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1. INTRODUCTION

Modelling stock returns has been a very interesting topic for a long time.
One reason is that some important models in financial theory critically
rely on the distribution form for the returns of underlying stocks, such as
mean-variance portfolio theory, capital asset pricing models, and prices of
derivative securities. In the search for satisfactory descriptive models of
stock returns, many distributions have been tried and some new distribu-
tions have been created over past several decades. Tucker (1992) catego-
rizes the candidate models by independent and linear processes and time-
dependent processes where both independence and linearity are relaxed.
Time-dependent processes have been successful in the modelling of finan-
cial time series including daily stock returns. However, as Tucker (1992)
claims, the descriptive validity of competing time-independent model still
remains unresolved and there has been much debate among them. All
time-independent models can be divided by two families. One family has
finite-variance. Examples include the normal distribution proposed by Os-
borne (1959), the Student t distribution by Blattberg and Gonedes (1974),
the mixture of normals (MN) by Kon (1984), the compound log-normal
and normal (LN) distribution by Clark (1973), the mixed diffusion-jump
(MDJ) model by Press (1967) and more recent one, the Weibull distribu-
tion by Mittnik and Rachev (1993). The other family has infinite-variance,
such as the stable distribution proposed by Mandlebrot (1963) and Fama
(1965).

The stable distribution has been appreciated as a possible alternative
to describe the stock returns for both statistical and economic reasons.
Interesting statistical properties include: (1) only stable laws have domains
of attraction (generalized central limit theorem); (2) stable distributions
belong to their domain of attraction (stability). Economically speaking,
the stable distribution has unbounded variation, and hence is consistent
with continuous-time equilibrium in competitive markets (see McCulloch
(1978)).

Despite these appealing properties, the stable distribution is less com-
monly used today. It has fallen out of favor, partly because of the difficulties
involved in theoretical modelling; standard financial theory, such as the op-
tion theory, almost always requires finite variance of returns. Furthermore,
evidence has been found against the stable distribution. Firstly, using the
conventional likelihood ratio test, Blattberg and Gonedes (1974) found that
the Student t distribution has greater descriptive validity than the symmet-
ric stable distribution, and Tucker (1992) found that finite-variance models
outperform the asymmetric stable distribution. Using the Komogorov-
Smirnov test, Mittnik and Rachev (1993) found that the Weibull distri-
bution is the most suitable candidate. Secondly, when the tail behavior
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was investigated, Akgiray and Booth (1987) found that the tails of sta-
ble distribution are too thick to fit the empirical data. Thirdly, Lau, Lau
and Wingender (1990) found that as the sample size gets big the sample
high moments seems to converge while the stable distribution implies that
sample high moments should blow up rapidly. Finally, the evidence pro-
vided by Blattberg and Gonedes (1974) indicates that the distribution of
monthly returns conforms well to the normal distribution, while the stable
distribution implies that long horizon (for example, monthly) returns will
be just as non-normal as short-horizon (for example, daily) returns.

The purpose of this paper is to re-examine the descriptive power of
the finite-variance distribution family and the infinite-variance distribution
family as models of daily stock returns. However, instead of using overall
goodness of fit testing methodology or model selection criteria, we concen-
trate on studying the variance behavior for chosen distribution families. To
be more specific, we propose a test statistic to distinguish finite-variance
families against infinite-variance families for stock returns. Particular at-
tention is paid to the variance due to two reasons. Firstly, as far as the
variance is concerned, an infinite-variance model is fundamentally riskier
than a finite-variance model. Secondly and more importantly, many finan-
cial models critically depend on the assumption on the second moment.
Examples include the capital asset pricing model (CAPM) and the Black-
Scholes option price model. As a result, finite variance and infinite variance
could have very different implications for theoretical and empirical analy-
sis. Unfortunately, testing for finite variance or infinite variance based on a
sample without choosing specific distribution families will probably never
be possible since such a test could have no power. Instead of directing
the test on variance itself, we test a specific finite-variance model against
a specific infinite-variance model.

