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Prices of interest rate derivative securities depend crucially on the mean reversion

parameters of the underlying diffusions. These parameters are subject to estimation

bias when standard methods are used. The estimation bias can be substantial even in

very large samples and much more serious than the discretization bias, and it trans-

lates into a bias in pricing bond options and other derivative securities that is

important in practical work. This article proposes a very general and computationally

inexpensive method of bias reduction that is based on Quenouille’s (1956;

Biometrika, 43, 353–360) jackknife. We show how the method can be applied directly

to the options price itself as well as the coefficients in the models. We investigate its

performance in a Monte Carlo study. Empirical applications to U.S. dollar swap

rates highlight the differences between bond and option prices implied by the

jackknife procedure and those implied by the standard approach. These differences

are large and suggest that bias reduction in pricing options is important in practical

applications.

For more than three decades continuous time models have proved to be

versatile and productive tools in finance. Sundaresan (2000) provides a
recent extensive survey of these models and their many financial applica-

tions. The models are especially useful with respect to pricing derivative

securities where both closed form solutions and numerical methods are

used in practical work. This article is concerned with pricing interest rate

derivative securities, a practical issue that has been addressed in a number

of different ways in the past. One of the oldest and most important

approaches is based on modeling the dynamics of factors such as the

instantaneous interest rate. According to this approach, to calculate prices

We thank Ken Singleton (the editor), an anonymous referee, Torben Andersen, Federico Bandi,
Henk Berkman, Charles Corrado, Jin-chuan Duan, Tony Hall, Shirley Huang, John Knight, Steve
Satchell, Yiu Kuen Tse, and seminar participants at Yale University, Queen’s University, University of
Auckland, Singapore Management University, Simon Fraser University, University of Technology,
Sydney, the 2003 New Zealand Econometric Study Group Meetings in Auckland, the 7th New Zealand
Finance Colloquium, the 2003 Canadian Econometric Study Group Meeting, the 2004 North American
Winter Meeting of Econometric Society for helpful discussions. Phillips thanks the NSF for support under
Grant No. SES 00-92509. Yu gratefully acknowledges financial support from the Royal Society of New
Zealand Marsden Fund under No. 01-UOA-015 and the Cowles Foundation at Yale University for
hospitality during a visit over the period from October 2002 to November 2002. Address correspondence
to: Jun Yu, School of Economics and Social Sciences, Singapore Management University, 469 Bukit
Timah Road, Singapore, 259756, Tel.: þ65 6822 0858, or e-mail: yujun@smu.edu.sg

The Review of Financial Studies Vol. 18, No. 2 ª 2005 The Society for Financial Studies; all rights reserved.

doi:10.1093/rfs/hhi018 Advance Access publication February 10, 2005



of derivative securities it is necessary to estimate the system parameters

that occur in the continuous time specification of the underlying asset.

Since only discrete time observations are available, a common practice is

to discretize the continuous time system and estimate the resulting dis-

cretized model [see, e.g., Chan et al., (1992)]. Unless the exact discrete
model is known, as it is in certain special cases [e.g., Phillips (1972)],

discretization generally introduces an estimation bias since the internal

dynamics between sampling points are ignored. Misspecification bias

results in inconsistent estimation [see, Merton (1980), Lo (1988), Melino

(1994)] of the parameters of the continuous system with consequent bias

effects on derivative prices.

To circumvent the problem of inconsistent estimation of continuous

systems, methods have been proposed to estimate continuous time speci-
fications directly. Among the techniques that have been proposed, the

maximum likelihood (ML) approach is naturally appealing in view of its

good asymptotic properties in general regular estimation problems, and

maximum likelihood estimation (MLE) has become something of a gold

standard to aim for in the estimation of continuous time systems. In

consequence, many articles have suggested ways of constructing or

approximating the likelihood function of a continuous system analytically

and of computing it by numerical or simulation methods. Examples of this
approach include Lo (1988), Pedersen (1995), Kessler (1995), Durham and

Gallant (2002), Aı̈t-Sahalia (1999, 2002, 2003), Brandt and Santa-Clara

(2002), and Duffie, Pedersen, and Singleton (2003), to mention only a few.

The ultimate goal of all these methods is to approach the MLE in the hope

that this estimator will deliver best performance characteristics.

In spite of its generally good asymptotic properties, the MLE can have a

substantial finite sample bias in dynamic models of the type used in

financial econometric applications. The estimation bias can be much
more substantial than the discretization bias. It is well known to occur

in simple models like the first order autoregression (AR) [Hurvicz (1950),

Orcutt (1948)] and to be especially acute when autoregressive roots are

near unity, corresponding to diffusions with mean reversion parameters

close to zero. It is further exacerbated when intercepts and trends are fitted

[Orcutt and Winokur (1969), Andrews (1993), Andrews and Chen (1994)].

These bias problems in discrete time dynamic models are manifest in the

estimation of continuous time systems, such as diffusion models for short-
term interest rates [Ball and Torous (1996), Chapman and Pearson (2000),

Yu and Phillips (2001)] and they persist even when the sample size is quite

large, as is often the case in financial applications. Similar arguments

apply to other commonly used estimation methods in dynamic models,

including the general class of extremum estimators.

The problem of estimation bias is of great importance in the practical

use of econometric estimates in asset pricing. The prices of bond options
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and other derivative securities hinge crucially on the value of unknown

parameters. Of particular importance in diffusion models are the parame-

ters governing volatility and drift. When these parameters are estimated

with bias, as occurs with the MLE and many other estimation procedures,

estimation bias is transmitted to the pricing formulae for bonds, bond
options, and other derivative securities. For instance, when the true mean

reversion parameter is 0.1 and 600 weekly observations (i.e., just over

10 years of data) are available to estimate a one-factor square-root diffu-

sion model [Cox, Ingersoll, and Ross (1985)], the bias in the ML estimator

of the mean reversion parameter is 391.2% in an upward direction. This

estimation bias, together with estimation errors and nonlinearity, pro-

duces a 60.6% downward bias in the option price of a discount bond and

2.48% downward bias in the discount bond price. The latter figures are
comparable in magnitude to the estimates of bias effects discussed in Hull

(2000, Chapter 21.7). The biases would be even larger when less observa-

tions are available and do not disappear even with the use of long spans of

data, which are currently available. For example, when the true mean

reversion parameter is 0.1 and 600 monthly observations (i.e., 50 years of

data) are available to estimate the square-root diffusion model, the bias in

the ML estimator of the mean reversion parameter is 84.5% in an upward

direction. This estimation bias implies a 24.4% downward bias in the
option price of a discount bond and a 1.0% downward bias in the discount

bond price. Of course, these numbers depend on other aspects of the

specification, including the nature of the bond and the maturity of the

option, discussed in Sections 1 and 2. The existence of bias in stock option

pricing has been noticed in the literature. For example, it is well known

that the Black–Scholes stock option price estimates are biased, even when

an unbiased volatility estimate is used [Butler and Schachater (1986),

Knight and Satchell (1997)]. However, compared with the documented
bias effect in stock option pricing where the bias arises entirely from the

estimation errors and nonlinearity, the bias effect in bond option pricing is

found to be much more dramatic in this article.

To address the problem of biased estimation in continuous time models

with its consequential effects on bond option prices, this article introduces

bias reduction techniques based on the jackknife [Quenouille (1956)].

While jackknife methods have been extensively used in discrete time

models [e.g., Efron (1982), Shao and Tu (1995)], we know of no earlier
implementation in continuous time model estimation.

The jackknife has several properties that make it appealing in the

present application. The first advantage is its generality. Unlike other

bias reduction methods, such as those based on corrections obtained by

estimating higher order terms in an asymptotic expansion of the bias, the

jackknife technique does not rely on the explicit form of an asymptotic

expansion. This means that it is applicable in a broad range of model
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specifications and it is not necessary to develop explicit higher order

representations of the bias. In the present context, we can, for instance,

apply the jackknife technique directly to the quantity of interest (like the

option price itself ) and hence also reduce some of the bias arising from

the estimation errors; see Lo (2003) for an application of the jackknife in
the context of the Black–Scholes model. Given the complicated form of

options price representations in terms of the underlying process and its

parameters, this advantage is significant and makes the method very

suitable for empirical implementation. In fact, it is observed that direct

use of the jackknife to the options price, provides significant gains relative

to bias reduction in the parameters of the continuous time model. More-

over, other methods of parameter bias reduction in dynamic models, like

median unbiased procedures [e.g., Andrews (1993)] are only applicable to
parameter estimation and are not directly applicable to more complex

quantities like options prices, which depend on many other aspects

(including distributional details) of the model. A second advantage of

the jackknife is that this approach to bias reduction can be used with

many different estimation methods, including general methods like MLE.

As indicated above, it can also be applied to many different models. This

flexibility is illustrated here by implementing the jackknife in both single

factor and two-factor affine term structure models both in simulations
and in an empirical application. Third, it can be applied in any asset

pricing situation (e.g., stock and currency options with stochastic interest

rates and interest rate derivatives) where the quantities of interest depend

on the estimation of continuous time systems in which finite sample bias

arises. Finally and most importantly for practical purposes, unlike many

other bias correction methods such as median unbiased estimation, bias

function approximation [MacKinnon and Smith (1998)], and bootstrap-

ping, the jackknife is computationally much cheaper to implement. In fact,
the method is not more time consuming than the initial estimation itself.

Our findings in this article indicate that the jackknife provides a very

substantial improvement in pricing bond options over existing methods.

