ) = 0.White (1982) proposed the following information
matrix test
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)
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]
.

Based on a set of regularity conditions, White (1982) showed that IMT
d

→ χ2 as n → ∞ under the null hypothesis.
Presnell and Boos (2004) proposed an alternative test—the ‘‘in-and-out’’ likelihood ratio (IOS ) test for models with i.i.d.

observations. Let θ̂
(t)
ML be the MLE of θ when the tth observation, yt , is deleted from the whole sample. From the predictive

perspective, the single likelihood p
(
yt , θ̂

(t)
ML

)
can be regarded as the predictive likelihood by the other observations. Presnell

and Boos (2004) defined the ‘‘in-and-out’’ likelihood ratio test as:

IOS = log

∏n
t=1 p

(
yt , θ̂ML

)
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(
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(t)
ML

) =

n∑
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[
log p
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yt |θ̂ML
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− log p

(
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ML
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and showed that the asymptotic form of IOS is

IOSA = tr
[
−Ĥ−1

n

(
θ̂ML

)
Ĵn

(
θ̂ML

)]
, (3)

and IOS − IOSA = op
(
n−1/2

)
. Like IMT, IOSA also compares Ĥn

(
θ̂ML

)
with Ĵn

(
θ̂ML

)
, but in a ratio form instead of an additive

form. Under the null hypothesis, IOSA
p

→ q and n1/2 (IOSA − q) converges to a normal distributionwith zeromean and a very
complicated variance. Clearly, IOS and IOSA are asymptotically equivalent. Zhou et al. (2012) proposed a test statistic that
takes the form of IOSA/q which is denoted as the information ratio (IR) test. Zhou et al. (2012) established the asymptotic
distribution of IR. Under the null hypothesis, it was shown that n1/2 (IR − 1) converges to a normal distribution with zero
mean and a very complicated variance.

Unfortunately, it is well-documented that the asymptotic distributions poorly approximate their finite sample counter-
parts for IMT, IOS, IOSA. As a result, they all suffer from serious bias distortions if asymptotic distributions are used to obtain
critical values. SeeOrme (1990), Chesher and Spady (1991), Davidson andMacKinnon (1992), Horowitz (1994) for evidence of
severe oversized problem for IMT. Presnell and Boos (2004) showed that the convergence of IOS statistic to normality is slow
by simulation so they proposed to obtain the critical values by parametric bootstrap. The poor finite sample performance of
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these tests is not surprising as the asymptotic theory relies on the convergence of the sample high order moments which
is slow. Naturally, to reduce the size distortion, the bootstrap methods can be advocated to be implemented for calibrating
better critical values, see Horowitz (1994), Presnell and Boos (2004) and Zhou et al. (2012).

Based on Remark 2.1 and the expression of IOSA given in (3), if we replace −Ĥn
−1 (

θ̂ML

)
with nV

(
θ̄
)
and Ĵn

(
θ̂ML

)
with

Ĵn
(
θ̄
)
, a natural MCMC-based information matrix test (which is our first test statistic) can be defined as:

BIMT = tr
[
nV

(
θ̄
)
Ĵn

(
θ̄
)]

= n
∫ (

θ − θ̄
)′ Ĵn

(
θ̄
) (

θ − θ̄
)
p (θ|y) dθ. (4)

Proposition 2.1. Under Assumptions 1–12, we have

BIMT = IOSA + Op
(
n−1)

= q × IR + Op
(
n−1) ,

where q is the dimension of parameter θ. If the model is correctly specified, we have

BIMT = q + Op
(
n−1/2) .

Remark 2.2. Following Proposition 2.1 and the discussion in Section 2, we can see that n1/2 (BIMT/q − 1) has the same
asymptotic distribution as n1/2 (IOSA/q − 1) and n1/2 (IR − 1). Hence, BIMT may be regarded as the MCMC version of IOSA.
As IMT and IOS, BIMT does not require an alternative model be specified. Different from IMT, IOS and IOSA, BIMT is based on
MCMC output and hence is easier to obtain for some complex models, such as latent variable models. However, simulation
studies that will be reported in Section 3.1.1 show that BIMT suffers from severe size distortion. Hence, bootstrap methods
must be used, greatly increasing the computational cost.

2.2. Power enhancement technique

The size problem and the computational cost for the first statistic point to a need for another test statistic. Before we
introduce our second test statistic, it is important to review the power enhancement technique of Fan et al. (2015). Fan, et al.
considered the hypothesis testing problem of H0 : θ = 0 where θ is a high-dimensional vector. The alternative hypothesis
H1 is sparse so that the null hypothesis is violated by only a few components. They showed that traditional tests, such as the
Wald test, have a low power. To enhance the power, they introduced a power enhancement component which is zero under
the null hypothesis with high probability and diverges quickly under sparse alternatives.

Their new test statistic (call it J) has the form of

J = J0 + J1,

where J1 is an asymptotically pivotal test statistic, such as Wald test, and J0 is a power enhancement component. J0 needs
to satisfy three properties: (a) J0 ≥ 0 almost surely; (b) under H0, Pr(J0 = 0|H0) → 1; (c) J0 diverges in probability under
some specific regions of H1. Clearly, property (a) ensures that J is at least as powerful as J1; property (b) guarantees that the
asymptotic distribution of J under H0 is determined by J1 and hence the size of J is asymptotically equivalent to that of J1;
property (c) guarantees that the power of J improves that of J1.

Motivated by this power enhancement technique, we propose a specification test based on MCMC output. This new test
combines a component (J1) that tests a null point hypothesis in an expanded model and a power enhancement component
(J0) obtained from the first test.

2.3. The main specification test

As in Fan et al. (2015), our second test has two components, J0 and J1. To introduce J1, we expand p(y|θ), the model in

concern, to a larger model denoted by p (y|θL)where θL =

(
θ

′

, θ
′

E

)′

with θE being a qE-dimensional vector. So the expanded
model p (y|θL) nests the original model p (y|θ). We assume that if the specification p (y|θ) is correct, then the true value of
θE is zero. Let

s (y, θL) =
∂ log p (y|θL)

∂θL
,

C (y, θL) = s (y, θL) s(y, θL)
′,

V
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)′

|y
]

=

∫ (
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) (
θL − θ̄L

)′

p(θL|y)dθL,

where θ̄L is the posterior mean of θL in the expanded model. The J1 component is designed to test the point null hypothesis
θE = 0 after the expanded model is estimated by an MCMC method. In particular, we follow Li et al. (2015) by considering
a test statistic given by

J1 = tr
{
CE

(
y,

(
θ̄, θE = 0

))
VE

(
θ̄L

)}
, (5)
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where CE
(
y,

(
θ̄, θE = 0

))
is the submatrix of C (y, θL) corresponding to θE evaluated at

(
θ̄, θE = 0

)
and VE

(
θ̄L

)
is the

submatrix of V (θL) corresponding to θE evaluated at θ̄L. As shown in Li et al. (2015), J1 is a MCMC-version of LM test (Breusch
and Pagan, 1980) and J1

d
→ χ2 (qE) when θE = 0. Typically, J1 has good size property as it is designed to test the point null

hypothesis.
If J1 rejects the hypothesis θE = 0, it suggests that the original model p (y|θ) is misspecified and indicates the source of

model misspecification in p (y|θ) . Unfortunately, if J1 fails to reject the hypothesis θE = 0, no conclusion can be drawn about
the validity of the original model p (y|θ). This is because, in practice, there are many different paths to expand the model.
While J1 may have good powers in some paths, it may have low powers in other paths. This problem is similar to that in the
Wald statistic in the context of testing a high-dimensional vector against sparse alternatives, as well explained in Fan et al.
(2015).

To deal with this problem of low power, we introduce a power enhancement component to improve the power based on
BIMT, that is,

J0 =
√
n(BIMT/q − 1)2, (6)

and propose the following MCMC-based test for model misspecification

BMT = J1 + J0 = tr
{
CE

(
y,

(
θ̄, θE = 0

))
VE

(
θ̄L

)}
+

√
n(BIMT/q − 1)2. (7)

In the following theorem, we establish large sample properties for J0, J1 and BMT.

Theorem 2.1. Under Assumptions 1–12, when the model is correctly specified, we have,

J1
d

→ χ2 (qE) , J0 = op(1), BMT
d

→ χ2 (qE) .

Let q∗
:= tr

[
−H(θ0)

−1J (θ0)
]
. If the model is misspecified with q∗

̸= q, we have

J0 =
√
n
[
q∗/q − 1

]2
+ 2

√
n
(
q∗/q − 1

)
op(1) + Op(n−1/2) = Op(

√
n),

so that the order of the power of BMT is no less than Op(
√
n).

Remark 2.3. From (6) and Theorem 2.1, it is easy to see that J0 satisfies the three power enhancement properties listed in
Fan et al. (2015). Since J1

d
→ χ2 (qE) and J0 = op(1), BMT is asymptotically pivotal (χ2) under H0 and the size distortion in

BMT due to adding J0 is asymptotically negligible. UnderH1 in the regionwhere q∗
̸= q, J0 diverges and dominates J1, serving

nicely as a power enhancement component. Since our test relies on selecting particular paths for model expansion, if both
BMT and J1 are larger than the critical value, our approach not only suggests that the original model p (y|θ) is misspecified
but also indicates the source of model misspecification in p (y|θ).

