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a b s t r a c t

This paper develops a maximum likelihood (ML) method to estimate partially observed diffusion models
based on data sampled at discrete times. The method combines two techniques recently proposed in
the literature in two separate steps. In the first step, the closed form approach of Aït-Sahalia (2008) is
used to obtain a highly accurate approximation to the joint transition probability density of the latent
and the observed states. In the second step, the efficient importance sampling technique of Richard and
Zhang (2007) is used to integrate out the latent states, thereby yielding the likelihood function. Using both
simulated and real data, we show that the proposed ML method works better than alternative methods.
The newmethod does not require the underlying diffusion to have an affine structure and does not involve
infill simulations. Therefore, the method has a wide range of applicability and its computational cost is
moderate.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Continuous time diffusion models have long proven useful in
economics and finance. For example, they provide a convenient
mathematical framework for the development of financial eco-
nomics and option pricing theory (Black and Scholes, 1973; Hes-
ton, 1993; Duffie and Kan, 1996). The separate treatment of stock
and flow variables in macroeconomics (Bergstrom, 1984) and the
formulation of continuous time inter-temporal optimization mod-
els (Turnovsky, 2000) represent additional usage of diffusionmod-
els in economics. Not surprisingly, fitting diffusion models based
on data sampled at discrete times has received a great deal of at-
tention in econometrics.
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The case when some of the state variables are latent is often
encountered in practical applications. One example of such par-
tially observed diffusion models is the continuous time stochastic
volatility models with the volatility being the latent state; see Hull
andWhite (1987) and Heston (1993). Another example is the con-
tinuous time stochastic mean model of Balduzzi et al. (1998), in
which the mean is a latent state. Obviously, the combination of a
latent volatility and a latent mean also makes a partially observed
diffusionmodel. This class of models has found a wide range of ap-
plications in the term structure literature Duffie and Kan (1996),
Dai and Singleton (2000) and in the option pricing literature Duffie
et al. (2000).

It has been argued, on the basis of asymptotic properties, that
the preferred choice of estimation method for diffusion models
should be maximum likelihood (ML) (Aït-Sahalia, 2002; Durham
and Gallant, 2002). The ML estimation of partially observed
diffusions necessitates the computation of the joint transition
probability density (TPD) of the observed and the latent state
variables as well as the marginalization of the latent variable from
the joint density.

When the transition density of the state variables does not have
a closed-form expression, it has to be approximated.Many approx-
imation methods have been proposed in the literature which is re-
viewed in Jensen andPoulsen (2002), Hurn et al. (2007) and Phillips
and Yu (2009). Broadly speaking, the methods can be classified
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into two classes. In the first class, the diffusion model is approx-
imated by a discrete time model whose TPD is available in closed
form. The well-known Euler–Maruyama (EM) approximation and
the approximations of Bergstrom (1966), Nowman (1997),Milstein
(1979) and Shoji and Ozaki (1998) all belong to this class. These
methods in general lead to a bias in the calculation of the likelihood
function that does not vanish asymptotically (see Aït-Sahalia, 2002
and references therein). We shall refer to such a bias as the dis-
cretization bias. In the second class, the TPD of the diffusion model
is approximated directly, including the infill approximations and
the closed-form approximations. To the best of our knowledge, the
first contribution on the topic of infill approximations is in Ped-
ersen (1995).1 The closed-form approximation techniques include
the Hermite approximation of Aït-Sahalia (2002), the polynomial
approximation of Aït-Sahalia (2008), and the saddlepoint approx-
imation of Aït-Sahalia and Yu (2006). Both the infill techniques
and the closed-form techniques can reduce the discretization bias.
Compared to the infill techniques, the closed-form techniques are
computationally much cheaper and the approximation errors are
smaller (Aït-Sahalia, 2002).

When the diffusion specifying the observed and latent states
is not a linear Gaussian process, the marginalization of the la-
tent state variable cannot be achieved analytically. Consequently,
various importance sampling techniques have been proposed to
integrate out the latent state variable from the joint density via
simulations. The importance sampler of Shephard and Pitt (1997)
and Durbin and Koopman (1997) (see also Sandmann and Koop-
man, 1998, Durham, 2006, and Skaug and Yu, forthcoming) used
a global, multivariate Gaussian approximation to the joint den-
sity as the importance density, whereas Richard and Zhang (2007)
(see also Liesenfeld and Richard, 2003, 2006) used a product of
univariate Gaussian approximations to the conditional TPD as the
importance density. While both methods work well for estimat-
ing discrete time stochastic volatility models, as shown in Lee and
Koopman (2004), the importance sampler of Richard and Zhang
(2007) tends to be more well-behaved than that of Shephard and
Pitt (1997) and Durbin and Koopman (1997).

For most partially observed diffusion models, almost all of
the afore-mentioned ML methods are not directly applicable. Ar-
guably, the most widely used ML approach to estimating partially
observed diffusion models is to use the EM approximation to dis-
cretize the diffusion models and then use an importance sampler
to marginalize out the unobserved latent state variables. This ap-
proach naturally leads to the discretization bias when a sampling
interval is fixed.

Several approaches have been proposed in the literature to
provide ML estimation of partially observed diffusion models with
the discretization bias being controlled. Bates (2006) proposed
a frequency domain filtering method to compute the likelihood
function of latent affine diffusion models via the conditional
characteristic functions. This technique is not feasible for non-
affinemodels forwhich the conditional characteristic functions are
not available in closed form.

