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The asymptotic distributions of the maximum likelihood estimator of the persistence parameter are de-
veloped in a linear diffusion model under three sampling schemes, long-span, in-fill and double. Simu-
lations suggest that the in-fill asymptotic distribution gives a more accurate approximation to the finite
sample distribution than the other two distributions. An empirical application highlights the difference
in unit root testing based on the alternative asymptotic distributions.
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1. Introduction

Consider the Ornstein–Uhlenbeck (OU) diffusion process which
was first used by Vasicek (1977) to describe the movement of
interest rates over time,
dX(t) = κ(µ − X(t))dt + σdW (t), X(0) = X0, (1)
where W (t) is a standard Brownian motion, µ is the intercept,
κ captures the persistence of X(t), and σ is the instantaneous
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volatility. The same model was also used to model the dynamic
behavior of log volatility; see for example, Hull and White (1987).
In practice, X(t) is observed at discrete points in time, say t = 0,
δ, 2δ, . . . , nδ(:= T ), where n is the sample size, δ the sampling
interval, and T the time span of the data. In this paper, we develop
and compare the asymptotic theory for the maximum likelihood
(ML) estimator of κ under the following three sampling schemes:

T → ∞, δ is fixed, hence n(:= T/δ) → ∞ (A1)
T → ∞, δ → 0 and hence n → ∞ (A2)
δ → 0, T is fixed and hence n → ∞. (A3)

Obviously the continuous time model facilitates the discussions
and derivations of three alternative sampling schemes.

Scheme (A1) assumes that the sampling interval is fixed and
the sample size increases as the time span increases. This widely
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adopted sampling scheme in time series analysis leads to the
long-span asymptotics. In practical applications in economics, T
measures the number of years. Typical values for T are not very
large (between 1 and 50). In some cases, even if T is large, a smaller
value for T may be used to avoid possible structural breaks in
Model (1). Scheme (A3) allows the sample size to go to infinity by
decreasing the sampling interval but keeping the time span fixed.
This sampling scheme leads to the in-fill asymptotics. In practice,
data are often measured in the annualized term. As a result, δ =

1/252 (1/52, 1/12), corresponding to the daily (weekly, monthly)
data. Scheme (A2) combines both the long-span scheme and the
in-fill scheme and leads to the double asymptotics.

For empirically reasonable values of δ, T and parameters, what
we find in the present paper is that among the three asymptotic
distributions the in-fill distribution provides the best approxima-
tion to the finite sample distribution.Moreover, like the finite sam-
ple distribution but unlike the other two asymptotic distributions,
the in-fill distribution is continuous in κ when the persistence of
the process passes the unity (i.e. when κ = 0) and thus the confi-
dence regions based on the in-fill distribution are connected. The
property of continuity provides an answer to the Bayesian criti-
cism to the unit root asymptotics; see for example, Sims (1988) and
Sims and Uhlig (1991). Consequently, we advocate doing unit test
based on the in-fill asymptotics.

2. The model and the asymptotics

The exact discrete time model corresponding to (1) is a first
order autoregressive (AR(1)) model with intercept:

Xtδ = µ(1 − e−κδ) + φX(t−1)δ + σ


1 − e−2κδ

2κ
ϵt ,

φ = e−κδ, X0δ = X0, ϵt
i.i.d
∼ N(0, 1). (2)

When there is no confusion, we simply write Xtδ as Xt . The ML
estimator ofφ is: φ̂ =


(Xt−1−X−)(Xt−X)/


(Xt−1−X)2, where

:=
n

t=1, X− =
1
n


Xt−1, and X =

1
n


Xt . Correspondingly,

the ML estimator of κ is κ̂ = − ln φ̂/δ.