Remark 2.4. BMT has several nice properties. First, compared with IMT, IOS, IOSA and IR, BMT is based on MCMC output.
When the likelihood function is difficult to optimize but the MCMC draws from the posterior distribution are available, BMT
is easier to compute than the others. Second, when J1 does not have the size distortion problem, it is most likely that BMT
will not suffer from size distortion. As a result, no bootstrapmethod is needed and intensive computational effort is avoided.
In addition, BMT can be obtained under other simulation-based approaches, such as sequential Monte Carlo methods, as
suggested by a referee. In addition, by incorporating BIMT into J0, there is no need to calculate the complicated asymptotic
variance of BIMT. These important properties make BMT applicable to a wide range of models.

Remark 2.5. While J1 depends on the path of model expansion, J0 is always independent of model expansion. According to
Theorem 2.1, as long as q∗

̸= q, J0 = Op
(√

n
)
. Hence, nomatter which path themodel is expanded in, even in the pathwhere

J1 takes a very small value, BMT can still detect the model misspecification due to the power enhancement component.

Remark 2.6. Relative to IOSA, IR and BIMT, BMT has a lower local power. This is the pricewe pay for avoiding using bootstrap
methods. FromProposition 2.1 and Theorem2.1, it is easy to show that IOSA, IR and BIMT can detect the localmisspecification
that shrinks to the null at the rate of n−1/2 (i.e. q∗

− q = Op(n−1/2)). Since J0 is Op(1) when q∗
− q = Op(n−1/4), BMT can

detect the local misspecification that shrinks to the null at the rate of n−1/4. This comparison suggests that onemay define an
alternative power enhancement function such as J0 = nα(BIMT/q − 1)2 for α ∈ (1/2, 1) to improve the local power. While
the new J0 can raise the local power, it introduces more size distortion to BMT. The analysis of such a trade-off is beyond the
scope of the present paper.

Remark 2.7. Informative priors impose tight constraints on parameters so that the posterior covariance matrix and hence
BIMT and BMT can be sensitive to priors. To minimize the impact of priors, we suggest the use of non-informative priors or
flat priors when implementing our tests.1

1 Loosely speaking, a non-informative prior is referred to a prior with big variance in our paper.
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BMT requires selecting an auxiliary model to expand the original model. When the model is misspecified such that
q∗

̸= q, BMT can always detect the misspecification asymptotically regardless of choice of auxiliary model. However,
auxiliary models will affect the size and power properties of BMT in finite samples. In general, it is very difficult to specify
the ‘‘optimal’’ auxiliary model, as in indirect inference (Gourieroux et al., 1993) where an auxiliary model is also needed.
Here we provide some practical guidelines on how to choose an auxiliary model.

First, it is generally preferable to expand the conditional mean than to expand the conditional variance. Assume that,
for a statistical model, the conditional mean and conditional variance are E(y|F ) and Var(y|F ), respectively, where F is the
information set. Under mild regularity conditions, it is known that if E(y|F ) is misspecified, parameters in E(y|F ) are often
inconsistently estimated, whereas if Var(y|F ) is misspecified, parameters in E(y|F ) can be consistently estimated (White,
1982). According to this property, if E(y|F ) is correctly specified, whether Var(y|F ) is correctly specified or not, J1 will take a
small value. Now consider the following two cases. In the first case E(y|F ) is expandedwhile in the second case Var(y|F ) is ex-
panded. First consider the casewhen Var(y|F ) ismisspecified, E(y|F ) is correctly specified, and E(y|F ) is expanded. In this case
J1 takes a small value. Since BMT rejects H0, together with a small value for J1, it suggests that the source of misspecification
is in the conditional variance but not in the conditional mean. Second consider the case when E(y|F ) is misspecified, Var(y|F )
is correctly specified, and Var(y|F ) is expanded. In this case, J1 takes a large value and rejects H0, incorrectly indicating that
the source of misspecification is in the conditional variance. This strategy for expanding the conditional mean even when
the conditional variance is misspecified will be implemented in the third empirical example in Section 3.

Second, choice of an auxiliary model can be guided by economic theory. In the second and third empirical examples,
we show how to choose auxiliary models using asset pricing theories. Third, choice of an auxiliary model can be guided by
computational cost. It is important to specify an auxiliary model that can be quickly estimated. If not, BMT will be difficult
to compute. Fourth, as usual, the law of parsimony is applicable. That is, when alternative auxiliary models with the same
structure but different number of parameters are available, the model with the smallest number of parameters should be
tried first because the simplest solution tends to be the right one. Of course, there is a size-power tradeoff here.

2.4. The proposed tests based on MCMC output

Asymptotic properties of BMT have been established based on θ̄ = E(θ|y) and V
(
θ̄
)

= E
[
(θ − θ̄)(θ − θ̄)′|y

]
. In practice,

however, analytical expressions for θ̄ and V
(
θ̄
)
are often not available and some consistent estimates of θ̄ and V

(
θ̄
)
based

on MCMC output have to be used to approximate θ̄ and V
(
θ̄
)
. Let

{
θ(m)
n

}M
m=1 be MCMC draws from the posterior distribution

p(θ|y) of the null model. A consistent estimate of the posterior mean θ̄ and the posterior variance V
(
θ̄
)
is given by

θ̃ =
1
M

M∑
m=1

θ(m)
n , Ṽ (̃θ) =

1
M

M∑
m=1

(
θ(m)
n − θ̃

) (
θ(m)
n − θ̃

)′
.

Similarly, let
{
θ
(m)
Ln

}M

m=1
be MCMC draws from the posterior distribution p(θL|y) of the expanded model. Then,

θ̃L =
1
M

M∑
m=1

θ
(m)
Ln , Ṽ (̃θL) =

1
M

M∑
m=1

(
θ
(m)
Ln − θ̃L

)(
θ
(m)
Ln − θ̃L

)′

.

Based on these estimates of posterior moments, MCMC-based estimates of BIMT and BMT can be obtained as

B̃IMT = ntr
[
Ĵn (̃θ)Ṽ (̃θ)

]
,

B̃MT = J̃1 + J̃0 = tr
{
CE

[
y, (̃θ, θE = 0)

] [
ṼE (̃θL)

]}
+

√
n
(
B̃IMT/q − 1

)2
,

where CE
[
y, (̃θ, θE = 0)

]
is the submatrix of C

[
y, (̃θ, θE = 0)

]
and ṼE (̃θL) is the submatrix of Ṽ (̃θL).

The number of MCMC draws (M) should be chosen so that B̃IMT and B̃MT enjoy the same asymptotic properties of BIMT
and BMT, respectively, when n is allowed to go to infinity. To derive the correct orders forM , we need to add Assumption 13
below. The same assumption was also used in Cheng et al. (2017), Robert and Casella (2004) and Jones (2004).

Assumption 13. Assume
{
θ(m)
n

}M
m=1 and

{
θ
(m)
Ln

}M

m=1
are twoMarkov chainswhich are aperiodic,ψ-irreducible, positive Harris

recurrent and geometrically ergodic with the stationary distribution being p(θ|y) and p(θL|y), and maxn≥1E
[⏐⏐θ(1)

n

⏐⏐4+ε0 |y] <
∞ , maxn≥1E

[⏐⏐⏐θ(1)
Ln

⏐⏐⏐4+ε0 |y] < ∞, for some ε0 > 0.

For a = 1, 2, . . . , q, let θa be the ath component of θ, and σ 2
1n,a be the long run variance ofMarkov chain,

{
θ(m)
a

}M
m=1. That is,

σ 2
1n,a = Var (θa|y)+ 2

∞∑
k=1

γ1n,a (k|y) ,
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where γn,a (k|y) is the kth order autocovariance given by

γ1n,a (k|y) = Cov
(
θ(1)
a , θ

(1+k)
a |y

)
= E

(
θ(1)
a θ(1+k)

a |y
)
− E

(
θ(1)
a |y

)
E

(
θ(1+k)
a |y

)
.

Similarly, if we let ϑ = vech
[(

θ − θ̄
) (

θ − θ̄
)′
]
and ϑL = vech

[(
θL − θ̄L

) (
θL − θ̄L

)′
]
where θ̄ = E [θ|y] and θ̄L = E [θL|y],

thenwe can define σ 2
2n,b to be the long run variance ofMarkov chain,

{
ϑ
(m)
b

}M

m=1
for b = 1, 2, . . . , r (= q(q+1)/2). Moreover,

for b = 1, 2, . . . , rL (= qL(qL + 1)/2) with qL = q + qE , we can define σ 2
Ln,b to be the long run variance of Markov chain,{

ϑ
(m)
Ln,b

}M

m=1
.

Theorem 2.2. Let

σ 2∗
1n = max

a∈{1,2,...,q}
σ 2
1n,a, σ

2∗
2n = max

b∈{1,2,...,r}
σ 2
2n,b, σ

2∗
Ln = max

b∈{1,2,...,rL}
σ 2
Ln,b.

Let MBIMT be the number of MCMC draws from p(θ|y) for B̃IMT . Let MBMT and ML be the number of MCMC draws from p(θ|y) and
p(θL|y) for B̃MT . Under Assumptions 1–13, for any c∗

i > 0 with i = 1,2, if we choose

MBIMT = max
{
n1+c∗1σ 2∗

1n , n
3+c∗2σ 2∗

2n

}
, (8)

then, when the model is correctly specified, we have
√
n
(
B̃IMT − BIMT

)
= op(1).