The paper is organized as follows. The next section introduces the test
statistic, motivates the intuition behind it, and obtains the statistical prop-
erties of it. Section 3 briefly summarizes the candidate models of the stock
returns, including finite-variance family and infinite-variance family. The
proposed statistic is used to discriminate between these two families. Sec-
tion 4 tests the finite-variance models proposed in the literature and ex-
amines the finite sample properties of the test statistic in Monte Carlo
studies. Section 5 describes how the basic framework can be extended
to time-dependent processes, such as ARCH-type models and stochastic
volatility models. Section 6 concludes. All the proofs are collected in Ap-
pendix.
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2. PROPOSED STATISTIC AND ITS PROPERTIES

DuMoucher (1973) states that if a sample has a standard deviation many
times as large as the interquartile range, the Data Generating Process
(DGP) could have an infinite variance. However, he does not give a statisti-
cal analysis to indicate when the DGP has an infinite variance. Despite this
we find that his statement is quite intuitive and study along this line serves
our purpose to distinguish finite variance models and infinite variance mod-
els. In other words, the statistical properties of the relative magnitude of
the sample standard deviation with the sample interquartile range should
be investigated.

Suppose {Xi}n
i=1 be an iid sequence of observations with common distri-

bution function F (x), common density function f(x), mean µ and variance
σ2. Let

s2
n =

1
n− 1

n∑
i=1

(Xi − µ̂)2

be the sample variance, where µ̂ is the sample mean. Denote the quantile
process by Qn(t) (see Chapter 6, Csörgő and Horváth (1993)), that is,

Qn(t) =
{

X1,n, if t = 0
Xk,n, if (k − 1)/n < t ≤ k/n, 1 ≤ k ≤ n

where X1,n ≤ X2,n ≤ · · · ≤ Xn,n are order statistic. The proposed test
statistic is then defined as,

Tn(θ0) =
sn

Qn(1− θ0)−Qn(θ0)
, (1)

where 0 < θ0 < 0.5. Hence the denominator is the θ0-quartile range and
indeed the interquartile range when θ0 = 0.25. Therefore, Tn(0.25) is ba-
sically the ratio of the sample standard deviation and sample interquartile
range.

It seems natural to use sample variance or sample standard deviation
to discriminate between finite-variance distributions and infinite-variance
distributions. Unfortunately, the power based on the sample variance or
sample standard deviation may not be good since a finite-variance distri-
bution can generate a larger sample variance than a distribution with an
infinite variance can even when the sample size is large. By taking the ratio
of two dispersion parameters, however, the proposed test can be standard-
ized or at least reduced the dispersion of any finite-variance distribution.
This is because when the true DGP has a finite variance, less observations
come from the tails and hence sn → σ. Since both Qn(0.75) and Qn(0.25)
are finite for any n, Tn converges to a finite number as n → ∞. Conse-
quently, it is reasonable to believe that a large Tn comes from a DGP with
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infinite variance rather than a DGP with finite variance. On the other
hand, if the true DGP has an infinite variance, more observations must be
from the tails and sn → ∞ as n → ∞. This implies the unboundness of
Tn(0.25). Thus we set up the hypothesis as the following,{

H0 : DGP is a certain finite variance distribution,
H1 : DGP has an infinite variance. (2)

If H0 is rejected, the model in H0 should not be used as a candidate model.
In this subsection we assume X1, X2, ..., Xn to be iid random variables.

The properties of Tn are established in this section. Their proofs are found
in Appendix.

Proposition 2.1. Tn is invariant for a scale-location family.

This is an indeed appealing property. For a scale-location family, no
matter how big the scale is, the expectation of the statistic always takes
the same value. In other words, if we think of Tn as a measure of risk, the
risk associated with a scale-location family is a constant. Because of this
property, any scale-location family can be treated as one model.

Proposition 2.2. If σ2 < +∞, and Q(t) is continuous at θ0 and 1−θ0,
then

Tn → T =
σ

q1 − q0
< ∞ a.s., (3)

where q1 = Q(1− θ0), q0 = Q(θ0) with Q(t) = inf{x : F (x) ≥ t}.

This result is very intuitive since it says that Tn converges almost surely
to its population counterpart. According to this proposition, if the model
in H0 has good descriptive power, it must yield a value of T which is close
to the empirical Tn.

Proposition 2.3. Assume that
(i) f(q1) > 0, f(q0) > 0.
(ii) f(x) is continuous in a neighborhood of q1 and q0.

