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The paper proposes a self-exciting asset pricing model that takes into account co-jumps
between prices and volatility and self-exciting jump clustering. We employ a Bayesian
learning approach to implement real-time sequential analysis. We find evidence of self-
exciting jump clustering since the 1987 market crash, and its importance becomes more
obvious at the onset of the 2008 global financial crisis. We also find that learning affects the
tail behaviors of the return distributions and has important implications for risk management,
volatility forecasting, and option pricing. (JEL C11, C13, C32, G12)

The financial meltdown of 2008 and the European debt crisis of 2010 to
2012 have impacted financial markets worldwide and have had far-reaching
consequences for the world economy. These market turmoils raise questions
about how likely extreme events are and how they can be modeled. Recent
empirical studies find that a big jump in asset prices tends to be associated
with an abrupt move in asset volatility, a phenomenon labeled as co-jumps of
prices and volatility (Eraker, Johannes, and Polson 2003; Eraker 2004; Jacod
and Todorov 2010; Todorov and Tauchen 2011). A further intriguing empirical
observation is that an extreme movement in markets tends to be followed by
another extreme movement, resulting in self-exciting jump clustering (Yu 2004;
Carr and Wu 2011; Aït-Sahalia, Cacho-Diaz, and Laeven Forthcoming).

In the current paper, we propose a self-exciting asset pricing model where
both co-jumps of prices and volatility and self-exciting jump clustering are
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allowed. In our specification, negative jumps play a crucial role. In particular,
whenever there is a negative jump in asset returns, it is simultaneously passed
on to both diffusion variance and the jump intensity. Therefore, the likelihood
of future extreme events can be enhanced by either jumps in diffusion volatility
or increases in the jump intensity or both. The importance of negative jumps is
consistent with the well-documented empirical regularity in financial markets
that economic agents react more strongly to bad macroeconomic surprises
than to good ones (Andersen, Bollerslev, and Diebold 2007). Our model is
quite flexible, and it has closed-form conditional expectations of the volatility
components, making it convenient to use in volatility forecasting and risk
management.

Traditional asset pricing theories usually have a strong assumption that
endows economic agents with more precise information of the model and
parameters than that available to econometricians. While this approach
simplifies model specification and inference, it ignores the need for updating
the long-run components of uncertainty, and it may lead to underestimation of
risks encountered by economic agents. L. Hansen (2007, pp. 1–2) makes the
following argument:

Should we put econometricians and economic agents on
comparable footing, or should we endow economic agents with
much more refined knowledge? ... As the statistical problem
that agents confront in our models is made complex, rational
expectations’ presumed confidence in their knowledge of the
probability specification becomes more tenuous.

Given that our model has a complex structure and contains multiple
unobserved dynamic factors, we take a different route and consider a Bayesian
economic agent who faces the same belief-updating problems as confronted
by the econometrician. She takes parameters, latent states, and models as
unknowns and uses Bayes’ rule to update her beliefs sequentially over time as
market information becomes available. This may lead to differences between
ex ante beliefs and ex post outcomes, and could have important asset pricing
implications.

Statistical learning and its implications for asset pricing have attracted an
enormous amount of attention.Arecent survey has been provided by Pastor and
Veronesi (2009). One of the key implications is that Bayesian learning generates
persistent and long-term changes to the agent’s beliefs, which have important
influence on stock valuation, risk measures, and time series predictability.
Among others, Timmermann (1993, 1996) and Lewellen and Shanken (2002)
show that learning may generate excess volatility and predictability in stock
returns. Veronesi (2004) studies implications of learning about a peso state
in a Markov-switching model. Pastor and Veronesi (2003, 2006) investigate
stock valuation and learning about profitability. Cogley and Sargent (2008)
provide an alternative explanation of the observed equity risk premium from
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the learning perspective. Benzoni, Collin-Dufresne, and Goldstein (2011) show
that updating of beliefs on jump parameters may cause permanent shifts in
option prices.

However, most of the existing studies focus only on learning about either
state variables or a single parameter. In contrast, in this paper, we concurrently
learn about parameters and state variables. Simultaneous learning in an
asset pricing model with a complex structure remains difficult, as the large
number of unknowns complicates inference and slows down the learning
process. We implement Bayesian learning on our self-exciting model by
following the marginalized resample-move approach proposed by Fulop and
Li (2013), and then study the implications of learning for risk measures,
volatility forecasting, and option pricing. To highlight the effects of parameter
learning and uncertainty, we compare most results in three cases: (i) parameter
learning and uncertainty are present; (ii) only parameter uncertainty is
present—the full-sample posterior distributions of parameters are used in
analysis; and (iii) both parameter learning and uncertainty are ignored—the
full-sample posterior means of parameters are used in analysis. Recently,
similar to our approach, several papers have investigated the implications
for asset pricing when the agent jointly learns about parameters and states.
Johannes, Korteweg, and Polson (2014) investigate sequential learning and
return predictability. Johannes, Lochstoer, and Mou (Forthcoming) focus
on learning about consumption dynamics. Collin-Dufresne, Johannes, and
Lochstoer (2013) study parameter learning in a general equilibrium setup and
its implications for asset pricing.

We use the S&P 500 index for inference. The data range from January 2,
1980, to December 31, 2012, and have 8,325 daily observations in total. This
dataset includes the 1987 market crash, the 1997Asian financial crisis, the 2002
dot-com bubble burst, the 2008 global financial crisis, and the recent European
debt crisis of 2010 to 2012. A number of important results emerge from our
empirical analysis.

First, we find that the evidence of co-jumps between diffusion volatility and
asset returns is robust since the market crash of 1987. However, while the
data call for co-jumps in returns and jump intensities, the parameters driving
the jump intensity are hard to identify. The self-exciting jump intensity has
become more important since the 2008 global financial crisis. We find that the
speed of learning for the diffusion parameters is remarkably faster than that for
the jump parameters. The slow speed of learning and large uncertainty on the
jump parameters can be explained by the low arrival rate of extreme events.

Second, learning generates excess volatility, and does so through the jump
component. For example, in the full self-exciting model, the average annualized
total return volatility is about 18%, of which the jump volatility is about 9.4%.
However, if we ignore learning and simply use the full-sample posterior means
of the parameters, the average annualized total volatility decreases to 16.6%.
This decrease is only from the jump volatility, as the diffusion volatility is
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approximately the same as before, whereas the jump volatility reduces to about
7.0%. Having investigated the higher conditional moments of the predictive
return distribution, we find that learning makes the predictive distribution more
left skewed and leptokurtic. Furthermore, we observe a strong asymmetry in
the amount of learning over the tails: the left tail of the return distribution can
be well pinned down after the 1987 market crash, whereas there is a great deal
of uncertainty on the right-tail behavior throughout the sample.

Third, from a volatility forecasting perspective, the self-exciting jump
intensity is found to be important. In comparison with the more restricted
specifications, the full self-exciting model always generates smaller root-mean-
square-errors (RMSEs) and larger Mincer-Zarnowitz R2s, whether learning
is present or not. Learning also has an important implication for volatility
forecasting. For example, when learning is taken into account, the RMSE from
the full model is about 4.9%, whereas it reduces to 4.3% when the full-sample
posterior means of parameters are used. This comparison allows us to quantify
the cost of not knowing parameters in volatility forecasting. However, similar
to P. Hansen and Lunde (2005), we find that the GARCH(1,1) model cannot be
beaten by the more sophisticated self-exciting models in volatility forecasting.

Fourth, learning and self-exciting jumps have important implications for
option pricing. In general, we find that the existence of the self-exciting jump
intensity makes the model more flexible in capturing high levels of volatility
during periods of financial crisis. This feature is particularly important in
pricing short maturity out-of-money put and/or in-the-money call options.
Furthermore, learning has a first-order effect on pricing in-the-money and
out-of-money short maturity call options, and its effect on the deep out-of-
money call options is even stronger than on the deep in-the-money ones. This
is closely related to the fact that learning alters the tail behaviors and introduces
even larger uncertainty on the right tail of return distributions. Our results are
consistent with Benzoni, Collin-Dufresne, and Goldstein (2011), who argue that
updating of beliefs on jump parameters can cause permanent shifts in option
prices.

The last set of results relates model-implied option prices to observed option
prices between January 1996 and December 2012. First, we find that the
model with self-exciting jumps fits option prices better than a specification
excluding this channel, especially for short-term out-of-the-money puts and
during periods of financial crisis. Second, we document that updates in model-
implied option prices due to parameter learning are significantly related to
observed option prices, even after controlling for model-implied option prices
computed with the fixed parameter estimates. These results extend those in
Johannes, Lochstoer, and Mou (Forthcoming) to option prices, and suggest
that parameter learning is a significant issue for option market participants.

Our work makes two contributions to the literature. First, we conduct a
real-time sequential analysis to examine the importance of self-exciting jump
intensity. Interestingly, even though the data call for simultaneous jumps
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between asset returns and jump intensities from the 1987 market crash onward,
the self-exciting jump intensity becomes more important since the onset of
the 2008 global financial crisis. Second, we provide novel results on the
implications of learning for risk measures, volatility forecasting, and option
pricing. Such results are quite relevant in practice, as the agent needs to update
her beliefs sequentially over time when new market information arrives.

1. The Self-Exciting Asset Pricing Model

Under a probability space (Ω,F,P ) and the complete filtration {Ft }t≥0, the
dynamics of asset price, St , are governed by the following time-changed
stochastic process,

lnSt/S0 =
∫ t

0
μsds+

(
WT1,t

−kW (1)T1,t

)
+
(
JT2,t

−kJ (1)T2,t

)
, (1)

where μt captures the instantaneous mean rate, WT1,t
is a time-changed

Brownian motion, JT2,t
is a time-changed jump component that is time-

inhomogeneous, Ti,t represents business time and will be discussed below,
and kW (1) and kJ (1) are convexity adjustments for the Brownian motion and
the time-homogeneous jump process, respectively, and can be computed from

their respective cumulant exponents: k(u)≡ 1
t
ln

(
E[euLt ]

)
, where Lt is either

Wt or Jt .
The dynamics in Equation (1) indicate two distinct types of shocks to asset

returns: small continuous shocks, captured by a Brownian motion, and large
discontinuous shocks, generated by a jump component. In this paper, the time-
homogeneous jump component is modeled by the variance gamma process of
Madan, Carr, and Chang (1998), which is a stochastic process in the class
of infinite-activity Lévy processes. The jump component is important for
capturing extreme events and generating return non-normality and implied
volatility smile/skew. The empirical study by Li, Wells, and Yu (2008) shows
that the infinite-activity Lévy models outperform the affine Poisson jump
models. Furthermore, the recent nonparametric works by Aït-Sahalia and
Jacod (2009, 2011) and Lee and Hannig (2010) provide strong evidence on
infinite-activity jumps in asset returns.