To illustrate, Figure 1 compares the distribution of estimates of the option

price of a discount bond obtained by using MLE and jackknifed MLE in a

one-factor Cox, Ingersoll, and Ross (CIR) model with 600 monthly obser-

vations. As is apparent in the figure, the jackknife estimates are much

better centered on the true options price and do not show any appreciable
increase in variance. In fact, the root mean squared error (RMSE) of the

jackknifed estimates is 12.1% smaller than that of MLE while also pro-

viding a bias reduction of 11.5% for 600 observations. Section 2 explores

this implementation of the jackknife in detail and shows that a carefully

designed jackknife method can lead to a lower value of RMSE, so bias

reduction is accomplished without compromising the gains by much

larger variability.
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In pricing bond options and interest rate derivatives, model specifica-

tion is known to be important. For instance, Chan et al. (1992) show that

use of the constant elasticity of variance (CEV) model leads to significant

changes in bond option prices compared with alternative models such as

the CIR or Vasicek model. Concern over specification has also led to the

introduction of more flexible methods of estimation, such as the semi-

parametric treatment of diffusion in Aı̈t-Sahalia (1996a) and the fully

nonparametric approaches of Stanton (1997) and Bandi and Phillips
(2003) that allow users to be agnostic regarding functional form. At

least in models where the drift is linear and parametric, the discrete time

equivalent model that is satisfied by equispaced observations has the same

general autoregressive form, so that dynamic estimation bias of the type

discussed above can be expected in all conventional approaches. In con-

sequence, it may be expected that a bias reduction procedure such as the

jackknife may be useful even in situations where the continuous time

model is misspecified by incorrect specification of the diffusion. Our
findings indicate that the jackknife indeed continues to deliver bias reduc-

tion in both mean reversion parameter estimation and in pricing bond

options under model misspecification. In fact, the results suggest that bias

reduction may be more important in practice than correct specification of

the diffusion term in pricing bond options.

The article is organized as follows. Using simulated data, Section 1

shows the bias effects of MLE on system parameters, prices of discount

option price
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Figure 1
Distribution of jackknife and ML estimates of bond option price
The graphs in the figure show the kernel density of jackknife and ML estimates of bond option prices
based on 600 monthly observations and 1000 replications.
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bonds and options on a discount bond in the context of a single factor

diffusion model. Section 2 introduces a generic version of the jackknife

and shows how it can be implemented in parameter estimation, and bond

and option valuation. The simulation performance of these jackknife

estimates is compared with that of the ML approach. We also discuss
bias and variance trade-offs, consider a version of the jackknife that

reduces variability, examine the performance of the jackknife when the

model is misspecified, and compare the performance of the jackknife with

median unbiased estimation as an alternative method of bias reduction.

To demonstrate the usefulness of the jackknife in a more complex and

realistic set-up, we then investigate its performance in the context of a two-

factor affine diffusion model. Section 3 shows the practical effects of

jackknifing in an empirical application with data on London Interbank
Offered Rate (LIBOR) and swap rates. Section 4 concludes and outlines

some further applications and implications of the approach.

1. Estimation Bias in Continuous Time Models, Bond Pricing, and

Bond Option Pricing

We start our discussion with a brief review of some well-known bias

results and bias correction methods for discrete time dynamic models.

Most relevant in the present context is the fact that standard procedures

like ML and least squares (LS) produce downward biased coefficient

estimators in the first order AR. Using analytic techniques, Hurvicz
(1950) demonstrated the bias effect in the first order AR model with

known intercept. Using Monte Carlo techniques, Orcutt (1948) and

Orcutt and Winokur (1969) found that the bias is larger when the intercept

is fitted and explained the bias enlargement in terms of the induced

correlation between the regressor and the residual that results from a

fitted intercept. Andrews (1993) showed that the presence of a time

trend in the regression further accentuates the autoregressive bias. In

these two cases, the biases do not go to zero as the AR coefficient goes
to zero and the biases increase as the AR coefficient goes to unity.

In the context of the AR(1) model with an intercept only, Kendall

(1954) showed that, to a first-order approximation,

E f̂f
h i

�f ¼ � 1 þ 3f

T
þO

1

T2

� �
, ð1Þ

where T is the sample size and f̂f is the ML/LS estimator of the AR

coefficient f. A natural bias correction method in this simple setting is

f̂fK ¼ f̂fþ 1 þ 3f̂f

T
: ð2Þ

In the finance literature, Bekaert, Hodrick, and Marshall (1997) used

Kendall’s method to correct for bias in testing the expectations hypothesis
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of the term structure of interest rates. Although feasible in this simple

model, where Equation (1) and various higher order extensions of

Equation (1) have long been known [e.g., Shenton and Johnson, (1965)],

an undesirable property of the correction method is that it is not directly

applicable in more complicated set-ups where asymptotic expansion for-
mulae have not been derived.

As an alternative bias correction method in the AR(1) model with fitted

intercept and/or time trend, Andrews (1993) proposed a median unbiased

estimator of f. The method relies on knowledge of the exact median

function of the estimator. Although the procedure is extended to deal

with more general AR( p) models in Andrews and Chen (1994), the esti-

mator is no longer exactly median unbiased and it is not available in more

complex models where there are usually additional parameter dependen-
cies in the median function.

Similar bias problems occur in the estimation of continuous time

dynamic models. As in discrete time models, the problem is worse when

the series are persistent. This phenomenon was documented by Chapman

and Pearson (2000), for instance, in the context of the following CEV

model [c.f. Chan et al. (1992)],

dr tð Þ ¼ k m� r tð Þð Þdtþ srg tð ÞdB tð Þ, ð3Þ

where r(t) represents the instantaneous riskless interest rate, B(t) is a

standard Brownian motion, and u¼ (k,m, g,s) is the vector of unknown

system parameters. In this model, r(t) mean-reverts towards the uncondi-

tional mean m with speed captured by k. The observed data are recorded

discretely at (0, D, 2D, . . . ,TD) in the time interval [0, TD], where D is the

step in a sequence of discrete observations of r(t). Since r(t) is often

recorded as the annualized interest rate, if it is observed monthly (weekly

or daily), we have D¼ 1/12 (1/52 or 1/252).
Chapman and Pearson (2000) used weighted least squares (WLS) to

estimate k in a discretized version of Equation (3) for daily interest rates.

Their simulation findings confirm that the estimate of k is upward biased

and that the bias is significant even when the sample size is as large as

7500. Using the same CEV model, Yu and Phillips (2001) find that alter-

native Gaussian methods of estimating Equation (3), such as those pro-

posed by Nowman (1997), substantially overestimate k for daily, weekly,

and monthly frequencies, whereas the biases are generally small for the
other parameters. Ball and Torous (1996) used WLS and GMM to esti-

mate the discretized model of a restricted version of Equation (3) with

g¼ 0.5 for both weekly and monthly interest rates. They found that

although both m and s can be estimated accurately, the sampling distri-

bution of estimated k is substantially biased upward.

These results are not surprising because the CEV model has a discrete

time formulation that is very similar to an AR(1) model where there is
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unconditional heteroscedasticity and with an autoregressive coefficient

that is dependent on k, that is, f¼ exp(�kD). Using the first-order

approximation, we have f � 1� kD. Then, because k is often very close

to zero in practical work, the model corresponds in discrete time to a ‘‘near

unit root’’ model, for which estimation bias problems are well known.
Also, the estimation bias for k equals that for f multiplied by 1/D and so is

potentially much larger in practice. Since the prices of bonds and bond

options also crucially depend on k, the upward bias in coefficient estima-

tion translates directly into biased bond and option pricing. This impor-

tant implication of dynamic model estimation bias is explored below in the

context of the well-known CIR model specializations of Equation (3) by

Cox, Ingersoll, and Ross (1985). There are several reasons why we use the

square-root models to study bias effects. First, the square-root models
have closed form expressions for the transition and marginal densities. As

a result, we can simulate the discrete observations directly from the con-

tinuous time models and hence avoid simulation errors. For the same

reason, we can perform exact ML estimation directly on the continuous

time models and hence avoid the discretization bias. Second, there are

known closed form options price formulae for the square-root models and

hence no approximation errors are introduced. In summary, all these

closed form solutions enable us to quantify estimation bias effects in the
most accurate way and to perform a large scale Monte Carlo study. In the

empirical application, however, we will also consider a model for which

the closed form solutions are not available.

Setting g ¼ 1
2

in Equation (3), the CIR model has the form

dr tð Þ ¼ k m� r tð Þð Þdtþ sr1=2 tð ÞdB tð Þ: ð4Þ

Feller (1951) and Cox, Ingersoll, and Ross (1985) show that the transi-

tion density of r(tþD) conditional on r(t) is ce�u�v (v/u)q/2 Iq (2(uv)1/2)
and the marginal density of r(t) is ww2

1 rw2�1e�w1r=Gðw2Þ, where c¼
2k/(s2(1� e�kD)), u¼ cr(t)e�kD, v¼ cr(tþD), q¼ 2km/s2�1, w1¼ 2k/s2,

w2¼ 2km/s2, and Iq( � ) is the modified Bessel function of the first kind of

order q. The transition density together with the marginal density can be

used for simulation purposes as well as for obtaining the full ML estima-

tor of u (¼(k, m, s)0).
Prices of discount bonds and call options on discount bonds based on

the square-root model (4) both have analytic solutions. Define P(t, s)
as the price at time t of a discount bond that pays-off $1 at time s and

C(t, t; s, K) as the value at time t of a call option on a discount bond of

maturity data s and of principal L, with exercise (or strike) price K and

expiration date t (s> t> t). (Note that, as distinct from options on stock

prices, the moneyness of bond options is determined here by the relative

size of K to L exp(�(s� t)r(t)). By assuming the market price of interest

rate risk is l, Cox, Ingersoll, and Ross (1985) derived the expression for
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P(t, s) and C(t, t; s, K). In this article, unless specified explicitly, we assume

l¼ 0, which implies that the physical measure is the same as the risk

neutral measure.