Aït-Sahalia and Kimmel (2007) proposed to approximate the
volatility (latent state) using the implied volatility computed from
the underlying options. Consequently, no state variable is latent
in the continuous time stochastic volatility model and the closed
form approximation of Aït-Sahalia (2008) is directly applicable.
However, it is well-known that option prices are derived from
the risk neutral measure (Heston, 1993). As a result, using data
from both the spot market and the options market jointly, one
can simultaneously learn about both the physical measure and the

1 Elerian et al. (2001) and Eraker (2001) use the infill methods to conduct
Bayesian inference of continuous time models.

risk-neutral measure. Naturally, this benefit is achieved at a cost.
To connect the physical measure to the risk-neutral measure, the
functional form of the market price of risk has to be specified.
If one’s interest is to learn about the physical measure only, the
implied volatility is less useful. Moreover, in some cases, such as
for models with a stochastic mean, it is not clear how to extract
latent variables from derivative prices. Perhaps most importantly,
when the latent volatility is approximated by the implied volatility,
approximation errors are introduced. How these errors influence
the estimated price dynamics remains to be answered.

More recently, a quasi-ML (QML) approach was proposed
by Hurn et al. (2013) to estimate partially observed diffusion
models. However, the discretization bias cannot be completely
removed by thismethod.While the infill technique combinedwith
the importance sampler via the global approximation has been
introduced to provide theMLestimation (see, for example, Durham
and Gallant, 2002), it is computationally very expensive.

In this paper, we introduce a new ML method to estimate
partially observed diffusion models. Our ML method combines the
closed-form approach of Aït-Sahalia (2008) for approximating the
joint TPD of the observed and the latent state variables and the
efficient importance sampler (EIS) of Richard and Zhang (2007) for
integrating out latent states from the joint density. Our method
inherits two nice features of the closed-form approximation
techniques of Aït-Sahalia (2002) and Aït-Sahalia (2008). First, it
can practically remove the discretization bias and, hence, leads
to more accurate likelihood values than the QML and the EM
methods. Second, it is computationally inexpensive, especially
relative to the infillmethods.Moreover, ourmethod is very general
in the sense that only weak assumptions regarding the structure
of the underlying diffusion must be made. Most notably, an affine
structure does not need to be assumed.

The paper is organized as follows. Section 2 proposes the
new estimation method. Section 3 illustrates our method using
the GARCH diffusion model of Nelson (1990) and investigates
the performance of the proposed method relative to alternative
methods, including the EM method and the QML of Hurn et al.
(2013), using simulated data. In Section 4, we fit the GARCH
diffusion to real data. Finally, Section 5 concludes and outlines
some further applications and implications of the approach.

2. Methodology

2.1. Model specifications

Let the time-homogeneous diffusion be denoted by

dXτ = a(Xτ ; θ)dτ + b(Xτ ; θ)dBτ , (1)

where Xτ and a(Xτ ; θ) are q-vectors, and b(Xτ ; θ) is a q × q
matrix, with Bτ being a q-dimensional uncorrelated Brownian
motion. θ is the vector of parameters to be estimated. We assume
that (1) admits a unique solution and that b(Xτ ; θ)b(Xτ ; θ)′ is
positive definite for all admissible values of Xτ and θ . Moreover,
we assume that a(·; θ) and b(·; θ) are infinitely differentiable. Let
xt = Xt∆ (t = 1, . . . , T ) be the value of Xτ sampled at frequency
1/∆ and x = (x1, . . . , xT ) be the collection of such values.

Due to the Markovian property of Xτ , the joint probability
density function (PDF) of x may be written as

p(x; θ) = p(x1; θ)
T

t=2

pt(xt |xt−1; θ). (2)

Here pt(xt |xt−1; θ) is the TPDassociatedwith (1) and p(x1; θ) is the,
possibly degenerate, density of the initial state x1. We assume that
the first qy elements of xt , denoted by yt , are observed at frequency
1/∆ and t = 1, . . . , T . The remaining qz = q − qy elements of
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xt , denoted by zt , are assumed to be latent.2 Thus, xt = [y′
t z ′

t ]
′,

pt(xt |xt−1; θ) = pt(yt , zt |yt−1, zt−1; θ) and p(x; θ) = p(y, z; θ)
with y = (y1, . . . , yT ), z = (z1, . . . , zT ). Without loss of generality,
we focus on the case where qz = 1 in this paper. Models with
multiple latent states can be estimated in the same spirit.

The likelihood function based on observed data is obtained
by marginalizing out the latent variable from the joint density,
namely,

L(θ |y) = p(y; θ) =


p(x; θ)dz

=


p1(x1; θ)

T
t=2

pt(xt |xt−1; θ)dz. (3)

Denote the log-likelihood function by l(θ |y). From now on, the
dependence on the parameter vector θ of all quantities is made
implicit in the notation.

