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a b s t r a c t

In this paper a new Bayesian approach is proposed to test a point null hypothesis based on the deviance
in a decision-theoretical framework. The proposed test statistic may be regarded as the Bayesian version
of the likelihood ratio test and appeals in practical applications with three desirable properties. First, it is
immune to Jeffreys’ concern about the use of improper priors. Second, it avoids Jeffreys–Lindley’s paradox,
Third, it is easy to compute and its threshold value is easily derived, facilitating the implementation in
practice. The method is illustrated using some real examples in economics and finance. It is found that
the leverage effect is insignificant in an exchange time series and that the Fama–French three-factormodel
is rejected.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Hypothesis testing plays a fundamental role in making statis-
tical inference about the model specification. After models are es-
timated, empirical researchers would often like to test a relevant
hypothesis to look for evidence to support or to be against a par-
ticular theory. An important class of hypotheses involve a single
parameter value in the null.

In this paper we are concerned about testing a single point
hypothesis under Bayesian paradigm. So far Bayes factor (BF) is
the dominant statistic for Bayesian hypothesis testing (Kass and
Raftery, 1995; Geweke, 2007). The wide range of applicability of
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BF comes with no surprise. BF computes the posterior odds of the
null hypothesis and hence provides a general and intuitive way to
evaluate the evidence in favor of the null hypothesis.

In the meantime, unfortunately, BF also suffers from several
theoretical and practical difficulties. First, when improper prior
distributions are used, BF contains undefined constants and takes
arbitrary values. This is known as Jeffreys’ concern (Kass and
Raftery, 1995). Second, when a proper but vague prior distribution
with a large spread is used to represent prior ignorance, BF tends
to favor the null hypothesis. The problem may persist even when
the sample size is large. This is known as Jeffreys–Lindley’s paradox
(Kass and Raftery, 1995; Poirier, 1995). Third, the calculation of BF
generally requires the evaluation of marginal likelihoods. In many
models, the marginal likelihoods may be difficult to compute.

Several approaches have been proposed in the literature to deal
with Jeffreys’ concern and Jeffreys–Lindley’s paradox. One simple
approach is to split the data into two parts, one as a training
set, the other for statistical analysis. The non-informative prior is
then updated by the training data, which produces a new proper
informative prior distribution for computing BF. This idea is shared
by the fractional BF (O’Hagan, 1995), and the intrinsic BF (Berger,
1985). In many practical situations, unfortunately, it is not clear
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how to split the sample. Moreover, the sample split may have
a major impact on statistical inference. Without a need to split
the sample, several Bayesian hypothesis testing approaches have
been proposed based on the decision theory. Noting that the BF
approach to Bayesian hypothesis testing is a decision problemwith
a simple zero–one loss function, Bernardo and Rueda (2002) (BR
hereafter) and Li and Yu (2012) (LY hereafter) suggested extending
the zero–one loss function into continuous loss functions, resulting
in Bayesian test statistics that is well defined under improper
priors.

The test statistics of BR and LY relies on threshold values. While
in theory these threshold values may be calibrated from simulated
data generated from the null hypothesis, in practice they are
computationally expensive to obtain. FollowingMcCulloch (1989),
LY proposed to choose the threshold values based on the Bernoulli
distribution. Although this choice makes the determination of
threshold values convenient, there are obvious drawbacks. Not
only is the choice of the Bernoulli distribution arbitrary, but also
are the threshold values independent of the data and the candidate
models.Moreover, it is not clear if the test statistic of LY can resolve
Jeffreys–Lindley’s paradox.

The main purpose of this paper is to develop a new Bayesian
hypothesis testing approach for the point null hypothesis testing.
The test statistic is based on the Bayesian deviance and constructed
in a decision theoretical framework. It can be regarded as the
Bayesian version of the likelihood ratio test. We show that the
statistic appeals in four aspects. First, it does not suffer from
Jeffreys’ concern and, hence, can be used under improper priors.
Second, it does not suffer from Jeffreys–Lindley’s paradox and,
hence, can be used under vague priors. Third, it is easy to compute.
Finally, the threshold values can be easily determined and are
dependent on the data as well as the candidate models.

The paper is organized as follows. Section 2 reviews the
Bayesian literature on testing the point null hypothesis from the
viewpoint of decision theory. Section 3 develops the new Bayesian
test statistic and establishes its properties. Section 4 illustrates
the new method by using three real examples in economics and
finance. Section 5 concludes the paper. Appendix collects the proof
of theoretical results.

2. Point null hypothesis testing: a literature review

2.1. The setup

Denote y = (y1, y2, . . . , yn)′ the vector of observables. Denote
p(y|ϑ) the likelihood function of the observed data. Denote π(ϑ)
the prior distribution and p(ϑ|y) the posterior. Suppose that
researchers may wish to test a hypothesis, the simplest of which
contains only a point which may correspond to the prediction of
a theory (Robert, 2001). Denote θ ∈ 2, whose dimension is p,
the parameters of interest, and ψ ∈ 9, whose dimension is q,
the nuisance parameters. So ϑ = (θ,ψ)′ ∈ 2 × 9. Assume that
the observed data, y ∈ Y, is described a probabilistic model M ≡

{p(y|θ,ψ)}. The point null hypothesis is:
H0 : θ = θ0
H1 : θ ≠ θ0.

(1)

From the viewpoint of decision theory, the hypothesis testing
may be viewed as a decision problem where the action space has
two elements, i.e., to accept H0 (name it d0) or to reject H0 (name
it d1). Denote the null model M0 ≡ {p(y|θ0,ψ),ψ ∈ 9}, and
M1 ≡ M . Suppose a loss is incurred as a function of the actual value
of theparameters (θ,ψ)whenone acceptsH0 or rejectsH0. Assume
the loss function is given by {L[di, (θ,ψ)], i = 0, 1}. Naturally,

one would like to reject H0 when the expected posterior loss of
accepting H0 is sufficiently larger than the expected posterior loss
of rejecting H0, i.e.,

T(y, θ0) =


Θ


Ψ

△L[H0, (θ,ψ)]p(θ,ψ|y)dθdψ > C,

where C is a threshold value, △L[H0, (θ,ψ)] = L[d0, (θ,ψ)] −

L[d1, (θ,ψ)] is the net loss functionwhich can be used tomeasure
the evidence against H0 as a function of (θ,ψ).

2.2. Bayes factors and the discrete loss function

BF employs the zero–one loss function. In particular, if

△L[H0, (θ,ψ)] =


−1 if θ = θ0
1 if θ ≠ θ0,

we can get

T(y, θ0) =


Ψ

(−1)
p(y|θ0,ψ)p(ψ|θ0)p(θ0)

p(y)
dψ

+


Θ


Ψ

1
p(y|θ,ψ)p(ψ|θ)p(θ)

p(y)
dθdψ,

where p(y) =

p(y,ϑ)dϑ is themarginal likelihood. In general, to

represent a prior ignorance, an equal probability 0.5 is assigned to
H0 and toH1. A reasonable prior for θwith a discrete support at θ0 is
formulated as p(θ) = 0.5 when θ = θ0 and p(θ) = 0.5π(θ) when
θ ≠ θ0, where π(θ) is a prior distribution. Hence, when C = 0, the
decision criterion is given by:

Reject H0 iff −


Ψ

p(y|θ0,ψ)p(ψ|θ0)dψ

+


Θ


Ψ

p(y|θ,ψ)p(ψ|θ)π(θ)dθdψ > 0

which is equivalent to

Reject H0 iff BF01 =


Ψ
p(y|θ0,ψ)p(ψ|θ0)dψ

Θ


Ψ
p(y|θ,ψ)p(ψ|θ)π(θ)dθdψ

< 1,

where BF01 is the well-known BF (Kass and Raftery, 1995) and is
the ratio of two marginal likelihood values.

When a subjective prior is not available, an objective prior or
default prior may be used. Often, π(θ) is taken as non-informative
priors, such as the Jeffreys or the reference prior (Jeffreys, 1961;
Bernardo and Rueda, 2002). These non-informative priors are
generally improper, and it follows that π(θ) = C0f (θ), where f (θ)
is a nonintegrable function, and C0 is an arbitrary positive constant.
In this case, the BF is

BF01 =


Ψ
p(y|θ0,ψ)p(ψ|θ0)dψ

C0


Θ


Ψ
p(y|θ,ψ)p(ψ|θ)f (θ)dθdψ

.