Furthermore, for any c∗

i > 0 with i = 3, 4, 5, if we choose

MBMT = max
{
n1+c∗3σ 2∗

1n , n
2.5+c∗4σ 2∗

2n

}
, ML = n2+c∗5σ 2∗

Ln , (9)

then, when the model is correctly specified, we have

J̃1 = J̃1 + op(1), J̃0 = op(1), B̃MT = BMT + op(1).

When the model is misspecified such that q∗
̸= q, we have

J̃0 = J0 + op(1) =
√
n
[
q∗/q − 1

]2
+ 2

√
n
(
q∗/q − 1

)
op(1) + Op(n−1/2) = Op(

√
n).

Remark 2.8. Theorem 2.2 gives the order for the number ofMCMC draws in (8) to ensure that B̃IMT has the same asymptotic
distribution as BIMT and that in (9) to ensure that B̃MT has the same asymptotic distribution as BMT. In addition, it gives the
condition under which B̃MT has the same order of power as BMT.

Remark 2.9. In practice, the sample size n is often large enough so that MBIMT = max
{
n1+c∗1σ 2∗

1n , n
3+c∗2σ 2∗

2n

}
= n3+c∗2σ 2∗

2n

andMBMT = max
{
n1+c∗3σ 2∗

1n , n
2.5+c∗4σ 2∗

2n

}
= n2.5+c∗2σ 2∗

2n . In this case,MBMT is of a smaller order thanMBIMT and the difference

in order is
√
n. When the number of MCMC draws is set at MBIMT = n3+c∗2σ 2∗

2n , Theorem 2.2 suggests that B̃IMT−BIMT=
op(n−1/2). According to Proposition 2.1, BIMT= q+Op

(
n−1/2

)
underH0. These two properties imply that both B̃IMT and BIMT

converge to the same distribution. However, if we only chooseMBIMT = n2.5+c∗2σ 2∗
2n , then B̃IMT−BIMT= op(n−1/4), suggesting

that B̃IMT andBIMTmaynot converge to the samedistribution.When thenumber ofMCMCdraws is set atMBMT = n2.5+c∗3σ 2∗
2n

in the originalmodel and atML = n2+c∗5σ 2∗
Ln in the expandedmodel, Theorem2.2 suggests that B̃MT−BMT = op(1). According

to Theorem 2.1, BMT
d

→ χ2 (qE) under H0. These two properties imply that B̃MT and BMT converge to the same distribution.
Hence, for B̃IMT to have the same asymptotic distribution as BIMT, a stronger order condition is needed for M than that for
B̃MT to have the same asymptotic distribution as BMT. The orders differ by

√
n. This is additional advantage in using BMT

over BIMT. For example, if n = 2000,
√
n ≈ 45. It means the number of MCMC draws required for B̃IMT is about 45 times as

large as that for B̃MT .

Remark 2.10. In practice, σ 2∗
1n , σ

2∗
2n and σ 2∗

Ln are unknown. Hence, one has to estimate them fromMCMC output. For example,
we can estimate them sequentially by consistent batch means or spectral methods.2 Once the order achieves the desirable
one, wemay stopMCMC drawing. Let consistent estimates of σ 2∗

1n , σ
2∗
2n and σ 2∗

Ln be σ̂ 2∗
1n , σ̂

2∗
2n and σ̂ 2∗

Ln . Suppose BMT is used. For
the null model, we should chooseM ≥ n2.5+c∗4 σ̂ 2∗

2n . For the expanded model, we should chooseM ≥ n2+c∗5 σ̂ 2∗
Ln . Since

{
c∗

i

}5
i=4

are any positive constants, the lower bound of nc∗i is one. In practice, we may set nc∗i to be a number slightly larger than 1.

2 The conditions under which these estimators are strongly consistent are established in Flegal and Jones (2010) and Jones et al. (2006).
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Table 1
Empirical size for IOSA and BIMT under the asymptotic distribution and the
bootstrap distribution.

n IOSA BIMT

Asymptotic Bootstrap Asymptotic Bootstrap

50 0.216 0.049 0.5420 0.0570
100 0.147 0.050 0.3270 0.0525
200 0.136 0.056 0.2155 0.0570

3. Simulation and empirical studies

In this section, we first design two simulation studies to check the finite sample performance of BMT. In the first
simulation study, we test for heteroskedasticity in a linear regression model. This study aims to compare BMT with other
popular tests in terms of size and power.We also investigate the performance of BIMT in thismodel. In the second simulation
study, we test the specification of a linear state-space model where existing misspecification tests are difficult to use but
BMT is easier to obtain. Then, we consider empirical studies to examine the specification of three models and to highlight
the usefulness of our test. The first model is a linear regressionmodel. The secondmodel is a linear state-spacemodel where
existing tests are difficult to use. This third model is a stochastic volatility model where existing tests are impossible to use.

3.1. Simulation studies

3.1.1. Test for heteroskedasticity in a linear regression model
To do a Monte Carlo comparison of the IR test with other popular misspecification tests, Zhou et al. (2012) considered

the heteroskedasticity testing problem in a linear regression model. In our first simulation study, we adopt the simulation
design of Zhou et al. (2012) and compare the size and the power of BMT with some alternative tests. The linear regression
model is specified as,

yi = 1 + 2xi1 + 2xi2 + ϵi, ϵi = σiξi, ξi
i.i.d.
∼ N(0, 1),

For this model, the covariates xi1 and xi2 are independently generated from a U[−3, 3] distribution. We would like to test
the following null hypothesis of homoskedasticity, i.e.,

H0 : Var(ϵi) = σ 2
i = σ 2, i = 1, 2, . . . , n.

The DGP under the null hypothesis and the alternative hypothesis is, respectively,

H0 : σ 2
i = 1; H1 : σ 2

i = exp(xi1 + xi2).

Following Zhou et al. (2012), we run 2000 replications, each of which has three different sample sizes, 50, 100, 200.
For the expanded model, we use

yi = β0 + β1xi1 + β2xi2 + β3xi1xi2 + ϵi, ϵi = σξi, ξi ∼ N(0, 1).

Hence, θE = β3.
To implement the proposed test, we need to use the MCMCmethod to estimate the model under the null hypothesis and

the expanded model. To check the robustness of priors, we consider two sets of non-informative prior specifications. The
first prior is proper but very vague and given by

β = (β0, β1, ..β3)′ ∼ N[µβ = 0, σ 2Vβ = 100 × I4], σ−2
∼ Gamma(a = 0.01, b = 0.01),

where I4 is the identity matrix with dimension 4, (a, b) are hyperparameters of the Gamma distribution. Both the normal
prior distribution and the Gamma prior distribution have large spread so that they are non-informative. The second is an
improper flat prior, i.e., p(β, σ 2) ∝ σ−2. In this example, since the posterior distribution is available analytically, we simply
make 2000 draws from the posterior directly.

We first check the size distortion problem in IOSA and BIMT when the flat prior is used. Table 1 reports the empirical
size of IOSA and BIMT based on the asymptotic distribution and the parametric bootstrap distribution. In this example, the
ML method is trivial to implement and hence the bootstrap method is feasible. The method used to obtain the asymptotic
variance was proposed by Lancaster (1984). It can be seen clearly that the oversized problem for both IOSA and BIMT is
severe when the asymptotic distribution is used. The size distortion is even larger for BIMT than for IOSA, especially when
n is small. For both tests, the bootstrap method can solve the size distortion problem. These results reinforce the theory
developed earlier in the paper.

Let BMTv be BMT under the vague prior and BMTf be BMT under the flat prior. Table 2 reports the empirical size of IR,
IMT, IOS, BMTv and BMTf underH0 and at the 5% significance level. The results of the first three tests are extracted from Zhou
et al. (2012) where critical values are obtained from the bootstrap distribution. The BMT test entertains similar performance
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Table 2
Empirical size for alternative tests.

n IR IMT IOS BMTv BMTf
50 0.044 0.050 0.060 0.051 0.046

100 0.045 0.059 0.056 0.055 0.050
200 0.046 0.065 0.048 0.050 0.052

Table 3
Empirical power under the alternative hypothesis.

n IR IMT IOS BMTv BMTf
50 0.85 0.11 0.9837 0.797 0.750

100 0.95 0.46 1.000 0.976 0.961
200 1.00 0.93 1.000 1.000 1.000

to other tests and shows small size distortions in all cases. Moreover, the size of BMT is robust against the change in prior.
Table 3 reports the empirical power of IR, IMT, IOS and BMT at the 5% significance level. The results of the first two tests are
extracted from Zhou et al. (2012). From this table, it can be seen that the power of IOS is always the highest, followed closely
by BMT and IR, while the power of IMT can be quite low (when n = 50). The power of BMT is compatible with that of IR.
Again, the prior does not have significant influence on the power of BMT.

From this experimentwe can conclude that the finite sample performance of BMT is satisfactorywith small size distortion
and good power. Both the size and the power of BMT are not sensitive to priors. We should emphasize that critical values of
BMT are obtained from χ2 and hence no bootstrap method is needed.

3.1.2. A linear state-space model
The model under the null hypothesis is the following linear state-space model

Rt = βtR0t + εt , εt
i.i.d.
∼ N

(
0, σ 2

ε

)
, (10)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt , ηt

i.i.d.
∼ N

(
0, σ 2

η

)
.

This random coefficient model has found many applications in economics and finance. While MLE of this model can be
obtained by using the Kalman filter, the bootstrap method will be computationally costly for obtaining critical values for
IMT, IOSA, IR and BIMT. Consequently, we only implement BMT in this example.

