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Abstract
In this paper we propose a Bayesian method to estimate the hyperbolic
diffusion model. The approach is based on the Markov chain Monte Carlo
(MCMC) method with the likelihood of the discretized process as the
approximate posterior likelihood. We demonstrate that the MCMC method
provides a useful tool in analysing hyperbolic diffusions. In particular,
quantities of posterior distributions obtained from the MCMC outputs can be
used for statistical inference. The MCMC method based on the Milstein
scheme is found to perform well with good mixing properties, while the Euler
scheme is unsatisfactory. Our simulation study shows that the hyperbolic
diffusion exhibits many of the stylized facts about asset returns documented
in the discrete-time financial econometrics literature, such as the Taylor
effect, a slowly declining autocorrelation function of the squared returns, and
thick tails.

1. Introduction
In the finance literature the geometric Brownian motion
has been used as a classical model to describe stock price
movements. Though useful as a benchmark model in option
pricing and other theories, the geometric Brownian motion
is irreconcilable with many known statistical regularities of
stock returns, such as excess kurtosis, clustering of volatility
and long memory. To this effect, other processes have been
suggested, such as jump diffusions (Kou 2002), stochastic
volatility (SV) models (Heston 1993), SV plus jumps (Eraker
et al 2003), and time-changed Levy process (Carr and Wu
2003). As a nonlinear diffusion process, the hyperbolic
diffusion model proposed by Bibby and Sorensen (1997) has

received some attention (see, e.g., Rydberg 1999). Bibby
and Sorensen (1997) demonstrated some success in fitting the
stationary distribution of the hyperbolic diffusion to some stock
price data, and provided the theory in applying the hyperbolic
diffusion to option pricing.

Although the stationary distribution of the hyperbolic
diffusion process follows the hyperbolic distribution and
hence has a closed-form expression, the transition density
has no closed-form solution. Due to lack of knowledge of
the transition density, econometric estimation of the model
using the exact likelihood approach is intractable, though an
approximate likelihood method based on discretization may
be adopted. To circumvent this difficulty Bibby and Sorensen
(1997) estimated the hyperbolic diffusion using the martingale

158 1469-7688/04/020158+12$30.00 © 2004 IOP Publishing Ltd PII: S1469-7688(04)69558-3

http://stacks.iop.org/Quant/4/158


QUANTITATIVE FI N A N C E Estimation of hyperbolic diffusion using the MCMC method

estimating function method. However, although the estimator
based on martingale estimating functions is consistent and
asymptotically normally distributed, it is inefficient in general.
Furthermore, computation of the standard errors of the
resulting estimates is difficult and requires techniques such
as parametric bootstrapping.

In this paper we propose to use the Markov chain
Monte Carlo (MCMC) method to estimate the parameters
of the hyperbolic diffusion with the discretized likelihood
of the diffusion process as an approximate posterior. Like
the maximum likelihood (ML) approach in the classical
framework, the MCMC method offers a full likelihood-
based inference based on Bayesian analysis. In the case
of the hyperbolic diffusion, the discretized approximate ML
approach is found to encounter difficulties in numerical
convergence. The MCMC method, however, provides a
general mechanism to sample the parameter vector from its
posterior distribution, and hence avoids the need for numerical
optimization and enables exact finite-sample inferences via
Monte Carlo methods.

In the financial econometrics literature a number of
stylized facts have been well documented in describing the
statistical properties of equity return series. Several models in
the discrete-time domain have been found to be able to generate
time series with such stylized properties. In the continuous-
time domain, however, the success in this aspect has been much
weaker4. On the other hand, while most empirical works rely
on discrete-time models due to their simplicity in estimation,
theories in option pricing are usually based on continuous-time
models. The hyperbolic diffusion is a promising continuous-
time model that describes empirically equity price data and can
be applied to option pricing. Empirical illustrations reported
by Rydberg (1999) show that a member of the generalized
hyperbolic diffusion can induce long-memory features in
the squared return5. In this paper we report the ability of
the hyperbolic diffusion in reproducing other stylized facts
documented in the financial econometrics literature.

This paper is organized as follows. Section 2 reviews the
hyperbolic diffusion model and its properties. We discuss how
the Euler and Milstein schemes can be used to discretize the
model, and thus to provide approximations to the posterior
likelihood. Some stylized facts about equity return series are
summarized and related to the hyperbolic diffusion. Section 3
describes the MCMC method. In section 4 we fit the model
to three stock market indexes over a decade of daily data
using the MCMC method based on both the Milstein and Euler
schemes. Statistical inference is then made via the posterior
quantities. In section 5 we examine the statistical properties
of sample paths generated by the hyperbolic diffusion. We
find that many of the stylized facts for stock returns in the
empirical finance literature documented by Ryden et al (1998)
are satisfied. Section 6 concludes.
4 A notable exception is the time-changed Levy process proposed recently by
Carr and Wu (2003). These authors, however, did not provide any empirical
analysis of their model. Eraker et al (2003) proposed a diffusion model
with jumps in both the return and the volatility, but they did not examine
the statistical properties of their process.
5 Rydberg (1999) considered the normal inverse Gaussian diffusion, which
differs from the hyperbolic diffusion in the form of the stationary density.