Both bond and option prices depend on the mean reversion parameter,

k. Figure 2 plots the price of a discount bond and the price of the option

on the discount bond as a function of k. The discount bond is a three-year
bond (hence t¼ 0 and s¼ 3) with a face value of $1 and initial interest rate

of 5%. The one-year European call option on a three-year discount bond

has a face value of $100 and a strike price of $87 (i.e., t¼ 0, r (t)¼ 0.05,

s¼ 3, t¼ 1, L¼ 100, K¼ 87). These parameters are empirically reasonable

and imply that K/(L exp(�(s� t) r (t)))¼ 1.011. Hence, in this case we have

to price an out-of-the-money option. We choose m¼ 0.08, s¼ 0.02 in

model (4). It can be seen that as k changes both bond and option prices

change in a nonlinear and monotonically decreasing fashion. So any bias
in estimated k is transmitted to the corresponding estimates of the bond

and option prices. In particular, overestimation of k leads to underesti-

mation of the bond and option prices. Also, as is apparent in Figure 2, the

bond price is much less sensitive to a change in k than the option price. As

a result, we expect bias in k to have a larger impact on option pricing.

Furthermore, in both cases the sensitivity depends on the magnitude of k.

The smaller the k, the larger the sensitivity. Finally, the nonlinear
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Figure 2
Relationship between k and option and bond prices
This figure shows the price of a three-year zero coupon bond and the price of one-year European call
option on a three-year zero coupon bond as a function of the mean reversion parameter, k, under a CIR
model. The assumed parameters are m¼ 0.08, s¼ 0.02. The face value of the coupon bond is $1 and the
initial interest rate is 5%. The option on the discount bond has a face value of $100 and a strike price
of $87.
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relationships imply that the bias in estimating asset prices can also arise

from the estimation errors.

To investigate the bias effect of ML estimation, we choose m¼ 0.08, so

the mean of the unconditional distribution is fixed at 8%. We also choose a

range of values of k and s so that the second moment of the unconditional

distribution is fixed at 0.025. The range of possible true values of k is 0.1,

0.2, . . . , 0.6. These are empirically reasonable values and correspond to
autoregressive coefficients in the range from 0.9981 to 0.9885 for the

weekly frequency and from 0.9917 to 0.9512 for the monthly frequency

(see Equation (12)).

Tables 1 and 2 show the means, standard deviations, and RMSEs of the

MLEs of k, m, s, and the ML estimated option price and bond price.

Table 1 gives the weekly frequency results with sample size 600. This

corresponds to just over 10 years of data and represents typical spans

used in the empirical literature based on LIBOR and swap data. Although
LIBOR data are more useful as far as bond options are concerned, most

of the empirical studies of term structure models have been based on Trea-

sury data which typically have a longer span of data. To examine if the

Table 1
Finite sample properties of ML and jackknife estimates of k, bond prices and option prices for
weekly data under the one-factor CIR model

ML estimates Jackknife estimates

k m s Bond Option k m s Bond Option

True 0.1 0.08 0.02 0.8503 2.392 0.1 0.08 0.02 0.8503 2.392
Mean 0.4912 0.0802 0.0201 0.8292 0.9426 0.0765 0.0802 0.0200 0.8397 1.2989
SD 0.3847 0.0100 0.0006 0.0174 0.9161 0.5468 0.0102 0.0006 0.0227 1.3567
RMSE 0.5486 0.0100 0.0006 0.0273 1.7148 0.5473 0.0102 0.0006 0.0250 1.7423

True 0.2 0.08 0.0283 0.8418 1.661 0.2 0.08 0.0283 0.8418 1.661
Mean 0.5805 0.0803 0.0284 0.8251 0.7163 0.1740 0.0803 0.0283 0.8340 0.9590
SD 0.4048 0.0087 0.0008 0.0162 0.7642 0.5719 0.0091 0.0008 0.0215 1.1264
RMSE 0.5555 0.0087 0.0008 0.0233 1.2150 0.5725 0.0091 0.0008 0.0229 1.3271

True 0.3 0.08 0.0346 0.8349 1.108 0.3 0.08 0.0346 0.8349 1.108
Mean 0.6720 0.0803 0.0347 0.8215 0.5422 0.2688 0.0802 0.0347 0.8290 0.6949
SD 0.4171 0.0077 0.0010 0.0151 0.6343 0.5922 0.0082 0.0010 0.0198 0.9160
RMSE 0.5589 0.0077 0.0010 0.0202 0.8502 0.5930 0.0082 0.0010 0.0207 1.0050

True 0.4 0.08 0.04 0.8291 0.7154 0.4 0.08 0.04 0.8291 0.7154
Mean 0.7672 0.0803 0.0401 0.8183 0.4100 0.3699 0.0802 0.0401 0.8246 0.5008
SD 0.4329 0.0071 0.0011 0.0141 0.5274 0.6031 0.0076 0.0011 0.0182 0.7429
RMSE 0.5676 0.0071 0.0011 0.0178 0.6095 0.6039 0.0076 0.0011 0.0187 0.7733

True 0.5 0.08 0.0447 0.8243 0.4489 0.5 0.08 0.0447 0.8243 0.4489
Mean 0.8648 0.0802 0.0448 0.8154 0.3113 0.4740 0.0802 0.0448 0.8208 0.3612
SD 0.4511 0.0065 0.0013 0.0133 0.4387 0.6101 0.0070 0.0013 0.0167 0.6014
RMSE 0.5801 0.0065 0.0013 0.0160 0.4598 0.6107 0.0070 0.0013 0.0171 0.6078

True 0.6 0.08 0.0490 0.8203 0.2745 0.6 0.08 0.0490 0.8203 0.2745
Mean 0.9636 0.0802 0.0491 0.8130 0.2369 0.5788 0.0802 0.0491 0.8175 0.2601
SD 0.4705 0.0061 0.0014 0.0127 0.3648 0.6195 0.0065 0.0014 0.0155 0.4866
RMSE 0.5947 0.0061 0.0014 0.0146 0.3667 0.6199 0.0065 0.0014 0.0158 0.4868

Note: The number of weekly observations is 600 and the number of replications is 1000. SD and RMSE
stand for standard deviation and root mean squared error, respectively.
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bias is serious in longest spans of data that are empirically relevant, Table 2

gives results for the monthly frequency with a sample size of 600 which

corresponds to 50 years of data. All results are based on 1000 replications.

The following general conclusions emerge from these tables. First, the ML
estimator of k is upward biased and the percentage bias decreases mono-

tonically with the true value of k. This result is consistent with what is known

about dynamic bias in AR/unit root models [e.g., Andrews (1993)], as larger

k corresponds to a smaller AR coefficient. In all cases, the biases are

serious for empirically relevant values of k and sample sizes. In fact we

have found that the estimate bias is much more serious than the discretiza-

tion (either Euler or Milstein) bias for empirically relevant values of k and

sample sizes but are surprised that it has received much less attention than
the discretization bias in the continuous time finance literature.1 Unlike k,

the other parameters in the model are estimated very accurately.

Table 2
Finite sample properties of ML and jackknife estimates of k, bond prices and option prices for monthly data
under the one-factor CIR model

ML estimates Jackknife estimates

k m s Bond Option k m s Bond Option

True 0.1 0.08 0.02 0.8503 2.392 0.1 0.08 0.02 0.8503 2.392
Mean 0.1845 0.0803 0.0201 0.8437 1.8085 0.0933 0.0802 0.0200 0.8492 1.2068
SD 0.1013 0.0069 0.0006 0.0080 0.6920 0.1397 0.0074 0.0006 0.0104 0.9144
RMSE 0.1319 0.0069 0.0006 0.0103 0.9052 0.1399 0.0074 0.0006 0.0105 0.9330

True 0.2 0.08 0.0283 0.8418 1.661 0.2 0.08 0.0283 0.8418 1.661
Mean 0.2837 0.0802 0.0284 0.8367 1.2470 0.1975 0.0802 0.0283 0.8408 1.4788
SD 0.1205 0.0053 0.0008 0.0080 0.6297 0.1509 0.0056 0.0008 0.0098 0.8012
RMSE 0.1467 0.0053 0.0008 0.0096 0.7535 0.1509 0.0056 0.0008 0.0099 0.8216

True 0.3 0.08 0.0346 0.8349 1.108 0.3 0.08 0.0346 0.8349 1.108
Mean 0.3838 0.0802 0.0347 0.8307 0.8531 0.2997 0.0801 0.0347 0.8340 0.9820
SD 0.1380 0.0044 0.0010 0.0079 0.5324 0.1646 0.0046 0.0010 0.0093 0.6634
RMSE 0.1614 0.0044 0.0010 0.0089 0.5904 0.1646 0.0046 0.0010 0.0093 0.6754

True 0.4 0.08 0.04 0.8291 0.7154 0.4 0.08 0.04 0.8291 0.7154
Mean 0.4841 0.0802 0.0401 0.8258 0.5804 0.4007 0.0801 0.0401 0.8284 0.6457
SD 0.1535 0.0039 0.0011 0.0076 0.4310 0.1771 0.0041 0.0011 0.0087 0.5265
RMSE 0.1750 0.0039 0.0011 0.0083 0.4516 0.1771 0.0041 0.0011 0.0087 0.5311

True 0.5 0.08 0.0447 0.8243 0.4489 0.5 0.08 0.0447 0.8243 0.4489
Mean 0.5845 0.0802 0.0449 0.8216 0.3926 0.5012 0.0801 0.0448 0.8237 0.4195
SD 0.1676 0.0035 0.0013 0.0073 0.3385 0.1887 0.0036 0.0013 0.0081 0.4050
RMSE 0.1877 0.0035 0.0013 0.0078 0.3431 0.1887 0.0036 0.0013 0.0082 0.4060

True 0.6 0.08 0.0490 0.8203 0.2745 0.6 0.08 0.0490 0.8203 0.2745
Mean 0.6851 0.0802 0.0491 0.8181 0.2639 0.6015 0.0801 0.0491 0.8198 0.2687
SD 0.1808 0.0032 0.0014 0.0069 0.2598 0.1999 0.0033 0.0014 0.0076 0.3044
RMSE 0.1998 0.0032 0.0014 0.0073 0.2600 0.1999 0.0033 0.0014 0.0076 0.3045

Note: The number of monthly observations is 600 and the number of replications is 1000. SD and RMSE
stand for standard deviation and root mean squared error, respectively.