2.2. Transition density function approximations

As the TPD of (1) has a closed-form expression only for a few
special cases, approximations are inevitably unavoidable in gen-
eral. Denote the generic TPD approximation by p̄t = p̄t(xt |xt−1).
In the present paper, we focus primarily on the closed-form tech-
nique of Aït-Sahalia (2008), but also consider two other alterna-
tives for references. We choose these three classes of approximate
TPDs based on two criteria. First, they should have a closed-form
expression and be cheap to compute. Consequently, computation-
ally expensive methods, such as the infill techniques, are not con-
sidered (see Aït-Sahalia, 2002, Fig. 1). Second, the approximate
TPDs should be applicable to general multivariate diffusions (1). In
particular, they should not be restricted to a narrow range of func-
tional form for a and b, such as the affine diffusions or the reducible
diffusions (Aït-Sahalia, 2008).

2.2.1. Euler Maruyama approximation
The first approximate TPD we consider is the Euler–Maruyama

(EM) approximation, defined by

p̄(EM)t (xt |xt−1) = N

xt; xt−1 +1a(xt−1),1b(xt−1)b(xt−1)

′

, (4)

where N (x;m,Σ) is the PDF of N(m,Σ) evaluated at x. The EM-
TPD is easy to implement and fast to evaluate. However, for a fixed
sampling interval∆, the EMapproximation has fixed accuracy and,
hence, may lead to an unacceptable discretization bias.

2.2.2. The approximation of Hurn et al. (2013)
The second approximate TPD we consider is due to Hurn et al.

(2013), which we denote by HLM. The HLM-TPD takes the form of
a multivariate Gaussian, namely

p̄(HLM)t (xt |xt−1) = N (xt;M(xt−1,∆), S(xt−1,∆))

where M(xt−1,∆) and S(xt−1,∆) approximate E(xt |xt−1) and
Var(xt |xt−1), respectively, and the elements of M(xt−1,∆) and
S(xt−1,∆) are obtained as a solution of a system of ordinary
differential equations (see Hurn et al., 2013, for details). For a
general diffusion model (1), this system of differential equations
may involve expectations of non-linear functions of Gaussian
random variables. Hurn et al. (2013) suggest to approximate these
expectations using low-order Gaussian quadrature. Moreover, the
systemof differential equationsmayhave to be solvednumerically.
Owing to the Gaussian structure of p̄(HLM)t (xt |xt−1), the HLM-TPDs
have fixed accuracy for a fixed sampling interval ∆. Nevertheless,
theHLM-TPDs are relatively easy to implement and fast to evaluate
relative to infill methods.

2 Note that the assumption that the first qy elements of xt are observed comes
without loss of generality as the ordering of the elements of xt is arbitrary.

2.2.3. Aït-Sahalia (2008) expansions
The third approximate TPD we consider is the closed-form

expansion of Aït-Sahalia (2008). Though more cumbersome to
derive than the former two methods, the Aït-Sahalia expansions
are attractive in that they have computationally tractable closed-
form expressions while retaining adjustable accuracy for fixed ∆.
This nice feature enables us to study the incurred discretization
bias by considering a sequence of increasingly accurate Aït-Sahalia
expansions.

The Aït-Sahalia expansion of order K , denoted by ASK , has the
form

log p̄(ASK)t (xt |xt−1) ≡ −
q
2
log(2π∆)− Dv(xt)+

C j−1
−1 (xt |xt−1)

∆

+

K
k=0

C jk
k (xt |xt−1)

∆k

k!
, (5)

where

Dv(x) =
1
2
log(Det(b(x)b(x)′)). (6)

Clearly, the expansion has the interpretation of a functional power
series in ∆ plus some additional terms. Increasing accuracy in the
sense described in Aït-Sahalia (2008) is obtained by increasing K .
The coefficients C jk

k are polynomials of the form

C jk
k (r|s) =


|i|≤jk

c(k)i (r1 − s1)i1(r2 − s2)i2 · · · (rq − sq)iq , (7)

where i = (i1, . . . , im) is a multi-index with |i| = i1 + · · ·+ im and
jk = 2(K − k).3 The form of the coefficients c(k)i is found by solving
both the forward and the backward Kolmogorov partial differential
equations to the appropriate orders in ∆ using the algorithms
outlined in Aït-Sahalia (2008). The model-specific expressions C jk

k
are in general complicated, andwe obtain these using the symbolic
manipulation softwareMaple. Their exact specification is available
upon request in computer form from the authors.

It is worth noticing that the Aït-Sahalia expansions do not
lead to proper densities as they do not integrate exactly to one
in general. To make a proper density, one may normalize the
approximate TPDs. However, in our experience the expansions are
very accurate and a re-normalization is unnecessary. Moreover,
since the terms C jk

k in (5) are polynomials, there is no guarantee
that p̄(ASK)t (xt |xt−1) stays bounded in the very far tails. However,
we do not encounter this problem in practice.

2.3. Efficient importance sampling

The joint density of all the state variables (both the latent and
the observed) can be obtained from the joint TPDs after they are
approximated. To obtain the likelihood function of the model,
however, the latent variables have to be integrated out. Various
Monte Carlo methods, all based on the importance sampler, have
been proposed to integrate out the latent state variables from the
joint density. In the present paper, we propose to use the EIS
method of Richard and Zhang (2007) because, unlike the Laplace
importance sampler of Shephard and Pitt (1997) and Durbin and
Koopman (1997), it does not rely on a global near-Gaussian kernel
assumption on the integrand z → p̄(y, z).

