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Abstract

A class of stochastic volatility (SV) models is proposed by applying the Box–Cox transformation to the volatility equation. This
class of nonlinear SV (N-SV) models encompasses all standard SV models, including the well-known lognormal (LN) SV model.
It allows to empirically compare and test all standard specifications in a very convenient way and provides a measure of the degree
of departure from the classical models. A likelihood-based technique is developed for analyzing the model. Daily dollar/pound
exchange rate data provide some evidence against LN model and strong evidence against all the other classical specifications. An
efficient algorithm is proposed to study the economic importance of the proposed model on pricing currency options.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Modeling the volatility of financial time series via stochastic volatility (SV) models has received a great deal of
attention in the theoretical finance literature as well as in the empirical finance literature. Prices of options based on
SV models are shown to be more accurate than those based on the Black–Scholes model (see, for example, Melino
and Turnbull, 1990). Moreover, the SV model offers a powerful alternative to GARCH-type models in explaining the
well-documented time varying volatility. Empirical successes of the lognormal SV model relative to GARCH-type
models were documented in Kim et al. (1998) in terms of in-sample fitting and in Yu (2002) in terms of out-of-sample
forecasting.

The most widely used SV model is perhaps the lognormal (LN) specification, which was first introduced by Taylor
(1982). It has been used to price stock options in Wiggins (1987) and Scott (1987) and currency options in Chesney and
Scott (1989). As it assumes that the logarithmic volatility follows an Ornstein–Uhlenbeck (OU) process, an implication
for this specification is that the marginal distribution of logarithmic volatility is normal. This assumption has very
important implications for financial economics and risk management.
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Many other SV models coexist in the theoretical finance literature as well as in the empirical literature. For example,
Stein and Stein (1991) and Johnson and Shanno (1987) assumed the square root of volatility follows, respectively, an
OU process and a geometric Brownian motion, while Hull and White (1987) and Heston (1993) assumed a geometric
Brownian motion and a square-root process, respectively, for volatility. In particular, Heston’s model has received a
great deal of attention in the option pricing literature, because it provides a closed-form expression for option pricing
formula. In the discrete-time case, various SV models can be regarded as generalizations to the corresponding GARCH
models. For example, a polynomial SV model is a generalization of GARCH(1,1) (Bollerslev, 1986), while a square
root polynomial SV model is a generalization of the standard deviation (SD) GARCH(1,1) model. Andersen (1994)
introduced a class of polynomial SV models, which encompasses most discrete-time SV models in the literature. Other
recent classes of SV models include those proposed by Barndorff-Nielsen and Shephard (2001), Jones (2003) and
Meddahi (2001), respectively.

In spite of all these alternative specifications, there is a lack of simple procedure for selecting an appropriate functional
form for a SV process. It is well-known that a GARCH process converges to a relevant SV process (Nelson, 1990). A
specification test based on a GARCH family can be suggestive for an appropriate SV specification (see, for example,
Duan, 1997; Hentschel, 1995). However, such a test is by no means a direct test of SV specifications. The specification
of the correct SV function, on the other hand, is very important in several respects. First, different functional forms
lead to different formulae for option pricing. Misspecification of the SV function can result in incorrect option prices.
Second, the marginal distribution of volatility depends upon the functional form of SV.

In this paper, we propose a new class of SV models, namely, the nonlinear SV (N-SV) models. Similar to the class
of Andersen (1994), this new class of SV models includes as special cases many SV models that have appeared in the
literature. It overlaps with but does not encompass the class of Andersen, the classes of Jones (2003), and the class
of Meddahi (2001). Unlike these alternative classes that preclude a simple comparison of competing SV models, our
proposed class allows easy testing on the functional form specifications for the SV, based on a single parameter. This
parameter also provides a measure of degree of departure from the classical SV models. Furthermore, with this general
approach to modeling SV, one obtains the functional form of transformation, which induces marginal normality of
volatility.

We have empirically tested all the standard specifications against ours using daily dollar/pound exchange rate data.
We found that our empirical test presents significant evidence against all the standard SV models and favors a N-SV
specification. Our empirical test of all standard SV models is, to the best of our knowledge, the first in the literature.
Economic importance of this nonlinearity is also examined. For example, without sacrificing the overall goodness-of-fit,
our N-SV model improves the fit to data when the market has little movement. We also found that our model implies a
smoother volatility series. Moreover, the marginal distribution of volatility is different from the LN distribution. Most
importantly, an application of our N-SV model to option pricing shows that the LN SV model overprices currency
options, particularly out-of-the-money options, when the true model is the empirically estimated nonlinear model.