Clearly, the BF is not well defined since it depends on the arbitrary
constant C0, giving rise to Jeffreys’ concern. In addition, if a proper
prior is used but has a large variance, the likelihood function
may take low values under the alternative hypothesis. This often
leads to a smaller marginal likelihood value for the alternative
model. Consequently, BF has a tendency to favor H0, giving rise to
Jeffreys–Lindley’s paradox; see Poirier (1995) and Robert (2001).

The formulation of BF generally requires a positive probability
for θ = θ0 to be assigned. When θ is continuous, the prior concen-
trates a positive probability mass on the single point θ0. As pointed
out by BR, Jeffreys–Lindley’s paradox is the consequence of using
this non-regular prior structure.
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2.3. BR and the KL loss function

Instead of using a zero–one loss function, BR (2002) advocated
using a continuous function of θ and θ0 to formulate the loss
function. In particular, they suggested using the KL divergence. For
any regular probability functions, p(x) and q(x), the KL divergence
is defined as:

KL[p(x), q(x)] =


p(x) log

p(x)
q(x)

dx. (2)

It can be shown that KL ≥ 0 for any p and q, and equal to 0 iff
p(x) = q(x). In this case, the decision criterion is:

TBR(y, θ0) =


Θ


Ψ

△L[H0, (θ,ψ)]p(θ,ψ|y)dθdψ

=


Θ


Ψ


log

p(y|θ,ψ)

p(y|θ0,ψ)
p(y|θ,ψ)dy


× p(θ,ψ|y)dθdψ > C . (3)

To ensure the symmetry, BR suggested using the following net loss
function:

△L[H0, (θ,ψ)] = min{KL[p(y|θ,ψ), p(y|θ0,ψ)],

KL[p(y|θ0,ψ), p(y|θ,ψ)]}. (4)

Obviously, TBR(y, θ0) = 0 under the null hypothesis but is positive
under the alternative hypothesis. According to BR, this loss func-
tion can be used under the reference priors to maintain objective-
ness, overcoming Jeffreys’ concern. Although the statistic of BR is
well defined under improper priors and has other desirable prop-
erties, it has certain practical difficulties. First, when the KL loss
function is not available analytically, the test statistic of BR is diffi-
cult to use, especially when the dimension of the integral in the KL
loss is high. Second, threshold values for C , are needed but difficult
to find in general.

2.4. LY and the Q loss function

In the context of latent variable models, the likelihood function
and the KL loss are not available analytically and the test statistic of
BR is difficult to use. To solve this problem, LY developed a Bayesian
test statistic based on the Q function used in the EM algorithm.
Denote y = (y1, y2, . . . , yn)′ the vector of observables and z =

(z1, z2, . . . , zn)′ the vector of latent variables. Let x = (y, z)′. The
latent variablemodel is dependent on a set of parametersϑ. Denote
p(y|ϑ) and p(x|ϑ) the likelihood function of the observed data
and the likelihood function of complete data, respectively. The two
functions are related to each other by

p(y|ϑ) =


p(x|ϑ)dz =


p(y, z|ϑ)dz. (5)

When the above integral at the right hand side does not have a
closed-form solution, instead of using maximum likelihood (ML)
method, it is numerically more tractable to carry out Bayesian
analysis based on the MCMC algorithm for estimating the latent
variable models; see, for example Geweke et al. (2011).

For latent variable models, the complete-data log-likelihood,
Lc(x|ϑ) = log p(x|ϑ), is related to the observed data log-likelihood,
Lo(y|ϑ) = log p(y|ϑ). While Lc(x|ϑ) is often simple, but Lo(y|ϑ) =

log p(y|ϑ) is often complicated because the integral equation (5)
does not have an analytical solution. The EM algorithm is a way
to obtain the ML estimator (Dempster et al., 1977). A standard EM
algorithm consists of two steps: the expectation (E) step and the
maximization (M) step. The E-step evaluates the Q function which
is defined by:

Q

ϑ|ϑ(r)

= Ez

Lc(x|ϑ)|y,ϑ(r) , (6)

where the expectation is taken with respect to the conditional
distribution of latent variables given y and ϑ(r), p(z|y,ϑ(r)). The
M-step determines a ϑ(r+1) that maximizes Q(ϑ|ϑ(r)).

Let ϑ0 = (θ0,ψ). LY (2012) introduced a continuous net loss
function as:

△L[H0, (θ,ψ)] = {Q(ϑ,ϑ) − Q(ϑ0,ϑ)}

+ {Q(ϑ0,ϑ0) − Q(ϑ,ϑ0)} ,

and proposed a Bayesian test statistic as:

TLY (y, θ0) = Eϑ|y[△L[H0, (θ,ψ)]]. (7)

Like the statistic of BR, the test statistic, TLY (y, θ0), is well
defined under improper priors and hence is immune to Jeffreys’
concern. Also, it is easy to compute if theMCMC output is available.
However, like the statistic of BR, the threshold values are needed
in practice. Following McCulloch (1989), LY proposed to base the
threshold values on two Bernoulli distributions. Although the use
of the threshold values is not new in the Bayesian literature (see,
for example, Jeffreys’ BF scales), it is awkward that these threshold
values are independent of the data and the candidate models. It
was remarked in LY that a more natural approach is to obtain
threshold values from simulated data in repeated sampling, which
is computationally time consuming in general.

3. A newmethod for Bayesian hypothesis testing

3.1. The test statistic

BR’s approach requires the KL loss functionmust have a closed-
form expression and the threshold values for Bayesian hypothesis
testing are difficult to obtain. LY’s approach is easy to compute,
but the threshold values are independent of the data and the
candidate models. To avoid these theoretical and computational
difficulties, in this section, we introduce a new Bayesian approach
for hypothesis testing. Denote the net loss function as:

△L[H0, (θ,ψ)] = −2 log p(y|θ0,ψ) − (−2 log p(y|θ,ψ))

= 2 log p(y|θ,ψ) − 2 log p(y|θ0,ψ), (8)

where−2 log p(y|θ,ψ) represents the residual information in data
y given θ,ψ in the alternative model. According to Good (1956),
−2 log p(y|θ,ψ) measures the surprise or uncertainty. Similarly,
one can interpret −2 log p(y|θ0,ψ). The net loss function is the
difference of the two Bayesian deviances, if the Bayesian deviance
is defined in the sameway as in Spiegelhalter et al. (2002) (Section
2.5). The new Bayesian test statistic is then defined by:

T(y, θ0) = 2


[log p(y|θ,ψ) − log p(y|θ0,ψ)]

× p(θ,ψ|y)dθdψ. (9)

Under the null, T(y, θ0) = 0, whereas under the alternative,
T(y, θ0) ≠ 0. When the deviance of the null hypothesis is suffi-
ciently smaller than that of the alternative, it is reasonable to be-
lieve that we should reject the null hypothesis.

BF essentially compares the relative magnitude of
Ψ

p(y|θ0,ψ)p(ψ|θ0)dψ

and
Θ


Ψ

p(y|θ,ψ)p(ψ|θ)π(θ)dθdψ,

whereas our test statistic compares the relative magnitude of
log p(y|θ0,ψ)p(θ,ψ|y)dθdψ =


log p(y|θ0,ψ)p(ψ|y)dψ



Author's personal copy

Y. Li et al. / Journal of Econometrics 178 (2014) 602–612 605

and
Θ


Ψ

log p(y|θ,ψ)p(θ,ψ|y)dθdψ.

Clearly there are two major differences between the two ap-
proaches. First, the likelihood functions in BF are replaced with the
log-likelihood functions in our test. Second and more importantly,
the (log-)likelihood functions are averaged over the prior distribu-
tions in BF but over the posterior distributions in our method. The
second difference suggests that our statistic is less sensitive to the
prior distributions.

The first result in this present paper shows that the Bayes risk
of T(y, θ0) is just two times the test statistic proposed by BR.

Theorem 3.1. It can be shown that

Ey [T(y, θ0)] =


T(y, θ0)p(y)dy = 2Ey [TBR(y, θ0)] .

Remark 3.1. T(y, θ0) may be explained as the Bayesian version of
the likelihood ratio test since it is the likelihood ratio averaged over
the posterior distribution under the alternative hypothesis.

