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a b s t r a c t

It is well known that for continuous time models with a linear drift standard estimation methods yield
biased estimators for the mean reversion parameter both in finite discrete samples and in large in-fill
samples. In this paper, we obtain two expressions to approximate the bias of the least squares/maximum
likelihood estimator of the mean reversion parameter in the Ornstein–Uhlenbeck process with a known
long run mean when discretely sampled data are available. The first expression mimics the bias formula
of Marriott and Pope (1954) for the discrete time model. Simulations show that this expression does not
work satisfactorily when the speed of mean reversion is slow. Slow mean reversion corresponds to the
near unit root situation and is empirically realistic for financial time series. An improvement is made in
the second expression where a nonlinear correction term is included into the bias formula. It is shown
that the nonlinear term is important in the near unit root situation. Simulations indicate that the second
expression captures themagnitude, the curvature and the non-monotonicity of the actual bias better than
the first expression.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

There is an extensive literature on using continuous time
models in economic theory (e.g., Merton, 1990). Motivated
by this success, econometricians have developed methods for
estimating continuous time models, aiming to provide a basis
from which these models may be used in empirical applications.
While Ito’s lemma facilitates the mathematical treatment of
continuous time models in economic applications, continuous
time models are more difficult to deal with econometrically than
their discrete time counterparts. In recent years, however, several
exciting developments have been made on estimating and testing
continuous time models based on discrete time observations. In
terms of parameter estimation, important contributions include Lo
(1988), Bergstrom (1990), Duffie and Singleton (1993), Pedersen
(1995), Aït-Sahalia (1999, 2002), Stanton (1997), Elerian et al.
(2001), Bandi and Phillips (2003, 2007), and Aït-Sahalia and Yu
(2006). In terms of specification analysis, important contributions
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include Chan et al. (1992), Aït-Sahalia (1996a,b), Dai and Singleton
(2000), and Hong and Li (2005). While there are abundant
continuous time specifications available, much of the focus in
the asset pricing literature has been on the continuous time
diffusion equations with an affine structure (see Duffie and Kan,
1996). This is the main motivation why we choose to focus our
attention on continuous time diffusion models with a linear drift
function. However, themethodology employed here is general and
is applicable to non-affine models.

One problem with utilizing continuous time models is esti-
mation bias.1 Standard estimation methods, such as least squares
(LS), maximum likelihood (ML) or generalizedmethod ofmoments
(GMM), produce biased estimators for themean reversion parame-
ter. The bias is essentially of the Hurwicz type that Hurwicz (1950)
developed in the context of dynamic discrete time models. How-
ever, as it will be clear later, the percentage bias is much more
pronounced in continuous time models than their discrete time
counterpart. On the other hand, estimation is fundamentally im-
portant for many practical applications. For example, it provides
parameter estimators which are used directly for estimating prices
of financial assets and derivatives. For another example, parameter
estimation serves as an important stage for the empirical analysis

1 The bias in this article refers to bias arising from estimation. This is different
from the bias induced by discretizing continuous time models.
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doi:10.1016/j.jeconom.2012.01.004



Author's personal copy

J. Yu / Journal of Econometrics 169 (2012) 114–122 115

of specification and comparative diagnostics. Not surprisingly, it
has been found in the literature that the bias in themean reversion
estimator has important implications for the specification analysis
of continuous timemodels (Pritsker, 1998) and for pricing financial
assets (Phillips and Yu, 2005, 2009b).