2. Hyperbolic diffusion and some
stylized facts of stock returns
Consider the following continuous-time parametric diffusion:

dXt = µ(Xt , θ) dt + σ(Xt , θ) dWt, (1)

where Xt is a state variable, Wt is a standard Brownian motion
defined on the probability space (�, �B, (�B

t )t�0, P ), µ(·, ·)
and σ(·, ·) are known functions, and θ is a vector of unknown
parameters.

Many empirical studies have shown that asset returns are
not normally distributed. Barndorff-Nielsen (1978) suggested
using the hyperbolic distribution to describe unconditional
asset returns. The density of the hyperbolic distribution is
proportional to 1/b2(x), with

b(x) = exp
{

1
2

[
α
√

δ2 + (x − µ)2 − β(x − µ)
]}

, (2)

where α, β, δ and µ are the parameters of the distribution
satisfying α > |β| � 0 and δ > 0. It is noted that δ is the
scale parameter, µ is the location parameter, β determines the
symmetry (the distribution is symmetrical about µ if β = 0)
and α determines the steepness of the distribution.

We assume that the stock price St depends on the state
variable Xt as follows:

St = exp(Xt + κt), (3)

where κ is the (constant) drift rate. Following Bibby
and Sorensen (1997) we consider the following hyperbolic
diffusion process to describe the movement of stock prices6:

dSt = St {[κ+ 1
2σ 2b2(ln St −κt)] dt+σb(ln St −κt) dWt }. (4)

Bibby and Sorensen (1997) obtained some interesting
statistical properties of the process St . For instance, they
showed that the marginal distribution of ln St is hyperbolic
and hence ln St is approximately hyperbolically distributed
after a sufficiently long time period. Also, the distribution
of increments over short intervals has thick tails while an
increment over a long interval follows a distribution that is
close to being hyperbolic.

To derive the dynamic properties of stock returns, we apply
Ito’s lemma to obtain

dXt = σb(Xt) dWt, (5)

which represents a diffusion process with no drift. As dWt are
uncorrelated over nonoverlapping intervals, increments of the
log-prices (i.e. the continuously compounded rates of return)
are serially uncorrelated. Similar to the SV and autoregressive
conditional heteroscedasticity (ARCH) models, the squared
increments of the log-prices are generally serially correlated.
In other words, return series of hyperbolic diffusion are likely
to exhibit volatility clustering as demonstrated by SV and

6 Note that µ in equation (2) and σ in equation (4) are parameters of the
diffusion. They should not be confused with µ(·, ·) and σ(·, ·), which are
known functions of the drift and diffusion terms, respectively.
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ARCH models, which have been found to be successful in
describing many stylized facts of equity return series.

To understand why a hyperbolic diffusion generates
volatility clustering and long memory properties, we apply the
Euler approximation to the diffusion model for the log-price
(i.e. equation (1)) and obtain

Yt ≈ σ exp

[
1

2

{
α

√√√√δ2 +

( ∞∑
i=1

Yt−i − µ

)2

− β

( ∞∑
i=1

Yt−i − µ

)}]
et , (6)

where Yt = ln St+�t − ln St denotes the return and et ∼
i.i.d. N(0, �t). Equivalently this equation can be rewritten
as

Yt ≈ σ exp{ 1
2ht }et

ht = α

√√√√δ2 +

( ∞∑
i=1

Yt−i − µ

)2

− β

( ∞∑
i=1

Yt−i − µ

)
.

Comparing the above specification with the well-known
ARCH(∞) model (Engle 1982),

Yt = σtet

σ 2
t = α0 +

∞∑
i=1

αiY
2
t−i ,

it can be seen that the hyperbolic diffusion model can
be regarded as a special case of the following nonlinear
ARCH(∞) model:

Yt = σ exp{ 1
2ht }et

ht = f (Yt−1, Yt−2, . . .).

This suggests that the hyperbolic diffusion model may generate
return series that exhibit ARCH effects. Furthermore, the
nonlinear relationship between ht and Yt−i may cause long-
memory properties in the absolute return as well as the squared
return.

Before we discuss the MCMC estimation methods for
the hyperbolic diffusion we summarize here some stylized
facts for equity return series in the empirical finance literature,
which may be used as benchmarks for empirical equity price
processes. Let rt denote the return of a stock. Ryden et al
(1998) summarized the following dynamic properties of rt

found in many empirical studies:

(1) rt are not autocorrelated, except possibly at lag one.
(2) The autocorrelation functions (ACFs) of |rt | and r2

t decay
slowly. The decay is much slower than the exponential
rate of the ACF of a stationary ARMA process.