3 We follow Aït-Sahalia and Kimmel (2007)s 2(K − k) rather than Aït-Sahalia
(2008)s 2(K + 1 − k) on the choice of polynomial order for computational
convenience.
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Before fixing the idea, let us introduce some new notations.
First, we introduce the approximate joint density p̄(y, z) = p̄(x),
which is obtained by plugging in the approximate TPDs into Eq. (2):

p̄(x) = p̄(y, z) = p(y1, z1)
T

t=2

p̄t(yt , zt |yt−1, zt−1). (8)

Second, the approximate likelihood function based on p̄(y, z) is
denoted by L̄(θ; y) =


p̄(y, z)dz. This is the target for the Monte

Carlo integration.
Next, we introduce the Gaussian approximate conditional

kernel kt , t = 1, . . . , T . When qy = 1, log kt is a second-order
Taylor series expansion of log p̄t in zt around λt(zt−1), namely

log kt(zt |zt−1) =

2
r=0

F (r)t (zt−1)

r!
(zt − λt(zt−1))

r , (9)

where

F (r)t (zt−1) =
∂ r

∂zrt
log p̄t(yt , zt |yt−1, zt−1)|zt=λt (zt−1),

r = 0, 1, 2, (10)
λt(zt−1) = Ep̄(EM)t

[zt |yt , yt−1, zt−1] , (11)

with p̄(EM)t defined in Eq. (4), and the dependence on yt , yt−1 made
implicit in the notation. The expansion point λt(zt−1), which has
closed form, is intended to be in a high probability region of
zt |yt , yt−1, zt−1 under p̄t . Consequently, the normalized version of
kt , namely kt(zt |zt−1)/


k(zt |zt−1)dzt , may be regarded as a Gaus-

sian approximation to the density of zt |yt , yt−1, zt−1 under p̄t . For
t = 1, let k1(z1) denote some unspecified Gaussian approximation
to p(z1|y1), with associated F (r)1 , r = 0, 1, 2, so that log k1(z1) =2

r=0 F
(r)
1 (z1 − λ1)

r/r! for an arbitrary expansion point λ1.
The final piece of notation that we introduce is the reminder

term associated with the second-order Taylor expansion defining
kt , namely

Qt(zt |zt−1) = log p̄t(yt , zt |yt−1, zt−1)− log kt(zt |zt−1),

t = 2, . . . , T , (12)
Q1(z1) = log p(y1, z1)− log k1(z1). (13)

For the EM and the HLM methods, which are both Gaussian,
kt is exact (when keeping yt , yt−1, zt−1 fixed) in that p̄t(yt ,
zt |yt−1, zt−1) = kt(zt |zt−1) and, therefore, Qt(zt |zt−1) = 0. For the
ASK -TPDs, Qt is generally non-zero as the polynomials Q jk

k defined
in (7) are of order greater than 2 for K > 1. Moreover, Dv defined
in (6) is typically a non-linear function.

In general importance sampling techniques rely on introducing
an importance densitym(z) and approximating the target integral,
in our case L̄(θ |y) defined in Eq. (8), via an application of the law of
large numbers as

L̄(θ |y) ≈
1
M

M
j=1

p̄(y, z(j))
m(z(j))

, where z(j) ∼ i.i.d.m(z),

j = 1, . . . ,M. (14)

The fractions w(j) = p̄(y, z(j))/m(z(j)), j = 1, . . . ,M , are known
as the importanceweights (Geweke, 1989). The EIS algorithm aims
at choosing m(z) within a particular class of importance densities
so that the variance of the right hand side of (14) is minimized
for a fixed number of draws M . The class of importance densities
considered here has a Markovian structure

m(z;A) = m1(z1;A1)

T
t=2

mt(zt |zt−1;At),

A = (A1, . . . ,AT ) , (15)

where {mt}
T
t=1 are all univariate Gaussian densities. Moreover, the

mean and the variance of each mt depend on an auxiliary param-
eter At = (At,1, At,2)

′, t = 1, . . . , T , that is chosen using the EIS
algorithm. Due to the Markovian structure of (15), generating ran-
dom draws z(j) ∼ m(z;A) is conceptually simple and computa-
tionally tractable. The specific forms ofmt , t = 1, . . . , T , have the
interpretation of exponentially tilted and normalized versions of
the Gaussian approximate conditional kernels kt , and are given by

mt(zt |zt−1;At) =
kt(zt |zt−1)ψt(zt;At)

χt(zt−1;At)
,

m1(z1;A1) =
k1(z1)ψ1(z1;A1)

χ1(A1)
,

where

logψt(zt;At) = At,1zt + At,2z2t , t = 1, . . . , T ,

χt(zt−1;At) =


kt(zt |zt−1)ψt(zt;At)dzt , t = 2, . . . , T ,

χ1(A1) =


k1(z1)ψ1(z1;A1)dz1.