2.1. The long-span asymptotics

When κ > 0 (i.e.φ < 1), this is the stationary case and the long-
span asymptotic distribution of κ̂ (i.e. under Scheme (A1)) is known
as (see for example, Tang and Chen, 2009):

√
T (κ̂ − κ)

d
→N


0,

e2κδ
− 1

δ


, as T → ∞. (3)

When κ is close to zero, φ is close to 1 and hence the root of the
AR(1) model (2) is near unity. It is known in the literature that
when the root is near unity, the finite sample distribution of φ̂ is
not close to the normal distribution; see for example Ahtola and
Tiao (1984). The same feature applies to κ when κ is close to 0 and
µ is known in Model (1); see for example, Yu (2012, 2014). We ex-
pect this property of discrepancy holds true when µ is unknown.

When κ = 0 (i.e. φ = 1), this is the unit root case and the long-
span asymptotic distribution of κ̂ is known as (see for example,
Phillips, 1987a,b):

T (κ̂ − 0) d
→ −


WdW − W (1)


W

W 2 −


W
2 , as T → ∞, (4)

where W (r) is a standard Brownian motion with r ∈ [0, 1] and
=

 1
0 .

Clearly, under Scheme (A1) both the asymptotic distribution
of κ̂ and its rate of convergence depend on the true value of κ ,
i.e., whether κ = 0 or κ > 0. This feature of discontinuity is the
same as thewell-known discontinuity in the long-span asymptotic
theory of φ and suggests that the confidence intervals obtained
from the asymptotic distributions ((3) and (4)) are disjoint pieces
(Sims, 1988). On the other hand, the confidence intervals ob-
tained from the finite sample distribution of κ̂ is always connected
because the finite sample distribution is continuous in κ . This ob-
servation has generated some criticisms on making inference of
persistence based on the nonstationary asymptotic theory (Sims
and Uhlig, 1991). See also the critique of the criticisms (Phillips,
1991).

2.2. The double asymptotics

When κ > 0, taking δ towards 0 in (3), we obtain the following
double asymptotic distribution of κ:
√
T (κ̂ − κ)

d
→N(0, 2κ), as T → ∞ and δ → 0. (5)

If κ = 0, the double asymptotic distribution is

T (κ̂ − 0) d
→ −


WdW − W (1)


W

W 2 −


W
2 ,

as T → ∞ and δ → 0. (6)
As in Scheme (A1), under Scheme (A2), the asymptotic distri-

bution of κ̂ and its rate of convergence depend on the true value
of κ . So the discontinuity of the asymptotic distribution of κ̂ in κ
remains true under the double asymptotic scheme.

2.3. The in-fill asymptotics

Perron (1991) and Yu (2014) have obtained some interesting
results for the OU process with a known µ. In particular, Perron
derived the in-fill asymptotic distribution of κ which depends on
the initial condition and holds true for all values of κ . Yu compared
the performance of this in-fill asymptotic distribution with the
long-span and double asymptotic distributions and found that
the in-fill distribution can better approximate the finite sample
distribution when κ is close to 0. However, when µ is unknown
the in-fill asymptotic distribution has not been derived in the
literature. Theorem 2.1 presents the result and the proof of the
theorem may be found in the working paper version of Zhou and
Yu (2010).

Theorem 2.1. For Model (1), under Scheme (A3), regardless of the
value of κ , the in-fill asymptotic distribution of κ̂ is

T (κ̂ − κ)
d

→ −
A(γ0, c)
B(γ0, c)

, as δ → 0 (7)

where c = −κT , c1 = erc − 1, c2 =
ec−c−1

c2
, c3 =

e2c−4ec+2c+3
2c3

, c4 =

ec−1
c , Jc(r) =

 r
0 ec(r−s)dW (s), b = µ

√
−cκ/σ , γ0 = X0/


σ
√
T


and

A(γ0, c) =
b
c


c1dW (r) +


Jc(r)dW (r)

+ γ0


ercdW (r) −


dW (r)

×


c2b +


Jc(r)dr + c4γ0


,

B(γ0, c) = c3b2 +
2b
c


c1Jc(r)dr +


J2c (r)dr + c24bγ0

+ 2γ0


erc Jc(r)dr + γ 2

0
e2c − 1

2c

−


c2b +


Jc(r)dr + c4γ0

2

.