Several methods have been proposed to reduce the bias in the
mean reversion estimator.2 Ball and Torous (1996) suggested uti-
lizing more cross-sectional information for estimating continuous
time term structure models. Obviously this approach is subject to
data availability. In Phillips and Yu (2005) the jackknife method
of Quenouille (1956) was suggested to reduce the bias. While the
jackknife method cannot completely remove the bias, it can be
very useful in practice as it is computationally simple and is ap-
plicable to a very broad range of models, including the models for
which it is impossible or difficult to develop the explicit form of
an asymptotic expansion of the bias. Another method whose per-
formance was examined in Phillips and Yu (2005) is the median
unbiased estimator of Andrews (1993). This estimator is closely re-
lated to the indirect inference method and the bootstrap method.
The indirect inference method was originally proposed by Smith
(1993) and Gouriéroux et al. (1993) and subsequently applied to
reduce the bias in the mean reversion estimator by Phillips and Yu
(2009a). The bootstrap method was recently proposed to reduce
the bias in the mean reversion estimator by Tang and Chen (2009).
All three methods are simulation-based, and hence computation-
ally demanding.

In an independent and concurrent study, Tang and Chen (2009)
derived an analytical formula for approximating the bias of certain
estimators for the Ornstein–Uhlenbeck (OU) process and the
square root process, both with an unknown long run mean. The
bias formula corresponds to that of Marriott and Pope (1954) and
Kendall (1954) for the discrete time autoregressive (AR) model
with an intercept. It was shown that the bias of themean reversion
estimator is of order T−1 but not of order n−1, where T is the data
span and n is the number of observations. As a result, increasing
the sample size, by the way of increasing the sampling frequency,
cannot yield a consistent LS estimator. This result confirms what
has been known in the literature; see, for example, Merton (1980).
However, the performance of their bias formula is unsatisfactory
in the near unit root situations.

In this paper we complement the results of Tang and Chen
(2009) by deriving an analytical formula for approximating the bias
of ML/LS estimators for the OU process with a known long run
mean. We make several contributions to the literature. First, we
point out that the true bias of the mean reversion estimate has an
interesting curvature and goes to zero when the mean reversion
parameter is closer to zero. This result echoes the conjecture of
Hurwicz (1950) about the bias in the autoregressive (AR) estimate
in the discrete time AR(1) model. Second, we show that the bias
formula, which mimics that of Marriott and Pope (1954) and
Kendall (1954) for the discrete time model and that of Tang and
Chen (2009) for continuous time models, is essentially linear in
coefficient. Consequently, the bias predicted by the formula does
not disappear in the unit root case. One reason why this bias
formula does not work well is that the Cesaro sums are badly
approximated in the unit root and the near unit root situations.
Since many financial time series have roots extremely near unity,
there is considerable interest in improving the bias formula.

As a third contribution, we derive an alternative bias formula
which includes an extra term. The extra term arises from the exact
evaluation of the Cesaro sums. It is of smaller order and hence

2 Bias has been under extensive study in the context of discrete time models.
Some recent studies includeAbadir (1993), Rilstone et al. (1996), Vinod and Shenton
(1996), MacKinnon and Smith (1998), and Bao and Ullah (2007).

can be ignored when the mean reversion parameter is far away
from zero. Interestingly, it does not have a smaller order effect
when the mean reversion parameter is close to zero. Monte Carlo
studies show that the alternative bias formula is more accurate.
It reproduces the nonlinear feature in the true bias function and
goes to zero when the mean reversion parameter goes to zero.

The paper is organized as follows. Section 2 derives the
formulae for approximating the bias and the mean square error.
In Section 3 we assess the accuracy of the analytical expressions
usingMonte Carlo experiments. Section 4 concludes the paper. The
Appendix collects proofs of the main results.