The expanded model is

Rt = α + βtR0t + εt , εt
i.i.d.
∼ N

(
0, σ 2

ε

)
(11)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt , ηt

i.i.d.
∼ N

(
0, σ 2

η

)
,

where an intercept is added to the observation equation. If Model (10) is correctly specified, α = 0 in the expanded model.
For the MCMC analysis, we use the following vague priors for hyper-parameters,

α ∼ N(0, 103), β̄ ∼ N(0, 103), φ ∼ Beta(1, 1), σ−2
ε ∼ Γ (10−3, 10−3), σ−2

η ∼ Γ (10−3, 10−3).

Based on 20,000 MCMC samples after 2000 burn-in observations from the posterior distribution, we compute BMT. We run
1000 replications, each of which has three different sample sizes, n = 200, 400, 800.

To compute empirical size, we set parameter values at σ 2
ε = 0.000307, β̄ = 0.96, φ = 0.5, σ 2

η = 0.208 and R0t are
generated from an i.i.d. normal distribution with mean 0 and variance 0.001. To compute empirical power, we consider two
different DGPs. The first DGP (denoted byM1) is given by

Rt = βtR0t +
σε
√
3
εt , εt

i.i.d.
∼ t3, (12)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt , ηt

i.i.d.
∼ N

(
0, σ 2

η

)
,

where t3 is a t distribution with 3 degrees of freedom, σ 2
ε = 0.000307, β̄ = 0.96, φ = 0.5, σ 2

η = 0.208 and R0t are generated
from an i.i.d. normal distributionwithmean 0 and variance 0.001. The secondDGP for computing the power of BMT (denoted
byM2) is given by

Rt = α + βtR0t +
σε
√
3
εt , εt

i.i.d.
∼ t3, (13)

βt+1 = β̄ + φ
(
βt − β̄

)
+ ηt , ηt

i.i.d.
∼ N

(
0, σ 2

η

)
,

where α = 0.002, σ 2
ε = 0.000307, β̄ = 0.96, φ = 0.5, σ 2

η = 0.208 and R0t are generated from an i.i.d. normal distribution
with mean 0 and variance 0.001.
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Table 4
Empirical size and empirical power.

n Empirical size Empirical power (M1) Empirical power (M2)

J1 BMT J1 BMT

200 0.074 0.032 0.518 0.300 0.723
400 0.063 0.041 0.804 0.544 0.942
800 0.054 0.050 0.973 0.801 0.998

Table 5
Posterior quantities of the null model and the expanded model.

Linear regression model Expanded model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent

β0 0.7067 0.0332 0.6415 0.7717 0.6317 0.0350 0.5634 0.7009
β1 −0.1506 0.0409 −0.2306 −0.0712 0.7897 0.1556 0.4869 1.0942
β2 0.0074 0.0047 −0.0019 0.0167 0.0040 0.0048 −0.0053 0.0134
β3 −0.0374 0.0088 −0.0546 −0.0202 −0.0439 0.0088 −0.0611 −0.0267
β4 0.1033 0.0104 −0.1236 −0.0828 −0.0933 0.0105 −0.1141 −0.0729
σ 2 0.7069 0.0193 0.6700 0.7461 0.6970 0.0189 0.6611 0.7347
β5 – – – – −0.9855 0.1576 −1.2981 −0.6776

Table 4 reports the empirical size (at the 5% significance level) and the empirical power of BMT. To check whether or not
J1 is useful to provide the guidance on the possible source of misspecification, we also report the proportion of the 2000
replications where J1 rejects α = 0 in the expanded model (11).

Several interesting findings come from Table 4. First, the size distortion is small and becomes better and better as the
sample size increases, suggesting there is no need to use bootstrap methods. Second, the power is good and becomes higher
and higher as the sample size increases. Third, the good power of BMT may not come from J1. In fact, J1 loses power under
M1. This finding is not surprising because M1 implies that E(Rt |βt , R0t ) = βtR0t , suggesting the mean structure specified in
the null model is correct and hence α = 0. That is why J1 only rejects α = 0 at about 5% rate in the experiment. The power
of BMT comes from the power enhancement component. Fourth, when the DGP is M2, E(Rt |βt , R0t ) = 0.002 + βtR0t . The
mean structure specified in the null model is wrong and hence α ̸= 0 . In this case, J1 rejects α = 0 more often. When J1
indeed rejects α = 0, it suggests that the mean structure is the source of misspecification in Model (10).

3.2. Empirical studies

3.2.1. A linear regression model
In the first empirical study, we test the specification of a model that explains arrest records. The dataset contains data on

arrests during the year 1986 and other information on 2725 men born in either 1960 or 1961 in California. Each man in the
sample was arrested at least once prior to 1986. Let y be the number of times the manwas arrested during 1986, x1, x2, x3, x4
be the proportion (not percentage) of arrests prior to 1986 that led to conviction, average sentence length served for prior
convictions, the months spent in prison in 1986, and the number of quarters during which the man was employed in 1986.
As to the data, the sample size 2725. For more details, one can refer to Wooldridge (2014).

The null model is the following linear regression model

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + εi, εi
i.i.d.
∼ N

(
0, σ 2) . (14)

For the expanded model, we use

yi = β0 + β1x1i + β2x2i + β3x3i + β4x4i + β5x21i + εi, εi
i.i.d.
∼ N

(
0, σ 2) . (15)

If Model (14) is correctly specified, β5 = 0 in Model (15). Conjugated vague priors for β (:=
(
β0 β1 β2 β3 β4 β5

)′)
and σ 2 are set at

β ∼ N
(
µβ , σ

2Vβ
)
, σ−2

∼ Γ (a, b) .

We use very vague priors where hyper-parameters in the priors are set at

µβ = 0, Vβ = 100 × I6, a = 0.01, b = 0.01.

For the MCMC analysis, 20,000 random draws are sampled from the posterior distribution. The posterior mean, standard
deviation, 2.5% quantile, and 97.5% quantile of all the parameters are reported in Table 5 for both models.

The critical value of χ2 (1) is 6.63 at the 1% significance level. In this study, the BMT statistic is 346.6568, suggesting that
Model (15) is misspecified. It is easy to find out that J1 is 38.6919 (i.e., J0=307.9649) which is also greater than the 1% critical
value of χ2 (1). Note that using J1 we can reject β5 = 0 in Model (15), suggesting that the misspecification of Model (15)
comes from the wrong functional form in x1i.
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Table 6
Posterior quantities of the null model and the expanded model.

Linear state space model Expanded model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent

σ 2
iε 1.3616 0.0756 1.2200 1.5168 1.3603 0.0758 1.2118 1.5158
β̄i 1.2161 0.0270 1.1630 1.2680 1.2186 0.0270 1.1650 1.2710
φi 0.4233 0.0984 0.2241 0.6088 0.4210 0.0950 0.2191 0.6101
σ 2
iη 0.1621 0.0266 0.1107 0.2146 0.1627 0.0266 0.1101 0.2158
αi – – – – −3.9226 3.5507 −10.8900 3.0250

For this model, it is easy to obtain IMT and feasible to obtain the critical value using a bootstrap method. IMT is 1732
and the 5% bootstrap critical value is 46.0734. Hence, IMT also suggest that Model (14) is misspecified, reinforcing the result
from BMT. However, IMT does not tell how to improve the model.

In this example, if we use the consistent batch means of Jones et al. (2006) to estimate the long run variances by setting
the number of batches at

√
M , thenwe have σ̂ 2∗

1n = 1.51×10−3, σ̂ 2∗
2n = 5.55×10−6, σ̂ 2∗

Ln = 1.10×10−3. According to Remark
3.14, with nv = 1, the lower bound for the number of MCMC draws is MBMT = 2153 for the null model and ML = 8168 for
the expanded model. Hence, our choice of 20,000 MCMC draws for both models is large enough to ensure the validity of the
asymptotic theory for B̃MT .

3.2.2. A linear state-space model
The capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965) is a fundamental theory in finance. When

investors can borrow and lend at a risk-free rate, the intercept is expected to be zero in the CAPM. Another important feature
of the CAPM is that beta is constant over time. However, it is well-documented that the systematic risk of an asset depends
on microeconomic factors as well as macroeconomic factors. Hence, allowing time-varying beta is an important way to
generalize the CAPM.

In this section,we extend the traditional CAPMby allowing for time-varying beta in a state-space form. FollowingMergner
and Bulla (2008), a CAPM without intercept but with time-varying beta is given by

Rit = βitR0t + εit , εit
i.i.d.
∼ N

(
0, σ 2

iε

)
, (16)

βit+1 = β̄i + φ
(
βit − β̄i

)
+ ηit , ηit

i.i.d.
∼ N

(
0, σ 2

iη

)
,

where R0t denotes the excess return of the market portfolio and Rit denotes the excess return to sector i for period
t = 1, . . . , T . R0t is the DJ STOXX 600 return index, which includes the 600 largest stocks in Europe, serves as a proxy
for the overall market. The dataset used are weekly excess returns calculated from the total return indices for pan-European
industry portfolios, covering the period from 2 December 1987 to 14 January 2016. The sample size is 1467. Here we choose
the sector to be the insurance industry. This asset pricing model is used to show that the investor cannot obtain extra return
from investing in the insurance industry.