The variance gamma process can be constructed through subordinating a
Brownian motion with drift using an independent subordinator

Jt =ωSt +ηW̃ (St ), (2)

where W̃t is a standard Brownian motion, and St is a gamma subordinator
St =�(t;1,v) with a unit mean rate and variance rate of v. Alternatively, it can
be decomposed into the upside component, J +

t , and the downside component,
J−

t , such that

Jt =J +
t +J−

t

=�u(t;μu,vu)−�d (t;μd,vd ), (3)
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where �u is a gamma process with mean rate μu and variance rate vu, �d a
gamma process with mean rate μd and variance rate vd , and

μu =
1

2

(√
ω2 +2η2/v+ω

)
, vu =μ2

uv, (4)

μd =
1

2

(√
ω2 +2η2/v−ω

)
, vd =μ2

dv. (5)

The decay rates and the fatness of the right and the left tails are governed by
λ+ =μu/vu and λ− =μd/vd , respectively.

The stochastic business time, Ti,t ≡
∫ t

0 Vi,s−ds, captures the randomness
of the diffusion variance (i =1) or of the jump intensity (i =2) over a time
interval [0,t] (Clark 1973; Carr, Geman, et al. 2003; Carr and Wu 2004).
Vi,t , which should be nonnegative, is the instantaneous variance rate (i =1) or
the jump arrival rate (i =2), both of them reflecting the intensity of economic
activity and information flow. Stochastic volatility or stochastic jump intensity
is generated by replacing calendar time t with business time Ti,t . The time-
changed jump component has the decomposition of JT2,t

=J +
T2,t

+J−
T2,t

and its

convexity adjustment term is kJ (1)T2,t =
(
k+
J (1)+k−

J (1)
)
T2,t .

Recent empirical studies find that a big negative jump in asset prices tends
to be associated with an abrupt move in asset variance—that is, co-jumps of
prices and volatility (Jacod and Todorov 2010; Todorov and Tauchen 2011).
Furthermore, market turmoils seem to indicate that an extreme movement
in markets tends to be followed by another extreme movement, resulting in
self-exciting jump clustering (Carr and Wu 2011; Aït-Sahalia, Cacho-Diaz,
and Laeven Forthcoming). Thus, we propose to allow negative return jumps
entering into both diffusion variance and the jump intensity and model the
instantaneous variance rate, V1,t , and the jump arrival rate, V2,t , as follows:

dV1,t =κ1(θ1 −V1,t )dt +σ11

√
V1,t dZt −σ12dJ−

T2,t
, (6)

dV2,t =κ2(θ2 −V2,t )dt −σ2dJ−
T2,t

. (7)

Equation (6) captures stochastic variance of the continuous shocks, where
Zt is a standard Brownian motion and is allowed to be correlated to Wt with a
correlation parameter ρ in order to accommodate the diffusion leverage effect.
Diffusion variance also depends on the negative return jumps, indicating that
there will be an abrupt increase in V1,t once there is a negative jump in asset
return. Equation (7) models the stochastic intensity of jumps, which is a mean-
reverting pure jump process. The specification implies that the jump intensity
relies only on the negative jumps in asset returns. Dependence of diffusion
variance and the jump intensity on negative return jumps is consistent with
the well-documented empirical regularity in financial markets that investors
react more strongly to bad macroeconomic surprises than to good surprises
(Andersen, Bollerslev, and Diebold 2007).

881

 at Singapore M
anagem

ent U
niversity on February 16, 2015

http://rfs.oxfordjournals.org/
D

ow
nloaded from

 

http://rfs.oxfordjournals.org/


[17:17 2/2/2015 RFS-hhu078.tex] Page: 882 876–912

The Review of Financial Studies / v 28 n 3 2015

The conditional expectation of the jump intensity in Equation (7) can be
found as follows:1

E[V2,t |F0]=
κ2θ2

κ2 −σ2μd

(
1−e−(κ2−σ2μd )t

)
+e−(κ2−σ2μd )tV2,0, (8)

from which its long-run mean can be obtained by letting t →+∞,

V̄2 =
κ2θ2

κ2 −σ2μd

. (9)

Equations (8) and (9) indicate that the conditional expectation of the jump
intensity is a weighted average between the current intensity, V2,0, and its long-
run mean, V̄2, and the speed of mean reversion of the jump intensity is controlled
by κ2 −σ2μd . Using Equations (8) and (9), the conditional expectation of
diffusion variance in Equation (6) can also be found as follows:

E[V1,t |F0]=e−κ1tV1,0 +θ1

(
1−e−κ1t

)
+σ12μd

[1−e−κ1t

κ1
V̄2

+
e−(κ2−σ2μd )t −e−κ1t

κ2 −σ2μd −κ1

(
V̄2 −V2,0

)]
, (10)

and its long-run mean is given by

V̄1 =θ1 +
σ12

κ1
μdV̄2. (11)

The conditional expectation of diffusion variance consists of two parts, one
arising from the square-root diffusion part (the first two terms on the right-hand
side in Equation (10)) and the other from negative return jumps (the last term
on the right-hand side in Equation (10)). If the jump intensity is constant, the
contribution of jumps to the conditional diffusion variance becomes constant
over time.

The above model (hereafter SE-M1) indicates that time-varying aggregate
return volatility can be traced back to two sources: one arising from time-
varying diffusion volatility and the other from the time-varying jump intensity.
In this model, the self-exciting behavior is captured through two channels:
(i) a negative jump in asset return pushes up the jump intensity, which in
turn triggers more jumps in future asset returns; (ii) a negative jump in asset
return makes diffusion volatility jump, and this high diffusion volatility tends
to facilitate big movements in future asset returns. In contrast, the existing
literature allows only one of these channels at a time and is unable to compare

1 Define f (t)=eκ2t E[V2,t |V2,0]. f (t) can be analytically found by solving the ordinary differential equation

f ′(t)=σ2μdf (t)+κ2θ2eκ2t ,

from which we obtain the conditional expectation in Equation (8).
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their relative importance. In particular, Eraker, Johannes, and Polson (2003) and
Eraker (2004) allow for comovement of return jumps and diffusion volatility
through a synchronized Poisson process, while Aït-Sahalia, Cacho-Diaz, and
Laeven (Forthcoming) and Carr and Wu (2011) link only the jump intensity to
jumps in asset returns.

One of the central questions we are concerned with in the current paper is the
dynamic structure of extreme movements in asset returns. In order to explore
the issue, we also investigate the following restricted models:

• SE-M2: the self-exciting model where diffusion volatility does not
jump—that is, σ12 =0, and the total volatility jump and the self-exciting
effect are only from the time-varying jump intensity;

• SE-M3: the self-exciting model where the jump intensity is constant—
that is, V2,0 =1,κ2 =0, and σ2 =0, and the total volatility jump is only
from the diffusion volatility process;

• SE-M4: the model that has no volatility jumps and no self-exciting
effect—that is, σ12 =0, V2,0 =1,κ2 =0, and σ2 =0.

2. Bayesian Learning and Belief Updating

Following the suggestion by L. Hansen (2007), we assume that the agent in
the market is Bayesian and faces the same belief updating problem as the
econometrician. She simultaneously learns about parameters, hidden states,
and models sequentially over time when new market observations arrive.

For a given self-exciting model Mi , there is a set of unknown static
parameters, �, and a vector of the hidden states, xt = {V1,t ,V2,t ,Ju,t ,Jd,t }, where
V1,t denotes diffusion variance, V2,t the jump intensity, Ju,t the upside jump,
and Jd,t the downside jump. The market observations include a time series of
(log) stock prices, y1:t = {lnSs}ts=1. For each time t , Bayesian learning consists
of forming the joint posterior distribution of the hidden states and the static
parameters based on information available up to time t ,

p(xt ,�|y1:t ,Mi)=p(xt |�,y1:t ,Mi)p(�|y1:t ,Mi), (12)

where p(xt |y1:t ,�,Mi) solves the state filtering problem, and p(�|y1:t ,Mi)
addresses the parameter inference issue. The update of the agent’s beliefs
therefore corresponds to updating this posterior distribution.

Our self-exciting models are nonlinear and non-Gaussian. Therefore, we
design a hybrid particle filter, which is capable of efficiently handling outliers
(see Appendix, section A.1, for the detailed algorithm). The decomposition
(Equation (12)) suggests a hierarchical framework for model inference and
learning. At each time, for a given set of model parameters proposed from
some proposal, we can run a particle filter, which delivers the empirical
distribution of the hidden states, p(xt |�,y1:t ,Mi), and the estimate of
the likelihood, p(y1:t |�,Mi), that can be used for parameter learning,
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p(�|y1:t ,Mi)∝p(y1:t |�,Mi)p(�,Mi). To achieve this aim, we rely on the
marginalized resample-move approach developed by Fulop and Li (2013).
The key point used in this approach is that the likelihood estimate from
the particle filter is unbiased (Del Moral 2004). Furthermore, in contrast to
traditional Bayesian methods, this approach can easily be made parallel, making
it computationally fast and convenient to use.

This particle-based learning approach provides as a natural output an estimate
of the marginal likelihood of the new observation

p(yt |y1:t−1,Mi)=
∫

p(yt |xt ,�,y1:t−1,Mi)p(xt |�,y1:t−1,Mi)

p(�|y1:t−1,Mi)dxtd�, (13)

which summarizes model fit over time (model learning) and can be used to
construct a sequential Bayes factor for sequential model comparison. For any
models M1 and M2, the Bayes factor at time t has the following recursive
formula

BF t ≡ p(y1:t |M1)

p(y1:t |M2)
=

p(yt |y1:t−1,M1)

p(yt |y1:t−1,M2)
BF t−1, (14)

which is completely out-of-sample, and can be used for sequential comparison
of both nested and non-nested models.