Since both log kt and logψt are the second-order polynomials in
zt , it is clear that mt is a Gaussian density with mean and variance
given by

µt = −
F (1)t − F (2)t λt + At,1

F (2)t + 2At,2
, Σt = −

1

F (2)t + 2At,2
,

provided that At,2 < F (2)/2.
With the above notation, we may rewrite each importance

weight as

w(j) =

p(y1, z
(j)
1 )

T
t=2

p̄t(yt , z
(j)
t |yt−1, z

(j)
t−1)

m(z(j)1 ;A1)
T

t=2
mt(z

(j)
t |z(j)t−1;At)

= χ1(A1)


exp(Q1(z

(j)
1 ))χ2(z

(j)
1 ,A2)

ψ1(z
(j)
1 ;A1)



×

T
t=2


exp(Qt(z

(j)
t |z(j)t−1))χt+1(z

(j)
t ;At+1)

ψt(z
(j)
t ;At)


,

where we define χT+1 = 1 for notational convenience. Note that
each factor in curly brackets above depends only on a single zt
except for the reminder factors exp(Qt), t = 2, . . . , T , that also
depends on zt−1. The EIS algorithm proceeds by choosing At to
minimize the observed variance (over j) of the logarithm of each
factor in curly brackets. Due to this particular parameterization of
mt , the choice of optimal importance sampler amounts to solving
a sequence of least squares problems

Ât , Ĉt = argmin
At ,Ct

M
j=1


Qt(z

(j)
t |z(j)t−1)+ logχt+1(z

(j)
t ;At+1)

− Ct − At,1z
(j)
t − At,2


z(j)t
22

, t = T , . . . , 2, (16)

Â1, Ĉ1 = arg min
A1,C1

M
j=1


Q1(z

(j)
1 )+ logχ2(z

(j)
1 ,A2)− C1

− A1,1z
(j)
1 − A1,2


z(j)1
22

, (17)

which can be implemented using computationally tractable linear
regression routines.
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It is clear from (16)–(17) that At depends on At+1. Hence,
the sequence of regression problems has to be solved backwards.
Moreover, since the draws z(j) ∼ m(z;A) generally depend
on A, the solution for A using (16)–(17) is obtained iteratively.
This is implemented by first choosing a suitable initial A, and
then alternating between sampling from m(z;A) using the latest
availableA and obtaining a newA from (16)–(17).We refer to these
iterations as EIS-iterations.

It is well-known (see e.g. Geweke, 1989; Koopman et al., 2009)
that the variance (over j) of the importance weights need to be
finite in order to get reliable importance sampling estimates. A
rule of thumb is that the tails of the importance density have to be
heavier than those of the target kernel (8) so that the importance
weights are bounded as functions of the draws z(j). On the other
hand, we rely on a joint importance density that is constructed
from relatively thin-tailed Gaussian transition densities mt as this
is desirable from a computational perspective. Despite that we use
thin-tailed Gaussian transition densities, we have not encountered
problems with infinite weight variance, and there are several
explanations for this. First, since the mean and the variance of
the normalized version of kt are generally non-linear functions
of zt−1, globally m(z;A) can generate highly non-Gaussian and
heavy tailed behavior when integrating p̄(y, z) with respect to z.
This property is supported by what is well-known for diffusions,
namely that the joint behavior over longer time spans can be
highly non-Gaussian, although for short time steps the TPD is
approximately Gaussian. Second, the integrand p̄(y, z) ∝ p̄(z|y) is
conditioned on the observations and therefore often has thinner
tails than those of the marginal p̄(z). Finally, in the example
considered below,weworkwith a transformed latent processwith
constant volatility, and it is known (Aït-Sahalia, 2002) that the tails
of the TPD associated with the latent process in this case are no
heavier than those of a Gaussian density.

3. Example model and simulation studies

In this section we illustrate the proposed method using the
GARCH diffusion model. After that, we carry out some simulation
studies to check the performance of the proposed method.

3.1. The GARCH diffusion

Let Yτ denote the log-price of an asset, and Vτ the volatility of
this asset. The GARCH diffusion model is given by
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where Bτ ,1 and Bτ ,2 denote a pair of independent canonical Brow-
nian motions. The parameters to be determined are θ = (α, β,
σ , ρ, a)′.

Provided that α > 0, β < 0, σ > 0, the volatility process Vt is
strictly stationary and mean reverts to the long run mean, −α/β .
Themarginal distribution is the inverse Gammawith shape param-
eter α̃ = 1− 2β/σ 2 and scale parameter β̃ = 2α/σ 2 (see e.g. Nel-
son, 1990). The parameter ρ, when it is less than 0, represents the
so-called leverage effect (Harvey et al., 1994; Yu, 2005). The model
was first obtained by Nelson (1990) as a continuous time limit of
the discrete time GARCH(1,1) model of Bollerslev (1986). Christof-
fersen et al. (2010), Kleppe et al. (2010) and Duan and Yeh (2011)
recently showed that this model provides much better empirical
fit to actual data than the square root stochastic volatility model of
Heston (1993). However, the improvement in model fit comes at
the cost of losing the affine structure of Heston’s model. Hence, the

model does not have a closed-form expression for the conditional
characteristic function and cannot be estimated by the procedure
of Bates (2006). For ourmethod, on the other hand, the loss of affine
structure causes no difficulty.