1 The Euler and Milstein discretization bias is obtained based on the same and similar simulation designs,
respectively and the results may be obtained from the authors upon request. In general we find that, for
empirically relevant parameter settings and sample sizes, the estimation bias is at least 10 times as large as
the discretization bias.
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Second, although the bias in the ML estimator of the parameter k is

serious, this bias does not translate into a serious bias for the bond price.

The outcome is partly explained by Figure 2, where it is clear that the bond

price is not very sensitive to changes in k. However, bonds are always

underpriced and this is consistent with the upward bias in estimated k. In
magnitude, the bias monotonically decreases with the true value of k and

stays within the 4% range. By contrast, the options price is substantially

underestimated. The percentage bias monotonic decreases in k and in the

worst case considered it is larger than 75%. Hence, bond options are

significantly underpriced when k is estimated by ML.

Finally, the bias of the ML estimator of k, and the bias in bond and

option prices all get smaller as the span increases. This means that on

average ML traders would increase the option price when more observa-
tions are available. Nonetheless, the bias in k and the bias in option prices

are still nonnegligible even for long spans. These results indicate that

biases in the estimation of these quantities must be expected to occur in

practical work where the empirical spans are in the same general range as

those considered here. The biases are particularly problematic in the case

of bond options prices.

It is well known that in the Gaussian AR(1) model (and hence in the

Vasicek model defined by Equation (11)), the distribution of the ML
estimator of k is invariant to s and m [see, e.g., Andrews (1993)]. While

strict invariance results like these do not generally hold in non-Gaussian

models, we may continue to expect some degree of scale and mean

robustness in estimates of k because of the linear drift structure. To

examine whether the bias of the ML estimator of k is affected by other

parameters, instead of fixing the first two moments of the model, we fix

m¼ 0.08, s¼ 0.02 but allow k to vary in model (4). Simulations indicate

that the size of the bias in the ML estimator of k is indeed robust to other
parameters in the CIR model.

2. Jackknife Estimation of System Parameters, Bond Prices, and

Option Prices

2.1 Jackknife estimation

Quenouille (1956) proposed the jackknife as a solution to finite sample

bias in parametric estimation problems. Let T be the number of observa-

tions in the whole sample and let the sample be decomposed into

m consecutive subsamples each with ‘ observations, so that T¼m � ‘.
The jackknife estimator of a certain parameter, u, then utilizes the sub-

sample estimates of u to assist in the bias reduction process giving

ûujack ¼ m

m�1
ûuT �

Pm
i¼1 ûuli

m2�m
, ð5Þ
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where ûuT and ûuli are the estimates of u obtained by application of a given

method like ML to the whole sample and the ith subsample, respectively.

Under quite general conditions which ensure that the bias of the estimates

(ûuT , ûuli) can be expanded asymptotically in a series of increasing powers of

T�1 it can be shown that the bias in the jackknife estimate ûujack is of order
O(T�2) rather than O(T�1).

The result can be demonstrated as follows using Sargan’s (1976)

theorem on the validity of the (Nagar) approximation of the moments

of statistical estimator in terms of the moments of the estimator’s Taylor

expansion as a polynomial of more basic statistics (like sample moments

of the data). To fix ideas, suppose ûuT ¼ uTð pTÞ; where pT is an N-vector of

sample moments of the data with mean m, whose Taylor development to

order k is valid and has the form

uT, k pTð Þ ¼
Xk�1

s¼0

1

s!
pT �mð Þ0 q

qp

� �s

uT pð Þ
� �

p¼m

: ð6Þ

It is frequently the case in practical applications that pT�m ¼ OpðT�1=2Þ
and then Equation (6) produces a corresponding stochastic expansion.

Under some mild regularity conditions on the derivatives of uT (pT) that

appear in Equation (6) and the order of magnitude of the moments of ûuT
and p, which are assumed to exist, Sargan (1976, Theorems A1 and A2)

proved that

E uT pð Þj j j
� �

¼ E uT ;k pð Þ
		 		j
 �

þO T�gk
� �

, g> 0, ð7Þ

so that for suitably large k, we can replace the jth moment of ûuT by the

jth moment of the polynomial approximation uT,k( p). This theorem

holds rather generally and applies in the present context where ûuT is

an econometric estimator of the parameters in the diffusion Equation (4)

and pT is a vector of sample moments of discrete data generated by the

model (4). The functional dependence ûuT ¼ uTð pTÞ and its Taylor

representation (6) may also be obtained indirectly. In the case of extre-

mum estimators like ML, this involves the use of the implicit function
theorem and power series inversion of the Taylor expansion of the first-

order conditions.

When ûuT is a consistent estimator of u and when the moment expansion

Eð pTÞ ¼ mþ b1=T þOðT�2Þ holds for some constant b1, we can apply

Equation (7) to deduce that for some constant a1

E ûuT
� �

¼ uþa1

T
þO

1

T2

� �
and E ûu‘i

� �
¼ uþ a1

T=m
þO

1

T=mð Þ2

 !
: ð8Þ
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Taking expectations in Equation (5) and substituting the two expressions

in Equation (8) leads directly to the expansion

E ûujack

� �
¼ m

m�1
uþ m

m� 1

a1

T
�
Pm

i¼1 uþ a1=ðT=mÞð Þ
m2�m

þO
1

T2

� �

¼ uþO
1

T2

� �
, ð9Þ

reducing the O(T�1) bias (8) in the unmodified estimate ûuT to O(T�2) in

ûujack. Note that Equation (9) is invariant to the choice of m to O(T�1).

In view of the generality of Equation (7), this bias reduction procedure

can be expected to be widely applicable. It is also very easy to implement in

practical work. In the present case, we assume that the above theory

applies, validating Equations (8) and (9). The quantity u can be either a
parameter (such as k), a function of parameters (such as the bond option

price) or a vector of several such quantities. In the case of bond and

options prices, u will depend on known variables such as t, s and t, as

well as unknown parameters such as k. These additional dependencies do

not affect the validity of the procedure.

In this article we propose to jackknife not only the parameter k, but also

the bond and option prices directly. As some of the bias comes from the

estimation errors in the context of term structure models, we have found
that there is substantial advantage to the latter procedure of dealing

directly with the quantity of interest in implementing the jackknife rather

jackknifing the parameter estimates on which the option price depends

and plugging this revised estimate into the options price formula. The

reason is that the jackknife tends to increase the variance of the quantity

being estimated and this additional variance adversely affects the perfor-

mance of the procedure when the quantity is a very nonlinear function of

its arguments, like the option price. In such cases, it appears to be much
better to apply the jackknife directly to estimate the option price (see

Section 2.4).

In implementing the jackknife (5), it is often convenient to choose m¼ 2

(two subsamples) and this simple choice has very satisfactory performance

in bias reduction. In the simulations reported below, we also tried the

value m¼ 3, 4 and there are certain advantages to increasing the values of

m. In particular, while the mean expansion (9) is invariant to m to the

order T�1, the variability of ûujack depends on m, as is apparent from the
following expression for the scaled estimation error of ûujack:

ffiffiffiffi
T

p
ûujack � u
� �

¼ 1 þ 1

m�1

� � ffiffiffiffi
T

p
ûuT � u
� �

� 1

m�1

1ffiffiffiffi
m

p
Xm
i¼1

ffiffi
‘

p
ûu‘i � u
� �( )

:

ð10Þ

The Review of Financial Studies / v 18 n 2 2005

720



In Equation (10)
ffiffiffiffi
T

p
scaling is presumed to be appropriate for ûuT and for

ûujack, and analogous formulae would apply in the case where there hap-

pened to be a faster convergence rate (e.g., due to nonstationarity). It

might be anticipated from this expression that larger values of m may help

to reduce the variation of ûujack and, therefore, since Equation (9) still
holds, the RMSE of the jackknife estimator ûujack.2 These heuristics

are supported in the present case by the simulation results, which reveal

that use of m¼ 3, 4 enables both bias reduction and MSE reduction in

estimation.

Since full ML estimation of Equation (4) is feasible for the square-root

diffusion, the jackknife procedure can be based on ML. The following

specific steps were involved in the implementation of the procedure.3

1. Estimate the system parameters by ML using the entire sample.

2. Calculate the bond and option prices based on the ML estimates

obtained in Step 1.

3. Estimate the system parameters by ML for each sub-sample.

4. Calculate the bond and option prices based on the ML estimates
obtained in Step 3 for each subsample.

5. Calculate the jackknife estimators of k, and the bond price and

option prices using Equation (5).

To compare the performance of the jackknife and ML estimators, we use

the same Monte Carlo experiments as the previous section. We first set

m to 2. Data are simulated from a one-factor CIR model with the first two

moments of the unconditional distribution set at 0.08 and 0.025, and

k¼ 0.1,0.2, . . . , 0.6. For both weekly and monthly data we choose

T¼ 600. The discount bond is a three-year bond with a face value of $1

and initial interest rate of 5%. The one-year European call option on a

three-year discount bond has a face value of $100 and a strike price of $87.
Tables 1 and 2 compare the means, standard deviations, and RMSEs of

the MLE of k, m, s, and the ML estimated option price and bond price

with those obtained by the jackknife in the same experiments. Table 1

2 For example, if 1
l
þm=l ! 0 as T ! 1, if the data are weakly dependent, and if the estimates ûuli and ûuT

are asymptotically normally distributed asffiffi
l

p
ûuli � uli
� �

,
ffiffiffiffi
T

p
ûuT � u
� �

!dN 0;s2
u

� �
,

then, in general, ffiffiffiffi
T

p
ûujack � u
� �

!dN 0;s2
u

� �
,

also. However, as m increases, higher order terms in the expansions suggest that the finite sample
variation of

ffiffiffiffi
T

p
ðûujack � uÞ decreases with m. A detailed examination of these issues will be provided in

later work.

3 Matlab code to implement the procedure in the context of one-factor and two-factor CIR models can be
found at http://yoda.eco.auckland.ac.nz/~jyu/research.html. This code covers both the simulations and
the empirical work discussed below.
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gives the weekly frequency results, while Table 2 gives the monthly

frequency results.