The paper is organized as follows. Section 2 introduces this class of N-SV models. In Section 3, a Markov Chain
Monte Carlo (MCMC) method is developed to conduct likelihood-based analysis of the proposed class of models.
Section 4 presents empirical results from fitting daily returns of the dollar/pound exchange rate. Section 5 illustrates
the economic importance of the proposed models in terms of their implications for pricing currency options. Finally
Section 6 concludes the paper with some discussion on possible extensions of this work.

2. A class of N-SV models

In the theoretical finance literature on option pricing, the SV model is often formulated in terms of stochastic
differential equations. For instance, Wiggins (1987), and Chesney and Scott (1989) specified the following model for
the asset price P(t)

dP(t)/P (t) = � dt + �(t) dB1(t), (1)

and its associated volatility �2(t),

d ln �2(t) = �(� − ln �2(t)) dt + � dB2(t), (2)
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where B1(t) and B2(t) are two Brownian motions and corr(dB1(t), dB2(t))=� with � capturing the so-called leverage
effect.

In the empirical literature, the above continuous-time model is often discretized. The discrete-time SV model can be
obtained, for example, via the Euler–Maruyama approximation, which, after a location shift and reparameterization,
leads to the LN SV model given by

Xt = �t et (3)

and

ln �2
t = � + 	(ln �2

t−1 − �) + �vt , (4)

where Xt is a continuously compounded return, and et and vt are two sequences of independent and identically
distributed (iid) N(0, 1) random variables with corr(et , vt+1) = �. In the majority of empirical literature, the above
model is equivalently expressed as

Xt = exp( 1
2 ht )et (5)

and

ht = � + 	(ht−1 − �) + �vt , (6)

where ht = ln �2
t . See, for example, Yu (2005) for a detailed account on the leverage effect.

The LN SV model specifies that the logarithmic volatility follows an AR(1) process. However, this relationship may
not be always warranted by the data. A natural generalization to this relationship is to allow a general (nonlinear)
smooth function of the volatility to follow an AR(1) process, and the model is expressed as

Xt = �t et , (7)

h(�2
t , 
) = � + 	[h(�2

t−1, 
) − �] + �vt , (8)

where et and vt are two N(0, 1) sequences with corr(et , vt+1) = �, and h(·, 
) is a smooth function indexed by a
parameter 
. A nice choice of this function is the Box–Cox power function (Box and Cox, 1964) given by

h(t, 
) =
{

(t
 − 1)/
 if 
 �= 0,

ln t if 
 = 0.
(9)

As the function h(·, 
) is specified as a general nonlinear function, the model is thus termed in this paper the N-SV
model. Several attractive features of this new class of SV models include: (i) as we will show below, it includes the
LN SV model and the other popular SV models as special cases; (ii) it adds a greater flexibility to the functional form;
(iii) it provides a measure on the degree of departure from a specific classical SV model; and (iv) it allows a simple
test for the LN SV specification, i.e., a test of H0 : 
 = 0, and some other “classical” SV specifications. If we write
ht = h(�2

t , 
), then the N-SV model can be rewritten as

Xt = [g(ht , 
)]1/2et , (10)

ht = � + 	(ht−1 − �) + �vt , (11)

where g(ht , 
) is the inverse Box–Cox transformation of the form

g(ht , 
) =
{

(1 + 
ht )
1/
 if 
 �= 0,

exp(ht ) if 
 = 0.
(12)

Denote the vector of model parameters by � = (�, 
, 	, �, �).
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Table 1
Alternative SV models and parameter relationship

Models 
 � 	

Taylor (1982), Wiggins (1987), ln �2
t = � + 	(ln �2

t−1 − �) + �vt 0
Chesney and Scott (1989),
Jacquier et al. (1994),
Harvey et al. (1998),
Kim et al. (1998) and Scott (1987)
Scott (1987), Andersen (1994) and �t = � + 	(�t−1 − �) + �vt 0.5
Stein and Stein (1991)
Heston (1993) �t = 	�t−1 + �vt 0.5 0
Hull and White (1987) and ln �2

t = � + ln �2
t−1 + �vt 0 1

Johnson and Shanno (1987)
Andersen (1994) �2

t = � + 	(�2
t−1 − �) + �vt 1

Clark (1973) ln �2
t = � + �vt 0 0

Nonlinear SV
(�2

t )

 − 1



= � + 	

[
(�2

t−1)

 − 1



− �

]
+ �vt

The idea of our N-SV models is similar to that of the nonlinear ARCH (NARCH) model proposed by Higgins and
Bera (1992). Obviously, our model provides an SV generalization of a nonlinear GARCH(1,1) model. Similar to the
NARCH model, the proposed N-SV model can be used to test the nested models based on one parameter. However,
compared with the NARCH model, our N-SV model is closely related to the option pricing literature, because the
nested models have been used for pricing options.