Bayesian learning and belief updating generate persistent and long-term
shocks to the agent beliefs. To see this, define θt =E[θ |y1:t ] as the posterior
mean of a parameter θ obtained using information up to time t . The iterated
expectation indicates

E[θt+1|y1:t ]=E[E[θ |y1:t+1]|y1:t ]=E[θ |y1:t ]=θt . (15)

Therefore, θt is a martingale, indicating that shocks to the agent beliefs on
this parameter are not only persistent but also permanent. Thus, in Bayesian
learning, the agent gradually updates her beliefs that the value of a parameter
is higher or lower than that previously thought and/or that a model fits the data
better than the other.

The Bayesian learning process is initialized by an agent’s initial beliefs
or the prior distributions. We move the fixed parameters in one block using
a Gaussian mixture proposal. Given that in our marginalized approach the
likelihood estimate is a complicated nonlinear function of the fixed parameters,
conjugate priors are not available. In general, we assume normal distributions
for the priors. However, if a parameter under consideration has a finite support,
we take a truncated normal as its prior. The hyper-parameters of the prior
distributions are calibrated using a training sample—that is, an initial dataset
is used to provide information on the location and scale of the parameters.
This procedure is initialized by priors with very large variances. The training-
sample approach is a common way to generate the objective prior distributions
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(O’Hagan 1994). We find that most model parameters, except those controlling
the self-exciting jump intensity, κ2 and σ2, are not so sensitive to the selection
of the priors. Therefore, based on information from the training sample, we
give relatively informative priors to κ2 and σ2, but give quite flat priors to
other parameters. See the Appendix, section A.2, for details of the selection
of functional forms and hyper-parameters for the priors, and section A.3 for
Monte Carlo and sensitivity studies.

3. Information Flow and Learning

Our Bayesian agent learns about and updates her beliefs on fixed parameters,
hidden states, and models as information arrives sequentially over time. We
initialize the Bayesian learning process using the priors described in the
Appendix, section A.2. Section 3.1 presents the data used for inference.
Section 3.2 implements model learning and sequential model comparison, and
Section 3.3 presents results on parameter and state learning. More statistical
results can be found in the Appendix, section A.4.

3.1 The data
The data used are the S&P 500 stock index ranging from January 2, 1980,
to December 31, 2012, with 8,325 daily observations in total. This dataset
contains the recent European debt crisis of 2010 to 2012, the global financial
crisis in late 2008, the market crash on October 19, 1987 (−22.9%), and other
market turmoils. The upper panel of Figure 1 plots the S&P 500 index returns.A
striking feature of the data is the high non-normality of the return distribution,
with a skewness of −1.2 and a kurtosis of 29.7. The Jarque-Bera test easily
rejects the null hypothesis of normality of returns with a very small p-value
(less than 0.001).

The lower panel presents realized volatility (RVt ), computed from the

previous 21-day (one-month) returns at each time, RVt =
√

252
21

∑20
j=0R

2
t−j . The

simultaneity of abrupt moves in realized volatility and extreme events in returns
is very clear, and turbulent periods tend to be realized through many consecutive
large up-and-down return moves. What is hard to gauge is the extent to which
these are due to high diffusion volatility or persistent fat tails. The model
inference that follows will shed more light on this issue from a Bayesian learning
perspective.

3.2 Model learning and sequential comparison
In the Bayesian framework, model comparison can be made by the Bayes factor,
defined as the ratio of the marginal likelihoods of two models.2 This Bayesian

2 In Bayesian statistics, Jeffreys (1961) gave a scale for interpretation of Bayes factors. For two given models,
M1 and M2, if the value of the log Bayes factor is between 0 and 1.1, M1 is barely worth mentioning; if it is
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Figure 1
S&P 500 index returns and realized volatility
The figure plots S&P 500 index returns (upper panel) and realized volatility (lower panel). The data range from
January 2, 1980, to December 31, 2012. In total, there are 8,325 daily observations. Realized volatility at each

time is computed from the previous 21-day (one-month) returns at each point in time, RVt =
√

252
21

∑20
j=0R2

t−j
.

Table 1
The full sample log Bayes factors

SE-M1 SE-M2 SE-M3 SE-M4

SE-M1 0.00 — — —
SE-M2 19.9 0.00 — —
SE-M3 11.4 −8.42 0.00 —
SE-M4 25.5 5.64 14.1 0.00

The table presents the log Bayes factor of the column model to the row model using all available S&P 500 index
data from January 2, 1980, to December 31, 2012. The interpretation of values in the table is given in note 2.

approach penalizes unnecessarily complicated models and is completely out-of-
sample. Table 1 presents the full information Bayes factors (in log) for the four
models investigated using all available data. We find that the SE-M1 model
and the SE-M3 model, both of which allow negative return jumps to affect

between 1.1 and 2.3, M1 is substantially better than M2; if it is between 2.3 and 3.4, M1 is strongly better
than M2; if it is between 3.4 and 4.6, M1 is very strongly better than M2; and if it is larger than 4.6, M1 is
decisively better than M2.
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diffusion volatility, outperform the SE-M2 model and the SE-M4 model that
exclude this channel. For example, the log Bayes factors between the SE-M1
model and the SE-M2/SE-M4 models are about 19.9 and 25.5, respectively, and
the log Bayes factors between the SE-M3 model and the SE-M2/SE-M4 models
are about 8.4 and 14.1, respectively. Thus, there is decisive evidence in the data
for negative return jumps affecting diffusion volatility and co-jumps of returns
and volatility. Furthermore, there exists very strong evidence for negative return
jumps affecting the jump intensity. Comparing the SE-M1 model, where both
self-exciting channels are allowed, to the SE-M3 model where only diffusion
volatility is influenced by return jumps, the former is very decisively preferred
with a log Bayes factor of 11.4.

The above batch comparison does not tell us how market information
accumulates and how different models perform over time. Does one model
outperform another in a certain state of economy, but underperform it in other
states? Our Bayesian learning approach has a recursive nature and produces
the sequential marginal likelihood at each time for each model. We can then
construct the sequential Bayes factors and use them for real-time model analysis
and comparison.

Figure 2 presents the sequential log Bayes factors that give us a richer picture
of model performance over time. A number of important features emerge. First,
when market information is scarce in the beginning of the sample, the SE-M1
model performs nearly the same as the other three models despite the fact that
it is the best model according to Bayes factors in Table 1.

Second, as the market information accumulates over time, in particular, after
the 1987 market crash, the data strongly favor the SE-M1 model that allows
negative return jumps to affect both diffusion volatility and jump intensity.

Third, the relative importance of diffusion volatility jumps and self-exciting
jump intensities changes over time. This can be seen by comparing the SE-M2
model with the SE-M3 model at the top-right panel of Figure 2. The self-
exciting jump intensity is more important over the period from 1992 up to 2001,
whereas diffusion volatility jumps begin to dominate after 2001. Furthermore,
the lower-left panel presents the sequential comparison between the SE-M1
model and the SE-M3 model. We clearly see the importance of introducing the
self-exciting jump intensity after the 1987 market crash, and it becomes even
more important after Lehman Brothers’ bankruptcy in September 2008, as the
log Bayes factor very quickly moves up to about 9.0 from about 3.0.

Fourth, most of the up-moves in Bayes factors happen during market
turmoils. This phenomenon is particularly obvious during the 1987 market crash
and the 2008 global financial crisis in and indicates that the market participants
mainly update their beliefs on model specifications during market turmoils.

3.3 Parameter and state learning
Different from batch estimation, our Bayesian learning approach provides
us with the whole picture of how parameter posteriors evolve over time
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Figure 2
Sequential model momparison
The figure plots the sequential log Bayes factors for sequential model comparison. The straight dashed lines in
each panel represent −3.4, 0, and 3.4, respectively, which determine how strongly one model outperforms the
other. The statistical interpretation of these values is given in note 2.

with respect to accumulation of information. Figure 3 presents the sequential
learning of the fixed parameters in the SE-M1 model, which is the best-
performing one. For each parameter, the posterior mean (solid line) and the
(5, 95)% credible interval (dashed lines) are reported. We group the model
parameters into the diffusion parameter set, �D =(κ1,θ1,σ11,ρ,σ12), and the
jump parameter set, �J =(ω,η,v,κ2,σ2).

There are a number of notable features. First, the agent’s beliefs are quite
uncertain in the beginning before the 1987 market crash with large credible
intervals for all parameters. Then, as information accumulates, the credible
intervals of most parameters become narrower and narrower over time and
parameter uncertainty diminishes.3

3 The plots in Figure 2 and Figure 3 seem to suggest that there are “spikes” in model probabilities and parameter
posteriors, especially during market turmoils. However, after we take a closer look at these estimates, we find
that they are not really spikes per se since they rapidly move up but slowly go down. Take σ12 in Figure 3 as
an example. If we look at the zoom-in of the 1987 market crash period, we can clearly see that after moving
up, it takes more than 30 days for σ12 to go down. This is because during the 1987 market crash, as we can see
in Figure 1, there is a big negative jump in the index return, and the return volatility suddenly moves up to a
very high level. According to our model specification, we need a large value of σ12 to achieve the high level of
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Figure 3
Parameter learning
The figure presents sequential parameter estimates over time in the SE-M1 model using the S&P 500 index
starting from January 2, 1980, up to December 31, 2012. In each panel, the posterior means (the solid line) and
(5, 95)% quantiles (the dashed lines) are reported.

Second, the speed of learning is quite different across parameters. Learning
is remarkably faster for the diffusion parameters than for the jump parameters.
We can see that after the 1987 market crash, most of the diffusion parameters
are quickly pinned down and have narrow credible intervals. However, for the
jump parameters, their credible intervals shrink very slowly. This is particularly
obvious for parameters controlling the self-exciting jump intensity, κ2 and σ2.
The credible intervals of these two parameters barely narrow down over time.
We observe a sudden tightening of the credible interval of κ2 only from the 2008
global financial crisis onward and a little shrinkage of the σ2’s credible interval.
The slow learning and large parameter uncertainty of the jump parameters can
be explained by the low arrival rate of extreme events and could be important
for risk management.