Remark 3.2. To show how the new statistic is immune to Jeffreys’
concern, consider general improper priors, p(ψ|θ) = Af (ψ|θ),
p(θ) = Bf (θ), p(ψ|θ0) = C0f (ψ|θ0) where f (ψ|θ), f (θ) and
f (ψ|θ0) are nonintegrable functions, and A, B, C0 are arbitrary
positive constants. It can be shown that,

p(ψ, θ|y) =
p(y,ψ, θ)

p(y)
=

p(y,ψ, θ) 
p(y,ψ, θ)dψdθ

=
p(y|ψ, θ)p(ψ, θ) 
p(y|ψ, θ)p(ψ, θ)dψdθ

=
p(y|ψ, θ)ABf (ψ, θ) 
p(y|ψ, θ)ABf (ψ, θ)dψdθ

=
p(y|ψ, θ)f (ψ, θ) 
p(y|ψ, θ)f (ψ, θ)dψdθ

.

Hence, p(ψ, θ|y) is independent of the arbitrary constants. Simi-
larly, we can show that p(ψ|y) is also independent of C0. Conse-
quently, T(y, θ0) is well defined under improper priors.

Remark 3.3. To see how the new statistic can avoid Jeffreys–
Lindley’s paradox, we consider a well known example in the lit-
erature; see, for example, Robert (1993). Let y ∼ N(θ, 1). Suppose
we want to test the simple point null hypothesis H0 : θ = 0. The
prior distribution of θ can be set as N(µ, τ 2) with µ = 0. Then the
posterior distribution of θ is N(µ(y), ω2) with

µ(y) =
µ + τ 2y
1 + τ 2

, ω2
=

τ 2

1 + τ 2
.

BF is given by:

BF10 =
1

BF01
=


1

1 + τ 2
exp


τ 2y2

2(1 + τ 2)


.

As τ 2
→ +∞, BF10 → 0 which means that the test always sup-

ports the null hypothesis regardless whether or not it holds true,
giving rise to Jeffreys–Lindley’s paradox. The reason for the para-
dox is that BF compares


p(y|θ)p(θ)dθ with p(y|θ = 0). When

p(θ) has a large variance, even if y is far away from 0, there is a fair
chance that p(y|θ = 0) is larger. On the other hand, it is easy to
show:

T(y, 0) = 2


log p(y|θ)p(θ |y)dθ − log p(y|θ = 0)


= 2yµ(y) − µ2(y) − ω2.

Table 1
Using BF and the new test to test θ = 0 when y = 3.

τ 1 100 1000

log BF01 −1.90 0.11 2.41
T(y, θ0) 6.25 8.00 8.00

As τ 2
→ +∞, µ(y) → y, ω2

→ 1. In this case, the posterior
distribution converges to N(y, 1) and T(y, 0) → y2 − 1 which is
distributed exactly as χ2(1) − 1 when H0 is true. Consequently,
our proposed test statistic avoids Jeffreys–Lindley’s paradox. Es-
sentially, we compare


log p(y|θ)dN(θ; y, 1) with log p(y|θ = 0).

Since the posterior distribution N(θ; y, 1) puts much more weight
in the area near y, when y is far away from zero, the former quan-
tity should take a much larger value than the latter. To illustrate
the point, if y = 3 which is 3 standard deviation away under the
null hypothesis, we expect a reasonable test should reject the null
hypothesis. Table 1 reports log BF01 and T(y, 0) when τ = 1, 100,
1000. It can be seen that while our method always rejects the null
the BF fails to reject the null when τ = 100, 1000.

Remark 3.4. When p(y|θ,ψ) is available in closed-form and the
model under alternative hypothesis is estimated by MCMC, it is
straightforward to calculate T(y, θ0) by

1
M

M
m=1


log p


y|θ(m),ψ(m)


− log p


y|θ0,ψ(m)


,

where {θ(m),ψ(m)
}, m = 1, 2, . . . ,M , are the draws, generated

by the MCMC technique, from the posterior distribution under the
alternative hypothesis.

3.2. Latent variable models

In many cases, p(y|ϑ) does not have a closed-form expression.
For example, in latent variable models, p(y|ϑ) often involves
integrals that cannot not be solved analytically. In this section,
we show how to approximate T(y, θ0) with the EM algorithm and
the MCMC output. To do so, we first impose the following set of
regularity conditions.

Assumption 1. The likelihood of the model considered is regular.

Assumption 2. The data generating process is stationary.

Assumption 3. There exists a finite sample size n∗, so that, for
n > n∗, there is a local maximum at ϑ̂ such that L(1)

n (ϑ̂) = 0 and
L(2)
n (ϑ̂) is negative definite, where Ln(ϑ) = log p(ϑ|y), L(1)

n (ϑ) =

∂ log p(ϑ|y)/∂ϑ, L(2)
n (ϑ) = ∂2 log p(ϑ|y)/∂ϑ∂ϑ′.

Assumption 4. The largest eigenvalue λn of

−L(2)

n (ϑ̂)
−1

goes to
zero when n → ∞.

Assumption 5. For any ϵ > 0, there exists an integer N and some
δ > 0 such that for any n > max{N, n∗

} and ϑ ∈ H(ϑ̂, δ) = {ϑ :

∥ϑ − ϑ̂∥ ≤ δ}, L(2)
n (ϑ) exists and satisfies

−A(ϵ) ≤ L(2)
n (ϑ)L−(2)

n (ϑ̂) − Ip+q ≤ A(ϵ),

where Ip+q is an identity matrix and A(ϵ) is a positive semidefinite
symmetric matrix whose largest eigenvalue goes to zero as ϵ → 0.
When θ = θ0, this assumption also holds.

Assumption 6. For any δ > 0, as n → ∞,
Ω−H(ϑ̂,δ)

p(ϑ|y)dϑ → 0,

whereΩ is the support space of ϑ.
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Assumption 7. For any δ > 0, when ϑ ∈ H(ϑ̂, δ), L(2)
n (ϑ)/n =

Op(1).

Remark 3.5. These assumptions are mild regularity conditions
and have been used in the literature to develop Bayesian large
sample theory; see, for example, Chen (1985), Kim (1994, 1998)
and Geweke (2005). Based on these regularity conditions, Li et al.
(2012) showed that, conditional on the observed data y,

ϑ̄ = E [ϑ|y,H1] =


ϑp(ϑ|y)dϑ = ϑ̂ + o(n−1/2),

V (ϑ̂) = −L−(2)
n (ϑ̂) + o(n−1),

where

V (ϑ̃) = E

(ϑ − ϑ̃)(ϑ − ϑ̃)′|y,H1


=


(ϑ − ϑ̃)(ϑ − ϑ̃)′p(ϑ|y)dϑ.

Theorem 3.2. Let ϑ̄ = (θ̄, ψ̄)′ be the posterior mean of ϑ under
H1, ϑ̄∗ = (θ0, ψ̄)′, ϑ̄b = (1 − b)ϑ̄∗ + bϑ̄, b ∈ [0, 1], S(x|ϑ) =

∂ log p(x|ϑ)/∂ϑ,

D =

 1

0


(θ̄ − θ0)

′

Ez|y,ϑ̄bS1(x|ϑ̄b)


db, (10)

where S1(x|ϑ) is the subvector of S(x|ϑ) corresponding to θ. Let

T1(y, θ0) = 2D + 2

log p(θ̄, ψ̄) − log p(ψ̄|θ0)


− 2


log p(θ|ψ)p(ϑ|y)dϑ


−


p + q − tr[−L(2)

0n (ψ̄)V22(ϑ̄)]


(11)

where V22(ϑ̄) = E[(ψ − ψ̄)(ψ − ψ̄)′|y,H1], which is the submatrix
of V (ϑ̄) corresponding to ψ and

L(2)
0n (ψ) =

∂2 log p(y,ψ|θ0)

∂ψ∂ψ′
.

Under Assumptions 1–7, it can be shown that

T1(y, θ0) = T(y, θ0) + op(1). (12)

Remark 3.6. According to (12) we can approximate T(y, θ0) by
T1(y, θ0).