It can be seen that as 
 → 0, (1 + 
ht )
1/(2
) → exp(0.5ht ) and ((�2

t )

 − 1)/
 → ln �2

t . Hence the proposed N-SV
model includes the LN SV model as a special case. If 
 = 1, the variance equation (8) becomes

�2
t = �′ + 	(�2

t−1 − �′) + �vt , (13)

where �′ = � + 1. This is a polynomial SV model in Andersen (1994). According to this specification, the volatility
has a marginal normal distribution. If 
 = 0.5, the variance equation (8) becomes

�t = �′′ + 	(�t−1 − �′′) + 0.5�vt , (14)

where �′′ = 0.5� + 1. This is a square root polynomial SV model in Andersen (1994) and can be regarded as a discrete
time version of the continuous time SV model in Scott (1987) and Stein and Stein (1991). As a result, the marginal
distribution of the square root of the volatility is Gaussian.

Table 1 summarizes some well-known SV models and show their parameter relations with our model. For the
continuous time SV models, their Euler discrete time versions are considered. Some specifications in Table 1 may be
different from the actual specifications given in the original papers. However, they are equivalent to each other via
Ito’s lemma. For example, Heston (1993) adopted a square root specification for �2

t which is identical to assuming
�t follows a particular OU process. It can be seen that all these models can be obtained from our model by placing
appropriate restrictions on the three parameters 
, � and 	. In fact, all the models except ours require 
 to be 0, 0.5,
or 1. For a general 
, our model is different from any of them and 
 provides some idea about the degree of departure
from a “classical” parametric SV model.

The Box–Cox transformation has been applied in various areas in finance. The most relevant application to our work
is perhaps that made by Higgins and Bera (1992) for reasons mentioned above. Also relevant to our work is made
by Hentschel (1995) where a family of GARCH models is introduced by applying the Box–Cox transformation to
the conditional SD. A nice feature of our proposed class is that it provides a simple way to test the null hypothesis
of polynomial SV specifications against a variety of non-polynomial alternatives. Moreover, as a consequence of the
specification testing, our proposed class provides an effective channel to check the marginal distribution of unobserved
volatility.
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We now establish some basic statistical properties of the N-SV model. It is easy to see that ht is stationary and
ergodic if 	 < 1 and that if so

�h ≡ E(ht ) = �, �2
h ≡ Var(ht ) = �2

1 − 	
and �(�) ≡ Corr(ht , ht−�) = 	�.

It follows that Xt is stationary and ergodic as it is the product of two stationary and ergodic processes. For the moments
of Xt , a distributional constraint has to be imposed on vt or ht . As �2

t is nonnegative, the exact normality of vt is
incompatible unless 
 = 0 or 1/
 is an even integer. This is the well-known truncation problem with the Box–Cox
power transformation. The truncation effect is negligible if 
�h/(1+
�) is small, which is achieved when: (i) 
 is small,
or (ii) � is large, or (iii) �h is small. See Yang (1999) for a discussion on this. Our experience suggests that, however, as
far as statistical inferences and pricing options are concerned, the assumption of the exact normality of vt works well
for all the empirically possible values of parameters that we have encountered. This finding is similar to what had been
found by Stein and Stein (1991). Unfortunately, even in the case where 1/
 is an even integer, it does not seem to be
possible to obtain an analytic form for the moments of the model. As an alternative, Yu and Yang (2006) approximated
the distribution of ut = �2

t = (1 + 
ht )
1/
 by a generalized LN distribution. This alternative specification gives rise to

analytical expressions for model moments and can be thought of nesting the standard SV models in approximation.
To conclude this section, we attempt to offer a heuristic interpretation of 
 from a finance perspective which is

analogous to the introduction of continuously compounded returns. For ease of interpretation, we restrict ourselves to
the range of positive 
. Define m = 1/
 and re-write the inverse Box–Cox transformation as

�2
t =

(
1 + ht

m

)m

=
m∏

i=1

(1 + hit ), (15)

where {hit } can be understood as a sequence of intra-day volatility movements. From a market microstructure per-
spective, intra-day volatility movements are caused primarily by the arrival of new information. From (15) one can
argue that on average there are m times per day of new information arrivals and ht represents the average impact of the
information on volatility. In the LN SV model, as m → ∞ and �2

t → exp(ht ), new information arrives at the market
very frequently. In the N-SV model with a finite positive value of 
, say 
 = 0.25, on average new information arrives
at the market 4 times per day.