(3) corr(|rt |, |rt−k|) > corr(|rt |φ, |rt−k|φ), φ �= 1. The
autocorrelations of powers of absolute return are highest
at power one. This is called the Taylor effect.

In additional to the above dynamic properties, the
following are two well known static properties:

(1) Returns often show strong evidence that the marginal
distribution has thick tails.

(2) Returns often show weak evidence that the marginal
distribution is skewed.

3. Discretization of hyperbolic diffusion
Although the unconditional distribution of the hyperbolic
diffusion process is hyperbolic, the transition density is
unknown. Therefore, the exact ML method is difficult to
implement. Bibby and Sorensen (1997) suggested using
the martingale estimating function approach of Bibby and
Sorensen (1995) to estimate the diffusion models. This
approach, however, requires knowledge of the conditional
expectation and conditional variance of the underlying
diffusion which are known only for very simple models, such
as those with a linear drift in the state variable. Hence, although
the martingale estimating function method provides estimates
that are consistent and asymptotically normal, implementation
of the method is difficult in practice.

We propose to use the MCMC method to estimate the
hyperbolic diffusion after discretizing the model. In the next
section we shall discuss the MCMC method. In this section, we
outline the Euler and Milstein schemes for the discretization
of the hyperbolic diffusion model. The discretized schemes
provide approximations to the likelihood function, which is in
turn used to approximate the posterior to facilitate Bayesian
analysis. It is well known that the Milstein scheme provides
an approximation with improved accuracy over the Euler
scheme on approximating the underlying diffusion (Milstein
1978, Kloeden and Platen 1992). As a consequence, it is
expected that the likelihood and posterior calculated from the
Milstein scheme would provide better approximations to the
true counterparts than those from the Euler scheme. Indeed,
Elerian (1998) compared the performance of the ML method
based on these two schemes in the context of a univariate CIR
model (Cox et al 1985) and found that the Milstein scheme
offers improvements over the Euler scheme.

The Euler scheme approximates a general diffusion
process such as equation (1) by the following expansion:

Xt+�t = Xt + µ(Xt , θ)�t + σ(Xt , θ)�Wt,

where �Wt = εt

√
�t with εt ∼ i.i.d. N(0, 1). Assuming

constant priors for all the parameters, and given n + 1
observations of x = {xt : t = 0, 1, . . . , n}, the logarithmic
likelihood of θ upon dropping the constant term, is

log pE(θ |x) = − 1
2

n∑
t=1

log(σ (xt , θ)2�t)

− 1

2

n∑
t=1

(xt − xt−1 − µ(xt , θ)�t)2

σ(xt , θ)2�t
, (7)

which can be used directly as an approximate logarithmic
likelihood for ML estimation or as an approximate logarithmic
posterior for the MCMC algorithm. Hereafter, we refer to
pE(θ |x) defined in (7) as the Euler likelihood.

Taking a higher-order term in the Taylor expansion, the
Milstein approach approximates a general diffusion process
by the following equation:

Xt+�t = Xt + µ(Xt , θ)�t + σ(Xt , θ)�Wt

+
1

2
σ(Xt , θ)

∂σ (Xt , θ)

∂Xt

[(�Wt)
2 − �t], (8)
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which can be rewritten as

Xt+�t − Xt − µ(Xt , θ)�t + g(Xt , θ)�t

= σ(Xt , θ)
√

�t ε + g(Xt , θ)�tε2, (9)

where g(Xt , θ) = 1
2σ(Xt , θ)(∂σ (Xt , θ)/∂Xt). Let

a = σ(Xt , θ)
√

�t, b = g(Xt , θ)�t, (10)

then equation (8) can be represented by

Y = aε + bε2 = b

[(
ε +

a

2b

)2

− a2

4b2

]
, (11)

where Y = Xt+�t − Xt − µ(Xt , θ)�t + g(Xt , θ)�t .
The normality assumption implies that (ε + a

2b
)2 (denoted

by, say, Z) follows a noncentral χ2 distribution with one degree
of freedom and noncentrality parameter λ = a2/(4b2). Elerian
(1998) showed that the density of Z is given by

f (z) = 1

2
exp

{
−λ + z

2

}(
z

λ

)−1/4

I−1/2
(√

λz
)
, (12)

where

I−1/2(w) =
√

2

w

∞∑
j=0

(w/2)2j

j !�(j + 1/2)
=

√
2

πw
cosh(w),

with cosh(w) = 1
2 {exp(w) + exp(−w)} being the hyperbolic

cosine function. Hence the density of Y is

f ∗(y) = 1

b
f

(
y

b
+

a2

4b2

)
(13)

and the logarithmic likelihood upon dropping the constant is
given by

log pM(θ |x) =
n∑

t=1

[
log

{
f

(
yt

b
+

a2

4b2

)}
− log(b)

]
, (14)

where yt = xt − xt−1 − µ(xt−1, θ)�t + g(xt−1, θ)�t . Again,
the above quantity can be used either directly as an improved
approximate logarithmic likelihood for ML estimation or as an
improved approximate logarithmic posterior for the purpose
of MCMC simulation. Hereafter, we refer to pM(θ |x) defined
in (14) as the Milstein likelihood.