2. OU process with a knownmean

The model considered here is the Ornstein–Uhlenbeck (OU)
process:

dX(t) = κ(µ− X(t))dt + σ dB(t),

X(0) ∼ N(µ, σ 2/2κ)
(1)

with µ being known, where B(t) is a standard Brownian motion.
This model has been previously used to explain the dynamics
of short-term interest rates (Vasicek, 1977) and log-volatilities
(Taylor, 1982). Since we assume the long run mean, µ, is known
a priori, without loss of generality, it is set to zero. The parameter
of interest is the speed of mean reversion, κ , which is assumed
to be positive.3 Phillips (1972) showed that the exact discrete
time model corresponding to (1), is given by the following AR(1)
structure

Xih = φX(i−1)h + σ


1 − e−2κh

2κ
ϵi, (2)

where φ = e−κh, ϵi ∼ i.i.d. N(0, 1) and h is the sampling
interval. Obviously the covariance structure of any discrete sample
in Model (1) is the same as that in Model (2) and there is a one-to-
one correspondence between κ and φ. Also, it is easy to see that
κ > 0 implies φ < 1 and hence stationarity; κ → 0 or h → 0
implies φ → 1 and the model converges to a unit root model.
For a small value of κ or a small value of h (high frequency), both
being empirically relevant, the model has a root near unity. This
situation is the primary interest of the present study. Moreover,
since the distribution of the LS estimator of φ is invariant to σ 2,
the same property holds for κ . The observed data are assumed
to be recorded discretely at (0, h, 2h, . . . , nh(= T )) in the time
interval [0, T ]. So n + 1 is the total number of observations and
T is the data span. With a finite value of T , n → ∞ when h → 0
and vice versa. In the limit as h → 0, a continuous sample path
from the interval is observed. This in-fill asymptotics has become
very popular in recent years in financial econometrics following
the work on realized volatility; see, for example, Andersen et al.
(2001) and Barndorff-Nielsen and Shephard (2002). For financial
time series, X(t) is often recorded monthly, weekly, or daily and
hence h = 1/12, 1/52 or 1/252. However, higher frequencies are
possible in the setup with an even smaller value for h. When there
is no confusion, we simply write Xih as Xi. Unless specified, the
summation sign


is always referred to summation from i = 1

to i = n.
The LS estimator of κ (denoted by κ̂) can be obtained by

min
κ


(Xi − e−κhXi−1)

2. (3)

3 It is known, from the simulations conducted in Phillips and Yu (2005) and the
theoretical work in Tang and Chen (2009), that the ML estimators of the long mean
parameter and the diffusion parameter have little bias. For this reason, we focus our
attention to the mean reversion parameter in the present paper.
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It can be shown that the LS estimator is equivalent to the ML
estimator which maximizes the following log-likelihood function
(conditional on X0 = X(0)),

ln pdf (Xi|Xi−1) (4)

where pdf represents the conditional density. For Model (1) with
µ = 0, the conditional distribution is given by

Xi|Xi−1 ∼ N(e−κhXi−1, σ
2(1 − e−2κh)/(2κ)). (5)

The ML estimator has been widely used in the literature (see, for
example, Aït-Sahalia, 1999). The equivalence is the main reason
why we focus on LS.

It is well known from the discrete time dynamic literature that
the LS estimator can be downward biased. For example, in the
AR(1) model without intercept

Xi = φXi−1 + σϵi, ϵi ∼ N(0, 1). (6)

Marriott and Pope (1954) derived the following expression to
approximate the bias of the LS estimator

E(φ̂)− φ = −
2φ
n

+ o(n−1). (7)

Bartlett (1946) derived the following expression to approximate
the variance of φ̂

Var(φ̂) =
1 − φ2

n
+ o(n−1). (8)

Eqs. (7) and (8) are obtained by replacing the Cesaro sum
n

j=−n


1 −

|j|
n


φ|j|

with
∞

j=−∞

φ|j|
=

1 + φ

1 − φ
.

Obviously the quality of the approximation deteriorates when
φ → 1. When |φ| < 1, the model is stationary and the limiting
theory of φ̂ is given by
√
n(φ̂ − φ)

d
→N(0, 1 − φ2). (9)

Since φ = e−κh, it is reasonable to believe that the bias in φ̂
translates into κ . In fact, Phillips and Yu (2005, 2009a) provided
extensive Monte Carlo evidence of severe finite sample bias in κ
and many other estimators of κ .

