
Econometric Reviews, 25(2–3):361–384, 2006
Copyright © Taylor & Francis Group, LLC
ISSN: 0747-4938 print/1532-4168 online
DOI: 10.1080/07474930600713465

MULTIVARIATE STOCHASTIC VOLATILITY MODELS:
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Jun Yu � School of Economics and Social Sciences, Singapore Management
University, Singapore

Renate Meyer � Department of Statistics, University of Auckland,
Auckland, New Zealand

� In this paper we show that fully likelihood-based estimation and comparison of multivariate
stochastic volatility (SV) models can be easily performed via a freely available Bayesian software
called WinBUGS. Moreover, we introduce to the literature several new specifications that are
natural extensions to certain existing models, one of which allows for time-varying correlation
coefficients. Ideas are illustrated by fitting, to a bivariate time series data of weekly exchange
rates, nine multivariate SV models, including the specifications with Granger causality in
volatility, time-varying correlations, heavy-tailed error distributions, additive factor structure,
and multiplicative factor structure. Empirical results suggest that the best specifications are those
that allow for time-varying correlation coefficients.
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1. INTRODUCTION

Univariate stochastic volatility (SV) models offer powerful alternatives
to ARCH-type models in accounting for both the conditional and the
unconditional properties of volatility. Superior performance of univariate
SV models over ARCH-type models is documented in Danielsson (1994)
and Kim et al. (1998) in terms of in-sample fitting, and in Yu (2002) in
terms of out-of-sample forecasting. As a result, the univariate SV model
has been the subject of considerable attention in the literature; see, for
example, Shephard (2005) for a collection of relevant studies on this topic.
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There are both theoretical and empirical reasons that there is a
great need to study multivariate volatility models. On the one hand,
much of financial decision making, such as portfolio optimization, asset
allocation, risk management, and asset pricing, clearly needs to take
correlations into account. On the other hand, it is well known that financial
market volatilities move together over time across assets. As a result, the
multivariate ARCH models (MARCH) have attracted a lot of attention in
modern finance theory and enjoyed voluminous empirical applications;
see Bauwens et al. (2006) and McAleer (2005) for the literature review.
Important contributions are Bollerslev et al. (1998), Diebold and Nerlove
(1989), Bollerslev (1990), Engle et al. (1990), Engle and Kroner (1995),
Braun et al. (1995), Engle (2002), Tse and Tusi (2002), among many
others.

Compared to the MARCH literature, the literature on multivariate SV
is much more limited (see McAleer, 2005, a partial review of the literature,
and Asai et al., 2006, for a more detailed review), reflected by much fewer
published papers on the topic to date (Aguilar and West, 2000; Chib et al.,
2005; Danielsson, 1998; Harvey et al., 1994; Liesenfeld and Richard, 2003;
Pitt and Shephard, 1999). Yet the multivariate SV models have certain
statistical attractions relative to the MARCH models (Harvey et al., 1994).
We believe there are several reasons that the multivariate SV models have
had fewer empirical applications. Firstly, the multivariate SV models are
more difficult to estimate. Although estimation is already an issue for
the MARCH models, it is believed that estimation is more of an issue
for the multivariate SV models. This is because, apart from the inherent
problems of multivariate models, such as high dimensionality of the
parameter space and the required positive semidefiniteness of covariance
matrices, the likelihood function has no closed form for the multivariate
SV model. Secondly, as a result of difficulties with parameter estimation,
the computation of model comparison criteria becomes extensive and
demanding. Thirdly, compared to abundant alternative specifications in
MARCH, only a handful of multivariate SV model specifications have
appeared in the literature. As a result, the existing multivariate SV models
may not be able to describe some important stylized features of the data.

A variety of estimation methods have been proposed to estimate the
SV models. Less efficient methods include GMM (Andersen and Sorensen,
1996; Melino and Turnbull, 1990), the quasi-maximum likelihood method
(Harvey et al., 1994), and the method of the empirical characteristic
function (Knight et al., 2002). Fully likelihood-based methods include
the simulated maximum likelihood method (SML) (Danielsson, 1994;
Durham, 2005; Richard and Zhang, 2004; Sandmann and Koopman, 1998),
the numerical maximum likelihood method (Fridman and Harris, 1998),
and the Bayesian Markov chain Monte Carlo (MCMC) methods (Jacquier
et al., 1994; Kim et al., 1998). Andersen et al. (1999) documented a finite
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sample comparison of various methods in Monte Carlo studies and found
that MCMC is one of the most efficient estimation tools. Not surprisingly,
MCMC is generally regarded in the literature as a benchmark for efficiency.
Furthermore, as a by-product of parameter estimation, MCMC methods
provide smoothed estimates of latent variables (Jacquier et al., 1994).
This is because MCMC augments the parameter space by including latent
variables. Moreover, unlike most frequentist methods reviewed above whose
inference is based on asymptotic arguments, MCMC inference is based on
the exact posterior distribution of parameters and latent variables. Another
advantage of MCMC is that numerical optimization is not needed in
general. This advantage is of practical importance, especially when a model
has many estimated parameters. As a result, MCMC has been extensively
used to estimate univariate SV models in the literature.