Third, in the SE-M1 model, the total return volatility consists of two
components, the diffusion volatility and the jump volatility, which behave quite
differently. The diffusion volatility is more persistent and less volatile than the

volatility. Hence, the posterior distribution of σ12 moves up. Similar features are also found in the Monte Carlo
study reported in the Appendix, section A.3.
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Figure 4
Learning about long-run volatility
The figure presents sequential estimates of the long-run diffusion volatility, the long-run jump intensity, and the
long-run return volatility over time in the SE-M1 model, using the S&P 500 index from January 2, 1980, to
December 31, 2012. In each panel, the (5, 50, 95)% quantiles are reported.

jump volatility because the learned value of κ1 is almost always smaller than
that of κ2 and the value σ2 is particularly large. The evidence of co-jumps
between the volatility and the return through the diffusion volatility is robust
ever since the 1987 market crash. However, even though the full dataset calls
for self-exciting jump intensity as seen in Figure 2, it only becomes really
important at the onset of the 2008 financial crisis. The parameters driving the
intensity dynamics, in particular σ2, remain hard to identify throughout.

Finally, the agent’s beliefs on the long-run components of uncertainty
vary over time. If the agent knows the fixed parameters, her beliefs on the
long-run diffusion volatility, the long-run jump intensity, and the long-run
return volatility should be constant over time as suggested by Equations (11)
and (9). However, our agent is Bayesian, and therefore, parameter learning
and uncertainty are directly transferred to her beliefs on the long-run risks.
To investigate this point, we present the long-run return volatility and its
components in Figure 4. We see from the upper panel that before the 1987
market crash, the long-run diffusion volatility varies dramatically, and the agent
is quite uncertain about its value. Since then, it has much less variation and a
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narrow 90% credible interval over time, though we observe a significant upward
adjustment since 2008. In contrast, the long-run jump intensity in the middle
panel changes over time and its 90% credible interval remains large, indicating
that the agent is quite uncertain about future jumps. This pattern is even more
striking during financial crises. For example, during the 2008 financial crisis,
the long-run jump intensity suddenly increases and then slowly wanders up, and
its 90% credible interval becomes larger than before. The agent’s uncertainty on
variance components is directly reflected in her beliefs on the long-run return
volatility, which is presented in the lower panel.4

Embedded in our learning algorithm is an efficient hybrid particle filter.
One advantage of this particle filter is that it can separate positive jumps
and negative jumps. This separation is important from both a statistical and
a practical perspective. Statistically, it makes our self-exciting models feasible
to estimate since both the diffusion volatility and the jump intensity depend
only on negative jumps. Practically, investors are mostly concerned about
negative jumps. The ability to disentangle the negative jumps provides us with
an important tool for risk management.

The left panels of Figure 5 present the filtered diffusion volatility, the jump
intensity, and the return volatility using the parameters learned at each time. We
can see that whenever there is a big negative return jump, the diffusion volatility
and the jump intensity abruptly move up to a high level. However, there are some
important differences between the two state variables. The diffusion volatility
is well identified with a tight 90% credible interval. In contrast, our ability to
pin down the jump intensity is limited as we can see that its credible intervals
are wide during the crisis periods. Furthermore, there seems to be an abrupt
change in the behavior of the jump intensity since the 2008 crisis. Prior to this
episode, during a turbulent period, the credible interval of the jump intensity
first widens and then quickly reverts to its long-run mean. Ever since the 2008
crisis, however, it has remained consistently high and wide. This suggests that,
as far as the tails are concerned, the recent crisis is special, with a sustained
probability of large extreme events going forward. The lower panel presents
the return volatility, which is computed as

√
V1,t +V art (J1)V2,t . It has a large

credible interval in the beginning, and because of the information accumulation,
its credible interval slowly becomes tighter and tighter.

The right panels of Figure 5 present the filtered positive, negative, and return
jumps. The filtered negative jumps in the middle panel can effectively capture
all market turmoils, such as the 1987 market crash, the 1997 Asian financial
crisis, the 2008 financial crisis and the 2010 to 2012 European debt crisis.

4 In Figure 4, we present the (5, 50, 95)% quantiles instead of the posterior means and (5, 95)% quantiles. This is
because the long-run volatility components are nonlinear functions of model parameters. Any extreme values of
model parameters could result in very unreasonable long-run components, which may dominate the computation
of the posterior means such that they could be larger than the 95% quantiles. This issue is particularly striking
in the early stage of learning when the market information is minimal and the posterior distributions have large
dispersion.
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Figure 5
Volatility and jumps learning
The left panels present the sequential posterior means and the (5, 95)% quantiles of the diffusion volatility
(
√

V1,t ), the jump intensity (V2,t ), and the return volatility (
√

V1,t +V art (J1)V2,t ). The right panels present
the sequential posterior means of the positive jumps (Ju,t ), the negative jumps (Jd,t ) and the return jumps
(Ju,t +Jd,t ) in the SE-M1 model. The data used are the S&P 500 index from January 2, 1980, to December 31,
2012.

However, as shown in the upper and the lower panels, the positive jumps are
quite small, most of them less than 1%. This is a new and potentially important
empirical result, suggesting that whenever jumps in the diffusion volatility are
taken into account, the positive jump component in the index return is not so
important and the positive movements in the return can be captured by the
diffusion component. This finding reinforces our choice of giving the negative
jumps more prominence.

4. Economic and Empirical Implications

4.1 Excess volatility and tail behaviors
In Bayesian learning, the model parameters have quite large 90% credible
intervals in the early stage of learning, and they slowly narrow when market
information accumulates over time. It is therefore interesting to examine how
learning affects return volatility. For this purpose, we consider the following
three cases when estimating return volatility. Case I: we take into account
both parameter learning and uncertainty. Case II: we only allow for parameter
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Table 2
Excess volatility and jump contributions

Total Vol. Diff. Vol. Jump Vol. Jump Ctr.(%)

SE-M1 Case I 18.0 15.1 9.36 30.2
Case II 16.7 15.0 7.16 19.9
Case III 16.6 15.0 7.00 19.6

SE-M2 Case I 17.5 14.8 8.93 29.0
Case II 16.7 15.0 6.98 20.6
Case III 16.5 15.0 6.52 18.8

SE-M3 Case I 18.0 15.2 9.09 30.3
Case II 16.8 15.2 6.66 19.9
Case III 16.8 15.2 6.63 19.8

SE-M4 Case I 17.7 15.1 8.57 28.3
Case II 16.4 15.3 5.58 15.0
Case III 16.4 15.3 5.44 14.4

The table presents the average annualized total return volatility (
√

V1,t +V art (J1)V2,t ), its diffusion and jump
components (

√
V1,t and

√
V art (J1)V2,t ), and the jump contribution to total return variance in percentage

(V art (J1)V2,t /(V1,t +V art (J1)V2,t )). Three cases are considered. Case I: both parameter learning and
uncertainty is taken into account. Case II: only parameter uncertainty is allowed—that is, the full-sample posterior
distributions of parameters are used. Case III: both parameter learning and uncertainty are ignored and simply
the full-sample posterior means of parameters are used.

uncertainty but not for learning—that is, we use the full-sample posterior
distributions of parameters. Case III: we ignore both parameter learning and
uncertainty, and instead use the full-sample posterior means of parameters.

Table 2 presents the average annualized total volatility and its components.
There are a number of notable findings. First, for all models, the total return
volatility is the largest in Case I, when parameter learning and uncertainty are
taken into account, and it is the smallest in Case III, when both parameter
learning and uncertainty are ignored. For example, in the SE-M1 model, the
total return volatility is 18.0% in Case I, but it is only 16.6% in Case III.
Second, parameter learning and uncertainty do not have any impact on the
diffusion volatility estimate. For example, the average annualized diffusion
volatility is about 15.0% in the SE-M1 model, whether parameter learning
and/or uncertainty are taken into account or ignored. A similar result can be
found for other models as well.

Third, parameter learning and uncertainty have an important impact on
the jump volatility estimate. We can clearly see that learning increases the
importance of the jump component. For example, the average annualized jump
volatility is about 9.4%, contributing 30.2% to the total volatility in the SE-M1
model in Case I. However, if we ignore learning and only take into account
parameter uncertainty, the estimated jump volatility becomes 7.2%, which
contributes 19.9% to the total volatility in Case II. When we move to Case
III where there is no parameter learning and uncertainty, the jump volatility is
only about 7.0%, accounting for about 19.6% of total volatility.5 Comparing

5 Our estimates of jump contributions to total volatility are larger than those obtained non-parametrically. For
example, Huang and Tauchen (2005) find that the jump component takes about 7% of total volatility, and
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Figure 6
Skewness, kurtosis, and tail indices
The upper panels present the sequential mean ratios of the conditional skewness (left) and the sequential mean
ratios of the conditional kurtosis (right), between with and without learning. The dashed lines indicate the level
of 1. The lower panels present the sequential ratio of t-statistics of the right-tail index estimates (λ+) and the
left-tail index estimates (λ−) in the SE-M1 model.

Cases I and II with Case III, it can be seen that learning has a first-order impact
compared to uncertainty.

In particular, if we take a look at higher conditional moments, we find
that learning generates even more left-skewed and leptokurtic predictive
distributions. The upper panels of Figure 6 present the sequential mean ratios
of the conditional skewness and the sequential mean ratios of the conditional
kurtosis, between with and without learning (Case I and Case III). We can see
that nearly all the ratios are larger than one, and this feature is particularly
obvious in the early stage of learning when the market information is minimal
and after the 1987 market crash. As the market information accumulates, the
ratio slowly converges to one. Furthermore, in our model, the right and the
left tails are determined by the positive and the negative jump components,
which follow gamma processes. The fatness and the decay rates of the two

Andersen, Bollerslev, and Diebold (2007) find that it accounts for about 15% of total volatility. The main reason
for this difference is that the data span in both studies is quite short and does not include the 1987 market crash,
the 2008 global financial crisis, and the recent European debt crisis.
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tails are controlled by λ+ and λ−, respectively, for the right and the left
tails (Madan, Carr, and Chang 1998). The lower panels of Figure 6 present
the sequential t-statistics, defined as the ratios of the posterior means to the
posterior standard deviations, for the two tail indices. The t-ratio for the right
tail index is always much less than 2. When we take a closer look at the posterior
standard deviations of the same parameter, we find them very large. Hence, we
can conclude that the information accumulation is not helpful in reducing the
uncertainty on the right tail. However, the left tail can be pinned down very
quickly after the 1987 market crash, since the t-ratio after October 1987 is
larger than 2 and the posterior standard deviation (not reported) gets smaller as
the market information accumulates. Clearly, the agent is more confident about
the behavior of the left tail.