In this example, we would like to test if the CAPM without intercept and with time-varying beta can describe a dataset.
Naturally, the following CAPM with intercept and time-varying beta can be chosen as the expanded model,

Rit = αi + βitR0t + εit , εit
i.i.d.
∼ N

(
0, σ 2

iε

)
, (17)

βit+1 = β̄i + φi
(
βit − β̄i

)
+ ηit , ηit

i.i.d.
∼ N

(
0, σ 2

iη

)
,

where an intercept is added to the mean equation. If Model (16) is correctly specified, αi = 0 in Model (17).
For the MCMC analysis, we use the following non-informative priors for hyper-parameters

αi ∼ N(0, 103), β̄i ∼ N(0, 103), φi ∼ Beta(1, 1), σ−2
iε ∼ Γ (10−3, 10−3), σ−2

iη ∼ Γ (10−3, 10−3).

We draw 500,000 MCMC samples after 50,000 burn-in observations from the posterior distribution for the null model,
and 150,000 MCMC samples after 20,000 burn-in for the expanded model to compute BMT. The posterior mean, standard
deviation, 2.5% quantile, and 97.5% quantile of all the parameters are reported in Table 6 for both models (both αi and σ 2

iε
are multiplied by 10,000). We do not implement other tests as bootstrap methods are computationally too expensive in this
setup.

BMT is 146.9662, suggesting that Model (17) is misspecified. It is easy to find out that J1 is 1.2179 (i.e., J0 =145.7483)
which is less than the critical value of χ2 (1). Interestingly, using J1 alone suggests that we cannot reject αi = 0 in Model
(17). According BMT, the CAPM without intercept but with time-varying beta is rejected. Hence, a more appropriate CAPM
specification is needed.

The batch means estimates of the long run variances are σ̂ 2∗
1n = 0.59, σ̂ 2∗

2n = 5.51 × 10−3 and σ̂ 2∗
Ln = 5.42 × 10−3. Hence,

the lower bound for the number of MCMC draws is MBMT = 460,400 for the null model and ML = 11,792 for the expanded
model. In this example, we have usedM = 500,000 andML = 150,000 which are large enough.



Y. Li et al. / Journal of Econometrics 207 (2018) 237–260 249

Table 7
Posterior quantities of the null model and the expanded model.

IID Normal AR(1) Model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent

α −0.0140 0.0201 −0.0536 0.0263 −0.0137 0.0204 −0.0539 0.0270
σ 2 0.8026 0.0259 0.7689 0.8727 0.8208 0.0255 0.7726 0.8737
β – – – – −0.0115 0.0216 −0.0524 0.0287

3.2.3. A stochastic volatility (SV) model
The dataset used here contains the daily returns on AUD/USD exchange rates from January 2005 to December 2012. The

sample size is 2086. We first test the i.i.d. normal model with constant mean and constant variance given by

yt = α + εt , εt
i.i.d.
∼ N

(
0, σ 2) . (18)

We first expand the conditional mean to the following AR(1) model

yt = α + βyt−1 + εt , εt
i.i.d.
∼ N

(
0, σ 2) . (19)

The MCMC method is implemented to estimate the parameters with the following non-informative priors

α ∼ N(0, 100σ 2), β ∼ N(0, 100σ 2) , σ−2
∼ Γ (0.001, 0.001).

For the above two models, we draw 20,000 MCMC samples from the posterior distribution and compute BMT. The posterior
mean, standard deviation, 2.5% quantile, and 97.5% quantile of all the parameters are reported in Table 7.

BMT is 251.52, rejecting the i.i.d. normal model at the 1% level. This conclusion is not surprising as the volatility of stock
returns is time-varying. However, J1 is 0.2858 (i.e., J0=251.23) which is less than the critical value of χ2 (1). Using J1 alone
only suggests that we cannot reject β = 0 in Model (19). This conclusion is also not surprising as the daily returns have
very weak serial correlations. A large BMT value combined with a small J1 value suggests that the conditional variance is
incorrectly specified even when the conditional mean was expanded.

That is why in the next study we change the null model to the following basic SV model which differs from the i.i.d.
normal model in the conditional variance specification,

yt = α + exp (ht/2) ut , ut
i.i.d.
∼ N (0, 1) , (20)

ht = µ+ φ (ht−1 − µ)+ τνt , νt
i.i.d.
∼ N (0, 1) .

The expanded model is as follows,

yt = α + β1yt−1 + exp (ht/2) ut , ut
i.i.d.
∼ N (0, 1) . (21)

ht = µ+ φ (ht−1 − µ)+ τνt , νt
i.i.d.
∼ N (0, 1) .

The following non-informative priors are used

α ∼ N(0, 100), µ ∼ N(0, 100), φ ∼ Beta(1, 1), τ−2
∼ Γ (0.001, 0.001), β1 ∼ N(0, 100).

To obtain BMT, for the nullmodelwe draw30,000,000MCMC samples from the posterior distribution and discard the first
1,000,000 as burn-in observations, and the remaining samples are stored as effective observations. For the expandedmodel,
we draw 14,000,000 MCMC samples and discard the first 1,000,000 as burn-in observations.3 The batch means estimates of
the long run variances are σ̂ 2∗

1n = 0.2057, σ̂ 2∗
2n = 0.1137 and σ̂ 2∗

Ln = 0.0958. The low bound for the number of MCMC draws
is MBMT = 22, 570, 000 and ML = 416,460. In this example, we have used M = 29, 000, 000 and ML = 13, 000, 000 which
are large enough. Based on the MCMC draws, the posterior mean, standard deviation, 2.5% quantile, and 97.5% quantile of
all the parameters are reported in Table 8.

All the first derivatives required by BMT are calculated based on particle filters.4 The number of particles in each period
is 1000. For the null model, the standard errors for the first order derivative with respect to α,µ, φ and τ 2 are 0.0865, 0.0151,
0.9717, 0.6512. For the expanded model, the standard errors for the first order derivative with respect to α, µ , φ, τ 2 and
β are 0.0900 , 0.0143, 0.9048, 0.6009 and 0.0303. BMT=3.2714 which is less than 3.84, the critical value of χ2 (1) under 5%
significant level, suggesting that the basic SV model is not misspecified at the 5% significant level.

3 In this example, we have written C code to conduct MCMC analysis of the SV models. It takes about 2 h to draw 30,000,000 MCMC draws using a
common desktop PC with Intel(R) Core(TM) i7-7700k CPU @ 4.20 GHz.

4 The calculation details are given in Appendix A. The approach of Chan and Lai (2013) is used to compute the standard errors of the first derivatives
based on particle filters.
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Table 8
Posterior quantities of the null model and the expanded model.

Basic SV model Expanded model

Mean SD 2.5 Percent 97.5 Percent Mean SD 2.5 Percent 97.5 Percent

α −0.0005 0.0126 −0.0252 0.0242 −0.0004 0.0125 −0.0249 −0.0242
µ −1.0174 0.1761 −1.3666 −0.6769 −1.0173 0.1761 −1.3666 −0.6765
φ 0.9761 0.0072 0.9603 0.9887 0.9761 0.0072 0.9603 0.9887
τ 2 0.0288 0.0067 0.0182 0.0444 0.0288 0.0067 0.0182 0.0444
β1 – – – – 0.045 0.0227 0.0007 0.899

4. Conclusions

In this paper, we have proposed two new specification test statistics based on MCMC output to check the validity of a
model specification. The first one is the MCMC version of IOSA test. We show that it is asymptotically normally distributed
under the null hypothesis but has a complex asymptotic variance. While it does not require the alternative model be
specified, a bootstrap method is needed to avoid calculating asymptotic variance. The second test, which is our main test,
combines a component (J1) that tests a null point hypothesis in an expanded model and a power enhancement component
(J0) obtained from the first test. It is shown that J0 converges to zero when the null model is correctly specified and diverges
when the null model is misspecified. Also shown is that J1 is asymptotically χ2-distributed, suggesting that the proposed
test is asymptotically pivotal, when the null model is correctly specified.

When J1 does not suffer from the size distortion problem, the proposed test will have good size. Consequently, no
bootstrap method is needed to correct the size. When J1 loses power, the power enhancement component ( J0) raises the
power of the proposed test. If J1 rejects the null point hypothesis in an expanded model, it provides guidance on the source
of misspecification.

An important feature of the proposed tests is that they are based onMCMC output.While several specification tests based
on the information matrix are available in the literature, they all require MLE as the input. Moreover, since the asymptotic
distribution of these tests performs poorly in finite sample, bootstrap methods have been suggested to calculate critical
values, increasing the computational cost. For models where MCMC is a popular method, MLE is very difficult to obtain and
bootstrap methods are computationally too expensive. This may help explain why no specification test has been carried out
to these models in practice.

There is no reasonwhy our proposed tests cannot be used in connection to other simulation-basedmethods. One example
of simulation-based methods is the sequential Monte Carlo method of Chopin (2002). Moreover, it is possible to introduce
a ML-based test statistic of the same spirit. When MLE is not difficult to obtain but it is not easy to find a suitable bootstrap
method or all bootstrap methods are too costly to implement, one can use a ML-based specification test with the power
enhancement technique. This alternative test will be reported in a separate study.