3. Estimation and inference using MCMC

In this section, we develop a likelihood-based technique for model estimation and inference using MCMC. The
literature on estimating SV models is vast. Broto and Ruiz (2002) provided a recent survey on numerous estimating
techniques for SV models. The choice of MCMC is mainly due to the good finite sample performance of MCMC in
the context of SV models. See, for example, Jacquier et al. (1994), Kim et al. (1998), and Meyer and Yu (2000).

As volatility in SV models is latent, the calculation of the likelihood function requires integrating out the latent
variables, which in turn make the direct likelihood-based analysis numerically difficult. Let X = (X1, X2, . . . , XT ) be
the vector of observations and f (X|�) the likelihood function. To circumvent the problem caused by the latent process,
a common practice is to augment the parameter vector to (�, h), where h = (h1, h2, . . . , hT ). Given a set of priors,
we can obtain the joint posterior, denoted as f (�, h|X), based on the likelihood of the augmented parameter vector.
The sequence of sampled augmented parameter vector forms a Markov chain whose stationary transition density is the
same as the joint posterior. When the simulated chain converges, the chain of simulated values is regarded as a sample
obtained from the joint posterior and hence can be used for statistical inferences.

3.1. Estimating the N-SV model

Assume that the priors of the model parameters are, respectively, �2 ∼ IG(p/2, S�/2), (	 + 1)/2 ∼ Beta(�, �)
and 
 ∼ N(�
, �

2

), where IG denotes the inverted gamma distribution. The joint posterior density for the parameters



J. Yu et al. / Computational Statistics & Data Analysis 51 (2006) 2218–2231 2223

and the latent volatilities is

f (�, h|X) = prior(�) × p(h1|�) ×
T∏

t=2

p(ht |ht−1, �) ×
T∏

t=1

p(Xt |ht , �)

∝ (1 + 	)�−0.5(1 − 	)�−0.5 exp

{
− (
 − �
)

2

2�2



}

×
[

T∏
t=1

g(ht , 
)−1/2

]
exp

{
−

T∑
t=1

X2
t

2g(ht , 
)

}[
1

�2

]((T +p)/2)+1

× exp

{
− (1 − 	2)(h1 − �)2 +∑T

t=2 [(ht − �) − 	(ht−1 − �)]2 + S�

2�2

}
, (16)

where p, S�, �, �, �
 and �2

 are hyperparameters to be defined by users. When �2 is integrated out of (16), we can

obtain the logarithmic marginal posterior of (	, 
, �, h),

ln f (	, 
, �, h|X) ∝ (� − 0.5) ln(1 + 	) + (� − 0.5) ln(1 − 	)

− (
 − �
)
2

2�2



− 1

2

T∑
t=1

ln g(ht , 
) −
T∑

t=1

X2
t

2g(ht , 
)

− T + p

2
ln

{
(1 − 	2)(h1 − �)2 +∑T

t=2[(ht − �) − 	(ht−1 − �)]2 + S�

2

}
. (17)

The sampling algorithm for the proposed model is based on (16) and (17). First, we use the random-walk Metropolis–
Hastings algorithm to sample (	, 
) simultaneously, given all the other parameters and latent volatilities. Second, we
have found that the posterior of �, which is conditional on all the other parameters and latent volatilities, is Gaussian
with mean and variance defined by

{
�̂∗ = �̂2

�{ 1−	2

�2 h1 + 1−	
�2

∑T
t=2(ht − 	ht−1)},

�̂2
� = �2{(T − 1)(1 − 	2) + (1 − 	2)}−1.

(18)

Thus, � can be sampled directly from N(�̂∗
, �̂2

�). Third, we sample �2 directly from its conditional posterior,

�2 ∼ IG

(
T + p

2
,

1

2

[
(1 − 	2)(h1 − �)2 +

T∑
t=2

[(ht − �) − 	(ht−1 − �)]2 + S�

])
. (19)

Finally, we sample each component of h sequentially, where the random-walk Metropolis–Hastings algorithm is
employed to update each component of h. Hence our sampling algorithm is summarized as follows:

1. Initialize � and h.
2. Sample 	 and 
 based on (17), given all the other parameters and h.
3. Sample each component of h sequentially according to (16), given �.
4. Sample �2 from (19), given all the other parameters and h.
5. Sample � from its conditional posterior, given �2, 	 and h.
6. Goto 2 and iterate for N0 + N times,

where N0 is the number of iterations in the burn-in period, and N is the number of iterations after the burn-in period.
Two important points should be noted. First,	 and
 are sampled simultaneously according to the Metropolis–Hastings

rule, rather than a single-move procedure (see, for example, Chib and Greenberg, 1995). Second, when we calculate
the acceptance probability to update a component of h, say ht , the conditional posterior of ht , given the parameters
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and the other components of h, is (ignoring the end conditions to save space)

ln p(ht |�, h\t ) ∝ − 1

2

log(1 + 
ht ) − 1

2
X2

t (1 + 
ht )
−1/


− 1

2�2 [(ht − �) − 	(ht−1 − �)]2 − 1

2�2 [(ht+1 − �) − 	(ht − �)]2,

for 
 �= 0, where h\t denotes h with ht deleted. When 
 = 0, the conditional posterior of ht becomes

ln p(ht |�, h\t ) ∝ − 1

2
ht − 1

2
X2

t exp(−ht )

− 1

2�2 [(ht − �) − 	(ht−1 − �)]2 − 1

2�2 [(ht+1 − �) − 	(ht − �)]2.

Hence, ht can be sampled by using the random-walk Metropolis–Hastings algorithm, where the acceptance probability
is computed based on the above two equations.

Following Meyer and Yu (2000), we use the convergence checking criteria available in the CODA software to check
whether convergence has been achieved, as well as the integrated autocorrelation time (IACT) to measure the simulation
inefficiency. All the reported results in this paper are based on samples, which have passed the Heidelberger and Welch
convergence test for all parameters.

3.2. Volatility estimate, likelihood evaluation and likelihood ratio test

As MCMC methods provide samples from the joint posterior distribution of all the parameters and latent volatilities, a
natural way for estimating volatility is to integrate out the model parameters from the posterior. This Bayesian approach
was suggested in Jacquier et al. (1994).Alternatively, one can make use of the so-called particle filter techniques. Particle
filter is a class of simulation-based methods developed in recent statistics literature for filtering nonlinear non-Gaussian
state space models (see, for example, Gordon et al., 1993; Kitagawa, 1996; Pitt and Shephard, 1999). With the particle
filtering algorithm, one can conduct diagnostic checking to seek for evidence on what is wrong with the model, as well
as to evaluate the likelihood of the model at the posterior mean. In this paper, we follow Berg et al. (2004) and employ
Kitagawa’s filtering algorithm with 50,000 particle points.

Once likelihood is evaluated at the posterior mean, one can make a statistical comparison between the proposed
N-SV model and a standard SV model. When the N-SV model nests a standard SV model under consideration, a simple
test statistic is the likelihood ratio test defined by

LR = 2{ln f (x|M1, �̂) − ln f (x|M0, �̂)},
where M1 and M0 denote the N-SV model and a standard SV model, respectively. For the comparison between non-
nested models, one may use the non-nested likelihood ratio test developed by Atkinson (1986) for classical inferences.
Bayesian methods are also available for the case of non-nested model comparisons, e.g., Bayes factors of Chib (1995)
for Bayesian inference when the prior is proper and the deviance information criterion (Spiegelhalter et al., 2002; Berg
et al., 2004) when the prior is not necessarily proper. In this paper, we use the likelihood ratio test.

3.3. Simulation studies

To check the reliability of the proposed MCMC algorithm for model estimation and comparison, we apply our
algorithm to a simulated data set. We generate 2000 observations from the N-SV model using the following parameter
values: � = −0.2, � = 0.2, 	 = 0.95 and 
 = 0.2. This parameter setting is selected to be empirically realistic for daily
exchange rates.

In both the simulation study and the empirical study given latter, we estimate the N-SV model using the proposed
MCMC algorithm. For comparison purposes, we also estimate the LN SV model by using the all purpose Bayesian
software package BUGS based on the single-move Gibbs sampler for the ease of implementation (see, for example,
Meyer and Yu, 2000). In both samplers, we choose a burn-in period of 50,000 iterations and a follow-up period of
500,000 iterations, and retain 1 draw for every 50 draws. The MCMC sampler is initialized by setting 	=0.95, �2=0.02



J. Yu et al. / Computational Statistics & Data Analysis 51 (2006) 2218–2231 2225

Table 2
Simulation results

True value N-SV LN SV

Mean SD 90% CI MC SE IACT Mean SD MC SE IACT

	 0.95 0.9564 0.0121 (0.9348, 0.9741) 0.00019 121.9 0.9598 0.0120 0.00050 883.7
� 0.2 0.1893 0.0261 (0.15, 0.2359) 0.00048 169.1 0.1924 0.0269 0.00138 1319.7
� −0.2 −0.2105 0.1144 (−0.3968, −0.0236) 0.00091 31.5 −0.2137 0.1256 0.00269 229.0