4.2 Learning and volatility forecasting
In this subsection, we evaluate the relative performance of the four jump
models for predicting daily total volatility, and quantify the cost of not knowing
the parameters. For each model, expected one-day ahead return variance at
time t is given by Et [

∫ t+τ

t
V1,sds]+V art (J1)Et [

∫ t+τ

t
V2,sds], which is known

analytically. As a comparison, we also take a look at the performance of
the GARCH(1,1) model. True volatility is approximated by the realized one,
computed from the previous 21-day (one-month) returns at each time, as in
Subsection 3.1.

We again consider the three cases that were defined in the previous
subsection. Table 3 reports the forecasting results including the RMSEs, the
R2s from the Mincer-Zarnowitz (MZ hereafter) regressions, and the Diebold-
Mariano (DM hereafter) statistics. We have the following findings. First, the
SE-M1 model, which takes into account both diffusion volatility jumps and
self-exciting jump intensity, always outperforms the other three jump models,
whether parameter learning and/or uncertainty are present or not. For example,
in Case I, the RMSE and MZ R2 from the SE-M1 model are 4.94% and 83.8%,
respectively, whereas the other three jump models generate larger RMSEs and
smaller MZ R2s.

Second, the existence of parameter learning and/or uncertainty makes
volatility more difficult to forecast. This feature holds for all models. The
RMSEs (MZ R2s) are the highest (smallest) in Case I and the smallest (highest)
in Case III. For example, for the SE-M1 model, the RMSE is about 4.9% in
Case I, whereas it decreases to 4.3% in Case III, and the MZ R2 is about 83.8%
in Case I, while it increases to 85.5% in Case III.

Third, we measure the forecast accuracy using the DM statistic, where
the squared error loss function and the heteroscedasticity and autocorrelation
consistent (HAC) variance (with 21 lags) are adopted and the benchmark model
is chosen to be the SE-M1 model in each case. The forecasting errors in the
DM statistic are measured using the residuals from the corresponding MZ
regression. The SE-M1 model outperforms the other three jump models in all
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Table 3
Volatility forecasting

SE-M1 SE-M2 SE-M3 SE-M4 GARCH

Case I RMSE 4.94 5.36 5.49 6.04 2.61
MZ R2 83.8 78.4 80.5 69.4 94.0
DM – −1.94 −3.67 −1.55 5.94

Case II RMSE 4.40 5.24 5.08 5.40 2.34
MZ R2 85.9 78.6 82.6 74.8 94.9
DM – −2.00 −2.20 −1.88 3.82

Case III RMSE 4.36 5.16 5.03 5.23 2.33
MZ R2 86.3 78.9 82.8 76.6 95.0
DM – −1.92 −2.14 −1.82 3.91

The table presents the volatility forecasting results. True volatility is approximated by the realized one, computed

from the previous 21-day (one-month) returns at each time—that is, RVt =
√

252
21

∑20
j=0R2

t−j
. RMSE is the root

mean squared error between forecasted and realized volatility. MZ R2 represents the R2 from the Mincer-
Zarnowitz regression, and DM stands for the Diebold-Mariano statistic, where the squared error loss function
and the HAC-type variance with 21 lags are adopted and the benchmark model is chosen to be the SE-M1 model
in each case. Three cases are considered. Case I: both parameter learning and uncertainty are taken into account.
Case II: only parameter uncertainty is allowed—that is, the full-sample posterior distributions of parameters are
used. Case III: both parameter learning and uncertainty are ignored and simply the full-sample posterior means
of parameters are used.

three cases, but the significance level is different. For example, the SE-M1
model significantly outperforms the SE-M2 model and the SE-M3 model at the
10% level and the 5% level, respectively, for all three cases. However, the SE-
M1 model significantly outperforms the SE-M4 model only at the 10% level
in Cases II and III.

Fourth, when comparing the SE-M1 model to the GARCH(1,1) model, we
find that the GARCH(1,1) model cannot be beaten by the more sophisticated
model, even though the sequential Bayes factors indicate that the SE-M1 model
performs much better than the GARCH(1,1) model in modeling the S&P 500
index returns.6 This result is similar to what P. Hansen and Lunde (2005) find.

4.3 Option pricing implications
4.3.1 Simulation-based results. Now we begin to investigate how self-
excitation and learning affect the implied volatility surface. As we only use the
underlying return data to estimate the models, the problem of unavailability of
the risk-premium parameters remains. For simplicity, we assume that the jump
and the volatility parameters remain the same under the change of measure. In
the next subsection, we will calibrate the risk-premium parameters using the
observed options data. The risk-free interest rate is fixed at 4.00%. At each time
starting from January 1981, whenever we obtain the parameter and volatility
particles in learning, we use the Monte Carlo method to price call options with

6 The likelihood function for the GARCH(1,1) model is available in closed form. This makes our Bayesian learning
algorithm efficient and fast as we do not need any particle filtering methods. The full-sample log Bayes factor
between the SE-M1 model and the GARCH(1,1) model is as large as 275. Furthermore, the outperformance of
the GARCH(1,1) model is qualitatively unchanged for the one-week-ahead volatility forecasting.
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Table 4
Effects of learning on option pricing

SE-M1 SE-M3

K/S 7 Days 30 Days 90 Days 250 Days 7 Days 30 Days 90 Days 250 Days

0.85 1.13 1.05 1.01 1.00 1.02 1.03 1.01 1.00
0.90 1.09 1.02 1.00 1.00 1.01 1.01 1.00 1.00
0.95 1.04 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.01 1.01 1.01 1.00 1.01 1.00 1.00 1.00
1.05 1.11 1.06 1.02 1.01 1.06 1.05 1.01 1.01
1.10 1.37 1.12 1.05 1.02 1.30 1.09 1.04 1.01
1.15 1.78 1.21 1.09 1.03 1.74 1.16 1.07 1.02

The table presents the mean ratios of the BS implied volatility between with and without learning (Case I and
Case III) in the SE-M1 model and the SE-M3 model. We consider call options with maturity 7, 30, 90, and
250 days and with moneyness (defined as K/S) 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, and 1.15. Option prices are
computed using the Monte Carlo simulation method.

maturity 7, 30, 90, and 250 days and with moneyness (defined as K/S) 0.85,
0.90, 0.95, 1.00, 1.05, 1.10, and 1.15. Therefore, both parameter and volatility
uncertainties are taken into account at each time in this practice. We price the
same cross-section of options again using the full-sample posterior means of
the parameters and filtered volatility obtained from these estimates. Thus, in
the latter, the parameter learning and uncertainty are ignored.

Table 4 presents the time-series mean of the implied volatility ratios, with and
without learning, for each option in the SE-M1 model and the SE-M3 model.
For both models, all ratios are either larger than or equal to one, indicating that
learning does (positively) affect the option pricing. In particular, we find that
the learning effect on the in-the-money and the out-of-the-money options than
on the near-the-money options, and it is more pronounced for deep out-of-the-
money options than for deep in-the-money options. These results are closely
related to the results that learning alters the tail behaviors and introduces even
larger uncertainty on the right tail of the predictive return distributions. We
also find that in general the learning effect decreases with respect to maturity.
Moreover, we find that the main difference between the SE-M1 model and
the SE-M3 model is in the short-maturity in-the-money options, indicating the
self-exciting jump intensity mainly affects the left tail of return distributions.

To further investigate the learning effect, Figure 7 plots the time series of the
implied volatility computed from the SE-M1 model (left panels) and the SE-M3
model (right panels). The solid and the dashed lines plot the implied volatility
for contracts with maturity seven days when learning is taken into account
and when it is ignored, respectively. We first focus on the SE-M1 model. As
shown in the middle panel, learning does not seem to have a first-order effect
on pricing the at-the-money options, except during the market crash in October
1987 when the implied volatility from learning is much higher. However, the
picture is starkly different in the upper and the lower panels for the implied
volatility of the deep in-the-money and the deep out-of-the-money call options.
Learning does have a first-order effect here.
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Figure 7
Learning and implied volatility
The figure plots the time series of implied volatility for call options with maturity seven days computed from
the SE-M1 model (left panels) and the SE-M3 model (right panels). Options are priced using the Monte Carlo
simulation method. The solid line plots the implied volatility when learning is taken into account, whereas the
dashed (red) line plots the implied volatility when learning is ignored. We consider options with moneyness
(K/S) equal to 0.85 in the upper panels, 1.00 in the middle panels, and 1.15 in the lower panels.

For deep in-the-money options, when learning is ignored, the implied
volatility has little variation with abrupt bursts and drop-backs during the
financial crisis periods, whereas when learning is taken into account, the
implied volatility moves up to high levels during the crisis periods and stays
there for a very long time. The deep in-the-money options are sensitive
to extreme downside movements. These observations seem to indicate that
learning leads to a long-lasting shift of beliefs on the left tail of the predictive
return distribution. Benzoni, Collin-Dufresne, and Goldstein (2011) argue that
updating of beliefs about jump parameters may cause a permanent shift in option
prices. Our investigation reinforces this intuition. For the deep out-of-money
options, the implied volatility is in general larger when learning is allowed than
when learning is ignored, indicating learning can also generate the fat right tail.
Overall, the above results suggest that parameter learning and uncertainty are
likely to have important implications for pricing options that depend on the tails
of the predictive return distribution. However, as the sample size grows, the
effect of learning diminishes. But the rate of the diminishing effect differs for
the in-the-money compared to the out-of-money options. For the in-the-money
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options, the implied volatility is similar, whether learning is allowed or ignored.
This indicates that the left-tail uncertainty vanishes at the end of the sample.
However, this is not the case for the out-of-money options, indicating that the
right-tail uncertainty remains. This result is consistent with what we have found
in Figure 6.

We now further compare the SE-M1 model and the SE-M3 model and
examine what roles the self-exciting jump intensity plays. Comparing the right
panels to the left ones in Figure 7, we have the following findings. First, as
seen from the middle panels, regardless of learning, the SE-M1 model prices
the at-the-money options quite similarly to the SE-M3 model during the calm
periods, whereas during the crisis periods, the SE-M1 model seems to be more
flexible to capture high levels of volatility than the SE-M3 model. Second,
when pricing the deep in-the-money options, the upper panels indicate that (i)
the SE-M1 model is more flexible at tracking fluctuations of volatility and at
capturing high levels of volatility during the financial crisis; and (ii) learning
can generate an even more persistent and fatter left tail in the short term in the
SE-M1 model compared to the SE-M3 model. Third, the SE-M1 model and
the SE-M3 model produce similar deep out-of-money option prices, whether
learning is considered or not.