4. Estimating hyperbolic diffusion via
MCMC
4.1. MCMC

The MCMC strategy has proved useful in many statistical
applications, and has many advantages compared to traditional
independent sampling methods. Geweke (1999) provided a
survey of the fundamental principles of subjective Bayesian
inference in econometrics and the implementation of these
principles using posterior simulation methods, emphasizing
the importance of simulation methods and describing the
implementation of MCMC simulation for Bayesian inference.
Gilks et al (1996) presented a collection of papers on the

application of MCMC algorithms. In econometrics and finance
many successful applications of the MCMC method can be
found (e.g., Eraker 2001, Elerian et al 2002). We refer readers
to Chib (2001) and Johannes and Polson (2003) for recent
surveys on the applications of MCMC in econometrics and
finance.

Bayesian inference concerning a parameter vector θ

conditional on data x is made via the posterior density p(θ |x).
By the Bayes theorem, the posterior takes the form

π(θ |x) = cp(x|θ) π(θ), (15)

where c is a normalizing constant, p(x|θ) is the likelihood
of x conditional upon θ and π(θ) is the prior density of θ .
The Bayesian approach requires that statistical inference be
based on the posterior. Dealing with the posterior, however, is
often analytically intractable. Nonetheless, if we can sample
the parameter vector from the posterior, statistical inference
about the parameter vector can be made using the usual Monte
Carlo approach. The MCMC method aims to provide a
general mechanism to sample the parameter vector from its
posterior density. While simulating directly from the posterior
distribution is typically very difficult, the MCMC method sets
up a Markov chain so that its stationary distribution is the same
as the posterior density. When the Markov chain converges,
the simulated values may be regarded as a sample obtained
from the posterior.

There are two broad categories of algorithms for
implementing MCMC, which are, respectively, the Gibbs
sampler and the Metropolis–Hastings algorithm. Let the
current state be denoted as θ = (θ1, θ2, . . . , θp), and assume
that the full conditional densities of θi are available. The Gibbs
sampler generates the next state θ ′, in which each component
is generated from a sequence of conditional densities. The
Metropolis–Hastings algorithm generates a candidate θ ′ from
a proposal density denoted by q(·|θ). The proposal density
should satisfy certain properties, such as the reversibility
condition discussed in Chib and Greenberg (1995) and Gilks
et al (1996), among many others. The candidate is then
accepted with probability T (θ, θ ′), which is defined by

T (θ, θ ′) = min

{
1,

π(θ ′|x)q(θ |θ ′)
π(θ |x)q(θ ′|θ)

}
. (16)

If the candidate is accepted, the next state is set to θ ′.
Otherwise, the chain does not move. Robert and Casella
(1999, chapter 7) showed that the Gibbs sampler is equivalent
to a composition of p Metropolis–Hastings algorithms with
acceptance probabilities uniformly equal to 1. Robert and
Casella (1999) presented detailed discussions on the use of
the Metropolis–Hastings algorithm and the Gibbs sampler.

As the full conditional density is often difficult to derive,
the Metropolis–Hastings algorithm is generally adopted in
complex problems. In this paper we use the Metropolis–
Hastings algorithm for its simplicity. In what follows we
briefly describe the procedure of the algorithm.

Step 1. Given the current state θ(i), generate a candidate θ ′

from the proposal density q(·|θ(i)).
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Step 2. Calculate the acceptance probability T (θ(i), θ ′)
according to (16).

Step 3. Accept the proposal with probability T (θ(i), θ ′)
and set θ(i+1) = θ ′. Otherwise, reject the candidate and set
θ(i+1) = θ(i).

Step 4. Repeat the previous steps to obtain a chain
{θ(0), θ (1), θ (2), . . .}, where θ(0) denotes the initial state of θ .
Discard the burn-in values (up to θ(d), say) obtained whilst the
chain converges in distribution to the joint posterior. Then the
remaining values, {θ(d+1), θ (d+2), . . .}, are a correlated chain
simulated from π(θ |x), and have the same stationary transition
density as π(θ |x).