Meyer and Yu (2000) illustrated the ease of implementing Bayesian
estimation of univariate SV models based on purpose-built MCMC software
called BUGS (Bayesian analysis using Gibbs sampler) developed by
Spiegelhalter et al. (1996).1 Since then, BUGS has been employed to
estimate univariate SV models in a number of studies (for example, Berg
et al., 2004; Lancaster, 2004; Meyer et al., 2003; Selçuk, 2004; Yu, 2005).
Furthermore, Berg et al. (2004) showed that model selection of alternative
univariate SV models is easily performed using the deviance information
criterion (DIC), which is computed by BUGS. Arguably, univariate SV
models can now be handled routinely in a straightforward fashion. Unlike
univariate SV models, however, “multivariate stochastic volatility models still
pose significant computational challenges to applied researchers” (Chan
et al., 2005).

One of the main purposes of the present paper is to show that fully
likelihood-based estimation and comparison of multivariate SV models
can be easily performed via the WINDOWS version of BUGS (WinBUGS)
(Spiegelhalter et al., 2003).2 The contribution of our paper is twofold.
First, we extend the literature by offering several interesting extensions to
the existing specifications. In particular, we specify a model that allows for
Granger causality in volatility and a model with time-varying correlations.
Second, we extend Meyer and Yu (2000) and Berg et al. (2004) to the
multivariate setting and show that both estimation and model comparison
for multivariate SV models can also be handled in the same way as for
the univariate case. We then illustrate the implementation by estimating
and comparing nine alternative multivariate SV models in an empirical
study. To the best of our knowledge, a comparison of such a rich class of

1Note that BUGS is available free of charge from http://www.mrc-bsu.cam.ac.uk/
bugs/welcome.shtml for a variety of operating systems such as UNIX, LINUX, and WINDOWS.

2We have become aware of a recent contribution to the literature by Jungbacker and Koopman
(2006), where a simulated maximum likelihood method is used to estimate three alternative
multivariate SV models.
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multivariate SV models has not been done before. The comparison results
in several interesting empirical findings.

The remainder of the paper is organized as follows. In Section 2, we
illustrate the differences among the existing multivariate SV models in a
bivariate setting and propose several new multivariate SV specifications.
Section 3 reviews a Bayesian approach for parameter estimation using
WinBUGS. Section 4 briefly describes a Bayesian approach for model
comparison via DIC. In Section 5, we illustrate the estimation and
model comparison using an example of Australian/US dollar and
New Zealand/US dollar exchange rates. Section 6 concludes.

2. MULTIVARIATE SV MODELS

2.1. Stylized Facts of Financial Asset Returns

Considering that multivariate SV models are most useful for describing
the dynamics of financial asset returns, we first summarize some well-
documented stylized facts of financial asset returns:

1. Asset return distributions are leptokurtic.
2. Asset return volatilities cluster.
3. Returns are cross-dependent.
4. Volatilities are cross-dependent.
5. Sometimes volatility of one asset Granger causes volatility of another

asset (that is, volatility spills over from one market to another market).
6. There often exists a lower dimensional factor structure that can explain

most of the correlation.
7. Correlations are time varying.

In addition to these seven stylized facts, the issues such as the
dimensionality of the parameter space and positive semi-definiteness of
the covariance matrix are of practical importance. When we review the
existing models and introduce our new models we will comment on their
appropriateness for dealing with the stylized facts and the two issues posed
above.

2.2. Alternative Specifications in a Bivariate Setting

To illustrate the difference and linkage among alternative multivariate
SV models, we focus on the bivariate case in this paper. In particular,
we consider nine different bivariate SV models (with acronyms in bold
face), two of which are new to the literature. Moreover, most of these
specifications are amenable to a multidimensional generalization, with
Model 5 being the only exception.
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Let the observed (mean-centered) log-returns at time t be denoted
by yt = (y1t , y2t)′ for t = 1, � � � ,T . Let �t = (�1t , �2t)′, �t = (�1t , �2t)′,
� = (�1, �2)

′, ht = (h1,t , h2,t)′, �t = diag(exp(ht/2)), and

� =
(
�11 �12

�21 �22

)
, �� =

(
1 	�

	� 1

)
, �� =

(

2
�1

	�
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�2

	�
�1
�2 
2
�2

)
�

Model 1 (Basic MSV or MSV).

yt = �t�t , �t
iid∼ N (0, I ),

ht+1 = � + diag(�11,�22)(ht − �) + �t , �t
iid∼ N (0, diag(
2

�1
, 
2

�2
)),

with h0 = �. This model is equivalent to stacking two basic univariate SV
models together. Clearly, this specification does not allow for correlation
across the returns or across the volatilities, nor Granger causality. However,
it does allow for leptokurtic return distributions and volatility clustering.

Model 2 (Constant correlation MSV or CC-MSV).

yt = �t�t , �t
iid∼ N (0,��)

ht+1 = � + diag(�11,�22)(ht − �) + �t , �t
iid∼ N (0, diag(
2

�1
, 
2

�2
)),

with h0 = �. In this model, the return shocks are allowed to be correlated
and hence the model is similar to the constant conditional correlation
(CCC) ARCH model of Bollerslev (1990). As a result, the returns are cross-
dependent.