First, it is evident that the jackknife successfully reduces the bias in the

estimation of k across all cases. The jackknife works surprisingly well even

when the span of data is short. Also, the improvement over ML is greater
when the true value of k is smaller, which is the more relevant case in

empirical work. Second, although the ML estimated bond price has only a

small downward bias, the jackknife estimated bond price still produces

gains in all cases. Third, and most importantly, we find the jackknife

estimated bond option price is substantially better than ML. For example,

the bias reduction from the jackknife is at least 8% when the weekly

frequency was used in the simulation. These gains are of sufficient mag-

nitude to make an important difference in practical work. Fourth, the
jackknife method still appears to underprice the option. Fifth, in many

cases the bias reductions from the jackknife in pricing options are

achieved at the cost of a minor increase in RMSE. Finally, the other two

parameters in the model, m and s appear to be well estimated by both ML

and the jackknife with negligible bias and high precision. For this reason,

we will not further report the simulated results on estimated m and s.

To understand how the market price of risk affects the performance of

the jackknife, we use a similar Monte Carlo design with 300 monthly
observations and focus on the empirically more relevant case where

k¼ 0.1, but allow l to take the following empirically reasonable values:

�0.05, �0.07, �0.09. As a result, the risk neutral measure is different from

the physical measure. Table 3 compares the means, standard deviations,

and RMSEs of the MLE of k and the ML estimated option price and bond

price. In all cases, the problem of finite sample bias persists for ML and

the jackknife still provides an improvement. It is apparent that when the

market price of risk becomes larger in absolute value, the estimation bias
in the option price is larger in percentage for both ML and the jackknife.

However, the effect of the market price of risk on the bond price is less

clear.

2.2 Variance reduction

All the above results refer to the case where m¼ 2 and the jackknife is

based on only two subsamples. In this case it is apparent from the findings

that there is a trade-off between the (often substantial) bias reduction

achieved by the jackknife and a marginal increase in the dispersion of the
estimates. As argued above, it is possible to reduce the variability of the

jackknife estimate (with a small compromise in the bias reduction gains)

by using larger values of m. To illustrate the effectiveness of this approach,

we use the same Monte Carlo design as before and focus on the empiri-

cally more relevant case where k¼ 0.1, considering in all the following

four cases: T¼ 300, 600 weekly observations, and T¼ 300, 600 monthly
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observations. Table 4 reports the means, standard deviations, and RMSEs

of the jackknife of k and bond and option prices with m¼ 3, 4 in
Equation (5). Compared with the ML results reported in Tables 1–2, it

can be seen that the jackknife with m¼ 3 and 4 provides smaller RMSE

than ML in all cases and continues to achieve major bias reductions.

Comparing the jackknife estimates with different values of m, we find

that the jackknife with m¼ 4 provides smallest RMSE in all cases except

for the case of 300 weekly observations where m¼ 3 appears to be the

optimal choice for pricing the bond and option. This experiment suggests

that an optimal m may exist in applications of the jackknife. Further
research on this issue is underway and will be reported later.

It is noteworthy that, on average, the jackknife method underestimates

k as well as the option price. At first glance the direction of the bias in the

option price estimates seems inconsistent with the direction of the bias in

k. However, since the option price is a nonlinear transformation of k, an

underestimated k has a different impact in magnitude on the option price

from an overestimated k. As a result, although the jackknife estimate of

Table 3
Finite sample properties of ML and jackknife estimates of k, bond prices and option prices with
non-zero price of risk under the one-factor CIR model

l Parameter k Bond price Option price

�0.05 True value 0.1 0.8407 1.4999
ML

Mean 0.2762 0.8294 0.7409
SD 0.1853 0.0119 0.6454
RMSE 0.2557 0.0164 0.9963

Jackknife
Mean 0.0988 0.8366 0.9742
SD 0.2606 0.0154 0.9199
RMSE 0.2606 0.0159 1.0595

�0.07 True Value 0.1 0.8367 1.0963
ML

Mean 0.2762 0.8258 0.5050
SD 0.1853 0.0117 0.5079
RMSE 0.2557 0.0160 0.7795

Jackknife
Mean 0.0988 0.8326 0.6638
SD 0.2606 0.0150 0.7247
RMSE 0.2606 0.0155 0.8439

�0.09 True value 0.1 0.8325 0.7044
ML

Mean 0.2762 0.8220 0.3095
SD 0.1853 0.0114 0.3626
RMSE 0.2557 0.0155 0.5362

Jackknife
Mean 0.0988 0.8285 0.4030
SD 0.2606 0.0145 0.5133
RMSE 0.2606 0.0151 0.5953

Note: The number of monthly observations is 300 and the number of replications is 1000. SD and RMSE
stand for standard deviation and root mean squared error, respectively.
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k has little asymmetry (as is apparent in Figure 3), the jackknifed option

price becomes asymmetric (as is apparent in Figure 1). Obviously the
nonlinearity is the cause of this counter-intuitive result.

2.3 Specification bias versus estimation bias

Specification issues in continuous time modeling of short time interest

rates have been a focal point of much recent literature in finance. Impor-
tant contributions include Chan et al. (1992) and Aı̈t-Sahalia (1996a,

1996b), Stanton (1997), Bandi and Phillips (2002), Bandi (2002), and

Hong and Li (2005), to mention only a few. Using the CEV model, for

example, Chan et al. (1992) reject all more restricted nested single factor

models and find that the CEV model leads to option prices that are

Table 4
Finite sample properties of ML and jackknife (m¼ 3 and 4) estimates of k, bond prices and
option prices under the one-factor CIR model

Parameter k Bond price Option price

True value 0.1 0.8503 2.3921
300 weekly observations Jackknife (m¼ 3)

Mean 0.0591 0.8254 0.7261
SD 0.9198 0.0251 1.0132
RMSE 0.9207 0.0354 1.9500

Jackknife (m¼ 4)
Mean 0.0656 0.8240 0.6888
SD 0.8603 0.0242 0.9558
RMSE 0.8610 0.0357 1.9532

600 weekly observations Jackknife (m¼ 3)
Mean 0.0743 0.8376 1.1890
SD 0.4846 0.0203 1.1822
RMSE 0.4853 0.0240 1.6867

Jackknife (m¼ 4)
Mean 0.0728 0.8362 1.1353
SD 0.4504 0.0195 1.1107
RMSE 0.4512 0.0240 1.6773

300 monthly observations Jackknife (m¼ 3)
Mean 0.0833 0.8452 1.7256
SD 0.2299 0.0145 1.1273
RMSE 0.2306 0.0153 1.3096

Jackknife (m¼ 4)
Mean 0.0854 0.8443 1.6636
SD 0.2179 0.0138 1.0663
RMSE 0.2184 0.0151 1.2914

600 monthly observations Jackknife (m¼ 3)
Mean 0.0911 0.8488 2.1403
SD 0.1205 0.0092 0.8331
RMSE 0.1208 0.0094 0.8704

Jackknife (m¼ 4)
Mean 0.0901 0.8483 2.0831
SD 0.1156 0.0089 0.8003
RMSE 0.1160 0.0091 0.8579

Note: The number of replications is 1000. SD and RMSE stand for standard deviation and root mean
squared error, respectively.
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significantly different from those implied by simpler interest rate

processes.

In view of the importance of the diffusion specification to option pric-
ing, it is of interest to compare the magnitude of estimation bias in the

drift to bias effects arising from diffusion misspecification. The relative

importance of these two effects can be assessed in simulation. To do so, we

simulate 600 monthly observations from the following model [Vasicek

(1977)],

dr tð Þ ¼ k m� r tð Þð Þdtþ sdB tð Þ, ð11Þ

where (k, m, s)0 is set at (0.1, 0.12, 0.015)0.4 The discount bond is a three-

year bond with a face value of $1 and initial interest rate of 5%. The one-

year European call option on a three-year discount bond has a face value

of $100 and the strike price such that the ratio of the strike price to the

current value of par is 1. The number of replications is 1000. Each simu-

lated sequence is fitted under the (misspecified) CIR model to obtain the

ML and jackknife estimates of k, the bond price, and option price.
Since the diffusion term is misspecified in estimating the CIR model, the

ML estimates are biased. However the exact discrete model corresponding

kappa

-1 0 1 2

0.
0

0.
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0

1.
5

ML density
Jackknife density
True value

Figure 3
Distribution of ML estimate and jackknife estimate (m¼ 4)
The graphs in the figure show the kernel density of ML estimate and jackknife estimate (m¼ 4) of k based
on 300 monthly observations and 1000 replications.

4 We use slightly different parameter values here (specifically, m¼ 0.12 and s¼ 0.015 rather than m¼ 0.08
and s¼ 0.02) because data from the Vasicek model can become negative and these parameter settings
avoid negative values in the 1000 replications used in this comparison.
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to Equation (11) is [Phillips (1972)]

r tð Þ ¼ e�kDr t�Dð Þ þ m 1� e�kD
� �

þ s

Z t

t�D

e�k t�sð ÞdB sð Þ; ð12Þ

whose autoregressive term is the same as that of the discrete model

corresponding to a CIR model. Therefore, we may expect that ML esti-

mates of the drift function in the misspecified model continue to suffer

from dynamic estimation bias, making the jackknife desirable. Of course,

the ML estimates of the drift function in the correctly specified discrete

model (12) will also suffer from dynamic estimation bias. The experimen-

tal design in the simulation enables us to isolate the bias arising in the
estimation of the drift from that due to misspecification of the diffusion.

Table 5 compares the means, standard deviations, and RMSEs of the

ML and jackknife estimates of k, the bond price, and the option price; true

values of these quantities also being shown for comparison purposes. The

true bond value is obtained using the analytic formula given in Vasicek

(1977) and the true option value is calculated based on the analytic

formula derived by Jamshidian (1989). Table 5 reports results for ML

estimation of the correctly specified (Vasicek) model obtained from the
exact discrete model (12), ML estimation of the CIR model where

the diffusion function is misspecified, and jackknife estimates based on

the misspecified CIR model.