Remark 3.7. In many cases, the analytical form of D is not
available. Following Gelman andMeng (1998), if D does not have a
closed form expression, we can numerically approximate it using
the trapezoidal rule. In particular, we can choose a set of fixed grids
{b(s)}

S
s=0 such that b0 = 0 < b(1) < b(2) < · · · < b(S) < b(S+1) = 1,

and then approximate D by

D =
1
2


θ̄ − θ̄0

′
S

s=0


b(s+1) − b(s)


×


Ez|y,ϑ̄b(s)


S1


x|ϑ̄b(s)


+ Ez|y,ϑ̄b(s+1)


S1


x|ϑ̄b(s+1)


. (13)

To calculate Ez|y,ϑ̄b(s)

S1


x|ϑ̄b(s)


, we use

Ez|y,ϑ̄b(s)

S1


x|ϑ̄b(s)


= Ez|y,ϑ̄b(s)


S1


y, z|ϑ̄b(s)


≈ M−1

M
m=1

S1

y, z(m)

|ϑ̄b(s)


,

where {z(m),m = 1, 2, . . . ,M} are efficient random observations
simulated from p


z|y, ϑ̄b(s)


with ϑ̄b(s) = (1− b(s))ϑ̄+ b(s)ϑ̄∗ after

discarding some burn-in samples. With D being replaced by D in
(13), we can approximate T1(y, θ0) by T̂1(y, θ0).

Remark 3.8. The test statistic clearly requires the evaluation of
the observed information matrix, the second derivative of the
observed-data likelihood function. Formost latent variablemodels,
the observed-data likelihood function does not have a closed-from
expression so that the second derivatives are difficult to evaluate.
It is noted that

L(2)
n (ϑ) =

∂2Lo(y|ϑ)

∂ϑ∂ϑ′
+

∂2p(ϑ)

∂ϑ∂ϑ′
.

In the EM algorithm, under the mild regularity conditions, if
Q(·|·) has a closed form expression, Oakes (1999) showed that the
observed information matrix can be expressed as:

I(ϑ) = −
∂2Lo(y|ϑ)

∂ϑ∂ϑ′
=


−

∂2Q(ϑ|ϑ∗)

∂ϑ∂ϑ′
−

∂2Q(ϑ|ϑ∗)

∂ϑ∂ϑ∗′


ϑ∗=ϑ

. (14)

When Q(·|·) does not have a closed form expression, Louis (1982)
derived the observed information matrix as:

I(ϑ) = E(z|y,ϑ)


−

∂2Lc(x|ϑ)

∂ϑ∂ϑ′


− Var(z|y,ϑ) {S(x|ϑ)}

= E(z|y,ϑ)


−

∂2Lc(x|ϑ)

∂ϑ∂ϑ′
− S(x|ϑ)S(x|ϑ)′


+ E(z|y,ϑ){S(x|ϑ)}E(z|y,ϑ){S(x|ϑ)}′, (15)

where the expectations are taken with respect to the conditional
distribution of z given y and ϑ. Hence, the information matrix can
be approximated by:

E(z|y,ϑ)


−

∂2Lc(x|ϑ)

∂ϑ∂ϑ′
− S(x|ϑ)S(x|ϑ)′


≈ −

1
M

M
m=1


∂2Lc


y, z(m)

|ϑ


∂ϑ∂ϑ′
+ S


y, z(m)

|θ

S

y, z(m)

|ϑ
′


,

E(z|y,ϑ){S(x|ϑ)} ≈
1
M

M
m=1

S

y, z(m)

|ϑ

,

where {z(m),m = 1, 2, . . . ,M} are the efficient random draws
from the conditional distribution p(z|y,ϑ).

3.3. Choosing threshold values

To implement the proposed method, we need to specify a
threshold value. We shall use the following decision rule to test
the hypothesis:

Accept H0 if T(y, θ0) ≤ C; Reject H0 if T(y, θ0) > C,

where C is the threshold value to be specified. The following
theorem gives the asymptotic distribution of the test statistic.
The threshold value can be then set to be a certain percentile
of the asymptotic distribution. This compares favorably with
Jeffreys’ subjective threshold values for BF (Jeffreys, 1961) and the
threshold values used in LY.

Theorem 3.3. When the likelihood information dominates the prior
information, under Assumptions 1–7, we have, under the null hy-
pothesis
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T(y, θ0) +


p + q − tr[−L(2)

0n (ϑ̄)V22(ϑ̄)]


a
∼ ϵ′


IJ1/211 (ϑ0)J11(ϑ0)IJ

1/2
11 (ϑ0)


ϵ, (16)

T1(y, θ0) +


p + q − tr[−L(2)

0n (ϑ̄)V22(ϑ̄)]


a
∼ ϵ′


IJ1/211 (ϑ0)J11(ϑ0)IJ

1/2
11 (ϑ0)


ϵ, (17)

where ϵ is a standard multivariate normal variate, ϑ0 = (θ0,ψ0) the
true value of ϑ, J(ϑ0) the Fisher information matrix given by

J(ϑ0) =
1
n


−L(2)

n (ϑ0)p(y|ϑ0)dy,

IJ(ϑ0) the inverse of J(ϑ0), J11(ϑ0) and IJ11(ϑ0) the submatrices of
J(ϑ0) and IJ(ϑ0), respectively, corresponding to θ.

Remark 3.9. In general, the asymptotic distributions of J11(ϑ0)
and IJ11(ϑ0) are not known. However, both J(ϑ0) and IJ(ϑ0) can
be consistently estimated by

J(ϑ0) ≈ −
1
n
L(2)
n (ϑ̄), IJ(ϑ0) ≈ nV (ϑ̄).

This greatly facilitates the calculation of the asymptotic distribu-
tion.

Remark 3.10. To obtain the asymptotic distribution and the
threshold values, since the middle term in the asymptotic distri-
bution, IJ1/211 (ϑ0)J11(ϑ0)IJ

1/2
11 (ϑ0), only depends on the model and

the data, one only needs to simulate from the standard multivari-
ate normal.

In some cases, there is no need to simulate the asymptotic
distributions of T(y, θ0) and T1(y, θ0). The following theorem gives
such a situation.

Theorem 3.4. If θ and ψ are orthogonal, tr [J22(ϑ0)IJ22(ϑ0)] = q,
IJ1/211 (ϑ0)J11(ϑ0)IJ

1/2
11 (ϑ0) = Ip, T(y, θ0)

a
∼ χ2(p) − p, and T1(y, θ0)

a
∼ χ2(p)−p, where J22(ϑ0) and IJ22(ϑ0) are the submatrices of J(ϑ0)
and IJ(ϑ0) corresponding to ψ.

Remark 3.11. Theorem 3.4 can be simply derived from Theo-
rem 3.3. While the likelihood ratio statistic asymptotically follows
χ2(p) and is always positive, the Bayesian version of the likeli-
hood ratio statistic proposed in the present paper asymptotically
follows χ2(p) − p. The mean of the asymptotic distribution is zero
and hence it is possible that our statistic takes a negative value,
a property shared by the logarithmic BF. This is not surprising as
both the new statistic and the BF are obtained by integrating over
the parameter space rather than by maximizing over the parame-
ter space.

Remark 3.12. It is well known in the literature that BFs are
conservative compared to the likelihood ratio (LR) test; see, for
example, Edwards et al. (1963) and Kass and Raftery (1995). It is
important to point out that the LR test, like other frequentist’s tests,
is conducted based on the following Fisher’s scale. If the critical
level is between 95% and 97.5%, the evidence for the alternative
is ‘‘moderate’’; between 97.5% and 99%, ‘‘substantial’’; between
99% and 99.5%, ‘‘strong’’; between 99.5% and 99.9%, ‘‘very strong’’;
larger than 99.9%, ‘‘overwhelming’’. Inferences based on BFs use
Jeffreys’ scale instead. If 2 log BF10 is less than 0, there is ‘‘negative’’
evidence for the alternative; between 0 and 2, ‘‘not worth more
than a bare mention’’; between 2 and 6, ‘‘positive’’; between
6 and 10, ‘‘strong’’; larger than 10, ‘‘very strong’’. To show the
difference between our statistic and the LR test as well as BFs,

Table 2
Comparison of 2 log BF10 , T(y, θ0) + 1, and LR when the prior distribution of θ is
N(0, 1) and y =

√
6.634897/n so that the critical level of LR is always 99%.

n 10 100 1000 10,000

2 log BF10 3.63383 1.95408 −0.28049 −2.57621
Decision Positive Not worth mention Negative Negative
T(y, θ0) + 1 6.67097 6.64415 6.63589 6.63500
LR 6.63490 6.63490 6.63490 6.63490

let y1, . . . , yn
i.i.d.
∼ N(θ, 1). The prior distribution of θ can be set as

N(0, τ 2). We want to test the simple point null hypothesis H0 :

θ = 0. Suppose y =
1
n

n
i=1 yi =

√
6.634897/n so that the critical

level of the LR test is always kept at 99%. According to Fisher’s scale,
we have ‘‘strong’’ evidence for the alternative when using LR. In
this case, it can be shown that 2 log BF10 =

τ2n2y2

nτ2+1
− log(nτ 2

+ 1),

T(y, θ0) = nw2(2 − nw2)ny2 − nw2, where w2
=

τ2

nτ2+1
. Table 2

gives the values of 2 log BF10, T(y, θ0) + 1, LR, and the decision
from BFs according to Jeffreys’ scale, when τ = 1. It can be seen
that BFs find the evidence for the alternative hypothesis to be
‘‘positive’’ when n = 10. The evidence turns to be ‘‘not worth
more than a bare mention’’ when n = 100, but to ‘‘negative’’ when
n = 1000, 10,000. This result is consistent with the conservative
property of BFs relative to LR. In the meantime, our test statistic is
slightly more conservative than LR although the difference is small
and they converge to each other as the sample size grows.