However, for options with longer maturities, the learning effect becomes
smaller, and both models perform quite similarly at different moneyness (not
reported). The findings are consistent with what we have found in Table 4
and imply that the two models differ mainly in their ability to price the short
maturity options.

4.3.2 Real data applications. In addition to the simulation-based results, we
also use real option data to evaluate the model performance and learning effects.
The S&P 500 index option data are obtained from the OptionMetrics volatility
surface that provides daily call and put prices, BS implied volatility for the
standardized maturities, and deltas between January 1996 and December 2012.
In accordance with the option pricing literature, we only keep Wednesday put
prices and exclude options with maturity larger than a half year.

Option prices not only reflect the agent’s expectations over the evolution
of the underlying but also contain risk-premium information. In derivative
pricing theory, they are reflected in the stochastic discount factor (SDF) that
drives a wedge between the real world and the pricing measures. We assume a
simple reduced-form SDF with two free parameters: γJ , the jump-risk-premium
parameter distorting the Lévy density of the jump component, and γV , the risk-
premium parameter connected to the diffusion volatility shocks (see Appendix,
section A.5, for the change of measure).7

7 Under this change of measure, only ω, η, κ1, and θ1 are different, and the other parameters remain unchanged. The

jump-risk-premium parameter is bounded, −λ+ <γJ <λ−, such that the risk-neutral tail indices, λ
Q
+ =λ+ +γJ

and λ
Q
− =λ− −γJ , are positive.
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To simplify the analysis, we assume that agents know the exact risk-premium
parameters and only learn about the other parameters of the system, which
are obtained from Section 3. Furthermore, we do not take into account the
equilibrium implications of learning for risk premia, and hence, our treatment is
in the spirit of Johannes, Korteweg, and Polson (2014) and Johannes, Lochstoer,
and Mou (Forthcoming). The risk-premium parameters are calibrated using
option prices. A consistent treatment of pricing should condition on the agent’s
information set. In our case, however, the complexity of learning over states
and parameters results in an infinite dimensional state space similar to that
in Johannes, Lochstoer, and Mou (Forthcoming), which makes the problem
intractable. Hence, we resort to a simplified treatment of option pricing learning,
where we integrate over state and parameter uncertainty, but risk aversion is
taken into account through two fixed parameters, leading to a deterministic
shift of the distribution under the risk-neutral measure.

To calibrate the risk-premium parameters, we compute model-implied option
prices on a two-dimensional grid of risk premia using equidistant grid points in
both directions. For each specification, we pick the risk-premium parameters
minimizing the mean squared errors between the model-implied and observed
option prices, weighted by the BS vega,

γ̂J ,γ̂V =arg min
γJ ,γV

1

N

N∑
i=1

(
Oobs

i −OM
i

V egai

)2

(16)

where N is the number of options, Oobs
i is the observed option price, and OM

i

is the model-implied option price. Given that the SE-M1 model and the SE-M3
model dominate the other models, we focus on these two specifications in what
follows.

Table 5 reports the calibrated risk premia and the implied risk-neutral
parameters both for the case when learning is taken into account and for the case
when parameter uncertainty is ignored and the full sample posterior means are
plugged into the option pricing routine. For the SE-M1 model, the calibrated
jump risk premium, γJ , is positive under both cases. A positive γJ indicates
that the risk-neutral return distribution is more left-skewed and more leptokurtic
than the physical counterpart. However, one can see in the table that the implied
risk-neutral jump parameters, ω and η, stay well within the central 90% credible
intervals of their physical counterparts, suggesting that there is a greater degree
of statistical uncertainty about the exact location of the jump-risk-premium
parameter. This result is unsurprising given that jumps are rare events and
we only use underlying return data to estimate the physical jump parameters.
By contrast, the diffusion volatility risk premium, γV , is negative, resulting in
a slower mean reversion and a higher stationary mean risk-neutral diffusion
volatility process than the physical one. Furthermore, the implied risk-neutral
parameters are well outside the central 90% credible intervals of their physical
counterparts, pointing towards the reliability of the calibrated risk premium.
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Table 5
Risk premia and implied risk-neutral parameters

A. SE-M1

Case I Case III

γJ 3.85 3.42
γV −8.42 −9.47

Full-Sample Posterior (Physical)
Mean 5th Prctile 95th Prctile Implied Risk-Neutral Mean

ω −0.058 −0.084 −0.035 −0.072 −0.070
η 0.023 0.004 0.041 0.025 0.025
κ1 5.793 4.555 7.062 3.174 2.847
θ1 0.017 0.013 0.020 0.031 0.035

B. SE-M3

Case I Case III

γJ 3.00 −1.14
γV −10.52 −10.52

Full-Sample Posterior (Physical)
Mean 5th Prctile 95th Prctile Implied Risk-Neutral Mean

ω −0.062 −0.088 −0.039 −0.079 −0.058
η 0.023 0.004 0.043 0.026 0.022
κ1 4.386 3.438 5.426 1.011 1.011
θ1 0.021 0.017 0.025 0.092 0.092

This table presents the calibrated risk premia from a grid search on S&P 500 index option data obtained from the
OptionMetrics volatility surface on Wednesdays between January 1996 and December 2012. Results are shown
both for the SE-M1 model and the SE-M3 model and both when parameter learning is taken into account and
when parameter learning and uncertainty are ignored. The risk-neutral parameters implied by the calibrated risk
premia are also reported.

For the SE-M3 model, under the case of parameter learning, we obtain similar
results to the SE-M1 model. However, when we ignore parameter learning
and simply use the fixed full-sample posterior means, the calibration becomes
more involved and we get a negative γJ , further indicating unreliability of the
jump-risk-premium calibration and misspecification of the SE-M3 model.

Table 6 reports the RMSEs between the model-implied and the observed
implied volatility across maturities and strikes for the SE-M1 model and SE-M3
model, when parameter learning is taken into account. We find that the SE-M1
model always provides a better fit than the SE-M3 model, with a root mean
squared error of 3.2%, compared to 3.4% for the SE-M3 model. Furthermore,
in line with the simulation-based results, the advantage of the SE-M1 model
is particularly important in pricing the short-term out-of-the-money puts for
which the left tail of the predictive return distributions plays a critical role. For
instance, for the 30-day options with the delta equal to −0.2, it has a RMSE of
4.7%, compared to 5.4% for the SE-M3 model.

Having taken a closer look at the behavior of the two models across different
episodes, we see that the dominance of the SE-M1 model is concentrated
in the period since the 2008 financial crisis. Allowing for the self-exciting
jump intensity leads to substantially higher option prices and helps reduce
the gap between the model-implied and the observed option prices. The
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Table 6
Option pricing errors with learning

� 30 days 60 days 91 days 122 days 152 days

A. SE-M1

−0.8 3.34 2.83 2.81 2.86 3.05
−0.7 2.88 2.67 2.72 2.82 3.04
−0.6 2.94 2.72 2.74 2.82 3.01
−0.5 3.16 2.88 2.85 2.89 3.02
−0.4 3.51 3.17 3.09 3.07 3.14
−0.3 4.02 3.66 3.49 3.41 3.42
−0.2 4.71 4.33 4.08 3.92 3.84

B. SE-M3

−0.8 3.36 2.74 2.79 2.98 3.20
−0.7 2.94 2.63 2.73 2.95 3.20
−0.6 3.09 2.75 2.78 2.94 3.17
−0.5 3.42 2.99 2.93 3.00 3.15
−0.4 3.88 3.38 3.21 3.17 3.23
−0.3 4.52 3.97 3.68 3.53 3.48
−0.2 5.40 4.80 4.39 4.12 3.95

The table presents the root mean squared option pricing errors in percentage of the S&P 500 index put options for
different strikes and maturities for the SE-M1 model and the SE-M3 model with parameter learning taken into
account. The option data are from the OptionMetrics volatility surface on Wednesdays between January 1996
and December 2012. For each model, the risk-premium parameters are the optimal ones from the grid search.

increased importance of self-excitation since 2008 is not limited to the short-
term OTM puts. The overall RMSE across maturities and strikes since the
Lehman bankruptcy (September 15, 2008) is 3.3% for the SE-M1 model versus
3.7% for the SE-M3 model, mirroring a widening gap in overall performance
between the two models. This finding reinforces our previous result indicated
in Figure 2, which suggests that the self-exciting jump intensity becomes even
more important after the 2008 financial crisis as measured by sequential Bayes
factors.

When the full-sample posterior means of the fixed parameters are used in
calibrating the risk-premium parameters and pricing options (not reported),
we again find that the SE-M1 model dominates the SE-M3 model. However,
the difference in RMSEs between learning and no-learning is smaller in the
real data than in the simulated data. This is not surprising as our observed
options data only start in January 1996, by which date parameter uncertainty
has substantially decreased as seen from parameter learning in Figure 3.

Johannes, Lochstoer, and Mou (Forthcoming) propose a test procedure
to detect the impact of parameter learning on asset prices. In particular,
they regress equity returns on belief updates with parameter learning, while
controlling for belief updates in the fixed-parameter case. A significant
coefficient is interpreted as evidence for the importance of parameter learning
for asset prices. Here we mimic their approach for option prices where the
agent’s information set consists of past stock returns. In particular, we are
interested in whether updates in model-implied option prices, due to parameter
learning, have any explanatory power for observed option prices over and above
model-implied option prices in the fixed parameter case. To simplify exposition
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Table 7
Belief updating and implied volatility

30 days 60 days 91 days 122 days 152 days

Intercept −0.00 −0.01 −0.02 −0.03∗ −0.04∗
(0.01) (0.01) (0.01) (0.02) (0.02)

IV
M,F ixed
t,τ 1.09∗∗∗ 1.08∗∗∗ 1.10∗∗∗ 1.12∗∗∗ 1.15∗∗∗

(0.04) (0.06) (0.07) (0.07) (0.09)
ε̂t,τ 0.89∗∗ 1.17∗∗∗ 1.26∗∗∗ 1.33∗∗∗ 1.13∗∗∗

(0.38) (0.30) (0.27) (0.26) (0.28)

The table presents the results from the regressions of the observed implied volatilities (IVs) on the innovations
in model-implied IVs due to parameter learning. For each maturity, the dependent variable is the observed
average IVs across strikes on each day. The control variable is the model-implied counterpart from the SE-M1
model when parameter uncertainty is ignored. The variable of interest is the model-implied counterpart with
parameter learning. This latter is orthogonalized by using the residual from a regression of the model-implied
IVs with learning on a constant and the model-implied IVs with the fixed parameters. The option data are from
the OptionMetrics volatility surface on Wednesdays between January 1996 and December 2012. HAC standard
errors (Newey-West, 30 lags) are reported in parentheses, ∗ denotes the significance at the 10% level, ∗∗ denotes
the significance at the 5% level, ∗∗∗ denotes the significance at the 1% level.

of the results, we collapse the cross-section of options by looking at the cross-
sectional average option price for any given maturity date and focus on the
SE-M1 model.8

Denote the cross-sectional average model-implied implied volatility at time
t for a given maturity τ when learning is taken into account as IV

M,Learning
t,τ .