It is clear from Table 5 that the bias effect plays an important role in all

cases. For example, in comparing the ML and jackknife estimates of the

Table 5
Finite sample properties of ML and jackknife estimates of k, bond price and option price for the (true)
Vasicek model using a (misspecified) fitted CIR model

Parameter k Bond price Option price

Strike True value 0.1 0.8371 2.2974
1 ML of CIR

Mean 0.1796 0.8226 1.3780
SD 0.0940 0.0188 1.0482
RMSE 0.1232 0.0237 1.3901

Jackknife (m¼ 2)
Mean 0.0889 0.8348 1.7474
SD 0.1368 0.0250 1.4649
RMSE 0.1373 0.0251 1.5625

Jackknife (m¼ 4)
Mean 0.0856 0.8328 1.6071
SD 0.1105 0.0208 1.2325
RMSE 0.1115 0.0212 1.4095

ML of Vasicek
Mean 0.1890 0.8217 1.4668
SD 0.1026 0.0202 1.0300
RMSE 0.1358 0.0255 1.3231

Note: ‘‘Strike’’ is the ratio of the strike price to the present value of the principal. The number of monthly
observations is 600 and the number of replications is 1000. SD and RMSE stand for standard deviation
and root mean squared error, respectively.
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misspecified CIR model when m¼ 2, the jackknife method reduces the

bias in the bond price from �1.73% to �0.27%, and the bias in option

prices from �40.02% to �23.94%. These are substantial improvements,

indicating that the jackknife continues to be a very effective tool of bias

reduction even in misspecified situations. When m¼ 4, the jackknife
method reduces the bias in the bond price from �1.73% to �0.51%, and

the bias in option prices from �40.02% to �30.05%, while also achieving

reductions in RMSE over the m¼ 2 setting. Finally, comparing the ML

estimates of the correctly specified (Vasicek) model with the jackknife

estimates (m¼ 4) of the misspecified CIR model, we find that the jackknife

continues to reduce the bias in the bond price, from �1.83% to �0.51%,

and the bias in options prices from �36.15% to �29.85%. The improve-

ments indicate that the bias arising from estimating the drift term is
generally more serious than that arising from misspecification of the

diffusion.5

2.4 Jackknife versus median unbiased estimation

In addition to the jackknife, median unbiased estimation (MUE) intro-

duced by Andrews (1993) can also remove bias in coefficient estimation of

the discrete AR(1) model. This method relies on full knowledge of the

exact median function of the estimator, which can only be obtained by

simulation. For continuous time models with nonlinear diffusions the
situation is exacerbated because the distribution is non-Gaussian, the

median function must be approximated using a computationally highly

intensive Monte Carlo method that depends on specific values of the other

parameters in the model. In consequence, MUE is not a practically feasi-

ble method.

In spite of these practical limitations, the MUE procedure provides a

very interesting benchmark for evaluating the success of bias reduction

procedures in dynamic models. The MUE is obtained by transforming the
ML estimate k̂k with the inverse median function m�1

d , where the median

function md (k) is found by running extensive simulations over a wide

range of parameter values k.6 In this way the MUE procedure utilizes a

great deal of information about the distribution of the ML estimator and,

at least when the assumptions underlying the construction of md are valid,

we can expect no better bias reduction procedure than this.

In the present study, we implemented the MUE in the CIR model,

where its performance can be directly compared with that of the jackknife
and ML. Using simulated median functions, we correct the bias by

5 In the simulation we also tried to have the CIR and Vasicek models reversed. That is, we simulated data
from the CIR model but fitted the Vasicek model to the simulated data. We found that the relative
importance of the estimation bias over the misspecification bias is more serious than that reported in the
present article.

6 The median functions may be obtained from the authors upon request.
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constructing the median unbiased estimator of k as in Andrews (1993). In

a simulation study, 300 monthly observations are used to estimate the

CIR model for parameter values k¼ 0.1, m¼ 0.08, s¼ 0.02, and the

number of replications is 1000. Table 6 reports the means, standard
deviations, and RMSEs of estimates of k, bond price, and option price

from ML, jackknife with m¼ 2, 4, and MUE, where the bond and bond

option are defined in the same way as before. For comparison purposes,

we also plug-in the jackknife parameter estimates to the bond and option

price formulae and report the results in Table 6. In terms of the bias

reduction in k, MUE is comparable with the jackknife but has smaller

RMSE. The results suggest that MUE is very effective in reducing dynam-

ic bias, as indeed it is designed to do. Not surprisingly, the plug-in MUE
works better than the plug-in jackknife for pricing bonds and options as it

provides smaller biases as well as smaller RMSEs. However, the plug-in

MUE is not superior to the estimates obtained from jackknifing the

quantities of interest directly. Although, in magnitude, the bias in the

bond and option prices from MUE is comparable with that from jack-

knifing bond and option prices with m¼ 2, the RMSE is larger for MUE,

particularly for option prices.

Table 6
Finite sample properties of ML and jackknife estimates of k, bond prices and option prices of ML,
jackknife and MUE under the one-factor CIR model

Parameter k Bond price Option price

True value 0.1 0.8503 2.3921
300 monthly
observations

ML
Mean 0.2762 0.8381 1.4071
SD 0.1853 0.0125 0.8959
RMSE 0.2557 0.0174 1.3315

Jackknife (m¼ 2)
Mean 0.0988 0.8460 1.8186
SD 0.2606 0.0163 1.2555
RMSE 0.2606 0.0169 1.3803

Jackknife (m¼ 4)
Mean 0.0845 0.8443 1.6636
SD 0.2179 0.0138 1.0663
RMSE 0.2184 0.0151 1.2914

MUE
Mean 0.0916 0.8554 2.8015
SD 0.1953 0.0168 1.4050
RMSE 0.1954 0.0173 1.4634

Jackknife plug-in (m¼ 2)
Mean 0.0988 0.8584 2.8825
SD 0.2606 0.0564 2.1560
RMSE 0.2606 0.0570 2.2110

Jackknife plug-in (m¼ 4)
Mean 0.0845 0.8562 2.9417
SD 0.2179 0.0223 1.7644
RMSE 0.2184 0.0231 1.8480

Note: The number of monthly observations is 300 and the number of replications is 1000. SD and RMSE
stand for standard deviation and root mean squared error, respectively.
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These results confirm that the idea of jackknifing specific quantities of

interest directly, rather than plugging in bias reduced parameter estimates

is likely to be especially important in practice, as in the present setting

where the object is to achieve gains in pricing derivative securities where

the formulae are complicated functions of several fundamentals including
unknown parameters. It is a characteristic feature of the jackknife method

that it permits corrections to be implemented directly on the ultimate

quantity of interest. This is an important operational distinction between

the jackknife and other bias reduction techniques like MUE, which have

more limited applicability in view of distributional and invariance

property restrictions.

The reason jackknifing option prices directly works better than various

plug-in methods (including the plug-in jackknife) is because of the non-
linear nature of pricing applications. It is already well known that non-

linearity can cause plug-in methods to produce biased option price

estimates even when the parameter estimate is unbiased [Butler and

Schachater (1986)]. Our results demonstrate that bias effects can be

much more significant when the parameter estimate itself is biased and

the pricing function is heavily nonlinear. The nonlinearity of the options

pricing formula has other important implications in finance. For instance,

when comparing alternative option valuation models, Christoffersen and
Jacobs (2004) found that a method can often perform well out-of-sample

in a dimension that corresponds to the loss function applied in estimating

or calibrating the forecasts, but not necessarily well in other dimensions.

These differences in option pricing performance are largely driven by the

nonlinearities of option pricing functions. By avoiding the use of plug-in

operations entirely, appropriate use of the jackknife can be expected to be

more robust against the effects of nonlinearity.

2.5 A multifactor model

Bias effects are also present in multifactor models. For example, the finite
sample bias in the mean reversion estimators can be found to be substan-

tial in all seven multifactor models in Aı̈t-Sahalia and Kimmel (2003). The

bias occurs not only in the approximate ML estimator proposed by

Aı̈t-Sahalia (2003) but also in the exact ML estimator.

To demonstrate the usefulness of the jackknife in more complex and

realistic frameworks, we consider a two-factor CIR model where there are

two independent factors, each evolving over time according to a square-

root process:

dyi tð Þ ¼ ki mi � yi tð Þð Þdtþ siy
1=2
i tð ÞdBi tð Þ, i ¼ 1, 2: ð13Þ

This model is a special case of the more general class of multifactor affine

models considered in Duffie and Kan (1996). In the terminology of
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Dai and Singleton (2000), it is an A2 (2) model. This model is chosen in the

present study for the following reasons. First, the model has an analytic

solution for the prices of discount bonds, so it is not necessary to have to

solve some differential equations to obtain a solution, unlike the case of a

general affine model. Second, the model has a closed-form likelihood
function and therefore lends itself to an exact ML approach.

Define P(t, s) to be the price at time t of a discount bond that pays-off $1

at time s and we have

P t, sð Þ ¼ A1 t, sð ÞA2 t, sð Þe�B1 t;sð Þy1�B2 t;sð Þy2 , ð14Þ

where

Ai t, tð Þ ¼ 2gie
kiþliþgið Þ t� tð Þ=2

ki þ li þ gið Þ egi t�tð Þ � 1ð Þ þ 2gi

� �2kimi=s
2
i

,

Bi t, tð Þ ¼
2 egi t�tð Þ � 1
� �

ki þ li þ gið Þ egi t�tð Þ � 1ð Þ þ 2gi

,

gi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ki þ lið Þ2þ2s2

i

q
,

and li is the market price of interest rate risk associated with factor i.7

Let C(t, t; s, K) be the value at time t of a call option on a discount bond

of maturity data s and of principal L, with exercise (or strike) price K and

expiration date t (s> t> t). Chen and Scott (1992) give the expression for

C(t, t; s, K). They show that although C(t, t; s, K) does not have an

analytic expression, the calculation is reduced to univariate numerical

integrations of cummulative density functions (CDFs) and probability
density functions (PDFs) of noncentral chi-square variates.