Two important points should be noted. First, the
calculation of T (θ(i), θ ′) does not require knowledge of the
normalizing constant in the posterior function. Second, if
the proposal density is symmetric, that is q(x|y) = q(y|x),
then the acceptance probability reduces to π(θ ′|x)/π(θ(i)|x).
Moreover, if q(y|x) is a function of |y − x|, the resulting
algorithm is called the random-walk Metropolis–Hastings
algorithm, which has been widely used in practice due to its
simplicity.

4.2. Empirical results

In this section we apply the random-walk Metropolis–Hastings
algorithm to the discretized diffusion processes and present
empirical results based on some real data sets. The data series
considered are the MSCI World index, the MSCI Europe index
and the NYSE index. The series consist of weekly observations
from 1 January 1990 to 31 December 2000.

As argued before, the transition density of hyperbolic
diffusions does not have closed-form, making the direct
ML approach difficult. However, the transition density
of discretized models under both schemes has an analytic
expression, which, in theory, can be used to obtain the
approximate ML estimates. Before we carried out the
Bayesian MCMC analysis, we implemented the approximate
ML estimation but found that numerical optimizations rarely
converged. This experience indicates that the likelihood
function of the discretized models is not well behaved. As a
conditional simulation method, MCMC avoids any numerical
difficulties associated with numerical optimizations. We now
describe the details of the implementation of the MCMC
method for the estimation of the hyperbolic diffusion.

4.2.1. Empirical results under the Milstein likelihood.
Assume that the priors of the parameters are given by
κ ∼ N(0, 10), α ∼ �(1, 20), δ2 ∼ �(0.05, 20), µ ∼
N(5, 10), β ∼ U(−α, α) and σ 2 ∼ IG(5, 0.05), where
U, �, IG refer to the uniform, gamma and inverted gamma
densities, respectively. These priors are very flat and nearly
noninformative. The joint prior of all the parameters, denoted
as π(θ), is the product of these marginal priors. Based on the
Milstein likelihood pM(θ |x), we can obtain the joint posterior

π(θ |x) ∝ π(θ)pM(θ |x).

In the implementation of the random-walk Metropolis–
Hastings algorithm, the proposal density is uniform on
[−0.5, 0.5], and the parameter vector θ is updated as follows:

θ ′ = θ + τε,

where θ ′ is the proposal for θ , ε is a vector of random numbers
drawn from the uniform density on [−0.5, 0.5], and τ is a
tuning parameter which is chosen so that the acceptance rate is
between 20% and 30%. In addition, τ may be either a scalar-
or vector-constant. Generally speaking, if the parameters are
of weak correlation and their values are of the same scale, τ can
be a scalar constant. Otherwise, τ should be a constant vector,
so that each parameter is assigned a specific tuning parameter.

4.2.2. Convergence checking. In the implementation of the
MCMC algorithm, the sampled path, denoted by {θ(i) : i =
1, 2, . . . , N}, forms a Markov chain whose stationary density
is the posterior π(θ |x), and the output is summarized in terms
of the ergodic averages in the form of

f̄N = 1

N

N∑
i=1

f (θ [i]), (17)

where f (·) is a real-valued function to be estimated. Roberts
(1996) pointed out that most of the Markov chains produced in
MCMC converge geometrically to the stationary distribution
π(θ |x), and one of the most important consequences of the
geometric convergence is that the central limit theorem of
ergodic averages is invoked, i.e.

√
N(f̄N − Eπ [f (θ)])

D→ N(0, σ 2
f ), (18)

where Eπ [·] denotes the expectation operator under π(θ |x),
and the convergence is in distribution. To assess the accuracy
of the ergodic average as an estimate of Eπ [f (θ)], it is essential
to estimate σ 2

f . One of the most commonly used methods for
estimating σ 2

f is the batch mean, which is discussed extensively
in Roberts (1996).

To estimate σ 2
f using the batch mean, the MCMC

algorithm is run for N = m × n iterations, where n is
sufficiently large so that

yk = 1

n

kn∑
i=(k−1)n+1

f (θ [i]), (19)

for k = 1, 2, . . . , m, are approximately independently
distributed as N(Eπ [f (θ)], σ 2

f /n). Therefore σ 2
f can be

estimated by

σ̂ 2
f = n

m − 1

m∑
k=1

(yk − f̄N )2, (20)

where f̄N is defined in equation (17). Thus, the standard error

of f̄N can be estimated by
√

σ̂ 2
f /N , which is called the batch-

mean standard error or the Monte Carlo standard error, and is
commonly used for checking the mixing performance.
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Figure 1. MCMC results for the Milstein scheme.