When κ is not close to zero, forκ , we take a Taylor expansion
up to the second order term,κ = − ln(φ)/h

= −
1
h


lnφ +

1
φ
(φ − φ)−

1
2φ2

(φ − φ)2 + op(n−1)


= κ −

1
hφ
(φ − φ)+

1
2hφ2

(φ − E(φ))2 + op(T−1). (10)

From Eqs. (7), (8) and (10), it is straightforward to show that

E(κ)− κ =
2
hn

+
1

2hφ2


1 − φ2

n


+ o(T−1) (11)

=
1
2T
(3 + e2κh)+ o(T−1). (12)

Bias formula (12) is analogous to that of Marriott and Pope
for the AR(1) model and corresponds to that of Tang and Chen
(2009) for the OU process with an unknown mean. The first

Fig. 1. The bias as a function of κ for daily frequency (i.e., h = 1/252) when
T = 3 (i.e., n = 756). The solid line is from the simulations. The dashed line is from
formula (12).

term in (11) arises from the bias in φ̂ while the second term
arises from the variance of κ and the nonlinear dependence of κ
in φ. By including only the first two terms in Taylor expansion,
the bias due to the skewness and the kurtosis in φ̂ is obviously
omitted. This omission trades off the quality of the approximation
against algebraic tractability. The bias formula (12) has several
implications for the behaviour of the bias. First, according to (12),
the size of the bias is mainly determined by the data span T but
not by the sample size n. Second, the bias converges to 2/T when
h → 0. According to this in-fill asymptotics, the bias does not
go away unless T goes to infinity. Third, when κ is reasonably
small, e2κh ≈ 1 + 2κh ≈ 1. Hence, (12) implies that the bias is
essentially linear in κ and that the bias is about 2/T and hence
insensitive to κ . According to the second and the third implications,
the approximate bias is 2/T when either h → 0 or κ → 0.
Fourth, the predicted bias will not disappear when κ → 0. The
first implication seems to be consistentwithwhat have been found
in literature (Phillips and Yu, 2005). The second and the third
implications are rather surprising because (7) suggests that the
bias in φ̂ is sensitive to the true value. The last implication seems
at odds with the conjecture made by Hurwicz (1950) that the bias
in φ̂ is zero in the discrete time unit root case (i.e., φ = 1).

To understand the behaviour of the actual bias in Model (1)
and the performance of (12), we simulate 756 daily observations
(i.e., T = 3) from the model with κ taking various values from
the region of (0, 3] and estimate κ using the LS estimator (3). The
experiment is replicated 10,000 times to get the actual bias. Fig. 1
plots the true bias and the expression (12), both as a function of κ .
Obviously there is a great deal of discrepancy between them. The
smaller κ , the bigger the difference. The actual bias goes to zero
when κ → 0, echoing the conjecture made by Hurwicz (1950) in
the discrete time model, whereas according to (12) the expected
value of κ̂ is about 2/3 ≈ 0.67 when κ or h is close to zero. The
discrepancy is due to the error arising from approximating the
Cesaro sum since the derivation of (12) makes use of (7) and (8).
Moreover, there is a strong nonlinearity in the actual bias function
while the expression (12) is nearly linear. Therefore, there are good
reasons to find a better bias formula than (12).

To derive the bias, we adopt the approach of Bao and Ullah
(2007) which is briefly reviewed here. Suppose β is an estimator
of β, based on a sample of n observations, which satisfies the
following estimation equation:

ψn(β) =
1
n


qi(β) = 0. (13)
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The identification condition is given by E(ψn(β)) = 0. Under a set
of regular conditions, Bao and Ullah (2007) obtained the stochastic
expansion ofβ as4β − β = a−1/2 + a−1 + a−3/2 + op(n−3/2), (14)

where a−1/2 = −Qψn, a−1 = −QVa−1/2 −
1
2QH2a2−1/2, a−3/2 =

−QVa−1 −
1
2QWa2

−1/2 − QH2a−1/2a−1 −
1
6QH3a3−1/2, with ψn =

ψn(κ), · = E(·), Hi = ∂ iψn/∂κ
i, Q = (H1)