The same quantity, when the full sample posterior means are plugged into the
option pricing routine, is denoted by IV

M,F ixed
t,τ . And the observed counterpart

is denoted by IV Obs
t,τ . In the first stage, we want to focus on the variability

in model-implied IVs due solely to parameter learning. Hence, we run the
following time-series regression:

IV
M,Learning
t,τ =α1,τ +β1,τ IV M,F ixed

t,τ +εt,τ . (17)

We estimate this regression separately for each maturity, τ , and take the residual
from the ordinary least squares (OLS) regression, ε̂t,τ , as the option price
variability that is entirely due to parameter learning. Then in the second stage,
we run an OLS regression of the observed IVs on a constant, the model-implied
IVs with the fixed parameters, and the residuals obtained from the first-stage
regression in Equation (17) as follows:

IV Obs
t,τ =α2,τ +β2,τ IV M,F ixed

t,τ +β3,τ ε̂t,τ +ξt,τ . (18)

The estimation results are reported in Table 7. We can clearly see that the
coefficient of ε̂t,τ , β3,τ , is highly statistically significant in each maturity.
This indicates that updates in beliefs due to parameter learning have a highly
significant effect on the observed IVs across all maturities, over and above the
variability in model-implied IVs computed using the fixed parameters.

8 The strike-specific results and results for the SE-M3 model are similar and are available upon request.
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5. Concluding Remarks

We propose a self-exciting asset pricing model that takes into account co-jumps
between prices and volatility and self-exciting jump clustering. A Bayesian
learning approach is employed to implement a real-time sequential analysis. We
find that the evidence of co-jumps between volatility and asset returns through
diffusion volatility is robust ever since the 1987 market crash. Interestingly,
while the data call for simultaneous jumps between asset returns and jump
intensities from the 1987 market crash onward, the self-exciting jump intensity
has become more important since the onset of the 2008 global financial crisis.

The new asset pricing model and the Bayesian learning approach allow
us to investigate implications of learning for a variety of asset pricing
applications. In this paper, we provide novel results on implications of learning
for risk measures, volatility forecasting, and option pricing. Such results are
quite relevant in practice as market participants need to update their beliefs
sequentially over time when new market information arrives.

Our results suggest several interesting research directions. First, it would
be interesting to examine what we can find if option prices are included in the
learning procedure. This could help better identify the jump intensity and speed
up the learning process. Second, the sequential nature of our joint parameter and
state learning routine promises several practical applications, such as derivative
pricing or portfolio allocation.

Appendix

A.1. A Hybrid Particle Filter

Our model can be cast into a state-space model framework. After discretizing the return process
for a time interval τ using the Euler method, we have the following observation equation:

lnSt =lnSt−τ +
(
μ− 1

2
V1,t−τ −k(1)V2,t−τ

)
τ +

√
τV1,t−τ wt +Ju,t +Jd,t , (A1)

where wt is a standard normal noise, and Ju,t and Jd,t represent the upside and downside jump
noises.

We take the diffusion variance V1,t , the jump intensity V2,t , and the upside/downside jumps
Ju,t /Jd,t as the hidden states. The diffusion variance and the jump intensity follow Equations (6)
and (7), and the upside/downside jumps are gammas.After discretizing, we have the state equations
as follows:

V1,t =κ1θ1τ +(1−κ1τ )V1,t−τ +σ11
√

τV1,t−τ zt −σ12Jd,t , (A2)

V2,t =κ2θ2τ +(1−κ2τ )V2,t−τ −σ2Jd,t , (A3)

Ju,t =�(τV2,t−τ ;μu,vu), (A4)

Jd,t =−�(τV2,t−τ ;μd,vd ), (A5)

where zt is a standard normal noise, which is correlated to wt in Equation (A1) with the correlation
parameter ρ. In empirical analysis, we normalize θ2 to 1 in order to alleviate the identification
problem, as the time-homogeneous jump component has non–unit variance rate.
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The above model is clearly nonlinear and non-Gaussian. Therefore, we use a particle filter to
estimate the likelihood and the hidden states. The most commonly used particle filter is the bootstrap
filter of Gordon, Salmond, and Smith (1993), which simply takes the state transition density as the
proposal density. However, the bootstrap filter is known to perform poorly when the observation is
informative on the hidden states. Our model has this feature because when we observe a large move
in asset price, the jump can be largely pinned down by this observation. On the other hand, when
the return is small, it is almost due to the diffusion component and contains little information on the
jump. Hence, to provide an efficient sampler, we use an equally weighted two-component mixture
as the proposal on the jump: the first component is a normal draw, equivalent to sampling from the
transition density of the diffusion component, and the second component involves drawing from
the transition law of the jump. We need this second component to stabilize the importance weights
for small returns. Otherwise, we would compute the ratio of a normal and a gamma density in the
importance weights which is unstable around zero. When the return is positive, we use this mixture
as the proposal for the positive jump and the transition density for the negative jump, and vice
versa.

The algorithm of the proposed hybrid particle filter consists of the following steps:

Step 1: Initialize at t =0: set initial particles to be
{
V

(i)
1,0 =θ1;V (i)

2,0 =1;J (i)
u,0 =0;J (i)

d,0 =0
}M

i=1
and give

each set of particles a weight 1/M;

Step 2: For t =1,2,...

• If Rt =lnSt −lnSt−τ >0,

– draw J
(i)
d,t from its transition law (A5);

– draw J
(i)
u,t both from its transition law (A4) and its conditional posterior distribution

Ju,t =lnSt −lnSt−τ −(μ− 1
2 V1,t−τ −k(1)V2,t−τ )τ −Jd,t −

√
τV1,t−τ wt , which is

normally distributed. Equal weights are attached to particles obtained from the
transition law and the conditional posterior;

– compute the particle weight by

w
(i)
t =

p(lnSt |J (i)
u,t ,J

(i)
d,t ,V

(i)
1,t−τ ,V

(i)
2,t−τ )p(J (i)

u,t |V (i)
2,t−τ )

0.5p(J (i)
u,t |V (i)

2,t−τ )+0.5φ(μ̄,σ̄ )
,

where φ(·,·) represents the normal density with mean μ̄=lnSt − lnSt−τ −(μ−
1
2 V

(i)
1,t−τ −k(1)V (i)

2,t−τ )τ −J
(i)
d,t and standard deviation σ̄ =

√
τV

(i)
1,t−τ ;

• Otherwise, if Rt =lnSt −lnSt−τ <0,

– draw J
(i)
u,t from its transition law (A4);

– draw J
(i)
d,t both from its transition law (A5) and its conditional posterior

distribution Jd,t =lnSt −lnSt−τ −(μ− 1
2 V1,t−τ −k(1)V2,t−τ )τ −Ju,t −

√
V1,t−τ wt ,

which is normally distributed. Equal weights are attached to particles obtained from
the transition law and the conditional posterior;

– compute the particle weight by

w
(i)
t =

p(lnSt |J (i)
u,t ,J

(i)
d,t ,V

(i)
1,t−τ ,V

(i)
2,t−τ )p(J (i)

d,t |V (i)
2,t−τ )

0.5p(J (i)
d,t |V (i)

2,t−τ )+0.5φ(μ̄,σ̄ )
,

where φ(·,·) represents the normal density with mean μ̄=lnSt − lnSt−τ −(μ−
1
2 V

(i)
1,t−τ −k(1)V (i)

2,t−τ )τ −J
(i)
u,t and standard deviation σ̄ =

√
τV

(i)
1,t−τ ;
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Table A1
The prior distributions

F. Form Support (μ0,σ0) F. Form Support (μ0,σ0)

μ Normal (−∞,∞) (0.07, 0.15)
κ1 Tr. Normal (0,∞) (5.00, 7.00) ω Normal (−∞,∞) (−0.05, 0.10)
θ1 Tr. Normal (0,∞) (0.03, 0.06) η Tr. Normal (0,∞) (0.03, 0.06)
σ11 Tr. Normal (0,∞) (0.30, 0.60) v Tr. Normal (0,∞) (0.80, 2.00)
ρ Tr. Normal [−1,1] (-0.50, 0.60) κ2 Tr. Normal (0,∞) (15.0, 10.0)
σ12 Tr. Normal (0,∞) (0.50, 1.00) σ2 Tr. Normal (0,∞) (55.0, 20.0)

• Normalize the weight: w̃
(i)
t =w

(i)
t /

∑M
j w

(j )
t ;

Step 3: Resample (stratified resampling)

• Draw the new particle indexes by inverting the cumulative distribution function of the

multinomial characterized by w̃
(i)
t at the stratified uniforms i+U (i)

M
, where U (i) are i.i.d.

uniforms;
• reset the weight to 1/M;

Step 4: Update the diffusion variance and the jump intensity particles using Equations (A2) and
(A3), where zt =ρwt +

√
1−ρ2z̃t with z̃ being an independent standard normal noise.

A.2. The Priors and Posteriors

The Bayesian learning procedure is initialized by the priors. In the full SE-M1 model, there are
11 parameters, among which κ1, θ1, σ11, σ12, η, v, κ2, and σ2 need to be positive and ρ needs
to be in [−1, 1]. We assume normal distributions for the priors. However, if a parameter under
consideration has a finite support, we take a truncated normal as its prior.