Model 3 (MSV with Granger causality or GC-MSV).

yt = �t�t , �t
iid∼ N (0,��)

ht+1 = � + �(ht − �) + �t , �t
iid∼ N (0, diag(
2

�1
, 
2

�2
)),

with h0 = � and �12 = 0. Since �21 can be different from zero, the volatility
of the second asset is allowed to be Granger caused by the volatility of
the first asset. Consequently, both the returns and volatilities are cross-
dependent. However, the cross-dependence of volatilities are realized via
Granger causality and volatility clustering jointly. Furthermore, when both
�12 and �21 are nonzero, a bilateral Granger causality in volatility between
the two assets is allowed. To the best of our knowledge, this specification is
new to the SV literature.
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Model 4 (Generalized CC-MSV or GCC-MSV).

yt = �t�t , �t
iid∼ N (0,��)

ht+1 = � + diag(�11,�22)(ht − �) + �t , �t
iid∼ N (0,��),

with h0 = �. This model was proposed and estimated via QML in Harvey
et al. (1994). The same specification was estimated by Danielsson (1998)
using SML. In this model, the return shocks are allowed to be correlated;
so are the volatility shocks. Consequently, both returns and volatilities are
cross-dependent. Obviously, both GC-MSV and GCC-MSV can generate
cross-dependence in volatilities. Which specification is more appropriate is
an interesting empirical question.

Model 5 (Dynamic correlation-MSV or DC-MSV).

yt = �t�t , �t |�t
iid∼ N (0,��,t)

��,t =
(
1 	t

	t 1

)
,

ht+1 = � + diag(�11,�22)(ht − �) + �t , �t
iid∼ N

(
0, diag

(

2
�1
, 
2

�2

))
,

qt+1 = �0 + �(qt − �0) + 
	vt , vt
iid∼ N (0, 1), 	t = exp(qt) − 1

exp(qt) + 1
,

with h0 = �, q0 = �0. This model is new to the literature. In this model, not
only volatilities but also correlation coefficients are time varying. Of course,
	t has to be bounded by −1 and 1 for �� to be a well-defined correlation
matrix. This constraint is achieved by using the Fisher transformation,
following the suggestion made in Tsay (2002) and Christodoulakis and
Satchell (2002) in the MARCH framework. However, it is not easy to
generalize the model into higher dimensional situations.

To allow for time-varying correlations in an N -dimensional setting with
N > 2, one can follow Engle (2002) by constructing a sequence of matrices
�Qt according to

Qt+1 = S + B ◦ (Qt − S) + A ◦ (vtv ′
t − S)

= (��′ − A − B) ◦ S + B ◦ Qt + A ◦ vtv ′
t , (1)

where vt ∼ N (0, I ), � is a vector of ones, and ◦ is the Hadamard product.3

According to Ding and Engle (2001) and Engle (2002), as long as A, B, and
��′ − A − B are positive semidefinite, Qt will be positive semidefinite. As a

3The Hadamard product is defined by a matrix whose elements are obtained by element-by-
element multiplication.
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result, we can obtain Q −1
t and its Choleski decomposition Q −1/2

t (defined
by Q −1/2

t (Q −1/2
t )′ = Q −1

t ). Finally, a sequence of covariance matrices for �t is
constructed according to

��,t = diag(Q −1/2
t )Qtdiag(Q −1/2

t )� (2)

By construction, all the elements in ��,t are bounded between −1 and
1, all the main diagonal elements in ��,t are ones, and ��,t is positive
semidefinite. As a result, �� is a well-defined correlation matrix. It seems
that the specification of time varying correlation is convoluted in this
model. Also, it is not easy to interpret Qt . An alternative way of specifying
dynamic correlation is in Asai and McAleer (2005).

Model 6 (Heavy-tailed MSV or t-MSV).

yt = �t�t , �t
iid∼ t(0,��, �),

ht+1 = � + diag(�11,�22)(ht − �) + �t , �t
iid∼ N (0, diag(
2

�1, 

2
�2)),

with h0 = �. In this model, a heavy-tailed multivariate Student t distribution
for the return shock is used, and hence extra excess kurtosis is allowed.
The Student t error distribution was first used in Harvey et al. (1994)
in the multivariate SV context. One can make two generalizations to the
above multivariate t distribution. First, one can assume each variable is
a univariate t distribution with its own degrees of freedom. However, we
have found that this model performs empirically worse than the model
presented. Secondly, by exploiting the fact that a multivariate t distribution
can be represented as a mixture of multivariate normal distribution and
an inverse gamma distribution, one can generalize the multivariate t
distribution into a multivariate generalized hyperbolic distribution. For
example, following Aas and Haff (2006), one can assume a mean-variance
mixture. Such a multivariate distribution allows for not only heavy tails but
also conditional skewness. To save space, we will not consider these two
generalizations in the present paper.

To mitigate the computational problem inherent in estimating a large
number of parameters in some of the above-mentioned multivariate SV
models, on the one hand, and to capture the common feature in asset
returns and volatilities, on the other, lower dimensional factor multivariate
SV models have been proposed and recently attracted some attention in
the literature. Depending on how the factor enters the return equation,
factor multivariate SV models can be split into two groups, additive and
multiplicative factor multivariate SV models. Let D = (1, d)′, �t = (�1,t , �2,t)′,
and ft , ut , ht , �t , �, �, 
�, h0, and � be all scalars. The following three
specifications belong to the factor multivariate SV family, the first two of
which are of additive structure while the last is of multiplicative structure.
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Model 7 (Additive factor-MSV or AFactor-MSV).

yt = Dft + �t , �t
iid∼ N (0, diag(
2

�1, 

2
�2))

ft = exp(ht/2)ut , ut
iid∼ N (0, 1),

ht+1 = � + �(ht − �) + 
��t , �t
iid∼ N (0, 1),

with h0 = 0. This model was proposed by Jacquier et al. (1995, 1999).
The first component in the return equation has a smaller number of
factors that capture the information relevant to the pricing of all assets,
while the second one is idiosyncratic noise that captures the asset-specific
information. Like the univariate SV model, the AFactor-MSV model allows
for excess kurtosis and volatility clustering. Clearly, it also allows for cross-
dependence in both returns and volatilities. Note that in this model and
Model 8, which will be introduced below, ht represents the log-volatility of
the common factor, ft . The conditional correlation coefficient between y1t
and y2t is given by

d exp(ht)√
(exp(ht) + 
2

�1)(d2 exp(ht) + 
2
�2)