Appendix A

A.1. Appendix 1: proof of Proposition 2.1

By using the first-order expansion, we can show that
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(
θ̄
)

=
1
n

n∑
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(
θ̄
)
st

(
θ̄
)′

=
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)(
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where θ̃1 lies between θ̄ and θ̂. Furthermore, note that
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Ĵn

(
θ̄
))

=
1
n

n∑
t=1

vech
(
st

(
θ̂
)
st

(
θ̂
)′

)
+

2
n

n∑
t=1

[
st

(
θ̂
)

⊗ ht

(
θ̃1

)]
vech

(
θ̄ − θ̂

)
+

1
n

n∑
t=1

[
ht

(
θ̃1

)
⊗ ht

(
θ̃1

)]
vech

[(
θ̄ − θ̂

)(
θ̄ − θ̂

′
)′

]
.



Y. Li et al. / Journal of Econometrics 207 (2018) 237–260 251

By Assumption 10, we have

2
n

n∑
t=1

[
st

(
θ̂
)
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(
θ̃1

)]
= Op (1) ,

1
n

n∑
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(
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)
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(
θ̃1

)
= Op (1) ,

and θ̄ − θ̂ = Op
(
n−1

)
from Remark 2.1. Hence, we can show that

Ĵn
(
θ̄
)

= Ĵn
(
θ̂
)

+ Op(1)Op(n−1) + Op(1)Op(n−1)Op(n−1)

= Ĵn
(
θ̂
)

+ Op(n−1). (22)

From Li et al. (2017), under Assumptions 1–12, we have θ̂ − θ̂ML = Op(n−1). Similar to (22), it can be shown that
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θ̂
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θ̂ML

)
+ Op(n−1).

Based on Assumptions 6 and 10, we can get that Ĥn(θ̂) = Op(1). According to Remark 2.1, it is easy to show that

V (θ̄) = E
[(

θ − θ̄
) (

θ − θ̄
)′

|y
]

= E
[(

θ − θ̂ + θ̂ − θ̄
)(

θ − θ̂ + θ̂ − θ̄
)′

|y
]

= E
[(

θ − θ̂
)(

θ − θ̂
)′

|y
]

+ 2E
[(

θ − θ̂
)

|y
] (

θ̂ − θ̄
)′

+

(
θ̂ − θ̄

)(
θ̂ − θ̄

)′

= E
[(

θ − θ̂
)(

θ − θ̂
)′

|y
]

−

(
θ̂ − θ̄

)(
θ̂ − θ̄

)′

= −L−(2)
n (θ̂) + Op(n−2)

= −

[
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where Iq is q-dimensional identity matrix. Hence, can get that

V (θ̄) = E
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]
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In addition, by using the Taylor expansion, similar to (22), we can further get that
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where ▽l(3)
(
θ̃2

)
is the third order derivative of lt (θ) evaluated at θ̃2, and θ̃2 lies between θ̂ and θ̂ML.

From the definition of BIMT and (22)–(24), we get
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n (θ̂)
]

+ Op(n−1)



252 Y. Li et al. / Journal of Econometrics 207 (2018) 237–260
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Hence, the first part of Proposition 2.1 is proved.
Next, when the model is correctly specified, we derive the order of BIMT−q . According to White (1987), under H0, it can

be shown that, in White’s IMT test, the elements of
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Ĵn

(
θ̂ML

)
+ Ĥn
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−Ĥn
(
θ̄
)

= −Ĥn
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From Li et al. (2017), under Assumptions 1–12, by the Laplace expansion,
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From (23), (26) and (27), we have
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Hence, Proposition 2.1 is proved.

A.2. Appendix 2: proof of Theorem 2.1

When the model is correctly specified, by Proposition 2.1, we can show that
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Furthermore, according to Li et al. (2015), if θE = 0 in the expandedmodel, as n → ∞, when themodel is correctly specified,
we have
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Hence, we get
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In the following, we derive the power of BMT. Similarly to the proof of Proposition 2.1, by using the Taylor expansion, we
get
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the quasi-ML theory given in Gallant and White (1988) and White (1982, 1987).
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Furthermore, we can similarly get
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where θ̃4 lies between θ̂ML and θ0 . It can be rewritten as a vector form, that is,
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Hence, similar to (28), we have
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Based (28) and (29), by Assumption 7 and the central limit theorem, it follows that
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Ĵn(θ0)Op(n−1/2)

]
− tr

[
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n (θ0)
]

− Op(1)Op(n−1/2) − Op(1)Op(n−1/2) + Op(n−1)

= tr
[
−Ĵn(θ0)Ĥ−1

n (θ0)
]

+ Op(n−1/2)

= tr
[
−

(
J(θ0) + op(1)

) (
H−1(θ0) + op(1)

)]
+ Op(n−1/2)

= tr
[
−J(θ0)H−1(θ0)

]
+ op(1) + Op(n−1/2)

= q∗
+ op(1) = Op(1).

By Proposition 3.1, whether the model is misspecified or not, we get

BIMT = IOSA + Op(n−1).

Hence, we have

J0 =
√
n(BIMT/q − 1)2 =

√
n
[(
IOSA + Op(n−1)

)
/q − 1

]2
=

√
n
[
IOSA/q − 1 + Op(n−1)

]2
=

√
n[IOSA/q − 1]2 +

√
n [IOSA/q − 1]Op(n−1) +

√
nOp(n−1)Op(n−1)

=
√
n[IOSA/q − 1]2 +

√
nOp(1)Op(n−1) + Op(n−3/2)

=
√
n[IOSA/q − 1]2 + Op(n−1/2) + Op(n−3/2)

=
√
n[IOSA/q − 1]2 + Op(n−1/2)

=
√
n
[(
q∗

+ op(1)
)
/q − 1

]2
+ Op(n−1/2)

=
√
n
[
q∗/q − 1 + op(1)

]2
+ Op(n−1/2)

=
√
n
[
q∗/q − 1

]2
+ 2

√
n
(
q∗/q − 1

)
op(1) + Op(n−1/2)

=
√
n
[
q∗/q − 1

]2
+ 2

√
n
(
q∗/q − 1

)
op(1) + Op(n−1/2).
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When the model is misspecified so that q∗
̸= q, we have

J0 = Op(
√
n).

Since in J1 is always large than zero, the order of the power of BMT is no less than Op(
√
n).

A.3. Appendix 3: computing BMT in latent variable models

MCMC has been popular for estimate an important class of latent variable models—state-space models. We now discuss
how to compute BMT for state-space models after they are estimated by MCMC. To introduce state-space models, let y be
the observed variables and z = (z1, . . . , zn) be the latent variables. The model is given by{

yt = F (zt , ut , θ)
zt = G(zt−1, vt , θ)

. (30)

The first equation is the observation equation while the second equation is the state equation. When the distribution of ut
and vt is Gaussian and the functional form of F and G is linear, the model is referred to as the linear Gaussian state-space
model. When the distribution of ut or vt is non-Gaussian or the functional form of F or G is nonlinear, the model is often
referred to as the nonlinear non-Gaussian state-space model in the literature.

Let p(y|θ) be the observed-data likelihood function, and p(y, z|θ) the complete-data likelihood function. Obviously these
two functions are related to each other by

p(y|θ) =

∫
p(y, z|θ)dz. (31)

The complete-data likelihood function p(y, z|θ) can be expressed as p(y|z, θ)p(z|θ). Usually analytical expressions for
p(y|z, θ) and p(z|θ) are given by the specification of the model. In particular, the observation equation gives the analytical
expression for p(y|z, θ) while the state equation gives the analytical expression for p(z|θ). However, in general the integral
in (31) does not have an analytical expression. Consequently, the statistical inferences, such as estimation and hypothesis
testing, are difficult to implement if they are based on the ML approach. For linear Gaussian state-space models, p(y|θ) and
its derivatives with respect to θ can be computed numerically by the Kalman filter. For nonlinear non-Gaussian state-space
models, other methods are needed to compute p(y|θ) and the derivatives.

The latent variablesmodels can be efficiently and easily estimated in the Bayesian framework usingMCMC techniques. Let
p(θ) be the prior distribution of θ, and p(θ|y) the posterior distribution of θ. The goal of Bayesian inference is to obtain p(θ|y).
The data augmentation strategy of Tanner andWong (1987), that expands the parameter space with the latent variable z , is
a Bayesianmethod that uses anMCMC algorithm to generate random samples from the joint posterior distribution p(θ, z|y).

To implement our test, we still need to calculate p(y|θ) and its derivatives with respect to θ. It is important to point out
that there is no need to optimize p(y|θ) in our test. Since there is no analytical expression for the observed-data likelihood
function for many latent variable models, in this section, we show how to use the EM algorithm, the Kalman filter, and
particle filters to calculate p(y|θ) and its derivatives with respect to θ.

A.3.1. Computing BMT by the EM algorithm
The EM algorithm is a powerful tool to deal with latent variable models. Instead of maximizing the observed-data

likelihood function, the EM algorithm maximizes the so-called Q function given by

Q(θ|θ(r)) = Eθ(r){Lc(y,z|θ)|y, θ(r)}, (32)

where Lc(y,z|θ) := p(y, z|θ) is the complete-data likelihood function. The Q-function is the conditional expectation of
Lc(y,z|θ) with respect to the conditional distribution p(z|y, θ(r)) where θ(r) is a current fit of the parameter. The EM algorithm
consists of two steps: the expectation (E) step and the maximization (M) step. The E-step evaluates Q(θ|θ(r)). The M-step
determines a θ(r) that maximizes Q(θ|θ(r)). Under some mild regularity conditions, for large enough r , {θ(r)

} obtained from
the EM algorithm is the MLE, θ̂. For more details about the EM algorithm, see Dempster et al. (1977).