 0.2 0.2105 0.1444 (0.0011, 0.4355) 0.00250 149.9
Loglik. −2657.346 −2658.990
LR stat 3.287
p-value 0.0698

and � = 0 for the LN SV model and arbitrarily initialized for the N-SV model. The same prior distributions are used
for the common parameters in both models.The only exception is for �. In the LN SV model, we choose an informative
but reasonably flat prior distribution for �, such as a normal density with mean 0 and variance 25, while in the N-SV
model we use a diffuse prior for the reason argued above. The hyperparameters are, respectively, p = 10.0, � = 20.0,
� = 1.5, S� = 0.1, �
 = 0.2 and �2


 = 1.
Table 2 summarizes the results from estimation and model comparison, including the posterior means, SDs, Monte

Carlo standard errors (MC SE), IACT’s for all the parameters, the likelihood values for both models, and the likelihood
ratio statistic and associated p-value for the null hypothesis of the LN SV model against the N-SV model. For the N-SV
model we also report the 90% Bayesian credible (highest probability) intervals for all the parameters.

First, it can be seen that the proposed MCMC procedure can reliably estimate all the parameters in the N-SV model,
including the key parameter, 
. Second, the 90% Bayesian credible interval for 
 includes the true value but not 0.
Although not reported, we find that even 99% Bayesian credible interval of 
 does not include 0.5 or 1. The likelihood
ratio statistic favors the true specification and shows evidence against the standard SV model. Third, the comparison of
IACT’s across two models shows that the inefficiency factors in the N-SV model are substantially smaller and suggests
that better mixing has been achieved in the N-SV model.

4. Empirical results for exchange rates

SV models are often used to model the volatility of exchange rates (see, for example, Melino and Turnbull, 1990;
Harvey et al., 1994; Mahieu and Schotman, 1998). In this section, we estimate the proposed model using daily returns
of the dollar/pound exchange rate for the period from January 1, 1986 to December 31, 1998. The data set is available
from the H-10 Federal Reserve Statistical Release. We use the mean-corrected and variance-scaled returns defined by

Xt = Yt

s(Yt )
with Yt = (ln St − ln St−1) − 1

n

∑
(ln St − ln St−1),

where s(Yt ) is the sample SD of Yt and St is the exchange rate at time t . The sample size is 3268. Since the LN SV
model is the most widely used one in the empirical finance literature, we also estimate it for comparison.

Fig. 1 displays the adjusted return series. Table 3 summarizes the empirical results, including the posterior means,
SDs, MC SE, IACT’s for all the parameters, the likelihood values for both models, and the likelihood ratio statistic and
associated p value for the null hypothesis of the LN SV model against the N-SV model. For the N-SV model we also
report the 90% Bayesian credible intervals for all the parameters.

A few results emerge from Table 3. First, the posterior mean of 
 in the proposed N-SV model is 0.172 and the
90% Bayesian credible interval does not include 0. Although not reported, we find that even 99% Bayesian credible
interval of 
 does not include 0.5 or 1. Thus, data provide significant evidence against the LN SV model and highly
significant evidence against all the other SV models, including the Stein-Stein and Heston specifications. Although all
the standard SV models are rejected, the posterior quantities of 
 seem to suggest that the LN model is closer to the
true specification than other SV models with either 
 = 0.5 or 
 = 1. Second, the posterior mean of 	 (0.9676) is close
to 1 in the LN model, which is suggestive of a high persistency of volatility. In the proposed N-SV model, 	 remains
at a similar level. In fact all the estimated parameters have similar magnitudes and similar SDs across both models.
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Fig. 1. Time series plots for dollar/pound exchange rate return.

Table 3
Empirical results

N-SV LN SV

Mean SD 90% CI MC SE IACT Mean SD MC SE IACT

	 0.9595 0.0101 (0.9417, 0.9745) 0.00017 138.3 0.9676 0.0091 .00026 408.2
� 0.2066 0.0269 (0.1672, 0.2543) 0.00050 174.9 0.1873 0.0268 0.00090 568.1
� −0.2244 0.1044 (−0.3913, −0.0495) 0.00087 35.0 −0.2579 0.1095 0.00103 44.1

 0.1716 0.1203 (0.0039, 0.3684) 0.00214 189.0
Loglik. −4369.792 −4371.606
LR Stat 3.628
p-value 0.0568

Third, the likelihood ratio statistic and the associated p value suggest that the LN model is rejected at the 10% level.
Fourth, as in the simulation study, IACT’s are large for most parameters and indicate a slow convergence. However, all
the chains mix well and the mixing is not affected in the N-SV model. On the contrary, the inefficiency factors in the
N-SV model are considerably smaller than those in the LN model. Fifth, compared with other parameters, 
 appears
to be more difficult to estimate and has the largest value of SD. Finally, according to our interpretation of 
, for the
dollar/pound exchange rate data, on average new information arrives at the market about six times per day.