Remark 2.1. The in-fill asymptotic theory in (7) is analogous to
that in Theorem 1 of Perron (1991). The asymptotic distribution is
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continuous in κ for all values of κ , including κ = 0. It depends on
the initial condition, the intercept parameter µ, and the time span
T . Since both the in-fill distribution and the finite sample distribu-
tion depend on the initial condition, we expect the in-fill distribu-
tion performs better than the other two asymptotic distributions.

Remark 2.2. If κ → 0 and X0 = 0, the numerator in (7) becomes

b
c


c1dW (r) +


Jc(r)dW (r) −


dW (r)


c2b +


Jc(r)dr


→ b

 
r −

1
2


dW (r) +


W (r)dW (r)

−


dW (r)


W (r)dr,

and the denominator becomes

c3b2 +
2b
c


c1Jc(r)dr −


c2b +


Jc(r)dr

2

+


J2c (r)dr

→
b2

12
+ 2b

 
r −

1
2


W (r)dr

+


W 2(r)dr −


W (r)dr

2

.

By the Deltamethod, the in-fill asymptotic distribution of φ̂ is

n
φ − φ

 d
→

b
 

r −
1
2


dW (r) +


W (r)dW (r) −


dW (r)


W (r)dr

b2
12 + 2b

 
r −

1
2


W (r)dr +


W 2(r)dr −


W (r)dr

2 .

This distribution is the same as that obtained in Haldrup and
Hylleberg (1995).

Remark 2.3. As it was shown earlier, there is a discontinuity in
the long-span asymptotics of both φ (at φ = 1) andκ (at κ = 0),
creating difficulties in unit root testing. However, the unit root
tests can be also performed in continuous time based on the in-fill
asymptotics. Since the in-fill asymptotic distribution is continuous
in κ , it provides a unified framework to make statistical inference
about κ . In particular, when κ is close to 0 the limiting distribution
in (7) is skewed and behaves similarly to the unit root limiting
distribution. Consequently, our answer to the Bayesian criticisms
is that the disconnecting confidence intervals are caused by the
poor approximation of the long-span asymptotic distribution (3)
and the double asymptotic distribution (5) to the finite sample
distribution and the confidence interval, if constructed from the
in-fill asymptotic distribution, is connected. Extensive simulations
will be carried out in the next section to support this claim.

3. Monte Carlo simulations

We design several Monte Carlo experiments to compare the
accuracy of the alternative asymptotic distributions of κ for ap-
proximating the finite sample distribution. To obtain the density
of the limiting distributions, we use the method proposed by Chan
(1988). According to Chan, the in-fill asymptotic distributions ex-
pressed in (7) may be approximated by the Riemann sums and
dW (r) by ϵi/

√
n, where {ϵi} is a sequence of standard normal ran-

dom variables, and n the sample size. Consequently, the limit-
ing distribution


Jc(r)dW (r)/


J2c (r)dr may be approximated by

n
n

i=1
i

k=1 e
c(i−k)/nϵkϵi+1


/

n
i=1

i
k=1 e

c(i−k)/nϵk

2

. In

this paper we choose n = 10,000 to approximate the Wiener pro-
cess.

The true value of κ is set at 0.01, 0.1 and 1, respectively. The first
two values are empirically realistic for interest rates while the last
value is empirically realistic for volatility. The true value of µ is set
to 0.1, σ to 0.1 and X0 ∼ N(µ, σ 2/2κ). The value of the sampling
interval δ is set at 1/12, 1/52 and 1/252. The time span T is set at
10, so the sample size is 120, 520 and 2520 for monthly, weekly
and daily frequencies, respectively. The number of replications is
set at 10,000.