If E|X1|4 < ∞, then,

√
n(Tn − T ) d.→ N(0,Σ2), (4)

that is,

Tn
a∼ N(T,

Σ2

n
), (5)
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where

Σ2 = (q1 − q0)−4E

{
(q1 − q0)

2σ
((X1 − µ)2 − σ2)− σ(I{X1 > q1} − θ0)

f(q1)

−σ(I{X1 ≤ q0} − θ0)
f(q0)

}2

, (6)

The asymptotic distribution in Proposition (2.3) is the main result of
the paper since it provides the basis for a large sample test procedure.
Although Tn is invariant for a scale-location family, it is important to note
that in general both T and Σ2 depend on f and hence H0. Therefore in
general our statistic cannot be used to test the following hypothesis,{

H0 : DGP is any finite variance distribution,
H1 : DGP has an infinite variance. (7)

Instead Tn can be used as a non-nested test of a specific finite variance
distribution against an infinite variance distribution, where the distribu-
tion along with the parameters in H0 have to be specified except for the
scale and location parameters. Hence the test bears some resemblance to
misspecification test statistics.

Proposition 2.4. Under assumptions of the proposition (2.3), if f is
symmetric, then

Σ2 =
K − 1
4a2

+
2θ0(1− 2θ0)

a4b2
+

θ0c1 − (1− θ0c2)
2a3b

, (8)

where K is the kurtosis of X, a = 1
T , b = σf(q), c1 =

∫ q1

−∞(x−µ
σ )2f(x) dx,

and c2 =
∫∞

q1
(x−µ

σ )2f(x) dx.

3. CANDIDATE MODELS FOR DAILY STOCK RETURNS

In this section we introduce the most well-known time-independent mod-
els for daily stock returns, briefly review the properties of the candidate
models, and discuss the relevant estimation method and numerical algo-
rithm if necessary. In the finite-variance family, the normal distribution,
the Student t distribution, the mixture of normals, mixed diffusion-jump
model, the compound log-normal and normal model, and the Weibull dis-
tribution are presented, while the stable distribution represents infinite-
variance family. Note that we are not able to cover all the candidates in
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the literature since some new distributions are still being created. However,
we believe that our test can be used in the same way for these distributions.

3.1. Normal Distribution
The first model used in the literature to describe daily stock returns

is the normal distribution proposed by Bachelier (1900) and extended by
Osborne (1959). Black and Scholes (1973) provide a formula to price an op-
tion assuming the normality of underlying asset. Although the assumption
of normality greatly simplified the theoretical modelling, many empirical
studies have shown evidence against it (see Blattberg and Gonedes (1974),
Clark (1973), Kon (1984) and Niederhoffer and Osborne (1966)). For ex-
ample, empirical daily stock returns exhibit fatter tails and greater kurtosis
than the normal distribution. Despite this evidence, in this paper we still
choose it as a competing model because we want to check the validity of this
assumption by using our test statistic. Observe that all moments for the
normal distribution exist and the kurtosis for the normal family is three.
Furthermore, since the normal distribution belongs to a scale-location fam-
ily, Tn is invariant to both µ and σ2 and hence parameter estimation is not
necessary.

3.2. Student Distribution
The Student distribution is first proposed to model the stock returns by

Blattberg and Gonedes (1974). Its density is,

g(x) =
Γ[(1 + ν)/2]νν/2

√
H

Γ(1/2)Γ(ν/2)
[ν + H(x−m)2]−(ν+1)/2, (9)

where ν ≥ 2, and H,m, ν are the scale parameter, location parameter, and
degrees-of-freedom parameter. Therefore, Tn is invariant to both H and m,
but depends on ν. Furthermore, when ν > 4 the Student distribution has
a finite fourth moment and hence the C.L.T. in Section 2 can be applied.
The model is estimated by the maximum likelihood method using a Quasi-
Newton algorithm.1

3.3. Mixture of Normals
Kon (1984) proposes to use the mixture of normals to model stock re-

turns, i.e., the stock return Xi come from N(µj , σ
2
j ) with probability αj

and α1 + · · ·+αk = 1. A characteristic of this model is that it can capture

1With little effort, we can show that m̂ML = 1
n

∑n
i=1 Xi. Therefore, only parameters

H and ν are considered in the numerical algorithm.
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the structural change. The density function is,

g(x) =
k∑

j=1

αj
1√
2πσ2

j

exp

{
− (x− µj)2

2σ2
j

}
. (10)

All moments exist for the mixture of normals. However, in this paper
we only consider the mixture of two normals due to two reasons. Firstly,
Tucker (1992) found the mixture of two normals has the greatest descrip-
tive power among the family of the mixture of normals. Secondly, we want
to avoid a model with too many parameters. The parameters for the mix-
ture of two normals are α, µ1, µ2, σ

2
1 , σ2

2 and Tn depends on all of them.
The maximum likelihood method is employed using a Newton-Raphson
algorithm.