To provide diagnostic checks for the observed series and two SV models, we follow Kim et al. (1998) and compute
the forecast uniforms from one-step-ahead forecasts for both models. Fig. 2 gives the QQ-plot of the normalized
innovations obtained from the LN model and N-SV model, respectively. The plot suggests that there are more outliers
in the normalized innovations that the LN SV cannot explain than the N-SV model. Similar to Kim et al. (1998), we find
that these outliers correspond to small values of |Xt |, which are the inliers of returns. Consequently, we can conclude
that the N-SV model explains the inlier behavior better than does the LN SV model in this case.

As argued in Section 2, a by-product of the new way to model volatility is that the marginal distribution of volatility
is obtained. The marginal distributions of volatility implied from the estimated LN and N-SV models are plotted in
Fig. 3, where the solid line is for the LN SV model and hence is the density function of a LN distribution. It can be seen
that these two distributions are not very close to each other. For example, it appears that very little daily movement on
the market is more possible in the N-SV model than in the LN SV model. This finding is quite interesting and may
have important implications for risk management.

As a final comparison of the performances of the two SV models, we obtain and compare two filtered volatilities. To
conserve space, we do not plot them but merely summarize the results. In general, the two filtered volatilities are very
close to each other when volatility is not high. When volatility is high, the differences become large. Moreover, we find
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Fig. 2. Diagnostic checks of two SV models for daily returns of the dollar/pound exchange rate. The first panel is the QQ-plot of the normalized
residuals from the LN SV model; the second panel is the QQ-plot of the normalized residuals from the N-SV model.
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Fig. 3. Marginal densities of the dollar/pound exchange rate volatility implied from the LN SV model and the N-SV model. The solid line is for the
LN SV model; the dotted line is for the N-SV model.

that the two filtered volatilities have similar sample means (0.995 versus 1.004) but rather different sample variances
(0.3297 for the N-SV model versus 0.3782 for the LN SV model), indicating that while two models imply a similar
level of long term variance the N-SV model tends to generate a smoother volatility series. As we will see below, this
property has important implications for option pricing.
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5. Implications for option pricing

The most important application of the SV model is probably the pricing of options. Under a set of assumptions,
Hull and White (1987) showed that the value of an European call option on stocks based on a general specification
of stochastic volatility is the Black–Scholes price integrated over the distribution of the mean volatility. Using a
characteristic function approach, Heston (1993) derived a closed-form solution for a European call option based on a
square-root specification of volatility. For most other SV models, including our newly proposed N-SV model, option
prices have no closed form solution and hence have to be approximated. A flexible way for approximating option prices
is via Monte Carlo simulations. Hull and White (1987) outlined an efficient procedure for conducting Monte Carlo
simulations to calculate an European call option on stocks.

To examine the economic importance of our N-SV model on option pricing, we price options using both the LN SV
and N-SV models, provided that the true model is the estimated N-SV model. To price options, we follow Mahieu and
Schotman (1998).

Let C be the value of a European call option on a currency with maturity  (measured in number of days), strike
price X, current volatility �2

0, current exchange rate S0, and the difference between the domestic and the foreign interest
rates rd − rf . Under the same set of assumptions as in Hull and White (1987), it can be shown that

C = e−rd
∫ ∞

0
BS(w)p df (w|h0) dw, (20)

where w2
 is given by

w2
 =

∫ 

0
g(hs, 
) ds, (21)

and BS(w) is the Black–Scholes price for a currency option

BS(w) = F0N(d1) − XN(d2), (22)

in which F0 = S0e(rd−rf ) is the forward exchange rate applying to time , d1 and d2 are given, respectively, by

d1 = ln(F0/X) + w2


w
(23)

and

d2 = d1 − w. (24)

In discrete time setup one to approximate w2
 . In this paper, we follow the suggestion of Amin and Ng (1993) and

approximate w2
 by

w2
 ≈

n∑
t=1

g(hi, 
), (25)

where n is the number of discrete time periods until maturity of the option. In this paper, we choose the unit discrete
time period to be one trading day and hence n (=) is the number of trading days before the maturity.

The Monte Carlo algorithm for calculating the value of a European call option on a currency may be summarized as
follows:

1. Obtain the initial value of h0 based on the initial value of �2
0.

2. Draw independent standard normal variates �i for 1� i�n.
3. Generate hi according to

hi = � + 	(hi−1 − �) + ��i for i = 1, . . . , n.