The Monte Carlo simulation results, including the 1%, 5%, 10%,
50%, 90%, 95%, and 99% percentiles of the four distributions (i.e., the
finite sample distribution, the asymptotic distributions developed
under Schemes (A1), (A2) and (A3)) based on T (κ̂−κ), are reported
in Tables 1–3, for κ = 0.01, 0.1, 1, respectively.

Several features are apparent in the tables. First, in all cases,
the percentiles are not sensitive to the frequency. This observa-
tion suggests that the precision of estimation and the power of unit
root test cannot be increased by using data in a higher frequency
but with a fixed time span, even though the sample size increases
in this case. On the other hand, the percentiles are sensitive to the
value of κ and to the initial condition. The smaller the value of κ ,
the more sensitive the percentiles to the initial condition. This fea-
ture is related to the role that the initial condition plays in unit
root tests; see, for example, Phillips (1987a) and Müller and El-
liott (2003). Second, normality always provides inaccurate approx-
imations of the finite sample distribution, suggesting that (A1) and
(A2) should not be used in practice to make statistical inference of
κ . The percentiles of the limiting distribution under Schemes (A1)
and (A2) are very different from those of the true distribution, even
when κ = 1. It is obvious that the true distribution of κ̂ is highly
skewed to the right. The long-span asymptotic distribution and the
double asymptotic distribution perform particularly poorly in the
right tail. Interestingly, in all cases, the percentiles of the long-span
asymptotic distribution match well to those of the double asymp-
totic distribution, even when δ = 1/12, suggesting that δ → 0 is
not a too strong assumption.

Third, the in-fill asymptotic distribution provides much more
adequate approximations to the finite sample distribution. The
smaller the sampling interval, the better the performance of the
in-fill distribution, consistent with our expectation. Fourth, in all
cases, the median of T (κ̂ − κ) is substantially bigger than zero,
suggesting a severe positive bias in κ̂ . The bias cannot be reduced
by using data in a higher frequency but with a fixed time span. All
these results are consistent with those in Phillips and Yu (2005)
and Tang and Chen (2009). The bias also manifests in the in-fill
asymptotic distribution but not in the long-span and the double
asymptotic distributions. Finally, the in-fill asymptotic distribution
is less accuratewhen κ and δ become larger and hence a root is fur-
ther away from unity. However, the in-fill asymptotic distribution
continues to outperform the long-span and the double asymptotic
distributions.

To examine the impact of initial condition on the asymptotic
approximations, we repeat the above experiment only for κ = 0.1
but fix X0 = 0.1. This initial condition is different from themean of
the marginal distribution. Table 4 shows the 1%, 5%, 10%, 50%, 90%,
95%, and 99% percentiles of the four distributions. Interestingly,
the difference between the finite sample distribution and the two
asymptotic normal approximations become bigger than the case
when X0 ∼ N(µ, σ 2/2κ) (i.e. Table 2). However, the in-fill asymp-
totic distribution continues to provide much more adequate ap-
proximations to the finite sample distribution than the other two
asymptotic distributions. This finding is not surprising as the in-fill
asymptotic distribution depends on the initial condition while the
two asymptotic normal approximations do not.

4. An empirical application

In this section, we apply the alternative asymptotic theory
based on realmonthly time series data on short term interest rates.
The data involve the Federal funds rate and are available from the
H-15 Federal Reserve Statistical Release. It is sampledmonthly and
has 432 observations covering the period from July 1954 to June
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Table 1
Percentiles of T


κ̂ − κ


when κ = 0.01, µ = 0.1, σ = 0.1, and X0 ∼ N(µ, σ 2/2κ).