In addition to the batch-mean standard error, one may
also compute the standard deviation σ̃f directly based on the
sampled paths using the formula

σ̃f =
{

1

N − 1

N∑
i=1

[f (θ [i]) − f̄N ]2

}1/2

. (21)

Kim et al (1998) indicated that the mixing performance of the
sampled paths can be measured using the simulation ineffi-
ciency factor (SIF), also called the integrated autocorrelation

time by Sokal (1996), which is estimated as the variance of
the sample mean divided by the variance of the sample mean
from a hypothetical sampler that draws independent random
observations from the posterior distribution. Meyer and Yu
(2000) showed that SIF is given by

SIF = σ̂ 2
f

σ̃ 2
f

. (22)

In the empirical applications, the burn-in period is taken
as 10 000 iterations and the number of total recorded iterations
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Figure 2. ACF for the Milstein scheme.

after the burn-in period is 50 000. Based on the sampled path
for each data set, we calculate the ergodic average (or mean)
and standard deviations. The MC standard errors are obtained
using the batch-mean approach described in equations (17)–
(19) with f (x) = x. The number of batches is m = 50, and
there are n = 1000 draws in each batch.

We plot the MCMC sample paths of the parameters of the
World index in figures 1(a)–(f), and the ACFs of these sample

paths in figures 2(a)–(f)7. These plots show that the sample
paths are reasonably well mixed. Table 1 summarizes the
ergodic averages, standard deviations, 95% Bayes confidence
intervals, Monte Carlo standard errors, and the SIFs for each
data set. The Bayes confidence interval can be used to test
the significance of each parameter. For example, for the

7 To save space, the plots for the other two indexes are not presented.
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Table 1. MCMC results of the Milstein scheme under specific priors. (Note: CI refers to the 95% confidence interval. SD refers to the
standard deviation computed through (20). MCSE refers to the Monte Carlo standard error computed through the batch-mean approach. SIF
refers to the SIF given by (22). AC refers to the acceptance probability.)

Data Para. Mean CI SD MCSE SIF AC

MSCI κ −0.081 30 (−0.127 32, −0.039 13) 0.022 25 0.000 91 82.85 0.20
World α 1.495 35 (1.256 44, 1.749 13) 0.123 35 0.003 56 41.70 0.24

δ2 0.020 58 (0.000 34, 0.093 82) 0.026 25 0.000 75 40.37 0.27
µ 6.480 77 (6.308 44, 6.661 41) 0.090 40 0.003 58 78.44 0.21
β 0.372 30 (0.081 79, 0.586 69) 0.127 43 0.003 14 30.28 0.22
σ 2 0.007 65 (0.005 79, 0.009 58) 0.000 95 0.000 04 67.41 0.26

MSCI κ −0.018 71 (−0.069 65, 0.028 70) 0.025 26 0.000 94 69.56 0.25
Europe α 1.563 59 (1.116 74, 1.815 34) 0.176 38 0.005 05 40.97 0.25

δ2 0.040 23 (0.000 57, 0.198 57) 0.053 89 0.002 39 98.58 0.24
µ 6.316 99 (6.108 46, 6.548 61) 0.113 30 0.003 74 54.62 0.24
β 0.272 17 (−0.214 48, 0.652 01) 0.221 47 0.006 74 46.37 0.25
σ 2 0.010 43 (0.007 04, 0.013 47) 0.001 59 0.000 06 71.74 0.23

NYSE κ −0.035 71 (−0.080 39, 0.006 43) 0.022 18 0.000 79 63.95 0.23
α 1.657 71 (1.298 26, 2.838 69) 0.136 35 0.003 08 25.46 0.23
δ2 0.014 00 (0.000 18, 0.068 29) 0.020 08 0.000 54 36.65 0.27
µ 5.733 35 (5.547 33, 5.929 01) 0.096 67 0.003 59 68.83 0.24
β 0.276 16 (−0.036 91, 0.512 57) 0.139 33 0.003 26 27.38 0.22
σ 2 0.008 05 (0.006 16, 0.010 16) 0.001 02 0.000 04 64.42 0.24

World index all parameter estimates are significantly different
from zero. Note that the posterior means of the steepness
parameter α are quite similar across the three indexes. While
the Europe index and the NYSE index are symmetrical (the
sampled posterior β is not significantly different from zero),
the World index is asymmetric. For the scale and volatility
parameters (i.e. δ and σ ), the World and NYSE indexes (but
not the Europe index) have similar posterior means.

4.2.3. Robustness to the choice of the priors. To examine
the robustness of the results with respect to the choice of the
priors, we alter the priors in two ways. First, we keep the prior
distributions in the same family as before but change some
hyperparameters. The results are very similar. Second, we use
a different set of prior distributions, which are now the uniform
density. As any constant in the posterior will be eliminated
from both the nominator and denominator when computing the
acceptance probability, we effectively assume that the support
of each uniform prior is wide enough for any update of the
associated parameter. Then we use the same MCMC procedure
as before and summarize the results in table 2.

A comparison with the results in table 1 reveals the
following conclusions. Firstly, SIFs are either comparable (in
most cases) to or marginally higher (in a few cases) than those
under the priors adopted in section 4.2.1, suggesting that the
mixing performance is not affected much by the change of
priors. Secondly, there is no obvious difference in the ergodic
averages and CIs under both sets of priors, suggesting that the
posterior distribution is robust to the change of priors.