We follow Nelson (1990), Aït-Sahalia (2002) and Durham and
Gallant (2002) by applying the variance stabilizing transforma-
tion to Vτ , namely Zτ = log(Vτ ). It is our experience that p(zt |yt ,
zt−1, yt−1) is better approximated by a Gaussian importance
distribution than p(vt |yt , vt−1, yt−1) is, and that the Aït-Sahalia ex-
pansions converge faster when the domain of the diffusion is un-
bounded, as it is for Zτ . The joint dynamics of Yτ and Zτ are obtained
via Ito’s lemma as
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The derivation of the TPD-approximations, and subsequent in-
tegration over z are carried out under the representation (19).
For the HLM-TPDs, the differential equations governing the ap-
proximate moments of xt |xt−1 have a closed-form expression
and are provided in the supplementary material available at
http://folk.uib.no/tkl083/diffusion/.

To specify the initial density p(y1, z1) in (8), we start by defining

p(z1) = k(z1) = N
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which represents a Gaussian Laplace approximation to p(Z1).4
Next, we condition the likelihood on y1, and hence we do not need
to specify p(y1|z1).

3.2. Simulation study

The proposed methodology for the GARCH diffusion was
implemented in Fortran 90, with the routines for evaluating µt ,
Σt and Qt being distributed on the four cores of a Dell PowerEdge
R200 with 1 Quad core Intel Xeon X3330 2.66 GHz CPU and 8 GB of
memory, running Linux. A total of 12 EIS iterationswere employed,
with initial auxiliary parameters given by

At,1 =
1
2
log(max((yt+1 − yt)2, 0.00001)/∆),

t = 1, . . . , T − 1,

At,2 = −
1
4
, t = 1, . . . , T − 1,

AT ,1 = aT ,2 = 0,

so thatψt(zt;At) is close to being proportional to p̄(EM)(yt+1|yt , zt)
for t = 1, . . . , T−1.When applyingASK -TPDs, the 6 first iterations
were based on the EM approximation to ensure greater stability
and faster convergence of the algorithm.M = 16 draws were used
in the importance sampler. The approximate log-likelihood was
maximized using a line-searching BFGS quasi-Newton optimizer
(Nocedal and Wright, 1999) and forward mode automatic differ-
entiation (Griewank, 2000) was used to calculate the gradients.

4 That is, the Gaussian density with the same mode and the same second
derivative as p(Zτ ) at the mode.
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The setup of the simulation study is as follows. A yearly
timescale with daily sampling interval (∆ = 1/252) was used. In
total, 1000 synthetic datasets, each with the sample size of T =

2023, were simulated using the EM schemewith time step∆/256.
The sample size corresponds to approximately 8 years of data and
matches that of the real data set considered later in the empirical
application. The parameters used for generating synthetic data
match those obtained from applying the proposedmethodology to
the real data.

Two experiments were designed in this Monte Carlo study. In
the first experiment, we simulated Yτ and Zτ from Model (19) and
assumed to be observed log-volatility, Zτ . We then estimated θ
using the EM-TPD, HLM-TPD, AS1-TPD, AS2-TPD and AS3-TPD ML
methods. Although the assumption of observed Zτ is not realistic in
practice, the experiment allows us to check the discretization bias.
In the second experiment, we estimated θ from Yτ only, as we no
longer assume Zτ to be observed. The ML techniques used include
EM-EIS, HLM-EIS, AS1-EIS, AS2-EIS and AS3-EIS.

As a benchmark in the case of unobserved log-volatility, we also
considered the filteringmethodology provided in Section 7 of Hurn
et al. (2013) for handling latent states, which we denote as HLM-
FILTER. The HLM-FILTER is obtained by alternating between the
following operations in each time step t:

1. Calculate a Gaussian approximation to p(zt , yt |y1, . . . , yt−1)

based on the first two moments of p(zt−1|y1, . . . , yt−1). This
step is carried out by setting the mean and variance at time
t − 1 equal to the mean and variance of p(zt−1|y1, . . . , yt−1) in
the differential equations governing the evolution of moments
from time t − 1 to t .

2. Calculate an approximation to p(yt |y1, . . . , yt−1) from the
Gaussian approximation to p(zt , yt |y1, . . . , yt−1) and the ob-
served yt .

3. Calculate approximations to the mean and variance of p(zt |y1,
. . . , yt) from the Gaussian approximation to p(zt , yt |y1, . . . ,
yt−1) and the observed yt .

Then the filter-based conditional likelihood function is obtained
since p(y2, . . . , yT |y1) =

T
t=2 p(yt |y1, . . . , yt−1), and the ap-

proximations to each factor in the latter product are obtained in
step 2.

Biases and standard deviations associated with the different
estimators are presented in Table 1. In the case where log-
volatility is observed, the HLM- and ASK -based estimators perform
similarly. This result is in line with what was found by Hurn et al.
(2013). The biases are at least an order of magnitude smaller than
statistical standard errors. On the other hand, the estimator EM-
TPD introduces a much bigger bias in the volatility-of-volatility
parameter σ than the other methods.

In the case where volatility is latent, the differences among
alternative methods are much bigger. There are considerable
biases in β and σ for the EM-EIS and HLM-EIS. For the ASK -EIS, the
bias is much smaller. This observation suggests that in the latent
volatility case, important information concerning Vt is contained
in the higher order moments of the true TPD. Therefore, there is a
need for using non-Gaussian approximate TPDs, such as the ASK .
Moreover, we observe that the results from AS2 and AS3 are very
similar, suggesting that AS2 provides sufficient accuracy in this
experiment.