3.4. Mixed Diffusion-Jump Process
Press (1967) and Merton (1976) propose a process which mixes Brownian

motion and a compound Poisson process to model the movement of stock
prices,

dP (t) = αP (t)dt + σDP (t)dB(t) + P (t)(exp(Q)− 1)dN(t). (11)

where B(t) is a standard Brownian motion (BM). N(t) is a homogeneous
Poisson process with parameter λ. Q is a normal variate with mean µQ

and variance σ2
Q.

Using Ito’s Lemma, we can solve the stochastic differential equation (11)
for the stock return X(t)(= log(P (t)/P (t− 1))),

X(t) = µD + σDB(1) +
∆N(t)∑
n=1

Qn, (12)

where µD = α− σ2
D

2 . The density function for the process is,

g(x) =
∞∑

n=0

e−λλn

n!
exp

(
− (x− µD − nµQ)2

2(σ2
D + nσ2

Q)

)
1√

2π(σ2
D + nσ2

Q)
. (13)

All moments are finite for this density and Tn depends on all five parameters
µD, σ2

D, µQ, σ2
Q and λ. The maximum likelihood estimates are found by

using a Quasi-Newton algorithm. However, to numerically maximize the
likelihood, we have to truncate the infinite sum in the equation (13) after
some value of N . In practice, we choose N = 11 which provides satisfactory
accuracy.
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3.5. Compound Log-normal and Normal
This model is first proposed by Clark (1973). Instead of modelling re-

turns as drawn from a single distribution or a mixture of two distributions,
Clark (1973) assumes the returns to be conditional normal, conditional on
a variance parameter which is itself stochastic. To be more specific, he
assumes Xi|Z ∼ N(0, Zσ2

1) and log(Z) ∼ N(α, σ2
2). The density is then,

g(x) =
∫ ∞

0

{ 1√
2πzσ2

1

exp(− x2

2zσ2
1

)}{ 1
z
√

2πσ2
2

exp(− (log z − α)2

2σ2
2

)} dz.

(14)
It is easy to show that α and σ2

1 can be only identified jointly. Consequently,
we assume Xi|Z ∼ N(0, Zσ2

1) and log(Z) ∼ N(0, σ2
2). The density is then,

g(x) =
∫ ∞

0

{ 1√
2πzσ2

1

exp(− x2

2zσ2
1

)}{ 1
z
√

2πσ2
2

exp(− (log z)2

2σ2
2

)} dz. (15)

All moments exist for this density and Tn is invariant to σ2
1 . The estimates

are obtained by the maximum likelihood method using a Quasi-Newton
algorithm.

3.6. Weibull Distribution
Mittnik and Rachev (1993) first propose to use the Weibull distribution

to model stock daily returns. The Weibull distribution is attractive since
it is one type of min-stable distribution. More specifically, suppose mn =
min{X1, · · · , Xn}, where X1, · · · , Xn are iid. If, for some constants cn > 0
and dn ∈ R, cnmn + dn

d→ Z, where Z is a random variable with non-
degenerate distribution function m, then m could be a Weibull distribution.

The density function for the Weibull distribution is,

f(x) =
{

0 if x < b
α
a (x−b

a )α−1 exp{−(x−b
a )α} if x ≥ b

,

where α is the index parameter, b is the location parameter and a is the
scale parameter and thus Tn is invariant to both a and b. Furthermore, the
density has finite all order of moments, for example, E(X) = aΓ( 1

α + 1) +

b, V ar(X) = a2

{
Γ( 2

α +1)−
(

Γ( 1
α +1)

)2}
. The estimates are obtained by

the maximum likelihood method using a Quasi-Newton algorithm.

3.7. Stable Distribution
Mandlebrot (1963) is the first person who proposes the stable distribution

to model stock returns. The stable distribution is usually characterized by
the characteristic function. The characteristic function of the general stable
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TABLE 1.

Tn in the Empirical Samples

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Tn(θ0 = 0.25) 0.8406 0.9694 1.0174

distribution is given by,

c(t) =
{

exp{iµt− σ|t|α[1− iβsign(t) tan(πα
2 )]} if α 6= 1

exp{iµt− σ|t|α[1 + iβ 2
π sign(t) ln(|t|)]} if α = 1 . (16)

where index(α), skewness(β), scale(c), and location(a) are parameters. Ob-
viously Tn is invariant to both c and a. If 1 < α < 2, which is the case for
almost every financial series, the tails of the stable are fatter than those of
the normal and the variance is infinite. Unfortunately, the density func-
tion has no closed form for 1 < α < 2. A fast program to do maximum
likelihood estimation of stable distributions is provided in Nolan (1999). It
is an improved program over the one first proposed in Nolan (1997) and
uses a fast 3-dimensional cubic spline interpolation. In this paper the max-
imum likelihood estimates of all four parameters are found using Nolan’s
program.