4. Examples

In this section, we illustrate the proposed theory using three
examples in economics and finance. In the first example, we
compare the performance of BF and that of T(y, θ0) in the
context of simple linear regression model, aiming to explore the
presence of Jeffreys–Lindley’s paradox in BF and the absence of
Jeffreys–Lindley’s paradox in the proposed method. In the second
example, we check the quality of the approximation of T1(y, θ0)
and T̂1(y, θ0) to T(y, θ0) in the context of linear asset pricing
model. In this case both the observed-data log-likelihood and the
complete-data log-likelihood have the analytical form. In the third
example, we test the presence of leverage effect in a stochastic
volatility (SV) model. Since the observed-data log-likelihood is
not available in closed-form for the SV model, only T̂1(y, θ0) is
obtained. In all examples, the convergence of Gibbs sampler is
checked using the Raftery–Lewis diagnostic test statistic (Raftery
and Lewis, 1992).

4.1. Testing the significance in a simple linear regression model

Consider the following simple linear regression model:

yi = βxi + εi, εi ∼ i.i.d. N

0, σ 2 , i = 1, . . . , n. (18)

Denote y = (y1, y2, . . . , yn)′ and X = (x1, x2, . . . , xn)′. We are
interested in knowing whether or not the explanatory variable xi
has an explanatory power for yi, i.e., we test
H0 : β = 0, H1 : β ≠ 0.
The prior distributions for β and σ 2 are set at
β ∼ N


µβ , σ 2Vβ


, σ 2

∼ IG (a, b) .

In this example, θ = β,ψ = σ 2, and the likelihood function has a
closed-form expression. Thus, T (y, θ0) can be computed. Also note
that β is orthogonal to σ 2 and, hence, T(y, θ0)

a
∼ χ2(1) − 1. The

marginal likelihood of data can be expressed, under H0, as:

p0 (y) =
baΓ


a +

n
2


(2π)n/2 Γ (a)


b +

1
2
y′y

−(a+n/2)

,
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Table 3
Testing the significance in a simple linear regression model.

Vβ = 0.1 Vβ = 100 Vβ = 105 Vβ = 1022 Vβ = 1025 Vβ = 1035

BF01 2.95 × 10−10 2.63 × 10−9 8.32 × 10−8 26.3051 831.8407 8.31×107

T(y, θ0) 40.1209 40.1205 40.1205 40.1205 40.1205 40.1205
β 0.2447 0.2561 0.2562 0.2562 0.2562 0.2562
SE(β) 0.1322 0.1361 0.1361 0.1361 0.1361 0.1361
σ 0.5066 0.5036 0.5036 0.5036 0.5036 0.5036
SE(σ ) 0.0250 0.0249 0.0249 0.0249 0.0249 0.0249

and under H1, as:

p1 (y) =
baΓ


a +

n
2

 √
|V ∗|

(2π)n/2 Γ (a)
Vβ



b +

1
2


µ′

βV
−1
β µβ

+ y′y − µ∗′V ∗−1µ∗

 −(a+n/2)

,

where

µ∗
= V ∗


V−1

β µβ + X ′y


, V ∗
=


V−1

β + X ′X
−1

.

Hence, BF01 = p0 (y) /p1 (y) has an analytical expression.
To explore the presence of Jeffreys–Lindley’s paradox in BF and

the absence of Jeffreys–Lindley’s paradox in our proposed test, we
consider an example used in Wooldridge (2009) (Page 45). In this
example, a linear relationship between CEO salary and firm sales is
established. To focus on the parameter of interest β , we subtract
their respective sample mean from y and X and only estimate
(18) without the intercept. To compute T (y, θ0), we apply Gibbs
sampler to the model corresponding to the alternative hypothesis
to carry out the Bayesian analysis. We set the parameters in the
priors at:

µβ = 0, a = 0.001, b = 0.001,

but leave the value of the prior variance Vβ varied for the purpose
of examining how Vβ influences the decision based on BF01 and
T (y, θ0), respectively. For the Bayesian MCMC analysis, 10,000
random draws are sampled from the posterior distribution after
1000 burn-in periods.

The testing results and parameter estimates (both the posterior
means and the posterior standard errors) are reported in Table 3.
From this table, we see that as Vβ increases, BF01 also increases.
When the prior variance Vβ is moderate, BF is less than 1 and tends
to reject the null hypothesis. However, when Vβ is large enough,
the BF tends to support the null hypothesis. This clearly demon-
strates Jeffreys–Lindley’s paradox. On the other hand, the poste-
rior distributions of β and σ remain nearly unchanged, and most
importantly, T (y, θ0) take nearly identical valueswith differentVβ .
Consequently, T (y, θ0) is immune to Jeffreys–Lindley’s paradox. To
test the hypothesis using the proposed theory, since θ and σ 2 are
orthogonal to each other, the asymptotic distribution of T (y, θ0)
is χ2(1) − 1. The 99%, 95%, 90% percentiles of χ2(1) − 1 are 5.63,
2.84, 1.71. The test statistic T (y, θ0) is 40.12, suggesting that the
null hypothesis is rejected under the 99%, 95%, 90% probability lev-
els. When the frequentist’s approach is used, the OLS estimate of β
is 0.26 and the standard error is 0.03. This suggests that the null
hypothesis has to be rejected, consistent with the finding from our
method.

4.2. Hypothesis tests in asset pricing models with heavy tails

Asset pricing theory is a central focus of modern finance. Many
econometric approaches have been developed to test asset pricing
models. Most of the tests were developed based on the normality
assumption, which is often violated in return data due to the
presence of heavy tails. The heavy tails have motivated some

researchers to develop asset pricing models with heavy-tailed
distributions, see Zhou (1993), Kan and Zhou (2006), and Li and Yu
(2012). In this subsection, we apply the proposed method to check
the validity of Fama–French three factor asset pricingmodel (Fama
and French, 1993) with a multivariate t distribution.

This asset pricing model with multivariate t distribution can be
simply expressed as:

Rt = α+ β1Mt + β2SMBt + β3HMLt + ϵt , ϵt ∼ t(0,6, ν),

where Rt is the excess return of portfolio at period t with N × 1
dimension, Mt the excess return of the whole stock market, SMBt
and HMLt stands for ‘‘small (market capitalization) minus big’’ and
for ‘‘high (book-to-market ratio) minus low’’ which measures the
historical excess returns of small caps over big caps and of value
stocks over growth stocks,6 a diagonal matrix, and ν the freedom
of degree of t distribution which is assumed to be known for the
illustrative purpose and for convenience.

Let β = (β1, β2, β3)
′, Ft = (Mt , SMBt ,HMLt)′. As noted in Kan

and Zhou (2006), using the scale mixture representation for t
distribution, this model can be equivalently specified as:

Rt = α+ βFt + ϵt , ϵt ∼ N(0 × 1N ,6/ωt), ωt ∼ Γ

ν

2
,
ν

2


.

The mean–variance efficiency suggests that the excess premium α
should be zero. Hence, the hypothesis to be tested is given by:

H0 : α = 0 × 1N , H1 : α ≠ 0 × 1N ,

where 1N is an N-dimensional vector with unit elements.
As in the previous example, the likelihood function has a closed-

form expression and, hence, both D and T (y, θ0) can be computed.
The purpose of this example is to check the quality of approxima-
tion of T1 (y, θ0) andT1 (y, θ0) when ωt is regarded as latent vari-
ables.