= d√
(1 + 
2

�1 exp(−ht))(d2 + 
2
�2 exp(−ht))

�

Unless 
2
�1 = 
2

�2 = 0, the correlation coefficients are time varying, but the
dynamics of the correlations depend on the dynamics of ht . Moreover,
correlation is an increasing function of ht , implying that the higher the
volatility of the common factor, the higher the correlation in returns.

Model 8 (Heavy-tailed factor-MSV or AFactor-t-MSV).

yt = Dft + �t , �t
iid∼ t(0, diag(
2

�1, 

2
�2), �)

ft = exp(ht/2)ut , ut
iid∼ t(0, 1,�),

ht+1 = � + �(ht − �) + 
��t , �t
iid∼ N (0, 1),

with h0 = �, � = (�1, �2)′. In this model, a heavy-tailed Student t distribution
for the return shock is used. The conditional correlation coefficient
between y1t and y2t is given by

d√(
1 + �

�1

2
�1 exp(−ht)

)(
d2 + �

�2

2
�2 exp(−ht)

) �

Relative to Model 7, extra excess kurtosis is allowed here.
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Model 9 (Multiplicative factor-MSV or MFactor-MSV).

yt = exp(ht/2)�t , �t
iid∼ N (0,��),

ht+1 = � + �(ht − �) + 
��t , �t
iid∼ N (0, 1),

�� =
(

1 	�
�2

	�
�2 
2
�2

)
,

with h0 = �. This model, also known as the stochastic discount factor
model, was considered in Quintana and West (1987). Compared with
Model 1 (MSV), this model has even fewer parameters. Obviously, it retains
all the properties inherent in the univariate SV model, such as excess
kurtosis and volatility clustering. Cross-dependence in returns is induced
by the dependence in �t , but the correlations are time invariant. Moreover,
the correlation in log-volatilities is always one, but time-varying correlation
in returns is not allowed.

Most of the models reviewed above are nonnested with each other. For
example, Model 9 (MFactor-MSV) is not nested with Model 7 (AFactor-
MSV) or Model 8 (AFactor-t-MSV). Neither Model 7 nor Model 8 is nested
or nested within any other models, including Model 5 (DC-MSV). However,
Model 9 (MFactor-MSV) can be viewed as a special case of Model 2 (CC-
MSV), in which �1 = �2, �11 = �22, 
�1 = 
�2, �1t = �2t , and hence h1,t = h2,t .

3. BAYESIAN ESTIMATION USING WinBUGS

The models in Section 2.2 are completed by the specification of a prior
distribution for all unknown parameters a = (a1, � � � , ap). For instance, in
Model 1 (MSV), p = 6 and the vector a of unknown parameters is a =
(�1, �2,�11,�22, 
2

�1, 

2
�2). Bayesian inference is based on the joint posterior

distribution of all unobserved quantities � in the model. The vector �
comprises the unknown parameters and the vector of latent log-volatilities,
i.e., � = (a,h1, � � � ,hT ).

In the sequel, let p(·) denote the generic probability density function
of a random variable. Using independent priors for the parameters and
successive conditioning on the sequence of latent states, the joint prior
density of � in Model 1 is given by

p(a)p(h0)

T∏
t=1

p(ht |a)

= p(�1)p(�2)p(�11)p(�22)p(
2
�1)p(


2
�2)p(h0)

T∏
t=1

p(ht |a)�
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After observing the data, this joint prior density is updated to the
joint posterior density of all unknown quantities, p(� | y) (where y =
(y1, � � � , yT )) via Bayes’ theorem by multiplying prior p(�) and likelihood
p(y | �):

p(� | y) ∝ p(�)p(y | �) ∝ p(a)p(h0)

T∏
t=1

p(ht |a)
T∏
t=1

p(yt |ht)� (3)

To calculate the marginal posterior distribution of the parameters
of interest, p(a | y) requires (p + 2T )-dimensional integration to find
the normalization constant p(�)p(y | �)d� followed by 2T -dimensional
integration over all latent volatilities, as

p(a | y) =
∫
h1

· · ·
∫
hT

p(a,h1, � � � ,hT )dhT · · · dh1� (4)

This is neither analytically nor numerically tractable in general. Simulation-
based integration techniques have proven to be the most effective
methods to deal with this integration problem. Say, a sample of size M ,
(a(1),h(1), � � � ,a(M ),h(M )) can be obtained from p(� | y). By simply ignoring
the sampled latent volatilities, the subvector (a(1),a(2), � � � ,a(M )) constitutes
a sample from the marginal posterior distribution (4) of a, and kernel
density estimates of each component can be used to estimate the marginal
posterior density of each parameter. The usual summary statistics can be
calculated to estimate population quantities of interest, e.g., the sample
mean 1

M

∑M
m=1 a

(m) is a consistent estimate of the posterior mean E [a | y].
Unfortunately, direct independent sampling from a high-dimensional

distribution such as in (3) is usually not possible (see Liesenfeld and
Richard, 2003 and Durham, 2005 for counterexamples, however). MCMC
techniques overcome this problem by constructing a Markov chain with
stationary distribution equal to the target density p(� | y) and simulate
from this Markov chain. Provided the Markov chain is run long enough to
have reached equilibrium, the samples in each iteration can be regarded
as (dependent) samples from p(� | y). By the ergodic theorem, sample
averages are still consistent estimates of the population quantities.