Percentile 1% 5% 10% 50% 90% 95% 99%

exactM −1.1271 0.1504 0.8658 4.4434 11.7888 14.7151 21.6592
(A3)M −1.8638 −0.3987 0.3551 3.9760 12.1459 15.8847 25.0705
(A1)M −1.0402 −0.7360 −0.5749 0 0.5749 0.7360 1.0402
(A2)M −1.0398 −0.7347 −0.5722 0 0.5722 0.7347 1.0398
exactW −1.1123 0.0904 0.8315 4.3354 11.2763 14.4341 20.8579
(A3)W −1.2444 0.0323 0.7148 4.1809 11.1811 14.2994 21.9489
(A1)W −1.0399 −0.7357 −0.5747 0 0.5747 0.7357 1.0399
(A2)W −1.0398 −0.7347 −0.5722 0 0.5722 0.7347 1.0398
exactD −1.0901 0.0594 0.7844 4.3352 11.1289 13.7981 20.1534
(A3)D −1.1520 0.0877 0.8015 4.3983 11.6374 14.6220 21.0115
(A1)D −1.0398 −0.7357 −0.5747 0 0.5747 0.7357 1.0398
(A2)D −1.0398 −0.7347 −0.5722 0 0.5722 0.7347 1.0398

Note: The superscripts,M,W and D, denote statistics calculated from the monthly, weekly and daily data, respectively. (A3), (A1) and (A2) correspond to the long-span, the
in-fill and the double asymptotics, respectively.
Table 2
Percentiles of T


κ̂ − κ


when κ = 0.1, µ = 0.1, σ = 0.1, and X0 ∼ N(µ, σ 2/2κ).

Percentile 1% 5% 10% 50% 90% 95% 99%

exactM −1.5283 −0.2825 0.5070 4.2512 11.7567 14.7229 22.2292
(A3)M −1.5624 −0.2878 0.4333 4.0707 11.2104 14.0524 20.9886
(A1)M −3.3018 −2.3361 −1.8249 0 1.8249 2.3361 3.3018
(A2)M −3.2880 −2.3264 −1.8173 0 1.8173 2.3264 3.2880
exactW −1.6288 −0.2974 0.4416 4.0834 11.3671 14.3156 21.2052
(A3)W −1.5715 −0.3574 0.4079 4.0211 11.1196 14.0089 20.2376
(A1)W −3.2912 −2.3286 −1.8190 0 1.8190 2.3286 3.2912
(A2)W −3.2880 −2.3264 −1.8173 0 1.8173 2.3264 3.2880
exactD −1.5512 −0.3467 0.3867 4.1199 11.0154 13.8110 21.0254
(A3)D −1.4917 −0.2597 0.4643 4.1457 11.5266 14.4463 20.9275
(A1)D −3.2887 −2.3268 −1.8176 0 1.8176 2.3268 3.2887
(A2)D −3.2880 −2.3264 −1.8173 0 1.8173 2.3264 3.2880

See notes of Table 1.
Table 3
Percentiles of T


κ̂ − κ


when κ = 1, µ = 0.1, σ = 0.1, and X0 ∼ N(µ, σ 2/2κ).

Percentile 1% 5% 10% 50% 90% 95% 99%

exactM −5.4859 −3.6285 −2.4241 3.6119 13.7670 17.6815 27.0131
(A3)M −5.2775 −3.5098 −2.4004 3.1535 11.9858 14.8782 21.3779
(A1)M −10.8464 −7.6741 −5.9947 0 5.9947 7.6741 10.8464
(A2)M −10.3977 −7.3567 −5.7467 0 5.7467 7.3567 10.3977
exactW −5.3858 −3.6281 −2.4647 3.3337 12.6606 16.4740 24.0561
(A3)W −5.3106 −3.5741 −2.3879 3.2850 12.3413 15.7487 22.5331
(A1)W −10.4985 −7.4280 −5.8024 0 5.8024 7.4280 10.4985
(A2)W −10.3977 −7.3567 −5.7467 0 5.7467 7.3567 10.3977
exactD −5.2109 −3.4059 −2.3081 3.3241 12.3800 15.7653 23.3141
(A3)D −5.3526 −3.4908 −2.2837 3.4331 12.7952 16.1574 23.8631
(A1)D −10.4184 −7.3713 −5.7581 0 5.7581 7.3713 10.4184
(A2)D −10.3977 −7.3567 −5.7467 0 5.7467 7.3567 10.3977

See notes of Table 1.
Table 4
Percentiles of T


κ̂ − κ


when κ = 0.1, µ = 0.1, σ = 0.1, and X0 = 0.1.