In this empirical analysis, we consider the monthly returns of
25 portfolios constructed at the end of each June on the basis of
the intersections of 5 portfolios formed on size (market equity,ME)
and5portfolios formedon the ratio of book equity tomarket equity
(BE/ME). This sample period is ranged from July 1926 to July 2011
so that N = 25, T = 1021. The data are freely available from the
data library of Kenneth French.1

As noted in Kan and Zhou (2006), it is not easy to make the
statistical inference using optimization-basedMLmethods. Hence,
we consider Bayesian statistical inference coupled with MCMC
techniques. Following Li and Yu (2012), we assign the vague
conjugate prior distributions to represent the prior ignorance as
follows:

αi ∼ N[0, 100], βi ∼ N[0, 100],
Σ−1

ii ∼ Γ [0.001, 0.001],

and set ν = 3.
In this Bayesian analysis, 110,000 random samples are draw

from the posterior distribution using Gibbs sampler. The first
10,000 random samples are discarded as burning-in samples and

1 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
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Table 4
Bayesian estimation and the standard error of the parameters for the Fama–French
three factor model with the multivariate t distribution.

Portfolio α Portfolio α

EST SE EST SE

S1B1 −0.0083 0.0010 S1B2 −0.0031 0.0007
S1B3 −0.0017 0.0005 S1B4 −0.0001 0.0004
S1B5 0.0003 0.0005 S2B1 −0.0024 0.0005
S2B2 0.0000 0.0004 S2B3 0.0012 0.0003
S2B4 0.0006 0.0004 S2B5 −0.0003 0.0005
S3B1 −0.0003 0.0005 S3B2 0.0012 0.0004
S3B3 0.0012 0.0004 S3B4 0.0009 0.0004
S3B5 −0.0005 0.0005 S4B1 0.0005 0.0004
S4B2 −0.0002 0.0004 S4B3 0.0007 0.0004
S4B5 −0.0001 0.0004 S4B5 −0.0011 0.0006
S5B1 0.0006 0.0003 S5B2 0.0003 0.0004
S5B3 0.0004 0.0005 S5B4 −0.0012 0.0004
S5B5 −0.0026 0.0008

the remaining samples are retained as effective observations. To
check the quality of approximation of T1(y, θ0) and T̂1(y, θ0) to
T(y, θ0), we choose S = 20 and set the equal distance between
b(s) and b(s+1) for s = 0, 1, . . . , 21.

To save place, in Table 4, we only reported the Bayesian esti-
mate and the standard error of the parameter of interest, namely
α. The results for hypothesis testing are reported in Table 5.
From these two tables, we find that D well approximates D. Not
surprisingly, T̂1(y, θ0), which is based on D, well approximates
T1(y, θ0) which in turn well approximates T(y, θ0). All three val-
ues are around 141. To obtain the threshold values, we estimate
IJ1/211 (ϑ0)J11(ϑ0)IJ

1/2
11 (ϑ0) in (16), simulate 1000 random vectors

from the standard multivariate normal variate, and then obtain
1000 random numbers for T̂1(y, θ0). From these random num-
bers, we obtain the following threshold values: C = 20.2657 un-
der 99%, C = 15.5040 under 95% and C = 11.3610 under 90%.
Consequently, we reject the null hypothesis under all the proba-
bility levels. Hence, it can be concluded that, despite its empirical
popularity, the Fama–French three factor asset pricing model does
not hold in this market.

4.3. Testing the leverage effect in a stochastic volatility model

Stochastic volatility (SV) models have been widely used for
pricing options. An important and well documented empirical
feature inmany financial time series is the financial leverage effect
(Black, 1976). Following Yu (2005), we define the leverage effects
SV model as follows:

yt |ht = exp (ht/2) ut , t = 1, . . . , n,
ht+1|ht , µ, φ, τ 2, ρ = µ + φ (ht − µ) + τνt+1, t = 0, . . . , n,

with
ut

νt+1


i.i.d.
∼ N


0
0


,


1 ρ
ρ 1


,

and h0 = µ, where yt is the return at time t , ht the return volatility
at period t . In this model, ρ the leverage effect parameter. When
ρ < 0, there is a negative relationship between the expected future
volatility and the current return (Yu, 2005). In particular, volatility
tends to rise in response to bad news but fall in response to good
news (Black, 1976). The hypothesis that we test is H0 : ρ = 0.

To carry out Bayesian test of the hypothesis,weuse the data that
consist of daily returns on Pound/Dollar exchange rates {xt} from
01/10/81 to 28/06/85. The series {yt} is the daily mean-corrected
returns. We first estimate the model using the Bayesian MCMC
method. The following vague priors are specified:

µ ∼ N[0, 100], φ ∼ Beta[1, 1],
τ−2

∼ Γ [0.001, 0.001] , ρ ∼ U [−1, 1] .

Table 5
Asset pricing testing for the Fama–French three factor models.

Statistics D D T1(y, θ0) T̂1(y, θ0) T(y, θ0)

Value 82.6173 82.3551 141.1888 140.6644 140.5191

Table 6
Estimation results for the stochastic volatility model with the leverage effect.

Parameter Mean SE

µ −0.6658 0.3507
φ 0.9788 0.0153
ρ −0.0343 0.1481
τ 0.1685 0.0447

We draw 110,000 from the posterior distribution, discard the first
10,000 as build-in period and store every 20th value of the re-
maining samples as effective observations. The estimation results
are reported in Table 6. To calculate T1 (y, θ0), we take s = 20,
set the equal distances between b(s) and b(s+1) for s = 0, 1, . . . ,
20 and findT1 (y, θ0) = −1.7244. From simulations, the thresh-
old values are C = 5.1041 under 99%, C = 2.2291 under 95% and
C = 1.0600 under 90%. Hence, the null hypothesis cannot be re-
jected under all three probability levels. While a strong leverage
effect has been found in the equity markets (see, for example, Yu
(2005, 2012) and Ait-Sahalia et al. (2013)), there is no significant
leverage effect in the exchange rate.

5. Conclusion

In this paper, we have proposed a new Bayesian statistic to
test a point null hypothesis with the hope that the new statistic
is less sensitive to the choice of priors than the well known BF.
The test statistic is based on the difference of the two deviances
averaged over the posterior distribution. It can be motivated from
a decision theoretical framework. The main advantages of the
new statistic are fourfold. First, it is immune to Jeffreys’ concern.
Second, it avoids Jeffreys–Lindley’s paradox. Third, it can be easily
computedusing theMCMCoutputs from theposterior distribution.
Fourth, the asymptotic distribution can be derived for calibrating
the threshold values. The proposed method is illustrated using
a simple linear regression model, an asset pricing model and a
stochastic volatility model with real data. We have found very
strong evidence against the popular Fama–French three factor
asset pricing model with equity data. For an exchange rate series,
on the other hand,we cannot find a strong support for the presence
of leverage effect.

It is known that BFs are more conservative than the LR test
(see for example, Edwards et al. (1963), Kass and Raftery (1995)
and Efron et al. (2001)). This is because BFs has a built-in penalty
term that depends on the sample size. On the other hand, the
likelihood ratio test does not have such a penalty term and tends
to reject the null in very large samples even when the null is
meaningful (Raftery, 1986). Similarly, the proposed approach here
does not have a penalty term in association with the dimension
of a model. In this sense, we caution in general against basing
hypothesis testing solely on the proposed statistic when the user
is conservative and has a highly informative prior.

Appendix A. Proof of Theorem 3.1

It can be shown that

Ey

 
log p(y|ϑ)p(y|ϑ)dy


p(ϑ|y)dϑ


=

  
log p(y|ϑ)p(y|ϑ)dyp(ϑ|y)dϑp(y)dy
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=

  
log p(y|ϑ)p(y|ϑ)dyp(y,ϑ)dydϑ

=

  
log p(y|ϑ)p(y|ϑ)dy


p(y|ϑ)dy


p(ϑ)dϑ

=

 
log p(y|ϑ)p(y|ϑ)dy

 
p(y|ϑ)dy


p(ϑ)dϑ

=

 
log p(y|ϑ)p(y|ϑ)dy


p(ϑ)dϑ

=

 
log p(y|ϑ)p(ϑ|y)dϑ


p(y)dy.

Similarly,

Ey

 
log p(y|ϑ0)p(y|ϑ)dy


p(ϑ|y)dϑ


=

 
log p(y|ϑ0)p(ϑ|y)dϑ


p(y)dy.

Thus,

Ey [TBR(y, θ0)] = Ey


KL [p(y|θ), p(y|θ0)] p(ϑ|y)dϑ


= Ey

 
log p(y|ϑ)p(y|ϑ)dy


p(ϑ|y)dϑ


− Ey

 
log p(y|ϑ0)p(y|ϑ)dy


p(ϑ|y)dϑ


=

 
log p(y|ϑ)p(ϑ|y)dϑp(y)dy

−

 
log p(y|ϑ0)p(ϑ|y)dϑp(y)dy

= Ey


[log p(y|ϑ) − log p(y|ϑ0)] p(ϑ|y)dϑ.