Comparing AS2-EIS with the benchmark HLM-FILTER method,
we see that our proposed method produces smaller biases in
all cases, and for α, σ and ρ, substantially smaller standard
errors. However, it should be noted that the increase in statistical
efficiency for AS2-EIS is associated with a considerably higher
computational cost relative to HLM-FILTER.

4. Empirical application

In the empirical application, we fit the GARCH diffusion (19) to
the logarithmof the Standard&Poor 500 index, sampled daily from
January 3, 2003, to January 13, 2011 (hence ∆ = 1/252). In total
we have T = 2023 observations. Parameter estimates obtained
using the alternative estimation procedures are presented in
Table 2. The estimates based on EIS-integration are calculated as
the averaged estimates across 100 sets of estimates with different
random seeds in the importance sampler. In addition, we also
calculate Monte Carlo standard errors (MC Std.err.) induced by
the EIS-integration methods as the standard deviation across the
100 sets of estimates. As is expected, the Monte Carlo standard
errors are smaller than the statistical standard errors (Std.dev).
As a further check of reliability of the proposed EIS-integration
procedure, we carry out a battery of tests in line with Koopman
et al. (2009) to check for infinite variance in the importance
weightsw(j). No rejection of the finite variance was found and the
detailed results are reported to supplementary material that can
be found at http://folk.uib.no/tkl083/diffusion/.

The estimates of ρ are much larger in magnitude than what
has been found in the literature using data from earlier periods.
The estimated ρ is around −0.85 in the AS1-AS3 while it is only
−0.32 when Yu (2005) fitted the log-normal stochastic volatility
model to S&P 500 data between 1980 and 1987. However, the
estimated ρ is similar to what has been found in Yu (2012), Aït-
Sahalia et al. (2013) and Hurn et al. (2013). For the benchmark
HLM-FILTER we obtain estimates that are rather different. Most
notably, the estimate of ρ is very close to −1. This, along with
evidence from the simulation study, leads us to conclude that a
very accurate numerical integration method, such as the EIS, is
needed for obtaining MLE from price data only.

Focusing on the EIS-based methods, we see substantial differ-
ences in parameters α, β , σ and ρ, suggesting that discretiza-
tion bias is important, and, hence, a refined TPD approximation,
such as AS2 and AS3, is needed. In particular, the estimates of the
leverage effect parameter ρ and the volatility of volatility param-
eter σ change by approximately two standard deviations between
the EM-TPDs and HLM-TPDs estimates and the AS3-TPDs estimate.
Moreover, in linewith the simulation studywe see that the param-
eter estimates for the three ASK -based methods are close to each
others and that the differences in the parameter estimates between
AS2 andAS3 are less than those between AS1 and AS2. This leads us
to conclude that AS2-TPD along with EIS is our preferred method
for carrying out ML estimation in this empirical study.

5. Concluding remarks

This paper presents a new and computationally efficient
method for ML estimation of partially observed diffusions. To
compute the likelihood function, we propose to use the EISmethod
of Richard and Zhang (2007) to integrate out the latent states from
the joint density of the observed and the latent state variables,
which is in turn approximated using the closed-form approach of
Aït-Sahalia (2008). The use of the closed-form TPD approximations
is important as the discretization bias is controlled. The proposed
method does not require any infill observations and hence is
computationally appealing. In the context of GARCH diffusions the
proposed method performs better than the methods that do not
control the discretization bias, including the EM method and the
QML method.

An additional advantage of the proposed methodology is that it
is very easy to adapt to the case where the diffusion is completely
latent, andwe only have noisy observations of (some of) the states.



Author's personal copy

T.S. Kleppe et al. / Journal of Econometrics 180 (2014) 73–80 79

Table 1
Results from the Monte Carlo experiment for the GARCH diffusion. All results are obtained based on 1000 synthetic data sets, each with T = 2023 and θ equal to those in the
‘‘True parameters’’ row. When volatility is observed, EM, HLM and ASK , K = 1, 2, 3 correspond to ML based on the EM-TPD, Hurn et al. (2013)-TPD and Aït-Sahalia (2008)-
TPD. When volatility is unobserved, EM-EIS, HLM-EIS and ASK -EIS correspond to ML based on the EM-EIS, Hurn et al. (2013)-EIS and Aït-Sahalia (2008)-EIS. HLM-FILTER is
ML based on the HLM-TPDs with volatility being integrated out using the filtering method of Hurn et al. (2013). Mean computing time for the case of the latent volatility
ranges from 43 (EM) to 103 (AS3) seconds.

Method α β σ ρ a

True parameters 0.0948 −1.1754 3.2607 −0.8467 −0.0183

Observed log-volatility

EM Bias −0.0114 0.1321 −0.0534 3.5e−3 0.0213
Std.dev. 0.0326 0.9862 0.0362 5.2e−3 0.0821

HLM Bias 3.4e−3 0.0280 5.4e−3 −4.9e−4 −8.6e−3
Std.dev. 0.0136 1.0341 0.0372 5.1e−3 0.0457

AS1 Bias −3.6e−3 0.1224 −2.2e−3 −4.4e−5 4.6e−3
Std.dev. 0.0229 0.9492 0.0362 5.1e−3 0.0597

AS2 Bias −1.7e−3 0.0417 −2.3e−3 −1.4e−4 3.8e−3
Std.dev. 0.0235 0.9897 0.0361 5.1e−3 0.0610