Percentile 1% 5% 10% 50% 90% 95% 99%

exactM −1.4311 −0.0849 0.7183 4.6260 12.3435 15.3660 23.4456
(A3)M −1.4552 −0.1171 0.6667 4.3946 11.5336 14.3703 20.4988
(A1)M −3.3018 −2.3361 −1.8249 0 1.8249 2.3361 3.3018
(A2)M −3.2880 −2.3264 −1.8173 0 1.8173 2.3264 3.2880
exactW −1.4102 −0.1402 0.6721 4.4192 11.8036 14.5898 21.1528
(A3)W −1.3698 −0.1320 0.6340 4.3541 11.5998 14.2569 20.9383
(A1)W −3.2912 −2.3286 −1.8190 0 1.8190 2.3286 3.2912
(A2)W −3.2880 −2.3264 −1.8173 0 1.8173 2.3264 3.2880
exactD −1.3563 −0.0609 0.6526 4.4665 11.4818 14.3163 21.0762
(A3)D −1.3741 −0.0626 0.6802 4.5302 11.9893 15.1922 21.9786
(A1)D −3.2887 −2.3268 −1.8176 0 1.8176 2.3268 3.2887
(A2)D −3.2880 −2.3264 −1.8173 0 1.8173 2.3264 3.2880

See notes of Table 1.
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Table 5
Estimate of κ , and 90% and 95% confidence intervals.

(A1) (A2) (A3)
κ > 0 κ = 0 κ > 0 κ = 0

90% CI (0.0609, 0.4616) (−0.1277, 0.2576) (0.0631, 0.4594) (−0.1277, 0.2576) (−0.1579, 0.3551)
95% CI (0.0225, 0.4999) (−0.2054, 0.2729) (0.0251, 0.4973) (−0.2054, 0.2729) (−0.2430, 0.3795)
2002. Since all yields are expressed in annualized form, we have
δ = 1/12 for the monthly data. The same data were used in Aït-
Sahalia (1999).

Assuming X0 is the same as the first observation, the ML esti-
mates of the three parameters κ, µ and σ are: κ̂ = 0.2613, µ̂ =

0.0717 and σ̂ = 0.0223. Consequently, we can get the 90% and
95% confidence intervals for κ under the three schemes, which are
reported in Table 5. Under Schemes (A1) and (A2), the limiting dis-
tribution when κ > 0 is different from the limiting distribution
when κ = 0. So two sets of confidence intervals are reported in
the two cases.

It is well documented in the term structure literature that the
short term interest rates are highly persistent. However, no agree-
ment has reached among economists whether or not the short
term interest rates have a unit root. For example, Aït-Sahalia (1996)
argued that the short term interest rate is stationary while Stock
and Watson (1988) reported evidence of a unit root in the Fed-
eral fund rate. Using the confidence intervals (either 90% or 95%)
constructed under Schemes (A1) and (A2) with κ > 0, one would
conclude that there is no unit root in the data. However, the con-
fidence intervals (both 90% and 95%) constructed under Schemes
(A1) and (A2) with κ = 0 suggest that there is a unit root in the
data. This discrepancy is, of course, due to the discontinuity in the
asymptotic distributions at unity.