4. IMPLEMENTATION, SIMULATION AND APPLICATION

The dataset we use is daily returns for the Standard and Poor 500
(S&P500) stock market composite raw index. We consider three differ-
ent periods. The first one is pre-crash sample covering the period from
January 1976 to March 1985 with 2,400 observations. The second one also
has 2,400 observations but covers the period after the crash from May 1988
to July 1997. The entire sample from January 1976 to July 1997 with 5,614
observations is also examined. Table 1 reports Tn with θ0 = 0.25 for these
three samples. We note that the post-crash sample shows a larger value
of Tn than the pre-crash sample. Furthermore, since the entire sample in-
cludes October, 1987 — stock-market crash days, it is not surprising that
the associated Tn is largest.

As we argued before, the hypothesis we are going to test is the one
given by (2). Since all the competing models except the stable distribution
have finite variance, we set H0 to be one of finite-variance models. When
Tn is parameter free under H0, we can choose H0 to be one distribution
family, such as the normal family. Unfortunately, in most cases Tn is not
completely parameter free. Consequently, H0 has to be a certain model
with parameters specified. In this paper we specify the parameters to be
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TABLE 2.

Estimates of the Competing Models

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

student ν = 6.3879 ν = 3.9942 ν = 3.9382

MN µ1 = −2.5873× 10−4 µ1 = 6.2079× 10−4 µ1 = 5.0964× 10−4

µ2 = 1.3990× 10−3 µ2 = 3.758× 10−4 µ2 = −1.3989× 10−3

σ1 = 6.1653× 10−3 σ1 = 4.2105× 10−3 σ1 = 7.2094× 10−3

σ2 = 1.1670× 10−2 σ2 = 1.0351× 10−2 σ2 = 2.6493× 10−2

α = 0.6736 α = 0.5674 α = 0.9528

LN σ2
2 = 0.4576 σ2

2 = 0.8811 σ2
2 = 0.9063

MDJ µ = −3.732× 10−4 µ = 4.7576× 10−4 µ = 5.168× 10−4

µQ = 7.06× 10−4 µQ = 3.05× 10−5 µQ = −2.047× 10−4

σ2 = 2.59× 10−5 σ2 = 7.42× 10−6 σ2 = 2.527× 10−5

σ2
Q = 4.73× 10−5 σ2

Q = 3.72× 10−5 σ2
Q = 9.25× 10−5

λ = 0.92847 λ = 1.2796 λ = 0.5157

Weibull α = 5.0693 α = 9.0062 α = 20.3287

stable α = 1.6932 α = 1.4991 α = 1.5460

β = 0.2013 β = −0.0166 β = 0.0580

the ML estimates.2 Therefore, to implement the test, we have to first fit
the models in H0 to the data sets. The relevant estimation method for
each candidate model was presented in Section 3. After setting up the
hypothesis, we can obtain the asymptotic means and asymptotic variances
for Tn based on Proposition (2.3). The p-values are then calculated.

In Table 2 we report the ML estimates of all finite variance models for
each data set. We also report the ML estimates of the stable model. Since
Tn is invariant to µ, σ2 in the normal distribution, H,m in the Student
distribution, σ2

1 in the compound log-normal and normal model, a, b in
the Weibull distribution, and a, c in the stable distribution, the estimates
of these parameters are not reported. Moreover, the estimates of ν in
the Student model are less than 4 for both the post-crash sample and the
entire sample, the asymptotic distribution of Tn is not applicable in either
situation. Table 3 reports the asymptotic distributions and Table 4 shows
the associated p-values.

It is also interesting to consider the finite sample performance of the
test, such as finite sample distributions and size distortions. To do that
we have to specify a distribution for H1. In this paper we use the stable
distribution. In all the Monte Carlo studies 3,000 replications are generated
under H0 and H1 respectively according to the ML estimates reported in
Table 2. Tn is calculated for each replication and thus the finite sample

2Actually only those parameters on which Tn depends are needed to be specified.
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TABLE 3.