Theorem 3.1 is proven.

Appendix B. Proof of Theorem 3.2

Applying the Taylor expansion on the logarithm of the posterior
density, we get

log p(ϑ|y) = log p(ϑ̂|y) + L(1)
n (ϑ̂)′(ϑ − ϑ̂)

+
1
2
(ϑ − ϑ̂)′L(2)

n (ϑ̃)(ϑ − ϑ̂)

= log p(ϑ̂|y) +
1
2
(ϑ − ϑ̂)′L(2)

n (ϑ̃)(ϑ − ϑ̂),

where ϑ̃ lies on the segment between ϑ and ϑ̂. Note that

p(ϑ|y) =
p(y,ϑ)

p(y)
.

Hence,

log p(ϑ|y) − log p(ϑ̂|y) = log p(y,ϑ)

− log p(y) − log p(y, ϑ̂) + log p(y)

= log p(y,ϑ) − log p(y, ϑ̂) =
1
2
(ϑ − ϑ̂)′L(2)

n (ϑ̃)(ϑ − ϑ̂).

Then, for any ϵ > 0, there exists an integer N2 such that for any
n > N2, L

(2)
n (ϑ̃) satisfies

Ip+q − A(ϵ)
 

−L(2)
n (ϑ̂)


≤ −L(2)

n (ϑ̃) =


L(2)
n (ϑ̃)L−(2)

n (ϑ̂)


× [−L(2)
n (ϑ̂)] ≤


Ip+q + A(ϵ)

 
−L(2)

n (ϑ̂)

.

Following the proof of Theorem 3.2 in Li et al. (2012), under
Assumptions 1–7, we note that there exists N, when n > N , we
have

(ϑ − ϑ̂)′

−L(2)

n (ϑ̃)

(ϑ − ϑ̂)p(ϑ|y)dϑ

=


H(ϑ̂,δ)

[(ϑ − ϑ̂)′

−L(2)

n (ϑ̃)

(ϑ − ϑ̂)]p(ϑ|y)dϑ

=


H(ϑ̂,δ)

(ϑ − ϑ̂)′

L(2)
n (ϑ̃)L−(2)

n (ϑ̂)
 

−L(2)
n (ϑ̂)


× (ϑ − ϑ̂)p(ϑ|y)dϑ,

which is bounded above by
H(ϑ̂,δ)

[(ϑ − ϑ̂)′

Ip+q + A(ϵ)

 
−L(2)

n (ϑ̂)

(ϑ − ϑ̂)]p(ϑ|y)dϑ

= tr


Ip+q + A(ϵ)
 

−L(2)
n (ϑ̂)


V (ϑ̂)


,

and below by
H(ϑ̂,δ)

[(ϑ − ϑ̂)′

Ip+q − A(ϵ)

 
−L(2)

n (ϑ̂)

(ϑ − ϑ̂)]p(ϑ|y)dϑ

= tr


Ip+q − A(ϵ)
 

−L(2)
n (ϑ̂)


V (ϑ̂)


.

Hence, under the regularity conditions, for ϵ → 0, we have

lim
n−→∞


(ϑ − ϑ̂)′


−L(2)

n (ϑ̃)

(ϑ − ϑ̂)p(ϑ|y)dϑ

= tr


−L(2)
n (ϑ̂)


V (ϑ̂)


.

Furthermore, it can be shown that

tr


−L(2)
n (ϑ̂)


V (θ̂)


= tr


−L(2)

n (ϑ̂)
 

−L(2)
n (ϑ̂)

−1


+ o(1)

= p + q + o(1).

Hence, conditional on the observed data y, we get
log p(y|ϑ)p(ϑ|y)dϑ =


[log p(y,ϑ) − log p(ϑ)] p(ϑ|y)dϑ

=


log p(y,ϑ)p(ϑ|y)dϑ −


log p(ϑ)p(ϑ|y)dϑ

=

 
1
2
(ϑ − ϑ̂)′L(2)

n (ϑ̃)(ϑ − ϑ̂)


p(ϑ|y)dϑ + log p(y, ϑ̂)

−


log p(ϑ)p(ϑ|y)dϑ

= −
1
2
tr


−L(2)

n (ϑ̂)

V (θ̂)


+ o(1) + log p(y, ϑ̂)

−


log p(ϑ)p(ϑ|y)dϑ

= log p(y, ϑ̂) −


log p(ϑ)p(ϑ|y)dϑ

−
1
2
tr


−L(2)

n (ϑ̂)

V (ϑ̂)


+ o(1)

= log p(y, ϑ̂) −


log p(ϑ)p(ϑ|y)dϑ −

1
2
(p + q) + o(1).

Furthermore, it is noted that

log p(y, ϑ̄) = log p(y, ϑ̂) +
1
2
(ϑ̄ − ϑ̂)′L(2)

n (θ̃)(ϑ̄ − ϑ̂),

where θ̃ lies on the segment between θ̄ and θ̂. Using Assumption 7,
we can show that log p(y, ϑ̄) = log p(y, ϑ̂) + op(1).
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Similarly, under the null hypothesis, it can be shown that

log p(y,ψ|θ0) = log p(y, ψ̄|θ0) +
log p(y,ψ|θ0)

∂ψ


ψ=ψ̄

(ψ − ψ̄)

+
1
2
(ψ − ψ̄)′


∂2 log p(y,ψ|θ0)

∂ψ∂ψ′


ψ=ψ̃

∗


(ψ − ψ̄),

where ψ̃
∗

lies on the segment between ψ and ψ̄. When n → ∞,
we have H(ψ̄, δ1) ⊂ H(ψ̂, δ) and ψ̃

∗

∈ H(ψ̄, δ1) ⊂ H(ψ̂, δ). Then,
(ψ − ψ̄)′


−L(2)

0n (ψ̃
∗

)

(ψ − ψ̄)p(ϑ|y)dϑ

= tr


−L(2)
0n (ψ̃

∗

)
 

(ψ − ψ̄)(ψ − ψ̄)′p(ϑ|y)dϑ


= tr


−L(2)
0n (ψ̂)


E[(ψ − ψ̄)(ψ − ψ̄)′|y,H1]


+ op(1).

Moreover, we get 
log p(y,ψ|θ0)

∂ψ


ψ=ψ̄


(ψ − ψ̄)p(ϑ|y)dϑ

=


log p(y,ψ|θ0)

∂ψ


ψ=ψ̄


(ψ̄ − ψ̄) = 0

and
log p(y,ψ|θ0)p(ϑ|y)dϑ = log p(y, ψ̄|θ0) −

1
2
tr


−L(2)

0n (ψ̂)


× E[(ψ − ψ̄)(ψ − ψ̄)′|y,H1]


+ op(1).

Hence,

E[(ϑ − ϑ̄)(ϑ − ϑ̄)′|y,H1] = E[(ϑ − ϑ̂)(ϑ − ϑ̂)′|y,H1]

+ 2E[(ϑ − ϑ̂)|y,H1](ϑ̂ − ϑ̄)′ + (ϑ̂ − ϑ̄)(ϑ̂ − ϑ̄)′

= E[(ϑ − ϑ̂)(ϑ − ϑ̂)′|y,H1] + op(n−1/2)op(n−1/2)

= E[(ϑ − ϑ̂)(ϑ − ϑ̂)′|y,H1] + op(n−1) = −L−(2)
n (ϑ̂) + op(n−1)

=
1
n


1
n
L(2)
n (ϑ̂)

−1

+ op(n−1) =
1
n
Op(1) + op(n−1) = Op(n−1),

and

tr


−L(2)
0n (ψ̂)


E[(ψ − ψ̄)(ψ − ψ̄)′|y,H1]


= tr


−

1
n
L(2)
0n (ψ̂)


nE[(ψ − ψ̄)(ψ − ψ̄)′|y,H1]


= tr


−

1
n
L(2)
0n (ψ̄) + op(1)


nE[(ψ − ψ̄)(ψ − ψ̄)′|y,H1]


= tr


−L(2)

0n (ψ̄)

E[(ψ − ψ̄)(ψ − ψ̄)′|y,H1]


+ op(1).