Care needs to be taken in determining the number of iterations to
achieve convergence to the stationary distribution. Various convergence
diagnostics have been developed and implemented in the CODA package,
a collections of SPLUS or R routines. CODA may also be downloaded from
the BUGS website.

Here, we advocate the software package WinBUGS for posterior
computation in multivariate SV models. WinBUGS provides an easy and
efficient implementation of the Gibbs sampler, a specific MCMC technique
that constructs a Markov chain by sampling from all univariate full
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conditional distributions in a cyclic way. WinBUGS has been successfully
applied for a variety of statistical models such as random effects,
generalized linear, proportional hazards, latent variable, and frailty models.
In particular, state space models (Harvey, 1990), either linear or nonlinear,
either Gaussian or non-Guassian, either observed state or latent state,
either univariate or multivariate, are amenable to a Bayesian analysis via
WinBUGS.

Meyer and Yu (2000) described the use of BUGS for Bayesian
posterior computation in univariate SV models and emphasized the ease
with which BUGS can be used for the exploratory phase of model
building, as any modifications of a model, including changes of priors and
sampling error distributions, are readily realized with only minor changes
of the code. BUGS automates the calculation of the full conditional
posterior distributions that are needed for Gibbs sampling using a model
representation by directed acyclic graphs. It contains an expert system
for choosing an effective sampling method for each full conditional.
The reader is referred to Meyer and Yu (2000) for a comprehensive
introduction on using BUGS for fitting SV models. WinBUGS is a new
interactive version of the BUGS program that allows models to be
described using a slightly amended version of the BUGS language. The
BUGS website contains a short Flash illustration on the basic steps of
running WinBUGS. WinBUGs also allows models to be fitted using Doodles
(graphical representations of models by directed acyclic graphs), which
can, if desired, be automatically translated into a text-based description.
In Meyer and Yu (2000), the Doodle corresponding to a certain BUGS
implementation of a univariate SV model is explained in detail.

BUGS can be slow owing to the single-move Gibbs sampler. However,
the new interactive WinBUGS version contains much-improved algorithms
to sample from the full conditional posterior distributions. WinBUGS
contains a small expert system for choosing the best sampling method. For
discrete full conditional distributions, WinBUGS uses the inversion method
to simulate values. For continuous distributions, it tests first for conjugacy.
If it detects conjugacy, then it will use optimized standard simulation
algorithms. For logconcave full conditionals, it uses the derivative-free
adaptive rejection technique of Gilks (1992). For nonlogconcave full
conditionals with restricted range, WinBUGS uses the slice sampling
technique of Neal (1997) with an adaptive phase of 500 iterations and
a current point Metropolis algorithm for unrestricted nonlogconcave
full conditionals. The current point Metropolis algorithm is based on
a symmetric normal proposal distribution whose standard deviation is
tuned over the first 4,000 iterations in order to get an acceptance rate
between 20% and 40%. Furthermore, it contains the option of using
ordered overrelaxation (Neal, 1998) which generates multiple samples
at each iteration and then selects one that is negatively correlated with
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the current value. The time per iteration will be increased, but the within-
chain correlations should be reduced, and hence fewer iterations may be
necessary. It also contains a blocking option for multivariate updating,
but only for generalized linear model components at this stage. The
use of these improved sampling techniques coupled with an increase in
computational speed due to advances in computer hardware has made it
possible to fit multivariate SV models in WinBUGS.

4. DIC

The Akaike information criterion (AIC; Akaike, 1973) is a popular
method for comparing alternative and possibly nonnested models. It trades
off a measure of model adequacy, measured by the log-likelihood, against
a measure of complexity, measured by the number of free parameters.
Obviously, the calculation of AIC requires the specification of the number
of free parameters. For a nonhierarchical Bayesian model with parameter
�, obtaining the number of free parameters is straightforward. However,
for a complex hierarchical model, the specification of the dimensionality
of the parameter space is rather arbitrary. This is typically the case for SV
models. The reason is that when MCMC is used to estimate SV models, as
mentioned above, the parameter space is augmented. For example, in the
basic MSV model, we include the 2T latent volatilities into the parameter
space with T being the sample size. As these volatilities are dependent, they
cannot be counted as 2T additional free parameters. Consequently, AIC is
not applicable for comparing SV models (Berg et al., 2004).

The deviance information criterion (DIC) of Spiegelhalter et al. (2002)
is intended as a generalization of AIC to complex hierarchical models. Like
AIC, DIC consists of two components,

DIC = D + pD , (5)

where the first term measures goodness of fit and the second term is a
penalty term for increasing model complexity.

Spiegelhalter et al. (2002) give an asymptotic justification of DIC in
the case where the number of observations T grows with respect to the
number of parameters p and where the prior is nonhierarchical and
completely specified (i.e., without hyperparameters). Like AIC, the model
with the smallest DIC is estimated to be the one that would best predict
a replicate dataset of the same structure as that observed. This focus
of DIC, however, is different from the posterior-odd-based approaches,
where how well the prior has predicted the observed data is addressed.
Berg et al. (2004) examined the performance of DIC relative to two
posterior odd approaches—one is based on the harmonic mean estimate
of marginal likelihood (Newton and Raftery, 1994) and the other is Chib’s
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estimate of marginal likelihood (Chib, 1995)—in the context of univariate
SV models. They found reasonably consistent performance of these three
model comparison methods.