The hyper-parameters are calibrated using a training sample from January 1975 to December
1979. As a result, we use quite flat priors for most of the parameters except those controlling
dynamics of the jump intensity, κ2 and σ2. Table A1 presents the exact functional form and hyper-
parameters for the prior distribution of each parameter.

Figure A1 presents the prior and full-sample posterior distributions for each parameter. We can
see that for most parameters, even though the priors (dashed lines) are quite flat, the dispersions
of the posterior distributions (solid lines) are very small. However, for the parameters controlling
the jump intensity, κ2 and σ2, we use quite informative priors. Using the full sample, κ2 seems
to be well pinned down. This is consistent with what we got from learning that indicates that its
credible interval shrinks dramatically after the 2008 financial crisis. However, σ2 remains difficult
to be identified because the posterior distribution still has quite large dispersion.

A.3. Monte Carlo and Sensitivity Studies

In implementation of our Bayesian learning approach, we need to choose the number of state
particles, M , the number of parameter particles, N , and the thresholds for resample and move,
N1 and N2, respectively. As discussed in Andrieu, Doucet, and Holenstein (2010) and Fulop and
Li (2013), M is linearly related to the largest sample size (T ) that one wants to tackle. Pitt et al.
(2012) provide practical guidelines on how to choose the optimal number of state particles (M).
However, there are not any guidelines on how to choose N , N1, and N2. In this Appendix, we
implement Monte Carlo studies to see how well the algorithm works on the self-exciting model
and how sensitive it is to N , N1, and N2.

We take the SE-M1 model as an example. There are 11 parameters in total, �=
(μ,κ1,θ1,σ11,ρ,σ12,ω,η,v,κ2,σ2). For each simulation in each Monte Carlo study, we generate a
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Figure A1
The prior and posterior distributions

sequence of daily observations with sample size T =6,000. The true values of the parameters are
�∗ =(0.10, 5.00, 0.02, 0.30, −0.60, 0.50, −0.05, 0.03, 0.80, 15.0, 50.0), which are close to
the full-sample estimates in Section 3. The initial values of the stock price, S0, diffusion variance,
V1,0, and the jump intensity, V2,0, are given as 100, 0.03, and 1.00, respectively, and the priors are
the same as in Table A1. Based on the guidelines of Pitt et al. (2012), we choose M =5×1024. Any
increase of this number may result in higher acceptance rates, but it also increases the computational
cost. As for the choices of N , N1, and N2, we consider the following three Monte Carlo studies:

• MC1: N =2×1024, and N1 =N2 =N/2;
• MC2: N =2×1024, and N1 =N2 =N ×2/3;
• MC3: N =4×1024, and N1 =N2 =N/2.

The total number of simulated paths is 50 in each Monte Carlo study. We use the same simulated
dataset across the three Monte Carlo studies. Graphical processor-based parallel architectures
(GPUs) are used to speed up computations. Table A2 presents the Monte Carlo simulation results.
The following findings are in order. First, our parameter learning algorithm is quite robust and
not sensitive to the choices of N , N1, and N2 because the three Monte Carlo studies deliver quite
similar results. Second, the diffusion parameters, �D , and the jump parameters, ω and η, can be
well identified by our learning algorithm because their means are quite close to the true values and
their RMSEs are very small in all three Monte Carlo studies. Third, however, the jump parameters,
v, κ2, and σ2, which control the jump structure and intensity dynamics, are not easy to estimate.
This is because the relatively large value of v generates a small number of sizable jumps, making
extreme events arrive at a very low frequency.

Based on the above results, in empirical applications, we choose N =4×1024, and N1 =N2 =
N/2. However, the choice of the number of state particles (M) is more sensitive in real data
applications than in simulations. In order to investigate this issue, we implement a sensitivity
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Table A2
Monte Carlo studies

MC1 MC2 MC3

� True Value Mean RMSE Mean RMSE Mean RMSE

μ 0.10 0.089 0.029 0.090 0.028 0.090 0.029
κ1 5.00 5.204 0.709 5.180 0.721 5.212 0.710
θ1 0.02 0.021 0.003 0.021 0.003 0.021 0.003
σ11 0.30 0.301 0.022 0.301 0.023 0.301 0.022
ρ −0.60 −0.595 0.046 −0.595 0.047 −0.594 0.046
σ12 0.50 0.560 0.117 0.556 0.113 0.558 0.114

ω −0.05 −0.055 0.014 −0.055 0.014 −0.055 0.014
η 0.03 0.027 0.006 0.027 0.006 0.027 0.006
v 0.80 1.314 0.668 1.300 0.656 1.331 0.687
κ2 15.0 18.24 3.943 18.17 3.794 18.37 3.985
σ2 50.0 48.32 5.264 48.65 5.058 48.40 5.023

Table A3
Sensitivity study

M =8∗1024 M =16∗1024

� Mean Std Mean Std

μ 0.045 0.004 0.043 0.004
κ1 5.983 0.393 6.015 0.200
θ1 0.017 0.000 0.017 0.000
σ11 0.310 0.005 0.317 0.003
ρ −0.606 0.006 −0.611 0.005
σ12 0.498 0.024 0.510 0.019

ω −0.058 0.003 −0.057 0.002
η 0.023 0.001 0.021 0.002
v 0.701 0.048 0.684 0.034
κ2 10.76 1.154 9.789 0.512
σ2 79.45 2.489 79.85 2.120

LMLH 2.719e4 1.094 2.720e4 0.723

Time ≈ 1.6 days ≈ 3.0 days

study. Using the real data in section 3.1, we implement 15 independent runs of the algorithm for
the SE-M1 model by setting M1 =8×1024 and M2 =16×1024, respectively. Table A3 presents
means and standard deviations of the posterior means of the model parameters and the log marginal
likelihoods across these runs. We clearly see that the log marginal likelihood (LMLH) under M1

is nearly the same as that under M2, even though its standard deviation under M2 is a little bit
reduced. Similar results can also be found for the parameter estimates. These results indicate that
in the real data applications, model inference is not so sensitive to the choice of the number of
state particles between M1 and M2, though we decide to choose M =16×1024 in our empirical
analysis.

We program in MATLAB the main algorithm and offload the computational bottleneck of the
algorithm, the particle filter, to the GPU, coded in CUDA. Relying on a Telsa K20 GPU, our
Bayesian learning algorithm is quite fast. As we can see from Table A3, if we set the number of
state particles equal to M1, each run on the real data takes about 1.6 days. If we set it equal to M2,
each run takes about three days.

A.4. ESS and Acceptance Rates

Figure A2 presents the efficient sample sizes and the acceptance rates at the move steps for the
four models. In general, we can see from the left panel that the algorithm takes more move steps in
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Figure A2
ESS and acceptance rates

the early stage of learning when the market information is minimal. We also find that the SE-M1
and the SE-M3 models take less move steps than the SE-M2 and the SE-M4 models, in particular,
during the financial crises. From the right panel, we see that the acceptance rate remains high in
the SE-M1 model over time, larger than 35%. However, in the SE-M3 model, it drops a little, and
in the SE-M2 and the SE-M4 models it decreases to a low level during the 2008 financial crisis.
Fewer move steps and higher acceptance rates in the SE-M1 model indicate that it can better adapt
to the outliers.

A.5. Change of Measure

The no-arbitrage condition indicates that there exists at least one almost surely positive process,
Kt , with K0 =1, such that the discounted gains process associated with any admissible trading
strategy is a martingale (Harrison and Kreps 1979). Kt , which is assumed to be a semimartingale,
is called the stochastic discount factor or the pricing kernel. We propose a class of models for the
stochastic discount factor, Kt , such that the change of measure does not alter the model structure.
Specifically,

Kt =exp
(
−

∫ t

0
rsds

)
E
(
−

∫ t

0
γW (s)dWs

)
E
(
−

∫ t

0
γV (s)dZs

)

×E
(∫ t

0

∫
R− (γJ (s,x)−1)π̃ (dx,ds)

)
, (A6)

where rt is the risk-free rate of interest, E(·) denotes the stochastic (Doleans-Dade) exponential
operator, π̃ is a compensated random measure, and γW (t), γV (t), and γJ (t,x)−1 define market
prices for the risk factors in the market.
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The price for the diffusive volatility risk, Zt , is assumed to have a form of γV (t)=γV

√
V1,t ,

where γV is a constant. For the jump component, the above change of measure indicates that its
risk-neutral Lévy density, νQ(dx), is related to its objective one, ν(dx), by νQ(dx)=γJ (t,x)ν(dx).
We assume γJ (t,x) has an exponential form, e−γJ x , where γJ is a constant, such that the risk-
neutral Lévy density of the jump component is simply an exponential tilting of the objective one.
In contrast, we leave γW (t) unspecified.

The variance gamma process has a Lévy density under the objective measure, P , as follows:

ν(dx)=
1

v

⎛
⎝ exp

(
− μu

vu
x
)

x
1x>0 +

exp
(
− μd

vd
|x|

)
|x| 1x<0

⎞
⎠dx. (A7)

The above change of measure indicates that the risk-neutral Lévy density should have a form of

νQ(dx)=
1

v

⎛
⎝ exp

(
−( μu

vu
+γJ )x

)
x

1x>0 +
exp

(
−( μd

vd
−γJ )|x|

)
|x| 1x<0

⎞
⎠dx. (A8)

We therefore have the following risk-neutral model under the measure Q:

lnSt /S0 =
∫ t

0
rsds+

(
W

Q
T1,t

−k
Q
W (1)T1,t

)
+
(
J

Q
T2,t

−k
Q
J (1)T2,t

)
, (A9)

dV1,t =κ
Q
1

(
θ

Q
1 −V1,t

)
dt +σ11

√
V1,t dZ

Q
t −σ12d(J−

T2,t
)Q, (A10)

dV2,t =κ2(θ2 −V2,t )dt −σ2d(J−
T2,t

)Q, (A11)

where κ
Q
1 =κ1 +σ11γV , θ

Q
1 =κ1θ1/κ

Q
1 , and W

Q
t and Z

Q
t are two independent standard Brownian

motions. The time-homogenous jump component is still the variance gamma process with the
risk-neutral Lévy density, νQ(dx), given by Equation (A8). The risk-neutral jump parameters are

now given as follows: ωQ =(ω−γJ η2)/A, ηQ =η/
√

A, and vQ =v, where A=1+γJ ωv−γ 2
J

η2v
2 .
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