We can further show that

T (y, θ0) = 2


log p(y|ϑ)p(ϑ|y)dϑ −


log p(y|ϑ0)p(ψ|y)dψ


= 2 log p(y, ϑ̄) − 2


log p(ϑ)p(ϑ|y)dϑ − (p + q)

− 2 log p(y, ψ̄|θ0) + 2


log p(ψ)p(ϑ|y)dϑ

+ tr[−L(2)
0n (ψ̄)V22(ϑ̄)] + op(1)

= 2[log p(y, ϑ̄) − log p(y, ψ̄|θ0)]

− 2


log p(ϑ)p(ϑ|y)dϑ −


log p(ψ)p(ϑ|y)dϑ



−


p + q − tr[−L(2)

0n (ϑ̄0)V22(ϑ̄)]


+ op(1)

= 2[log p(y|ϑ̄) − log p(y|θ0, ψ̄)] + 2

log p(θ̄, ψ̄)

− log p(ψ̄|θ0)

− 2


log p(θ|ψ)p(ϑ|y)dϑ


−


p + q − tr[−L(2)

0n (ψ̄)V22(ϑ̄)]


+ op(1).

For latent variable models, p(y|ϑ) generally does not have an
analytical form. Using the path sampling technique of Gelman and
Meng (1998), we get:

p(z|y, ϑ̄b) =
p(z, y|ϑ̄b)

p(y|ϑ̄b)
=

p(z, y|ϑ̄b)

f (b)
,

where f (b) = p(y|ϑ̄b) such that f (1) = p(y|ϑ̄) and f (0) = p(y|ϑ̄∗).
Then,

∂ log f (b)
∂b

=
f ′(b)
f (b)

=
1

f (b)


∂p(y, z|ϑ̄b)

∂b
dz

=
1

f (b)


∂ log p(y, z|ϑ̄b)

∂b
p(y, z|ϑ̄b)dz

=


∂ log p(y, z|ϑ̄b)

∂b
p(y, z|ϑ̄b)

f (b)
dz

=


∂ log p(y, z|ϑ̄b)

∂b
p(z|y, ϑ̄b)dz

= Ez|y,ϑ̄b


∂ log p(y, z|ϑ̄b)

∂b



= Ez|y,ϑ̄b


∂ϑ̄b

∂b
∂ log p(y, z|ϑ̄b)

∂ϑ̄b


.

Hence, we get

log p(y|ϑ̄) − log p(y|ϑ̄∗) = log
f (1)
f (0)

=

 1

0

∂ log f (b)
∂b

db

=

 1

0


(ϑ̄ − ϑ̄∗)

′Ez|y,ϑ̄b


∂ log p(y, z|ϑ)

∂ϑ


ϑ=ϑ̄b


db

=

 1

0


(θ̄ − θ0)

′Ez|y,ϑ̄b


∂ log p(y, z|ϑ)

∂θ


θ=θ̄b


db

+

 1

0


(ψ̄ − ψ̄)′Ez|y,ϑ̄b


∂ log p(y, z|ϑ)

∂ψ


ψ=ψ̄b


db

=

 1

0


(θ̄ − θ0)

′Ez|y,ϑ̄b [S1(x|ϑ̄b)]

db.

Theorem 3.2 is proven.

Appendix C. Proof of Theorem 3.3

When n → ∞, the prior information is negligible. Hence, we
have

∂ log p(y|θ)
∂θ

= L(1)
n (θ),

∂2 log p(y|θ)
∂θθ′

= L(2)
n (θ),

and the ML estimator is asymptotically equivalent to the posterior
mode θ̂. Furthermore, according to Theorem 3.2, it can be shown
that

T (y, θ0) = 2


log p(y|ϑ)p(ϑ|y)dϑ
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−


log p(y|ψ, θ0)p(ψ|y)dψ


= 2


log p(y|ϑ̄) − log p(y|θ0, ψ̄)


−


p + q − tr[−L(2)

0n (ψ̄)V22(ϑ̄)]


+ op(1).

In Theorem 3.2, it is shown that log p(y|ϑ̄) = log p(y|ϑ̂) + op(1).
Similarly, when H0 is true, let ϑ̄∗ = (θ0, ψ̄), we can show that

log p(y|θ0, ψ̄) = log p(y|θ̂, ψ̂) + L(1)
n (ϑ̂)(ϑ̄∗ − ϑ̂)

+
1
2
(ϑ̄∗ − ϑ̂)′L(2)

n (ϑ̂)(ϑ̄∗ − ϑ̂) + op(1)

= log p(y|θ̂, ψ̂) +
1
2
(ϑ̄∗ − ϑ̂)′

× L(2)
n (ϑ̂)(ϑ̄∗ − ϑ̂) + op(1).

Furthermore, under the null hypothesis, it is noted that ψ̄ = ψ̂ +

op(n−
1
2 ), 1

n L
(2)
n (ϑ̂) = Op(1) and

−
1
n
L(2)
n (ϑ̂) = −

1
n
L(2)
n (ϑ0) + op(1) = J(ϑ0) + op(1),

−
1
n
L(2)
n (ϑ̂0)

−1

= −


1
n
L(2)
n (ϑ0)

−1

+ op(1) = J−1(ϑ0) + op(1)

= IJ(ϑ0) + op(1).

Thus, we have

(ϑ̄∗ − ϑ̂)′L(2)
n (ϑ̂)(ϑ̄∗ − ϑ̂)

= (θ0 − θ̂)′L(2)
n,11(ϑ̂)(θ0 − θ̂) + 2(θ0 − θ̂)′

× L(2)
n,12(ϑ̂)(ψ̄ − ψ̂) + (ψ̄ − ψ̂)′L(2)

n,22(ϑ̂)(ψ̄ − ψ̂)

= (θ0 − θ̂)′L(2)
n,11(ϑ̂)(θ0 − θ̂)

+ 2Op(n−1/2)Op(n)op(n−1/2) + op(n−1/2)Op(n)op(n−1/2)

= (θ0 − θ̂)′L(2)
n,11(ϑ̂)(θ0 − θ̂) + op(1)

=
√
n(θ0 − θ̂)′


1
n
L(2)
n,11(ϑ̂)


√
n(θ0 − θ̂) + op(1)

= −
√
n(θ0 − θ̂)′


J11(ϑ0) + op(1)

 √
n(θ0 − θ̂) + op(1)

= −
√
n(θ0 − θ̂)′ [J11(ϑ0)]

√
n(θ0 − θ̂)

+ op(1)Op(1)Op(1) + op(1)

= −
√
n(θ0 − θ̂)′ [J11(ϑ0)]

√
n(θ0 − θ̂) + op(1).

According to the ML theory, we know that
√
n(θ̂ − θ0) ∼

N[0, IJ11(ϑ0)] so that ϵ =
√
nIJ−1/2

11 (ϑ0)(θ̂−θ0) ∼ N[0, Ip]. Hence,
we have

2

log p(y|θ̂, ψ̂) − log p(y|θ0, ψ̄)


= (ϑ̄∗ − ϑ̂)′


−L(2)

n (ϑ̂)

(ϑ̄∗ − ϑ̂) + op(1)

=
√
n(θ0 − θ̂)′ [J11(ϑ0)]

√
n(θ0 − θ̂) + op(1)

=
√
n(θ0 − θ̂)′IJ−1/2

11 (ϑ0)

IJ1/211 (ϑ0)J11(ϑ0)IJ

1/2
11 (ϑ0)


× IJ−1/2

11

√
n(θ0 − θ̂) + op(1)

= ϵ′

IJ1/211 (ϑ0)J11(ϑ0)IJ

1/2
11 (ϑ0)


ϵ+ op(1).

Further, when the null hypothesis is true, we can get that

T (y, θ0) +


p + q − tr[−L(2)

0n (ϑ̄)V22(ϑ̄)]


= 2


log p(y|ϑ)p(ϑ|y)dϑ −


log p(y|ψ, θ0)p(ψ|y)dψ



+


p + q − tr[−L(2)

0n (ϑ̄)V22(ϑ̄)]


= T1(y, θ0) +


p + q − tr[−L(2)

0n (ϑ̄)V22(ϑ̄)]


+ op(1)

= 2[log p(y|ϑ̄) − log p(y|θ0, ψ̄)] + op(1)

= 2

log p(y|θ̂, ψ̂) − log p(y|θ0, ψ̄)


+ op(1)

∼ ϵ′

IJ1/211 (ϑ0)J11(ϑ0)IJ

1/2
11 (ϑ0)


ϵ.
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