Asymptotic Distribution of Tn under H0

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal N(0.7413, 1.97× 10−4) N(0.7413, 1.97× 10−4) N(0.7413, 8.42× 10−5)

Student N(0.8440, 4.50× 10−4) Not Applicable Not Applicable

MN N(0.8402, 3.25× 10−4) N(0.9802, 5.57× 10−4) N(0.8953, 4.18× 10−4)

LN N(0.8543, 4.11× 10−4) N(0.9688, 8.01× 10−4) N(0.9754, 3.34× 10−4)

MDJ N(0.8511, 2.75× 10−4) N(0.9648, 4.32× 10−4) N(0.9425, 1.57× 10−4)

Weibull N(0.7307, 1.86× 10−4) N(0.7569, 2.35× 10−4) N(0.7854, 1.31× 10−4)

TABLE 4.

p-values of the Test

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal 0 0 0

Student 0.5628 Not Applicable Not Applicable

LN 0.7512 0.4915 0.0116

MN 0.4907 0.6757 0

MDJ 0.7368 0.4120 0

Weibull 0 0 0

distributions of Tn under H0 and H1 are obtained. Using the finite sample
distributions, we calculate critical values and powers of the test. In Table
5 we present the finite sample means and sample variances of Tn under
H0 for all three samples. We report the 95% critical value in Table 6
and the power of the test in Table 7. We also perform a Monte Carlo
study to obtain the real sizes of the test in finite samples and compare
them with the nominal sizes. 3,000 replications are generated under H0

according to the estimates reported in the second column of Table 2 and
each replication has 2,400 observations. The nominal sizes are chosen to be
0.1%, 0.5%, 1%, 5%, 10%, 20% and 50%. The sizes are reported on Table 8
and plotted in Figure 1.

A detailed examination of Table 3 and Table 5 reveals that the asymp-
totic distribution of Tn is very close to the finite sample distribution of Tn

across all three samples and all finite-variance distributions. Not surpris-
ingly, therefore, we end up the same conclusions from Table 4 and Table
6. Table 4 indicates that, for all three samples, the normal distribution
can be easily rejected by the proposed test statistic, consistent with em-
pirical results when some other test statistics, such as the sample kurtosis,
are used. Furthermore, for both the pre-crash sample and the post-crash
sample, most finite variance distributions cannot be rejected. For example,
for the pre-crash sample the Student distribution, the mixture of normals,
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TABLE 5.

Finite Sample Distribution of Tn under H0

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal (0.7420, 1.96× 10−4) (0.7420, 1.96× 10−4) (0.7418, 8.98× 10−5)

Student (0.8442, 4.44× 10−4) Not Applicable Not Applicable

MN (0.8316, 3.46× 10−4) (0.9760, 5.76× 10−4) (0.8990, 4.30× 10−4)

LN (0.8551, 4.10× 10−4) (0.9691, 8.07× 10−4) (0.9759, 3.52× 10−4)

MDJ (0.8520, 3.92× 10−4) (0.9663, 6.18× 10−4) (0.9434, 2.38× 10−4)

Weibull (0.7313, 1.92× 10−4) (0.7575, 2.40× 10−4) (0.7855, 1.26× 10−4)

TABLE 6.

Finite Sample Distribution of Tn under H0

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal 0.7653 0.7653 0.7577

Student 0.8814 Not Applicable Not Applicable

MN 0.8622 1.0155 0.9331

LN 0.8905 1.0182 1.0065

MDJ 0.8837 1.0071 0.9692

Weibull 0.7543 0.7837 0.8035

TABLE 7.

Power of the Test

Sample 1: 76-85 Sample 2: 88-97 Sample 3: 76-97

Normal 1 1 1

Student 1 Not Applicable Not Applicable

MN 1 1 1

LN 1 1 1

MDJ 1 1 1

Weibull 1 1 1

TABLE 8.