Although the EM algorithm is a good approach to dealing with latent variable models, the numerical optimization in
the M-step is often unstable. Not surprisingly, the EM algorithm has been less popular to estimate latent variables models
comparedwith theMCMC techniques. However, wewill show that, without using the numerical optimization in theM-step,
the theoretical properties of the EM algorithm can facilitate the computation of the proposed test for latent variable models.

Since p(y|θ) and s(y, θ) are not analytically available for latent variable models, we propose to use the EM algorithm to
compute s(y, θ). For any θ and θ

∗

inΘ , it was shown in Dempster et al. (1977) that

s(y, θ) =
∂Lo(y, θ)
∂θ

=
∂Q(θ|θ

∗

)
∂θ

|θ=θ∗ = E(z|y,θ)

{
∂Lc(y,z, θ)

∂θ

}
=

∫
∂Lc(y,z, θ)

∂θ
p(z|y, θ)dz.
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If the analytical formof theQ-function is available,we can replace the first derivatives of the log-likelihood function log p(y|θ)
with the first derivatives of the Q-function. A more general approach to evaluating the Q-function is to use the following
formula based on MCMC output:

s(y, θ) ≈
1
M

M∑
m=1

{
∂ log p(y, z (m)

|θ)
∂θ

}
,

where {z (m),m = 1, 2, . . . ,M} is a random sample simulated from the posterior distribution p(z|y, θ).
Although EMalgorithm is a very general approach for analyzing latent variablemodels, it is very cumbersome to dealwith

the state-space models. This is because we have to compute the s(y1:t , θ) recursively where the posterior sampling has to be
implemented for n times (Doucet and Shephard, 2012). As a result, it is computationally demanding although some parallel
computing techniques may be used. Alternatively, one can compute s(y, θ) using the Kalman filter and particle filters.

A.3.2. Computing BMT by the Kalman filter
In economics, many time series models can be represented by a linear Gaussian state-space form. The Kalman filter is

an efficient recursive method for computing the optimal linear forecasts in such models. It also gives the exact likelihood
function of themodel. Onemay refer to Harvey (1989) for the detailed textbook treatment of the linear Gaussian state-space
model and the calculation of the observed-data log-likelihood recursively.

Similarly, the first order derivative of the observed-data log-likelihood, st (θ), has to be computed recursively. In
Appendix A.4, we give the expression of the relevant first order derivatives that are used to compute BMT.

A.3.3. Computing BMT by particle filters
In practice, the phenomenon of non-Gaussianity or non-linearity is often found. Consequently, the nonlinear non-

Gaussian state-spacemodels have beenwidely used in empirical studies. However, they cannot be analyzedusing theKalman
filter. Instead, one can use another recursive filtering algorithm known as particle filters. We only present the basic idea of
particle filters here and refer the reader to recent review papers on particle filters by Doucet and Johansen (2009) and Creal
(2012) for greater details.

Let zt+1|zt ∼ f (zt+1|zt , θ) and yt |zt ∼ g (yt |zt , θ). Let the initial density of z be µ (z|θ). The joint density of
(
zt , yt

)
is

p
(
zt , yt |θ

)
= µ (z1|θ)

t∏
k=2

f (zk|zk−1, θ)

t∏
k=1

g (yk|zk, θ) ,

and hence

p
(
yt |θ

)
=

∫
p
(
zt , yt |θ

)
dzt .

For nonlinear and non-Gaussian state-space models, neither p
(
zt |yt , θ

)
nor p

(
yt |θ

)
are available in closed-form. The goal

here is to calculate p
(
zt |yt , θ

)
, p

(
yt |θ

)
, and s(yt , θ) sequentially for t = 1, . . . , n. The idea of particle filters is to

approximate the conditional probability distribution p
(
zt |yt , θ

)
dzt by its empirical measure. An example of particle filters

is the Sequential Important Sampling and Resampling (SISR) algorithm which iterates the following step for i = 1, . . . ,N ,
Step 1: At t = 1, z(i)1 ∼ µ (·) ,

w1
(
z1(i)

)
=

µ

(
z(i)1 |θ

)
g

(
y1|z

(i)
1 , θ

)
q1

(
z(i)1

) , W (i)
1 =

w1
(
z1(i)

)∑N
i=1w1

(
z1(i)

) ,
z1(i) = z(i)1 . Resample

(
W (i)

1 , z
1(i)

)
to obtain new particles

( 1
N , z̃

1(i)
)
.

Step 2: At t ≥ 2, z(i)t ∼ qn
(
·|̃zt−1(i)

)
,

wt
(
zt(i)

)
=

f
(
z(i)t |̃z(i)t−1, θ

)
g

(
yt |̃z

(i)
t , θ

)
qt

(
z(i)t |̃zt−1(i)

) , W (i)
t =

wt
(
zt(i)

)∑N
i=1wt

(
zt(i)

) ,
zt(i) =

(̃
zt−1(i), z(i)t

)
. Resample

(
W (i)

t , zt(i)
)
to obtain new particles

( 1
N , z̃

t(i)
)
.

Step 3: Approximate the conditional distribution pθ

(
dzt |yt , θ

)
by its empirical measure

p̂
(
dzt |yt , θ

)
=

N∑
i=1

W (i)
t δzt(i)

(
dzt

)
or p̃θ

(
dzt |yt , θ

)
=

1
N

N∑
i=1

δ̃zt(i)
(
dzt

)
,
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and

p̂
(
yt |yt−1, θ

)
=

1
N

N∑
i=1

wt
(
zt(i)

)
,

where N is the number of particles and qt (·|·) is the proposal density.
With the empirical measures

{̂
p
(
dzt |yt , θ

)}
t=1:n, we can approximate the integral

It =

∫
ϕt

(
zt

)
p
(
zt |yt , θ

)
dzt ,

by

Ît =

∫
ϕt

(
zt

)
p̂
(
dzt |yt , θ

)
=

N∑
i=1

W (i)
t ϕt

(
zt(i)

)
,

for t = 1, . . . , n, where ϕt
(
zt

)
is the target function. If one chooses ϕt

(
zt

)
= ∂ log p

(
zt , yt |θ

)
/∂θ, then it is easy to show

that

s(yt , θ) =

∫
ϕt

(
zt

)
p
(
zt |yt , θ

)
dzt .

Therefore, s(yt , θ) can be obtained recursively.
Based on the different proposal density qt (·|·), different particle filtering algorithms have been proposed in the literature,

including the bootstrap particle filters of Gordon et al. (1993) and the auxiliary particle filters of Pitt and Shephard (1999). In
this paper, we use the auxiliary particle filter to compute s(yt , θ) and the proposed test statistic. Appendix A gives the details
about how to compute s(yt , θ) using particle filters.

A.4. Appendix 4: The derivation of BMT for the linear state-space model

Consider the state-space system

xt = Txt−1 + Rεt ,
yt = D + Zxt + ξt ,

where εt ∼ N (0,Q ), ξt ∼ N (0,H). Let Ys = (y1, y2..., ys). We define

xt|s = E (xt |Ys) ,

Pt|s = E
[(

xt − xt|s
) (

xt − xt|s
)′
|Ys

]
.

With the initial condition x0|0 and P0|0, the Kalman Filter algorithm is as follows:

xt|t−1 = Txt−1|t−1,

Pt|t−1 = TPt−1|t−1T ′
+ RQR′,

with

xt|t = xt|t−1 + Kt
(
yt − D − Zxt|t−1

)
,

Pt|t =
[
Ins − KtZ

]
Pt|t−1,

where Kt = Pt|t−1Z ′
[
ZPt|t−1Z ′

+ H
]−1 , for t = 1, 2...n.

From the Kalman filter, the observed data likelihood is as follows:

log ℓ = −

n∑
t=1

[
ny

2
log 2π +

1
2
log |Ft | +

1
2

(
yt − D − Zxt−1

t

)′
F−1
t

(
yt − D − Zxt−1

t

)]

= −

n∑
t=1

[
ny

2
log 2π +

1
2
log |Ft | +

1
2
ω′

tF
−1
t ωt

]
,

where

Ft = Z (θ) Pt|t−1Z(θ)′ + H (θ) ,
ωt = yt − D (θ)− Z (θ) xt|t−1.

Before we get the derivatives of the model, we first introduce some notations fromMagnus and Neudecker (2002) about
the matrix derivative.
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Definition A.1. Let F = (fst) be an m × p matrix function of an n × q matrix of variables X =
(
xij

)
. Any mp × nq matrix

A, that contains all the partial derivatives such that each row contains the partial derivatives of one function with respect
to all variables and each column contains the partial derivatives of all functions with respect to one variable xij, is called a
derivative of F . We define the α-derivative as:

DF (X) =
∂vech (F (X))

∂(vech (X))
′
.

In our case, ∂(vech (θ))
′

= ∂θ′ since θ is a vector.

Definition A.2. Let A be anm × nmatrix. There exists a uniquemn × mn permutation matrix Kmn which is defined as:

Kmn · vech (A) = vech
(
A

′
)
.

Since Kmn is a permutation matrix, it is orthogonal and K−1
mn = K

′

mn.