From the definition of DIC it can be seen that DIC is almost
trivial to compute and particularly suited to compare Bayesian models
when posterior distributions have been obtained using MCMC simulation.
Indeed, DIC is automatically computed by WinBUGS1.4. This is in
contrast to Chib’s marginal likelihood method, where computational cost
is more demanding as the likelihood needs to be evaluated using other
independent procedures such as the particle filter (Kim et al., 1998).
Although Chib et al. (2005) successfully used Chib’s method to compare
several specifications in a family of factor multivariate SV with the additive
structure, we believe the computational tractability of DIC would make it
feasible to compare a much larger class of specifications.

It should be pointed out that because WinBUGS calculates DIC at the
posterior mean, it requires the posterior mean to be a good estimate of
the stochastic parameters. Therefore it is important to check skewness and
modality of the posterior distribution when using DIC.

5. EMPIRICAL ILLUSTRATION

5.1. Data

In this section we fit the models introduced in Section 2.3 to actual
financial time series data. The data used are 519 weekly mean corrected
log-returns of Australian dollar and New Zealand dollar, both against
the US dollar, from January 1994 to December 2003. These two series
are chosen because the two economies are closely linked to each other
and hence it is expected ex ante that the dependence between the two
exchange rates be strong. The two series are plotted in Figure 1, where
cross-dependence both in returns and volatilities indeed appears strong.4

5.2. Prior Distributions

For the first six models, there are three sets of parameters:
parameters in the mean equation (	�, �), in the variance equation
(�11,�22,�21, �1, �2, 	�, 
�1 , 
�2), and in the correlation equation (�0,�1, 
	).
We assume that the parameters are mutually independent. The prior
distributions are specified

• 	� ∼ U (−1, 1)
• �∗ ∼ �2(4), where �∗ = �/2

4The data were obtained from the Sauder School of Business at the University of British
Columbia via the URL http://fx.sauder.ubc.ca/data.html.
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FIGURE 1 Time series plots for Australian dollar and New Zealand dollar/US dollar exchange rate
returns.

• �1 ∼ N (0, 25)
• �2 ∼ N (0, 25)
• �∗

11 ∼ beta(20, 1�5), where �∗
11 = (�11 + 1)/2

• �∗
22 ∼ beta(20, 1�5), where �∗

22 = (�22 + 1)/2
• �21 ∼ N (0, 10)
• 	� ∼ U (−1, 1)
• 
2

�1
∼ Inverse-gamma(2�5, 0�025)

• 
2
�2

∼ Inverse-gamma(2�5, 0�025)
• �∗

1 ∼ beta(20, 1�5), where �∗
1 = (�1 + 1)/2

• �0 ∼ N (0�7, 10)
• 
2

	 ∼ Inverse-gamma(2�5, 0�025)

For the last three models, there are two sets of parameters: parameters in
the mean equation (	�, d , �, 
�1 , 
�2), and in the factor equation (�, �, 
�).
We assume that the parameters are mutually independent. The prior
distributions are specified as

• 	� ∼ U (−1, 1)
• �∗

i ∼ �2(4), where �∗
i = �i/2, i = 1, 2

• �∗ ∼ �2(4), where �∗ = �/2
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TABLE 1 Means and standard deviations of prior distributions for parameters in the first six
models

	� � �11 �22 �21 �1 �2 	� 
�1 
�2 �0 � 
	

Prior mean 0 8 .86 .86 0 0 0 0 .12 .12 .7 .86 .12
Prior SD .86 4 .11 .11 .33 5 5 .86 .05 .05 3.3 .11 .05

• d ∼ N (1, 9)
• 
2

�1
∼ gamma(0�3, 0�3)

• 
2
�2

∼ gamma(0�03, 0�3)
• � ∼ N (0, 25)
• �∗ ∼ beta(20, 1�5), where �∗ = (� + 1)/2
• 
2

� ∼ Inverse-gamma(2�5, 0�025)

We report means and standard errors of these prior distributions for the
first six models in Table 1 and those for the last three models in Table 2.

5.3. Results

We report means, standard errors, and 95% credible intervals of the
posterior distributions for the first six models in Table 3 and those for the
last three models in Table 4, as well as the computing time to generate
100 iterations for each of the nine models. The computing time is the
central processing unit (CPU) time on a HP XW6000 workstation running
WinBUGS1.4. For all models, after a burn-in period of 10,000 iterations
and a follow-up period of 100,000, we stored every 20th iteration.

The first thing that can be seen from Tables 3 and 4 is that all nine
models can be quickly estimated. The CPU time required for 100 iterations
ranges from 2.3 seconds to 14.4 seconds. Moreover, estimating different
multivariate SV models in WinBUGS requires little effort in coding, and
often no more than a few lines of code have to be changed. Second, the
estimated means and standard deviations for the parameters appear quite
reasonable and in accordance with estimates documented in the literature.
For instance, in Model 1 (MSV), both volatility processes are estimated
to be highly persistent. In Model 4 (GCC-MSV), posterior means of both
correlation (	� and 	�) are high, as already observed in Harvey et al.