Under Scheme (A3) the form of the in-fill asymptotic distribu-
tion is the same, whether κ = 0 or not. Hence, only one confidence
interval is needed regardless of κ . In this case, both the 90% and
the 95% confidence intervals contain zero, suggesting that there is
a unit root in the data. Interestingly, the confidence intervals are
very similar to those obtained from the unit root asymptotic dis-
tribution. We conclude that it is the asymptotic normality but not
the unit root asymptotic distribution that causes the problem of
the disconnected confidence interval. As we showed earlier, the
asymptotic distribution under Scheme (A3) is more accurate and
robust to the hypothesized value of κ . Consequently, we believe
the empirical result based on Scheme (A3) is more reliable.
References

Ahtola, J., Tiao, G.C., 1984. Parameter inference for a nearly nonstationary first order
autoregressive model. Biometrika 71, 263–272.

Aït-Sahalia, Y., 1996. Testing continuous-time models of spot interest rate
derivative securities. Rev. Financ. Stud. 9, 385–426.

Aït-Sahalia, Y., 1999. Transition densities for interest rate and other non-linear
diffusions. J. Finance 54, 1361–1395.

Chan, N.H., 1988. The parameter inference for nearly nonstationary time series.
J. Amer. Statist. Assoc. 83, 857–862.

Haldrup, N., Hylleberg, S., 1995. A note on the distribution of the least squares
estimator of a randomwalk with drift: some analytical evidence. Econom. Lett.
48, 221–228.

Hull, J., White, A., 1987. The pricing of options on assets with stochastic volatilities.
J. Finance 42, 281–300.

Müller, U.K., Elliott, G., 2003. Tests for unit roots and the initial condition.
Econometrica 71, 1269–1286.

Perron, P., 1991. A continuous time approximation to the unstable first order
autoregressive processes: the case without an intercept. Econometrica 59,
211–236.

Phillips, P.C.B., 1987a. Time series regression with a unit root. Econometrica 2,
277–301.

Phillips, P.C.B., 1987b. Toward a unified asymptotic theory for autoregression.
Biometrika 74, 533–547.

Phillips, P.C.B., 1991. To criticize the critics: an objective Bayesian analysis of
stochastic trends. J. Appl. Econometrics 6, 333–364.

Phillips, P.C.B., Yu, J., 2005. Jackknifing bond option prices. Rev. Financ. Stud. 18,
707–742.

Sims, C.A., 1988. Bayesian skepticism on unit root econometrics. J. Econom. Dynam.
Control 12, 463–474.

Sims, C.A., Uhlig, H., 1991. Understanding unit rooters: a helicopter tour.
Econometrica 59, 1591–1599.

Stock, J., Watson, M., 1988. Testing for common trends. J. Amer. Statist. Assoc. 83,
1097–1107.

Tang, C.Y., Chen, S.X., 2009. Parameter estimation and bias correction for diffusion
processes. J. Econometrics 149, 65–81.

Vasicek, O., 1977. An equilibrium characterization of the term structure. J. Financ.
Econ. 5, 177–186.

Yu, J., 2012. Bias in the estimation of the mean reversion parameter in continuous
time models. J. Econometrics 169, 114–122.

Yu, J., 2014. Econometric analysis of continuous time models: a survey of Peter
Phillips’ work and some new results. Econometric Theory 30, 737–774.

Zhou, Q., Yu, J., 2010. Asymptotic distributions of the least squares estimator for
diffusion processes.Working Paper 02-2010, Centre for Financial Econometrics,
Singapore Management University.

http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref1
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref2
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref3
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref4
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref5
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref6
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref7
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref8
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref9
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref10
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref11
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref12
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref13
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref14
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref15
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref16
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref17
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref18
http://refhub.elsevier.com/S0165-1765(14)00476-5/sbref19

	Asymptotic theory for linear diffusions under alternative sampling schemes
	Introduction
	The model and the asymptotics
	The long-span asymptotics
	The double asymptotics
	The in-fill asymptotics

	Monte Carlo simulations
	An empirical application
	References