The state vector yi(t) is not observable to econometricians. Instead, we

observe the yields of discount bonds with different maturities. Let Y(t, s)

be the bond yield of maturity s� t and Equation (14) implies the following

relationship between bond yields and factors:

Y t,s1ð Þ
Y t,s2ð Þ

� �
¼

B1 s1�tð Þ
s1�t

B2 s1�tð Þ
s1�t

B1 s2�tð Þ
s2�t

B2 s2�tð Þ
s2�t

0
BB@

1
CCA y1 tð Þ

y2 tð Þ

� �
�

ln A1 s1�tð ÞA2 s1�tð Þð Þ
s1�t

ln A1 s2�tð ÞA2 s2�tð Þð Þ
s2�t

0
BB@

1
CCA:

ð15Þ

It can be seen that a panel of only two yields is needed to back out the

state vector and avoid stochastic singularity, a feature that means that

7 See Dai and Singleton (2000) for a discussion of the identification issues of market price of risk.
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when the number of yields (say M) used is larger than the number of

factors (say N) the model is always rejected [Piazzesi (2002)]. In this case

the likelihood function of the state vector is the product of two likelihood

functions, each from the univariate CIR model and hence has a closed

form expression. As a result, the likelihood function of the observed bond
yields is obtained in closed-form by way of standard change of variable

techniques.

There exist other techniques to break singularities. For example, one

can add measurement errors to the yield equations. One way to do this is

to assume all yields are observed with errors. However, this implies that

exact ML is no longer applicable. Alternatively, one can assume that

among M yields, N yields are observed without error, whereas the other

M�N yields involve measurement errors. However, such an assumption
seems completely arbitrary. Another difficult problem facing these alter-

native approaches is how to model the measurement errors. To avoid

these controversial issues, we use a panel of two yields (with maturities

of six-month and five-year) to estimate the two-factor CIR model

(i.e., M¼N¼ 2).

To compare the performance of the jackknife and ML estimators in the

context of the two-factor CIR model, we design a small scale Monte Carlo

experiment. A typical empirical finding in the two-factor CIR model is
that one factor has a very slow rate of mean reversion and the other has a

considerably faster reverting rate. Judged by the empirical results reported

in the literature [see, e.g., Chen and Scott (1993), Geyer and Pichler (1999),

Jagannathan, Kaplin and Sun (2003)], a set of parameters is chosen for

(k1, k2): (0.5, 0.01). Other parameter values selected are m1¼ 0.03,

m2¼ 0.02, s1¼ 0.001, s2¼ 0.001, l1¼ 0, and l2¼ 0. The initial values

for the factors are 0.03 and 0.02 in order to price bonds and bond options.

We minimize the negative of the log-likelihood of the model with respect
to k1, k2, m1, m2, and assume the other parameters are known in order to

alleviate the computational burden. Both ML and the jackknife (m¼ 2

and 3) are used to estimate the model. For the three-year discount bond

we choose a face value of $1. The call option on a three-year discount

bond has a face value of $100 and a strike price of $87. Table 7 reports the

results based on 1000 samples of 300 and 600 weekly observations on one-

month and five-year zero rates.

First, as in the one-factor CIR model, ML estimates the mean reversion
parameters with large upward biases. The bias is 143% for k1 and 735% for

k2 when 300 weekly observations are used. The bias is 66% for k1 and

519% for k2 when 600 weekly observations are used. It can be seen that the

biases are smaller but remain substantial when the sample size increases.

The sizes of these biases generally agree with those in Aı̈t-Sahalia and

Kimmel (2003). On the contrary, the jackknife delivers substantial bias

reduction in the estimation of ks in both cases and is particularly effective
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for k1. Second, as expected, the biases in the ML estimators of ks translate

into biases for the bond price and more so for the bond option price. For

example, when 300 weekly observations are used, the bias is 2.15% in bond

price and 44.3% in option price. On the other hand, the jackknife always
offers improvements in bond pricing. In the case of 300 weekly observa-

tions, the jackknife reduces the bias in the bond price from 2.15% to 1.42%

(m¼ 2) and to 1.63% (m¼ 3). In the case of 600 weekly observations, the

jackknife reduces the bias in the bond price from 1.39% to 0.63% (m¼ 2)

and to 0.78% (m¼ 3). The improvement is more dramatic for option

pricing. In the case of 300 weekly observations, the jackknife reduces the

bias in the option price from 44.3% to 30.9% (m¼ 2) and to 36.0% (m¼ 3).

In the case of 600 weekly observations, the jackknife reduces the bias in
the option price from 29.5% to 14.5% (m¼ 2) and to 17.9% (m¼ 3). In

most cases, these bias reductions from the jackknife in estimating

the mean reversion parameters and pricing options are achieved with a

decrease in RMSE. For example, in all cases the jackknife with m¼ 3

provides smaller RMSE than ML. In the case of 600 observations,

the jackknife with m¼ 2 provides smaller RMSE than ML in pricing

options.

Table 7
Finite sample properties of ML and jackknife (m¼ 3 and 4) estimates of k1, k2, bond prices and
option prices under the two-factor CIR model

Parameter k1 k2 Bond price Option price

True value 0.5 0.01 0.8607 3.3150
300 weekly
observations

ML
Mean 1.2163 0.0835 0.8792 4.7835
SD 0.7000 0.0019 0.0095 0.7138
RMSE 1.0015 0.0073 0.0208 1.6328

Jackknife (m¼ 2)
Mean 0.3914 0.0638 0.8729 4.3384
SD 1.1639 0.0032 0.0148 1.7892
RMSE 1.1757 0.0061 0.0192 2.0613

Jackknife (m¼ 3)
Mean 0.4610 0.0691 0.8747 4.5084
SD 0.7453 0.0026 0.0130 0.9968
RMSE 0.7468 0.0061 0.0191 1.5549

600 weekly
observations

ML
Mean 0.8310 0.0619 0.8727 4.2917
SD 0.1290 0.0013 0.0084 0.6643
RMSE 0.2380 0.0040 0.0146 1.1812

Jackknife (m¼ 2)
Mean 0.4517 0.0395 0.8661 3.7960
SD 0.2534 0.0025 0.0125 0.9934
RMSE 0.2557 0.0034 0.0136 1.1037

Jackknife (m¼ 3)
Mean 0.4340 0.0447 0.8674 3.9069
SD 0.1953 0.0020 0.0110 0.8766
RMSE 0.1996 0.0032 0.0129 1.0577

Note: The number of replications is 1000. SD and RMSE stand for standard deviation and root mean
squared error, respectively.
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3. Empirical Application

3.1 Data

In the empirical analysis we use weekly U.S. dollar LIBOR and swap rates

obtained from Datastream for the period from August 12, 1992 to July 24,

2002. Figure 4 plots the time series of six-month LIBOR rates and the five-

year swap rate. The choice of LIBOR data over Treasury data is made

because LIBOR rates are more relevant to pricing derivatives [see Dai and

Singleton (2000) for a discussion of important differences between LIBOR

data and Treasury data]. Using the bootstrap method, we obtain the
LIBOR zero curve from all available swap rates and LIBOR rates. We

follow Dai and Singleton (2000) by assuming that there is no default risk,

but note that the default of risk can be handled in the framework of Duffie

and Singleton (1999). The sample size is 520 and chosen to be close to

those used in the simulation study to help in calibrating the results with the

simulation.

We choose the observed data to be the six-month and five-year zero

rates. Table 8 shows the sample sizes, means, standard deviations, first
seven autocorrelations, and Phillips’ (1987) Z(t) unit root test statistic

(with a fitted intercept in the regression) for both series. The presence of a

unit root cannot be rejected at the 10% level in both series. These results,

together with the form of the sample autocorrelogram, suggest that both
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Figure 4
The dynamics of LIBOR and five-year swap rates
The figure shows paths of weekly LIBOR and five-year swap rates from August 12, 1992 to July 24, 2002.
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interest rate series are highly persistent. Hence, standard estimation meth-

ods for diffusion equations can be expected to lead to significant bias in

estimating the correlation and mean reversion coefficients.

3.2 The one-factor model

In this comparison, we focus on a three-year discount bond, a one-year
call option, and a half-year call option on a discount bond. In all cases the

initial value for the short-term interest rate is set at 5%. For the discount

bond we choose a face value of $1. The call option on a three-year

discount bond has a face value of $100 and various strike prices so that

the ratio of the strike price to the current value of par takes each of the

following values: 0.95, 1, and 1.05. These ratios correspond to in-the-

money, at-the-money, and out-of-the-money situations, respectively.

To estimate the one-factor CIR model, we assume that the six-month
zero rate provides a good proxy to the instantaneous riskless rate. We first

estimate the square-root model by ML and jackknife methods and then

obtain the ML estimated bond and option prices as well as the jackknife

estimates of the two prices.

Table 9 reports the results with m¼ 2. The jackknife estimate of k is

0.0416 and is 45.1% smaller than the MLE; the jackknife estimate of the

bond price is 0.34% higher than its ML counterpart. More importantly,

the call option values differ substantially between the two methods. The
biggest percentage differences are for the out-of-the-money option. For

example, for the half-year option, the price of the out-of-the-money

option implied by the jackknife method is 26.5% larger than that obtained

from the MLE. All these results are consistent with the magnitudes and

directions of the biases and differences between the jackknife and ML

estimates that were found in the simulation studies.