4.2.4. Empirical results under the Euler likelihood. To
compare the MCMC performance based on the Milstein and
Euler likelihoods, we apply the sampling algorithm to the
posterior

π(θ |x) ∝ π(θ)pE(θ |x), (23)

where π(θ) is the same as that in section 4.2.3, and pE(θ |x)

is the Euler likelihood defined in (7). Applying the sampling
algorithm to all three data sets using the same priors as adopted
in section 4.2.1, we obtain the empirical results tabulated in
table 3. The sample paths of parameters and the ACFs of
sample paths are plotted, respectively, in figures 3(a)–(f) and
figures 4(a)–(f).

A few more results emerge from table 3 and figures 3
and 4. First, the mixing performance under the Euler scheme is
worse than that under the Milstein scheme, as can be seen from
the fact that the sampled paths under the Euler scheme have
larger variances than those under the Milstein scheme. This
relative performance is also obvious from the plots. We apply
the Heidelberger and Welch convergence test (Heidelberger
and Welch 1983) to all the sampled paths, and find that the
samples from the Milstein scheme under both sets of priors
pass the test for all parameters, whereas the samples from the
Euler scheme fail the test for δ2. Second, the ergodic averages
for some parameters are different from those obtained under
the Milstein likelihood. For example, the estimated κ and β

are, respectively, significantly different from the corresponding
estimates reported in table 1. Better mixing and convergence
under the Milstein scheme leads to the conclusion that the
empirical results based on the Milstein likelihood are more
reliable.

5. Empirical properties of hyperbolic
diffusions
Rydberg (1999) reported simulation results of the normal
inverse Gaussian diffusion in which the ACF of r2

t declines
very slowly, thus partly satisfying dynamic property 2 listed in
section 2. In this section we examine in more detail whether the
hyperbolic diffusion would give rise to the statistical properties
described in section 2.
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Figure 3. MCMC results for the Euler scheme.

To examine the posterior properties of the hyperbolic
diffusion, we record 1000 sampled parameter vectors
(i.e. 1 draw for every 50 draws of the MCMC iterations).
Using the sampled parameter vector at each recorded draw, we
generate a path of daily-price series with 2000 observations
based on the Milstein approximation, where a time interval
of 15 min is used (i.e. we use �t = 1/7000 year, assuming

7 h of trading per day and 250 trading days per year). For
each sampled path, we calculate the sample kurtosis, sample
skewness, Box–Pierce statistic of the squared returns with
20 lags included, and ACF up to lag order 300 for |rt |φ with
φ = 1, 1.5, 2. Table 4 reports the means of the kurtosis,
skewness, Box–Pierce statistic and the ACF of these 1000
sample paths. The last row of the table reports the proportions
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Figure 4. ACF for the Euler scheme.

that the kurtosis is larger than 3 (the kurtosis implied by the
normal distribution), the skewness is less than 0, the Box–
Pierce statistic is larger than 31.41 (the critical value at the 5%
level), and the ACF at φ = 1 is the largest among φ = 1, 1.5, 2
at lags of order 100, 200 and 300 among the 1000 sample paths.

Several points can be observed from the table. First,
there is overwhelming evidence of excess kurtosis (thick

tails) in the unconditional distribution of the hyperbolic
diffusion, as manifest in the mean of the kurtosis and the
proportion of excess kurtosis across the simulated sample
paths. This is consistent with static property 1. Second,
there is weak evidence of asymmetry in the unconditional
distribution: 44.3% of the time we get negative skewness
whereas 55.7% of the time we have positive skewness. This is
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Table 2. MCMC results of the Milstein scheme under uniform priors (note: see table 1).

Data Para. Mean CI SD MCSE SIF AC

MSCI κ −0.079 50 (−0.125 54, −0.035 52) 0.022 63 0.000 83 67.41 0.29
World α 1.539 33 (1.261 36, 1.859 25) 0.147 64 0.004 42 44.30 0.26

δ2 0.026 36 (0.000 37, 0.128 75) 0.036 35 0.001 53 87.95 0.27
µ 6.482 24 (6.303 77, 6.663 00) 0.091 25 0.002 92 52.16 0.28
β 0.357 68 (0.062 10, 0.588 73) 0.131 77 0.003 82 41.24 0.25
σ 2 0.007 41 (0.005 13, 0.009 53) 0.001 09 0.000 04 62.65 0.26

MSCI κ −0.014 22 (−0.068 31, 0.034 07) 0.025 53 0.001 00 76.17 0.27
Europe α 1.546 34 (0.995 61, 2.123 76) 0.272 17 0.012 47 102.84 0.29