TABLE 2 Means and standard deviations of prior distributions for parameters in the last three
models

	� d �1 �2 � 
�1 
�2 � � 
�

Prior mean 0 1 8 8 8 1 0.1 .86 0 .12
Prior SD .86 3 4 4 4 1.83 0.33 .11 5 .05
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TABLE 3 Posterior quantities for parameters in the first six models

MSV CC-MSV GC-MSV GCC-MSV DC-MSV t-MSV

�1 Mean .0050 .0930 −.1629 −1.094 .0123 .0430
SD .2294 .1263 .2417 2.262 .2001 .1108
95% CI −�50, �436 −�188, �319 −�689, �211 −6�50, 2�45 −�419, �395 −0�20, �242

�2 Mean −.710 −.6562 −.4617 −2.454 −.7595 −.5929
SD .4064 .3695 .3725 1.275 .3563 .3873
95% CI −1�52, �026 −1�36, �044 −1�25, �112 −5�45,−�37 −1�45,−�101 −1�42, �040

�11 Mean .9770 .9428 .9788 .9764 .9766 .9252
SD .0140 .0418 .0167 .0134 .0135 .0591
95% CI �942, �996 �838, �989 �936, �998 �945, �996 �944, �996 �78, �986

�22 Mean .9920 .9905 .7074 .8622 .9934 .9874
SD .0061 .0089 .1272 .0937 .0052 .0117
95% CI �976, �999 �966, �999 �423, �920 �625, �982 �980, �999 �957, �999


�1 Mean .1107 .0967 .0774 .0807 .0973 .0965
SD .0265 .0220 .0167 .0148 .0198 .0242
95% CI �071, �174 �061, �147 �052, �116 �057, �115 �066, �146 �061, �153


�2 Mean .1044 .0884 .1262 .1431 .0894 .0881
SD .0228 .0203 .0531 .0289 .0187 .0205
95% CI �069, �157 �059, �135 �062, �269 �098, �209 �061, �134 �058, �138

	� Mean .7439 .7398 .7325 .7471
SD .0208 .0228 .0202 .0205
95% CI �701, �783 �692, �781 �691, �770 �705, �785

�12 Mean .4865
SD .2296
95% CI �115, 1�00

	� Mean .8363
SD .1240
95% CI �540, �988


	 Mean .1124
SD .031
95% CI �065, �189

�0 Mean 1.945
SD .2808
95% CI 1�387, 2�519

� Mean .9814
SD .0122
95% CI �950, �997

� Mean 23.22
SD 7.174
95% CI 12�59, 40�2

Time (s) 3.3 2.7 3.0 9.6 3.5 4.5

(1994). In Model 6 (t-MSV), the posterior mean of � is 23.22, suggesting
that a heavy-tailed distribution for errors is not needed. In all three factor
models, the factor process is estimated to be highly persistent.5 In Model 7
(AFactor-MSV), the factor loading is estimated to be 1.233.

5While the posterior means of � are all close to unity and seem to suggest a random walk
behavior for ht , we have found that the random walk models give higher DIC values than their
stationary counterparts.
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TABLE 4 Posterior quantities for parameters in the last three models

AFactor-MSV AFactor-t -MSV MFactor-MSV

� Mean −1�299 −1�287 1�816
SD 0.4024 0.4111 0.3041
95% CI −2�078,−0�5338 −2�15,−0�5387 1�266, 2�469

� Mean 0.9942 0.9938 0.9804
SD 0.0051 0.0050 0.014
95% CI 0�981, 0�9998 0�9812, 0�9997 0�9463, 0�9987


� Mean 0.1055 0.1046 0.09777
SD 0.02417 0.02184 0.0225
95% CI 0�070, 0�165 0�0712, 0�156 0�0622, 0�1523

d Mean 1.233 1.225
SD 0.0678 0.060
95% CI 1�1, 1�355 1�102, 1�333


�1 Mean 0.6799 0.642
SD 0.0329 0.0340
95% CI 0�611, 0�739 0�5712, 0�7053


�2 Mean 0.2087 0.2271 0.9646
SD 0.1189 0.080 0.0318
95% CI 0�0029, 0�4048 0�0924, 0�3813 0�9035, 1�029

	� Mean 0.7302
SD 0.0246
95% CI 0�6801, 0�7772

�1 Mean 21.21
SD 7.916
95% CI 9�482, 40�08

�2 Mean 16.33
SD 7.832
95% CI 5�322, 35�61

� Mean 19.55
SD 7.631
95% CI 8�894, 38�21

Time (s) 5.5 14.4 2.3

Some interesting empirical results can be found from the two new
specifications, Model 3 (GC-MSV) and Model 5 (DC-MSV). In Model 3,
the posterior mean of �12 is 0.4865 with the lower limit of the 95%
posterior credibility interval being greater than zero. It suggests that the
volatility in Australian dollar Granger causes the volatility in the New
Zealand dollar, consistent with our expectation. As a result of allowing for
Granger causality, the posterior mean of the volatility persistence for the
New Zealand dollar is reduced from 0.99 to 0.7074. In Model 5 (DC-MSV),
the correlation process is reasonably highly persistent, with a posterior
mean of � being 0.9814. The posterior mean of the long run mean of the
time-varying correlation is 0.7195, consistent with what is found in Model 4
(GCC-MSV). All these posterior quantities point toward the importance of
time-varying correlation.
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TABLE 5 DIC for all models