Size of the Test

Nominal size 0.001 0.005 0.01 0.05 0.1 0.2 0.5

Normal 0.003 0.009 0.012 0.056 0.114 0.223 0.507

Student 0.002 0.0067 0.0110 0.065 0.107 0.192 0.484

MN 0.001 0.0077 0.0117 0.0517 0.096 0.196 0.490

LN 0.0 0.0087 0.0197 0.0637 0.112 0.193 0.501

MDJ 0.007 0.0217 0.0250 0.0937 0.1450 0.257 0.513

Weibull 0.001 0.006 0.0137 0.062 0.114 0.218 0.519
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Figure 1: Size of the Test
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the mixed diffusion-jump process and the compound log-normal and nor-
mal model cannot be rejected at 5% significant level. For the post-crash
sample the mixture of normals, the mixed diffusion-jump process and the
compound log-normal and normal model cannot be rejected at 5% signifi-
cant level. This finding is consistent with what is normally found in most of
the recent literature; see Tucker (1992), Kon (1984), Blattberg and Gonedes
(1974). However, for the entire sample all the finite-variance models are
rejected at 5% or even smaller significant levels. The finding is very inter-
esting and suggests that when the value of Tn gets bigger and bigger, it is
harder and harder for the data to be modeled by the existing finite-variance
models. The result is not surprising since a finite-variance model is prone
to generate a value of T which is not large enough to match the empiri-
cal Tn. If we interpret Tn as a measure of risk, the above finding means
that the existing finite-variance models have difficulties to explore the high
risk that the actual stock markets have. Finally, Table 7 provides the ev-
idence that in finite samples our test has very good power. From Table 6
and Figure 1, we note that in terms of the size of the test, it works quite
well for the normal distribution, the Student t distribution, the mixture of
normal distribution, the compound log-normal and normal model, and the
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Weibull distribution. Although the size distortions are larger for the mixed
diffusion jump model, the biases suggest under-rejection of the model and
hence support our finding of rejection of all finite-variance distributions in
the above empirical study.

5. EXTENSIONS

Recent literature has found success of using the time-dependent processes
for the stock returns. Among them, two families have attracted most atten-
tions, namely, the ARCH-type model (Bollerslev, Chou and Kroner (1992))
and the SV model (Ghysels, Harvey, and Renault (1996)). Both families
allow the returns to follow a martingale difference sequence satisfying the
α-mixing condition.3 By assuming the conditional volatility to be corre-
lated, however, the processes are not iid. Under some regular conditions,
the marginal distribution of both the ARCH and SV models allows ex-
cess kurtosis and has finite variance (see, for example, Bollerslev (1986)
and Ghysels, Harvey, and Renault (1996) for the analytical expression of
unconditional moments).

The proposed statistic can be used to test an α-mixing sequence. To do
that, we obtain the asymptotic distribution of Tn in the following proposi-
tion.

Proposition 5.5. Suppose that {X1, X2, · · · , Xn, · · · } is a stationary
α-mixing sequence with marginal distribution function f(x). We further
assume

(i) f(q1) > 0, f(q0) > 0.
(ii) f(x) is continuous in a neighborhood of q1 and q0.
(iii) E|X1|2r < ∞ for some r > 2 and

∑∞
n=1 α1−2/r(n) < ∞.

Then,

Tn
a∼ N(T,

Σ2

n
), (17)

where

Σ2 = (q1 − q0)−4(Eξ2
0 + 2

∞∑
i=1

Eξ0ξi) (18)

with

ξi =
q1 − q0

2σ
((Xi − µ)2 − σ2)− σ(I{Xi > q1} − θ0)

f(q1)
− σ(I{Xi ≤ q0} − θ0)

f(q0)
.

(19)

3See Lin and Lu (1996) for the detail on the definitions of various mixing conditions.
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It is known that under some conditions most ARCH-type models and
SV models are strictly stationary α-mixing processes. Hence (17) can be
used to test them against an infinite variance distribution.

6. CONCLUSIONS

This paper has considered a test for the competing models for daily stock
returns with particular concern about the variance behavior. In the recent
literature, the likelihood ratio test and the Komogorov-Smirnov test are
used to compare the descriptive power of the competing models. Both
tests suggest that distributions with finite variance outperform the distri-
bution with infinite variance. A common feature for these two tests is that
all the observations receive the same weight. Model selection criterion,
such as Akaike Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC), shares the same spirit although they are used infrequently
in this context. Our test statistic, however, assigns different observations
different weights. Obviously in our test statistic more extreme observa-
tions receive larger weight than less extreme ones. Consequently, our test
statistic prefers a distribution whose tail behavior is closer to the empirical
distribution to a distribution whose near-origin behavior is closer to the
empirical distribution. Although some finite variance models have good
descriptive power for both pre-crash sample and after-crash sample, they
do not perform well for the entire sample. Therefore, our empirical results
suggest either direction. This finding is different from what has been dis-
covered in the recent literature where the finite-variance distributions are
found to dominate the stable distribution (see Tucker (1992), Akgiray and
Booth (1987), Lau, Lau and Wingender (1990)).

It is important to stress that the purpose of the proposed test is not
to choose one out of a fixed set of models as the “best” one and hence
different from model selection criteria. Instead our test could serve as
pretest or diagnostic checking in order to decide not to use models which
appear to be incompatible with the data.