δ2 0.051 39 (0.000 68, 0.242 00) 0.065 02 0.003 50 146.10 0.29
µ 6.299 25 (6.067 92, 6.541 24) 0.122 31 0.003 91 51.06 0.27
β 0.278 21 (−0.236 27, 0.738 44) 0.246 08 0.010 44 89.79 0.27
σ 2 0.010 06 (0.005 84, 0.013 71) 0.001 99 0.000 10 134.66 0.26

NYSE κ −0.031 17 (−0.077 09, 0.013 61) 0.023 32 0.000 94 81.94 0.25
α 1.657 71 (1.339 21, 2.048 63) 0.178 35 0.007 44 86.90 0.25
δ2 0.019 99 (0.000 24, 0.112 07) 0.030 67 0.001 52 119.81 0.26
µ 5.730 78 (5.542 49, 5.923 04) 0.098 45 0.003 70 72.31 0.25
β 0.231 27 (−0.115 84, 0.489 54) 0.154 36 0.005 11 54.95 0.27
σ 2 0.007 66 (0.005 22, 0.010 03) 0.001 18 0.000 05 87.56 0.24

Table 3. MCMC results of the euler scheme under specific priors (note: see table 1).

Data Para. Mean CI SD MCSE SIF AC

MSCI κ 0.187 43 (0.154 99, 0.240 44) 0.022 14 0.000 73 54.28 0.21
World α 1.168 44 (0.801 89, 1.603 88) 0.205 22 0.006 69 53.16 0.27

δ2 0.020 92 (0.000 20, 0.127 77) 0.037 68 0.001 73 105.95 0.22
µ 5.303 67 (5.017 87, 5.539 62) 0.133 11 0.007 65 165.21 0.24
β −0.607 43 (−1.279 71, 0.198 68) 0.388 50 0.018 94 118.83 0.32
σ 2 0.001 77 (0.001 50, 0.002 04) 0.000 13 0.000 01 45.80 0.22

MSCI κ 0.226 99 (0.193 02, 0.277 36) 0.021 13 0.001 13 141.94 0.21
Europe α 1.133 59 (0.739 79, 1.606 13) 0.222 33 0.010 26 106.52 0.27

δ2 0.016 59 (0.000 15, 0.105 10) 0.031 86 0.002 07 210.23 0.26
µ 5.007 02 (4.392 87, 5.481 37) 0.255 09 0.018 98 276.91 0.22
β −0.032 55 (−1.085 18, 0.759 78) 0.444 67 0.032 83 272.52 0.24
σ 2 0.001 59 (0.001 34, 0.001 85) 0.000 13 0.000 01 92.74 0.22

NYSE κ 0.259 75 (0.210 57, 0.320 13) 0.028 03 0.000 86 46.62 0.29
α 1.289 02 (0.910 02, 1.723 75) 0.208 30 0.009 35 100.73 0.29
δ2 0.051 59 (0.000 84, 0.218 60) 0.063 03 0.003 02 114.97 0.20
µ 4.589 43 (4.339 53, 4.768 34) 0.111 07 0.004 99 100.91 0.28
β −1.115 54 (−1.599 22, −0.531 60) 0.263 77 0.012 20 107.02 0.29
σ 2 0.002 83 (0.002 27, 0.003 30) 0.000 27 0.000 01 77.00 0.23

Table 4. Analysis of statistical properties of the hyperbolic diffusion.

ACF of {|rt |/|rt |1.5/|rt |2}
Kurt. Skew B–P Lag 100 Lag 200 Lag 300

Mean 20.52 0.098 72.96 0.134/0.107/0.081 0.091/0.072/0.055 0.062/0.050/0.039
Prop. 1.00 0.443 0.668 0.736 0.732 0.624

consistent with static property 2. Third, the average value of the
Box–Pierce statistic is much larger than the 5% critical value
and the proportion of this statistic being significant is 67%,
indicating reasonably strong evidence of an ARCH effect.
Moreover, like Rydberg (1999), we also find that the ACF
of |rt | and r2

t decay very slowly, a pattern inconsistent with
the exponential decay. All these results are consistent with the
dynamic property 2. Finally, at all three lags considered, most
of the time the ACF is highest at power one. This result is
consistent with the Taylor effect.

6. Conclusions
In this paper we propose a Bayesian MCMC method to estimate
the hyperbolic diffusion based on the discretized density via
the Milstein scheme. Relative to some alternative estimation
methods, such as the ML estimation based on the discretized
densities and the MCMC method based on the discretized
density via the Euler scheme, we find that the MCMC method
using the Milstein scheme provides the best empirical results.
Apart from showing evidence that the MCMC method is a
useful tool for estimating hyperbolic diffusions and making
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statistical inferences, we have also demonstrated that the
hyperbolic diffusion is able to exhibit many of the stylized facts
about asset returns documented in the financial econometrics
literature.
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