Table 8
Summary statistics and unit root tests for weekly 6-month and 5-year zero rates

Data 6-month 5-year

Number of Observations 520 520
Mean 0.0496 0.0603
Standard Deviation 0.0132 0.00787
Autocorrelation r1 0.991 0.979
Autocorrelation r2 0.982 0.960
Autocorrelation r3 0.972 0.941
Autocorrelation r4 0.961 0.920
Autocorrelation r5 0.949 0.897
Autocorrelation r6 0.937 0.873
Autocorrelation r7 0.925 0.850
Z(t) test 0.0589 �1.205
10% critical value �2.5699 �2.5699

Note: Data source is Datastream. The LIBOR zero curve from August 12, 1992 to
July 24, 2002 and calculated from all available swap rates and LIBOR rates using
the bootstrapping method discussed in Hull (2000). Z(t) is the Phillips’ Z-statistic
and the critical value is obtained from the model with a fitted intercept.
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3.3 Two-factor models
In this comparison, we consider two multifactor specifications. The first is

the two-factor CIR model discussed in Section 2 while the second one is the

two-factor central tendency model proposed by Balduzzi, Das, and Foresi

(1998) which will be defined below. In both models, we will use six-month

and five-year zero rates to estimate parameters and then price a three-year

discount bond and a one-year call option on a discount bond. For the

discount bond we choose a face value of $1. The call option on a three-year

discount bond has a face value of $100 and a strike price of $87.
Table 10 reports the results for the two-factor CIR model when ML and

the jackknife with m¼ 2 are used. The initial values for the two factors are

set at 4.5% and 0.5%. Several interesting results emerge from this

table. First, ML yields the familiar empirical finding about the mean

reversion parameters that was mentioned earlier for the two-factor CIR

model —that one factor has a very slow rate of mean reversion (0.0337)

Table 9
Empirical estimates of one-factor CIR model

Option price

Option Exp.
(t: years)

Exercise price

Current value of par

Method k m s Bond price 0.95 1 1.05

ML 0.0758 0.0328 0.0324 0.8656 0.5 6.798 2.704 0.199
Jackknife 0.0416 0.0225 0.0324 0.8685 7.077 2.962 0.252
ML 1 8.729 4.634 0.908
Jackknife 8.987 4.890 1.090

Note: We fit the following one-factor CIR model

dr tð Þ ¼ k m� r tð Þð Þdtþ sr1=2 tð ÞdB tð Þ

to the 6-month zero rate which is assumed to be good proxy to the instantaneous rate.

Table 10
Empirical estimates of two-factor CIR model

Method k1 m1 s1 l1 Option price

ML 0.2170 0.0043 0.024 �1.201 0.1413
Jackknife 0.0865 0.0040 0.020 �.981 0.2111

k2 m2 s2 l2 Bond price
ML 0.0337 0.0248 0.0339 0.1413 0.8071

Jackknife 0.0262 0.0096 0.0355 �0.1125 0.8198

Note: We fit the following two-factor CIR model

dyi tð Þ ¼ ki mi � yi tð Þð Þdtþ siy
1=2
i tð ÞdBi tð Þ; i ¼ 1; 2

to the 6-month and 5-year zero rates without treating the 6-month rate as an approximation to the
instantaneous rate.
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and the other has a considerably faster rate (0.2170). However, the jack-

knife estimates suggest that both mean reversion parameters are overesti-

mated by ML. The estimated differences between the two methods for the

two mean reversion parameters are 22.3% and 60.1%, respectively.

According to the jackknife estimate, although one factor still reverts
toward its mean faster than the other, the difference between these two

mean reversion parameters is 0.0603 and is much smaller than what has

been documented in the literature. Indeed both factors are very close to

unit root processes according to the jackknife estimates. Second, the

jackknife estimate of the bond price is 1.57% higher than its ML counter-

part. For the one-year call option, the price implied by the jackknife

method is 49.4% larger than that obtained from the MLE.

The last model studied in the application is the central tendency model
which, under the physical measure, takes the form of

du tð Þ ¼ b �uu� u tð Þð Þdtþ h
ffiffiffiffiffiffiffiffi
u tð Þ

p
dB1 tð Þ,

dr tð Þ ¼ k u tð Þ� r tð Þð Þdtþ sdB2 tð Þ,
ð16Þ

where r(t) is the instantaneous rate, u(t) is a long-term mean of r(t), which

stochastically follows a CIR process. By assuming that li is the market

price of the interest rate risk associated with factor i, this model is an affine

A1 (2) model. Despite its popularity in empirical studies, this model does

not have a closed-form likelihood function, nor analytical expressions for

prices of discount bonds and bond options. To estimate parameters from

discrete time observations, we use the approximate maximum likelihood

(AML) method developed by Duffie, Pedersen, and Singleton (2003). To
price the discount bond, we solve the Ricatti equations (see Equations (6)

and (7) in Dai and Singleton, 2000) using Runge-Kutta methods. Finally,

the option price is computed by Fourier inversion of a relevant charac-

teristic function, following the suggestion of Duffie, Pan and Singleton

(2000).

Table 11 reports the empirical results when AML and the jackknife with

m¼ 2 are used. The initial values for the two factors are set at 8% and 4%.

Several interesting results emerge from this table. First, the AML estimate
of b is very similar to the jackknife estimate of b, suggesting that the

reversion parameter of the first factor is estimated with little bias by ML.

However, the jackknife estimates suggest that the mean reversion param-

eter of the second factor (k) is overestimated by ML. The estimated

differences between the two methods is 55.8%. According to the jackknife

estimate, therefore, the instantaneous rate reverts very slowly toward its

long run mean. Second, the jackknife estimate of the bond price is 1.49%

higher than its ML counterpart. For the one-year call option, the price
implied by the jackknife method is 48.86% larger than that obtained from

the MLE.
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4. Conclusions and Implications

Bias in the estimation of the parameters of continuous time models by

standard methods such as ML translates into bias in pricing bonds and
bond options. In cases where the parameters take on realistic values, we

have found that these biases can be substantial, particularly in the case of

bond options. The procedure we propose here for reducing the bias

involves the use of subsample estimates and a version of the jackknife.

Simulations show the procedure to be highly effective in the one-factor

and two-factor CIR models and to offer substantial improvements in

pricing bond options and marginal improvements in pricing bonds over

the usual ML approach. The greatest gains are in the substantial bias
reductions that the jackknife method provides. But use of multiple sub-

samples in the construction of the jackknife enables reductions in both

bias and mean squared error, so the gains from bias reductions are not lost

in variance increases.

An interesting feature of the proposed method is that it can be used to

reduce bias even when the diffusion of the model is misspecified, thereby

offering an additional advantage over standard methods. Our simulation

findings indicate that the dynamic estimation bias arising from the use of
standard estimation methods can be even larger than the specification bias

arising from misspecifying the diffusion. Moreover, using the jackknife in

a model where the diffusion is misspecified turns out to be less biased than

using ML in the correctly specified model.

This article applies the approach to price discount bonds and options in

the context of one-factor and two-factor CIR models estimated by ML

and two-factor central tendency model estimated by AML. However, the

technique itself is quite general and can be applied in many other contexts
and models with little modification. For example, the method extends

to a broader range of model specifications, including the CEV model

Table 11
Empirical estimates of two-factor central tendency model

Method b �uu h2 k s2

ML 0.2501 0.0932 0.0109 0.4631 0.4653 e�5

Jackknife 0.2568 0.0952 0.0137 0.2049 0.4352 e�5

l1 l2 Bond price Option price

ML �0.0011 0.0027 0.8362 3.4459
Jackknife �0.0015 0.0026 0.8487 5.1297

Note: We fit the following two-factor central tendency model

du tð Þ ¼ b �uu� u tð Þð Þdtþ h
ffiffiffiffiffiffiffiffi
u tð Þ

p
dB1 tð Þ,

dr tð Þ ¼ k u tð Þ� r tð Þð Þdtþ sdB2 tð Þ,

to the 6-month and 5-year zero rates without treating the 6-month rate as an approximation to the
instantaneous rate.
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[Chan et al. (1992)], extended one-factor models [Hull and White (1990)],

two-factor equilibrium models [Brennan and Schwartz (1979, 1982),

Longstaff and Schwartz (1992), Langetieg (1980), Countadon (1982)],

the semiparametric model [Aı̈t-Sahalia (1996a)] with parametric drift,

models with stochastic volatility [Andersen and Lund (1997)], the multi-
factor affine family that has been the dominant class of term structure

models [e.g., Duffie and Kan (1996), Dai and Singleton (2000)], the affine

jump-diffusion models [Duffie, Pan and Singleton (2000), Chacko and

Das (2002)], semi-affine models [Duffee (2002), Duarte (2004)], and

regime switching model [Bansal and Zhou (2002)]. Because the drift is

linear and parametric in all the models, we expect the bias problem to be

present in these models also and again our method should be useful.

In more complicated models such as those just mentioned, the analytic
form of the likelihood function is often unavailable and so exact ML is

infeasible. However, the proposed jackknife method can be used in con-

nection with other estimation methods. Examples include simulated

GMM [Duffie and Singleton (1993)] and its refinement EMM [Gallant

and Tauchen (1996)], indirect inference [Gourieroux, Monfort and

Renault (1993)], continuous time GMM [Hansen and Scheikman

(1995)], approximate ML [Aı̈t-Sahalia (2002, 2003), Duffie, Pedersen,

and Singleton (2003)], simulated ML [Pedersen (1995), Brandt and
Santa-Clara (2002), Durham and Gallant (2002)], and methods via the

empirical characteristic function [Singleton (2001), Knight and Yu

(2002)]. Finally, many other interest-rate-contingent claims can be treated

in a similar way. Examples include coupon-bearing bonds, caps, swap-

tions, captions, mortgage-back securities, and stock and currency options

with stochastic interest rates. Since all these interest-rate-contingent

claims are nonlinear functions of the system parameters, any bias in the

estimation of the system parameters will carry over to pricing the interest-
rate-contingent claims. The situation in these cases is analogous to the one

explored here and the proposed jackknife method can be used to reduce

the bias in pricing the contingent claims.

The term structure models are estimated using either time series data or

small panels in this article. Some recent term structure literature makes use

of full panel information [e.g., Ball and Torous (1996), Duffee and Stanton

(2002)]. As shown by Ball and Torous and more so by Duffee and Stanton,

the finite sample bias problem persists even when considerable cross-
sectional information is employed, so there is a continuing need for bias

correction procedures. The jackknife method should continue to be useful

in such cases and appropriate extensions will be considered in later work.
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