AS3 Bias −1.4e−3 0.0351 −2.7e−3 −6.9e−5 3.3e−3
Std.dev. 0.0230 0.9818 0.0359 5.1e−3 0.0606

Unobserved log-volatility

EM-EIS Bias 1.8e−3 −0.5580 −0.2073 0.0285 0.0144
Std.dev. 0.0192 1.1675 0.2440 0.0464 0.0437

HLM-EIS Bias 1.1e−3 −0.4705 −0.1499 0.0257 0.0153
Std.dev. 0.0191 1.1403 0.2538 0.0465 0.0436

HLM-FILTER Bias 0.0324 0.4694 0.0493 −0.0376 −0.0844
Std.dev. 0.0562 0.9608 0.8564 0.1460 0.1556

AS1-EIS Bias 4.5e−4 0.0551 −0.0460 −4.3e−3 −6.4e−3
Std.dev. 0.0186 0.9481 0.2580 0.0360 0.0449

AS2-EIS Bias 4.7e−3 −0.1085 −0.0129 −6.7e−3 −6.6e−3
Std.dev. 0.0192 1.0473 0.2627 0.0363 0.0440

AS3-EIS Bias 4.4e−3 −0.1107 −0.0149 −5.9e−3 −6.0e−3
Std.dev. 0.0192 1.0458 0.2623 0.0358 0.0445

Table 2
Parameter estimates and log-likelihood values for the GARCH diffusion fitted to S&P500 data using different estimation procedures. The parameter estimates based on EIS-
integration are calculated as the mean over 100 random seeds in the importance sampler. ‘‘MC Std.err’’ denotes the Monte Carlo standard errors across the 100 sets of
estimates. Statistical standard errors (Std.dev.) are taken from Table 1.

Method α β σ ρ a Log-likelihood

EM-EIS Estimate 0.0788 −1.6783 2.7119 −0.7661 0.0137 6529.3
Std.dev. 0.0192 1.1675 0.2440 0.0464 0.0437
MC Std.err. 4.1e−4 0.0139 0.0063 9.5e−4 2.5e−4 0.1170

HLM-EIS Estimate 0.0772 −1.5715 2.7409 −0.7676 0.0147 6529.3
Std.dev. 0.0191 1.1403 0.2538 0.0465 0.0436
MC Std.err. 4.0e−4 0.0134 0.0064 9.3e−4 2.5e−4 0.1167

HLM-FILTER Estimate 0.0745 −0.1875 2.0267 −0.9878 −0.1268 6449.3
Std.dev. 0.0562 0.9608 0.8564 0.1460 0.1556

AS1-EIS Estimate 0.0908 −0.9931 3.2343 −0.8515 −0.0195 6544.2
Std.dev. 0.0186 0.9481 0.2580 0.0360 0.0450
MC Std.err. 3.9e−4 0.0095 0.0074 5.2e−4 2.3e−4 0.1258

AS2-EIS Estimate 0.0948 −1.1754 3.2607 −0.8467 −0.0183 6544.4
Std.dev. 0.0192 1.0473 0.2627 0.0363 0.0440
MC Std.err. 5.0e−4 0.0111 0.0087 5.2e−4 2.2e−4 0.1259

AS3-EIS Estimate 0.0946 −1.1833 3.2542 −0.8456 −0.0182 6544.4
Std.dev. 0.0192 1.0458 0.2623 0.0358 0.0445
MC Std.err. 5.0e−4 0.0111 0.0086 5.3e−4 2.3e−4 0.1257

Using this adaptation, we have successfully estimated the one-
factor short-term interest rate model of Chan et al. (1992) to data
contaminated with micro structure noise. For that model, it is
found that disregarding the contamination of data can lead to
significantly different estimates. The method is also applicable to
the structural credit risk models of Duan and Fulop (2009) and
Huang and Yu (2010). Results for these two classes of models may
be found in an earlier version of the present paper.

As an alternative to ML estimation, Bayesian Markov Chain
Monte Carlo (MCMC) methods may also be used to estimate
partially observed diffusionmodels; see Eraker (2001) and Stramer

et al. (2010). To control the discretization bias, Eraker (2001)
proposed to use an infill technique, which is computationally
expensive. Stramer et al. (2010) is especially relevant to the present
paper because it uses the closed-form method in connection to
MCMC.

There should be scope for applying the current methodology to
a broader class of models, including models with multiple latent
states. Once the EIS framework is implemented, it is relatively easy
to adapt to new models using symbolic manipulation software
to generate code for the model specific µt , Σt and Qt . As in
the univariate case, the sampling interval ∆ and the degree of
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deviation from the normality for the latent process are important
factors to determine the effectiveness of the proposed method
relative to a more crude approximation.

A possible direction for further research is to allow for jumps
in one or more of the states. To deal with diffusion models with
jumps, Yu (2007) provides polynomial TPD-expansions for jump-
diffusions. Relative to the TPD of pure diffusion models, the TPD
of jump-diffusion is expected to deviate more from the Gaussian
distribution and, hence, it is more challenging for the EIS to
perform well. To cope with jumps in the EIS framework, the
mixture EIS framework of Kleppe and Liesenfeld (forthcoming) can
be employed andwe leave the implementation of this newmethod
for future research.
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