4. Calculate w2
 using Eq. (25).
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Table 4
Comparison of call option prices on currency

S0/X LN SV N-SV Percentage
Option price Option price difference

0.75 2.401e − 5 1.172e − 5 −104.86
0.8 1.511e − 4 1.032e − 4 −46.41
0.85 8.645e − 4 7.231e − 4 −19.55
0.9 0.00415 0.00386 −7.513
0.95 0.01548 0.01507 −2.721
1 0.04257 0.04213 −1.044
1.05 0.08701 0.08661 −0.462
1.1 0.1413 0.1410 −0.213
1.15 0.1971 0.1969 −0.102
1.2 0.2504 0.2503 −0.040
1.25 0.3001 0.3001 0.000

5. Calculate BS(w) using Eq. (22) and call it p1.
6. Repeat Steps 3–5 using {−�i} and define the value of BS(w) by p2.
7. Calculate the average value of p1 and p2 and call it y.
8. Repeat Steps 2–7 for K times to give a sequence of y values.
9. Calculate the mean of y’s and this is the estimate of the option price.

Our algorithm is closely related to the one given by Mahieu and Schotman (1998) but differs from theirs in two
aspects. First, we use an antithetic method in Step 6 to reduce the variance of simulation errors. Second, we use a much
larger value of K (10,000 as opposed to 500) to ensure small approximation errors in calculating Eq. (20).

The algorithm is then applied to pricing a half-year call option based on the LN SV and N-SV models with the
estimated parameter values in Table 2 imposed. Since the parameter estimates reported in Table 2 are based on the
scaled data, for the purpose of pricing options, we have to scale the data back by multiplying the mean equation by
the sample standard error of raw data which equals 0.006321 for the dollar/pound exchange rate. In both models, we
choose n = 126, S0 = 1.5, rd = 0, rf = 0, K = 10, 000, �0 = 0.006349 and S0/X takes each of the following values,
0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25. The initial value of standard error is very close to the sample
standard error of the dollar/pound exchange rate and corresponds to a square root of volatility of 160% per year. Table 4
compares the option prices and percentage differences between the prices based on the two estimated SV models.

The main conclusion we draw from the table is that the LN SV model tends to overprice the options. In fact the N-SV
option price is always no bigger than the LN option prices. This finding is not surprising because we have found that
while both models have a similar value of long term variance, the N-SV model tends to generate a smoother volatility
series. Prices of all the out-of-money options based on the N-SV model are systematically lower than those based on
the LN model and the deep-out-of-the-money options show the largest percentage of discrepancies. The differences
in the percentage term are much smaller for in-the-money options and eventually disappear when the in-the-money
option goes very deep. Since near out-of-money options where the strike price is within about 10% of the spot price
are traded very frequently over the counter and on exchanges, our results have important practical implications.

6. Conclusions and extensions

In this paper, a class of nonlinear SV (N-SV) models has been proposed. The new class facilitates comparing and
testing all standard parametric SV models. Since these alternative parametric SV models coexist in the literature, our
approach is useful in the sense that it can provide evidence to support or against some of the classical specifications. The
MCMC approach is developed to provide a likelihood-based inference for the analysis of proposed models. Simulation
studies confirm that the proposed MCMC algorithm works well for the new models. An empirical application is given
using the daily dollar/pound exchange rate series. Empirical results show that all the standard SV models are rejected
and hence provide evidence of nonlinear stochastic volatility. Furthermore, model diagnostics indicate that without
sacrificing the overall goodness of fit, the N-SV model improves the fit to the data when the market has little movement.
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Moreover, this nonlinearity has important implications for pricing currency options. In particular, the LN models tend
to overprice out-of-money options. The deeper the out-of-money options, the larger the percentage bias.

Although in this paper we focused on one volatility factor which is free of jumps, there are some possible extensions
to our work. One possible extension is to use the suggested methodology to analyze stock data. However, as stock data
often display a strong feature of asymmetric volatility, together with a higher kurtosis than implied by the standard
SV models, one has to incorporate a leverage effect and a fat-tailed error distribution into the N-SV model. Also, as
equity data often have more than one volatility factors (Gallant and Tauchen, 2001), one needs to apply the Box–Cox
transformation to all the factors. Other interesting extensions would be to incorporate jumps and long memory volatility
into the model (see, for example, Duffie et al., 2000; Breidt et al., 1998). Furthermore, although we present our model
and estimation method in terms of discrete-time SV models, one can estimate the continuous-time N-SV models using
alternative estimation methods. Finally, it would be interesting to evaluate the out-of-sample forecasting performances
of the N-SV model relative to standard SV models.
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