DIC

Model Value Ranking D pD

MSV 2997.270 9 2958.960 38.320
CC-MSV 2622.090 6 2581.960 40.125
GC-MSV 2616.290 5 2578.890 37.393
GCC-MSV 2608.060 4 2581.110 26.941
DC-MSV 2579.970 3 2524.450 55.523
t-MSV 2624.880 7 2546.940 77.938
AFactor-MSV 2577.750 2 2557.270 20.481
AFactor-t-MSV 2576.560 1 2512.400 64.160
MFactor-MSV 2626.660 8 2599.340 27.326

In Table 5 we report DIC together with D and pD for each of the
nine models as well as their associated rankings. The best model to
describe the bivariate data according to DIC is Model 8 (AFactor-t-MSV),
followed closely by Model 7 (AFactor-MSV) and Model 5 (DC-MSV).
Figures 2–4 show the trace plots and density functions of the parameters
d , �,�, 
�, 
�1 , 
�2 , v1, v2, and � in Model 8. The models that have the lowest
posterior means of the deviance are Model 5 and Model 8 (AFactor-t-MSV).
The models that have the smallest effective numbers of parameters are
Model 7 and Model 4 (GCC-MSV). As Model 8, Model 7, and Model 5
all allow for time-varying correlations, the message taken from this model
comparison exercise is that correlations do indeed vary over time.

To understand the implications of the better specifications, we obtain
smoothed estimates of volatilities and correlations from Model 8 (AFactor-
t-MSV) and Model 5 (DC-MSV). In WinBUGS, once the latent processes
are sampled and stored, it is trivial to obtain the smoothed estimates of
them. We plot the estimates of the two volatilities and the correlations from
Model 5 in Figure 5 and the volatilities of the factor and the correlations
from Model 8 in Figure 6. Figure 5 reveals that both the Australian dollar
and the New Zealand dollar experienced a rapid volatility increase over the
period from 1995 to 1998. The smoothed estimate of correlations shown
in Figure 5 is interesting. The correlation quickly decreases from 0.75 to
0.45 from the beginning of the sample and reaches the lowest level in 1995.
After that, it steadily increases to 0.8 and stays around that level for the

TABLE 6 Geweke’s Z -scores and inefficiency factors for parameters in AFactor-t -MSV

d � � 
� 
�1 
�2 �1 �2 �

Z-score −1.485 2.10 −0.835 −0.237 −2.89 1.94 −0.868 −2.92 0.648
IACT 116.78 212.97 84.69 231.61 55.59 90.82 69.62 116.82 107.97
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FIGURE 2 Trace plots and density estimates of the marginal distribution of d , �, and � in Model 8
(AFactor-t-MSV).

FIGURE 3 Trace plots and density estimates of the marginal distribution of 
�, 
�1, and 
�2 in
Model 8 (AFactor-t-MSV).



380 J. Yu and R. Meyer

FIGURE 4 Trace plots and density estimates of the marginal distribution of �1, �2, and � in Model 8
(AFactor-t-MSV).

FIGURE 5 Smoothed estimates of volatilities of exchanges rates and time-varying correlations from
Model 5 (DC-MSV).
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FIGURE 6 Smoothed estimates of volatilities of the factor and time varying correlations from
Model 8 (Factor-t-MSV).

rest of sample period. The correlation reaches the peak in 2002, which
corresponds to the period of prolonged depreciation of the two currencies
against the US dollar. Figure 6 tells a similar story about the volatilities—
the volatilities of the common factor have experienced a rapid volatility
increase over the period from 1995 to 1998. However, the implication
on the correlations is somewhat different. Compared with Figure 5, the
correlation in Figure 6 shows more dramatic evidence of nonstationarity in
correlations. That is, it seems there is a structural change in the correlation
process. The breakdown of the correlation appears to take place at the end
of 1998.

As indicated in Section 3, CODA software provides various convergence
diagnostics to test if a Markov chain has converged. In this paper we
calculate Geweke’s Z -score. To check the simulation inefficiency, following
Meyer and Yu (2000), we employ IACT as a measure of inefficiency
factor. While more detailed results can be requested from the authors, we
choose to report the Z -scores and the inefficiency factors for parameters
in Model 8 only in Table 6. It can be seen that, in absolute value, all the
Z -scores are either smaller than the critical values or around them (1.96 is
the 5% critical value and 2.56 is the 1% critical value), suggesting that the
samplers have converged reasonably well. The inefficiency factor ranges
from 55.59 to 212.97, suggesting that the single-move algorithm is not very
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efficient and a long sample is needed. When we increase the number of
iterations to 500,000, however, the empirical results remain essentially the
same.

6. CONCLUSION

In this paper we proposed to estimate and compare multivariate
SV models using Bayesian MCMC techniques via WinBUGS. MCMC is
a powerful method and has a number of advantages over alternative
methods. Unfortunately, writing the first MCMC program for estimating
multivariate SV models is not easy, and comparing alternative multivariate
SV specifications is computationally costly. WinBUGS imposes a short
but sharp learning curve. In the bivariate setting, we show that its
implementation is easy and computationally reasonably fast. Also, it is very
flexible to handle a rich class of specifications. However, since WinBUGS
offers a single-move Gibbs sampling algorithm, as one would expect, we
find that the mixing is generally slow and hence a long sample is required.

We illustrated the implementation in WinBUGS by exploring
and comparing nine bivariate models, including Granger causality in
volatilities, time-varying correlations, heavy-tailed error distributions,
additive factor structure, and multiplicative factor structure, two of which
are new to the SV literature. Our empirical results based on weekly
Australian/US dollar and New Zealand/US dollar exchange rates indicate
that the models that allow for time-varying coefficients generally fit the
data better.
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