To compute the first order derivative of the likelihood, we have the following

∂vech (ωt)

∂θ′
= −

∂vech (D)
∂θ′

−
(
x′

t|t−1 ⊗ Iny
) ∂vech (Z)

∂θ′
− (I1 ⊗ Z)

∂vech
(
zt|t−1

)
∂θ′

,

∂vech (Ft)
∂θ′

=

((
Pt|t−1Z ′

)′
⊗ Iny +

(
Iny ⊗

(
ZPt|t−1

))
Knyns

) ∂vech (Z)
∂θ′

+ (Z ⊗ Z)
∂vech

(
Pt|t−1

)
∂θ′

+
∂vech (H)
∂θ′

,

∂vech
(
F−1
t

)
∂θ′

= −

((
F−1
t

)′
⊗ F−1

t

) ∂vech (Ft)
∂θ′

,

∂vech (log |Ft |)
∂θ′

=

(
vech

[(
F−1
t

)′
])′ ∂vech (Ft)

∂θ′
,

∂vech
(
ω′

tF
−1
t ωt

)
∂θ′

=

[(
F−1
t ωt

)′
⊗ I1

]
Kny1

∂vech (ωt)

∂θ′
+

(
ω′

t ⊗ ω′

t

) ∂vech (
F−1
t

)
∂θ′

+
[
I1 ⊗

(
ω′

tF
−1
t

)] ∂vech (ωt)

∂θ′
.

In the above equations, the first order derivatives of the matrix D, Z , Q , H , R are easy to get.
Given the initial conditions x0|0 and P0|0, we have the following recursions

∂vech
(
xt|t−1

)
∂θ′

= (I1 ⊗ T )
∂vech

(
xt−1|t−1

)
∂θ′

+
(
x′

t−1|t−1 ⊗ Ins
) ∂vech (T )

∂θ′
,

∂vech
(
Pt|t−1

)
∂θ′

=

((
Pt−1|t−1T ′

)′
⊗ Ins

) ∂vech (T )
∂θ′

+ (T ⊗ T )
∂vech

(
Pt−1|t−1

)
∂θ′

+
(
Ins ⊗ TPt−1|t−1

)
Knsns

∂vech (T )
∂θ′

+
∂vech

(
RQR′

)
∂θ′

,

∂vech
(
xt|t

)
∂θ′

=
∂vech

(
xt|t−1

)
∂θ′

+

[(
yt − D − Zxt|t−1

)′
⊗ Ins

] ∂vech (Kt)

∂θ′

− (I1 ⊗ Kt)
∂vech (D)
∂θ′

−
(
z ′

t|t−1 ⊗ Kt
) ∂vech (Z)

∂θ′
− (I1 ⊗ KtZ)

∂vech
(
zt|t−1

)
∂θ′

,

∂vech
(
Pt|t

)
∂θ′

= −

((
ZPt|t−1

)′
⊗ Ins

) ∂vech (Kt)

∂θ′
−

(
P ′

t|t−1 ⊗ Kt
) ∂vech (Z)

∂θ′

+
(
Ins ⊗

(
Ins − KtZ

)) ∂vech (
Pt|t−1

)
∂θ′

,
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where

∂vech (Kt)

∂θ′
=

[(
Z ′F−1

t

)′
⊗ Ins

] ∂vech (
Pt|t−1

)
∂θ′

+

[(
F−1
t

)′
⊗ P t−1

t

]
Knyns

∂vech (Z)
∂θ′

+
[
Iny ⊗ Pt|t−1Z ′

] ∂vech (
F−1
t

)
∂θ′

,

and

∂vech
(
RQR′

)
∂θ′

=
[(
RQ ′

⊗ Ins
)
+

(
Ins ⊗ RQ

)
Knsne

] ∂vech (R)
∂θ′

+ (R ⊗ R)
∂vech (Q )
∂θ′

.

The initial condition is given as

x0|0 = 0,
P0|0 = TP0|0T ′

+ RQR′.

From the above, we have

vech
(
P0|0

)
=

(
In2s − T ⊗ T

)−1
vech

(
RQR′

)
,

∂vech
(
P0|0

)
∂θ′

=
[(
TP0|0 ⊗ Ins

)
+

(
Ins ⊗ TP0|0

)
Knsns

] ∂vech (T )
∂θ′

+ (T ⊗ T )
∂vech

(
P0|0

)
∂θ′

+
∂vech

(
RQR′

)
∂θ′

.

A.5. Appendix 5: The derivation of BMT for the nonlinear non-Gaussian state-space model with particle filters

Let ϕt
(
zt

)
be the first order derive of the complete likelihood function with respect to the parameter θ. This is just the

integrand in Fisher’s identity (Cappé et al., 2005)

∂ log p
(
yt |θ

)
∂θ

=

∫
∂ log p

(
zt , yt |θ

)
∂θ

p
(
zt |yt , θ

)
dzt .

Then we have the following recursion

ϕt
(
zt

)
= ϕt−1

(
zt−1)

+ ut (zt , zt−1) ,

where

ϕt
(
zt

)
=
∂ log p

(
zt , yt |θ

)
∂θ

, ut (zt , zt−1) =
∂ log g (yt |zt , θ)

∂θ
+
∂ log fθ (zt |zt−1, θ)

∂θ
.

Hence, following Doucet and Shephard (2012), we get the sample score s(yt , θ) as

s(yt , θ) =

∫
ϕt

(
zt

)
p
(
zt |yt , θ

)
dzt

=

∫∫ (
ϕt−1

(
zt−1)

+ ut (zt , zt−1)
)
p
(
zt−1

|zt , yt−1, θ
)
dzt−1p

(
zt |yt , θ

)
dzt

=

∫
St (zt) p

(
zt |yt , θ

)
dzt ,

where

St (zt) =

∫ (
ϕt−1

(
zt−1)

+ ut (zt , zt−1)
)
p
(
zt−1

|zt , yt−1, θ
)
dzt−1

=

∫ (
ϕt−1

(
zt−1)

+ ut (zt , zt−1)
)
p
(
zt−2

|zt−1, yt−2, θ
)
dzt−2p

(
zt−1|zt , yt−2, θ

)
dzt−1

=

∫
(St−1 (zt−1)+ ut (zt , zt−1)) f (zt |zt−1, θ) p

(
zt−1|yt , θ

)
dzt−1∫

f (zt |zt−1, θ) p (zt−1|yt , θ) dzt−1
.

Then we have

Ŝt (zt) =

∑N
j=1 W

(j)
t−1f

(
zt |z

(i)
t−1, θ

)
∑N

j=1 f
(
zt |z

(i)
t−1, θ

)
⎛⎝St−1

(
z(i)t−1

)
+
∂ log g (yt |zt , θ)

∂θ
+

∂ log f
(
zt |z

(i)
t−1, θ

)
∂θ

⎞⎠ .
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Let ϕt
(
zt

)
be the first order derive of the complete likelihood function with respect to the parameter θ. This is just the

integrand in Fisher’s identity (Cappé et al., 2005)

∂ log p
(
yt |θ

)
∂θ

=

∫
∂ log p

(
zt , yt |θ

)
∂θ

p
(
zt |yt , θ

)
dzt .

Then we have the following recursion

ϕt
(
zt

)
= ϕt−1

(
zt−1)

+ ut (zt , zt−1) ,

where

ϕt
(
zt
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=
∂ log p

(
zt , yt |θ

)
∂θ

, ut (zt , zt−1) =
∂ log g (yt |zt , θ)

∂θ
+
∂ log fθ (zt |zt−1, θ)

∂θ
.

Hence, following Doucet and Shephard (2012), we get the sample score s(yt , θ) as

s(yt , θ) =

∫
ϕt

(
zt

)
p
(
zt |yt , θ

)
dzt

=

∫∫ (
ϕt−1

(
zt−1)

+ ut (zt , zt−1)
)
p
(
zt−1

|zt , yt−1, θ
)
dzt−1p

(
zt |yt , θ

)
dzt

=

∫
St (zt) p

(
zt |yt , θ

)
dzt ,

where

St (zt) =

∫ (
ϕt−1

(
zt−1)

+ ut (zt , zt−1)
)
p
(
zt−1

|zt , yt−1, θ
)
dzt−1

=

∫ (
ϕt−1

(
zt−1)

+ ut (zt , zt−1)
)
p
(
zt−2

|zt−1, yt−2, θ
)
dzt−2p

(
zt−1|zt , yt−2, θ

)
dzt−1

=

∫
(St−1 (zt−1)+ ut (zt , zt−1)) f (zt |zt−1, θ) p

(
zt−1|yt , θ

)
dzt−1∫

f (zt |zt−1, θ) p (zt−1|yt , θ) dzt−1
.

Then we have

Ŝt (zt) =

∑N
j=1 W

(j)
t−1f

(
zt |z

(i)
t−1, θ

)
∑N

j=1 f
(
zt |z

(i)
t−1, θ

)
⎛⎝St−1

(
z(i)t−1

)
+
∂ log g (yt |zt , θ)

∂θ
+

∂ log f
(
zt |z

(i)
t−1, θ

)
∂θ

⎞⎠
and

ŝ(yt , θ) =

N∑
j=1

W (j)
t Ŝt

(
z(j)t

)
,

where
(
W (j)

t , z
(i)
t

)
are the particles to approximate p

(
zt |yt

)
dzt . Then the individual scores is estimated by

ŝt (θ) = ŝ(yt , θ) − ŝ(yt−1, θ).

For asymptotic properties of ŝt (θ), see Poyiadjis et al. (2011) and Doucet and Shephard (2012).

Appendix B. Supplementary data

Supplementary material related to this article can be found online at (website address to be provided by the publisher).
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2018.08.001.
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