Our test is directly motivated from modelling stock returns, however, it
can be also used under other circumstances. One possible area to use the
test is the noise behavior in regression models. While classical estimation
procedures such as OLS usually perform well and conventional test proce-
dures such as Durbin-Waston test are valid under some moment conditions,
serious problems may be encountered in the cases where the variance of the
noise is infinite. Our test can be used in this context to check the validity
of the finite-variance distribution of the disturbance, and hence serve to
select appropriate tools of estimation and inference.
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APPENDIX

Proof of Proposition 2.1 It is easy to see that both numerator and
the denominator are invariant for a scale-location family up to σ. Hence
Tn is invariant.

Proof of Proposition 2.2 The proposition follows immediately from
the strong law of large number, since Sn → σ a.s. and Qn(1 − θ0) −
Qn(θ0) → q1 − q0 a.s..

Proof of Proposition 2.3 Letting q1,0 = q1 − q0, note that

sn

Qn(1− θ0)−Qn(θ0)
− σ

q1 − q0
=

q1,0sn − σ(Qn(1− θ0)−Qn(θ0))
(Qn(1− θ0)−Qn(θ0))q1,0

(A.1)

and

sn =

(
1

n− 1
{

n∑
i=1

(Xi − µ)2 − n(X̄ − µ)2}

)1/2

(A.2)

=σ

{
1 +

1
(n− 1)σ2

n∑
i=1

{(Xi − µ)2 − σ2} − n(X̄ − µ)2 − σ2

(n− 1)σ2

}1/2

=σ

{
1 +

1
2(n− 1)σ2

n∑
i=1

{(Xi − µ)2 − σ2} − n(X̄ − µ)2 − σ2

2(n− 1)σ2

}

+ OP

((
1
n

n∑
i=1

{(Xi − µ)2 − σ2}

)2

+

(
n(X̄ − µ)2 − σ2

n

)2)

=σ +
1

2nσ

n∑
i=1

{(Xi − µ)2 − σ2}+ OP (1/n).

Therefore,

q1,0sn − σ(Qn(1− θ0)−Qn(θ0)) (A.3)

=
q1,0

2nσ

n∑
i=1

{(Xi − µ)2 − σ2} − σ {Qn(1− θ0)−Qn(θ0)− q1,0}+ OP (1/n)

According to the Bahadur representation (see Chapter 3, Csörgő and
Horváth (1993)), we have

Qn(1− θ0)− q1 = − 1
nf(q1)

n∑
i=1

{I{Xi ≤ q1} − (1− θ0)}+ oP (n−1/2)
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and

Qn(θ0)− q0 = − 1
nf(q0)

n∑
i=1

{I{Xi ≤ q0} − θ0)}+ oP (n−1/2)

Putting the above statements together yields

√
n
(
q1,0sn − σ(Qn(1− θ0)−Qn(θ0))

)
(A.4)

=n−1/2

{
q1,0

2σ

n∑
i=1

{(Xi − µ)2 − σ2}+
σ

f(q1)

n∑
i=1

{I{Xi ≤ q1}

− (1− θ0)} −
σ

f(q0)

n∑
i=1

{I{Xi ≤ q0} − θ0)}

}
+ oP (1)

=n−1/2
n∑

i=1

{
q1,0

2σ
((Xi − µ)2 − σ2)− σ(I{Xi > q1} − θ0)

f(q1)

− σ(I{Xi ≤ q0} − θ0)
f(q0)

}
+ oP (1)

This proves (4). (5) simply follows (4).
Proof of Proposition 2.4
Expanding the expression for Σ2, we have,

Σ2 =
(

σ

2(q1 − q0)

)2

E

((
X1 − µ

σ

)4

− 1
)

+
σ2θ0(1− θ0)
(q1 − q0)4

(
1

f2(q0)
+

1
f2(q1)

)
− σ2

(q1 − q0)3f(q1)
E

{(
X1 − µ

σ

)2

(I{X1 > q1} − θ0)
}

− σ2

(q1 − q0)3f(q0)
E

{(
X1 − µ

σ

)2

(I{X1 ≤ q0} − θ0)
}

− 2σ2θ2
0

(q1 − q0)4f(q0)f(q1)
.

Since f is symmetric about µ, we have f(q0) = f(q1). A simplification
of above expression gives us (8).
Proof of Proposition 5.1

By the strong law of large numbers and the central limit theorem for
stationary α-mixing sequence (see, e.g., Lin and Lu (1996)), (A.4) remains
valid and so does (5.17).
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