−1, V = H1 − H1,
W = H2 − H2. By the identification condition, E(a−1/2) = 0.5 The
second order and the third order bias ofβ is, respectively,

E(a−1), E(a−1 + a−3/2) (15)

and the first order and the second order MSE ofβ is, respectively,

E(a2
−1/2), E(a2

−1/2 + 2a−1/2a−1). (16)

When the parameter of interest is φ in the AR(1) model, it is
easy to see that H2 = H3 = V = W = 0, greatly simplifying
the analysis. The parameter of interest in the present study is
κ for which the estimation equation is a nonlinear function in
κ , Consequently, none of these quantities is zero and hence the
derivation of the bias is more complex in continuous time models.
Working with E(a−1) without approximating the Cesaro sums in
the OU model, we get a new second order bias for κ̂ .

Theorem 2.1 (New Approximation to the Bias of κ̂). Under Model (1)
with a known µ, when κ is close to 0, we have the following second
order bias of κ̂ ,

1
2T
(3 + e2κh)−

2(1 − e−2nκh)

Tn(1 − e−2κh)
. (17)

Remark 2.1. Compared with (12), the bias formula (17) has an
extra term, which arises from the exact calculation of the Cesaro
sums, as shown in the Appendix. This term is of order (Tn)−1 and
hence smaller than 1/T , when κ is far away from zero. In this case
it is negligible and (17) becomes (12). However, if κ is close to
zero, the extra term is not negligible, even for a large n. To see this,
applying L’Hospital’s rule to the second term, we have

lim
κ→0

1 − e−2nκh

n(1 − e−2κh)
= 1,

and

lim
κ→0

E(a−1) = 0. (18)

As a result, the extra term is of order T−1 but not of order (Tn)−1.
Indeed, (18) suggests that the bias is close to zero when κ is close
to 0, which is consistent with what is found in Fig. 1. The bias,
however, decreases when the span of data (T ) becomes larger. This
observation is consistent with the Monte Carlo results reported in
Phillips and Yu (2005). Compared with (12), the bias formula (17)
is much more nonlinear due to the inclusion of the extra term.

Remark 2.2. When h converges to 0, n(1 − e−2κh) → 2Tκ and
1 − e−2nκh

= 1 − e−2Tκ . Thus,

lim
h→0

2(1 − e−2nκh)

n(1 − e−2κh)
=

1 − e−2Tκ

Tκ
(19)

4 The expansion was first derived in the i.i.d. framework by Rilstone et al. (1996).
5 The asymptotic normality theory, such as (9), follows from the fact that

√
na−1/2

converges to a normal distribution.

and

lim
h→0

E(a−1) =
1
T


2 −

1 − e−2Tκ

Tκ


. (20)

The implication for h → 0 is very different from that for κ → 0
although both cases lead to a unit root in the exact discrete time
representation. The difference arises because as κ → 0 the initial
condition becomes dominant whereas as h → 0 the error variance
goes to 0. The bias formula (20) is also remarkably different from
the limit case of (12) when h → 0. It is easy to see that the bias
formula (20) works well for practically relevant values for h. For
example, if T = 3 and κ = 3, (20) suggests that bias is about 0.63
as h → 0; if T = 3 and κ = 1, (20) suggests that bias is about 0.46
as h → 0. These values appear to match very well with what we
have found in Fig. 1 when h = 1/252.

Remark 2.3. Formulae (17) and (20) suggest feasible ways for bias
correction. If κ is reasonably close to zero, we can estimate κ by

κ −
1
2T
(3 + e2κh)+

2(1 − e−2nκh)
Tn(1 − e−2κh) .

If in addition, h is small, we can then estimate κ by

κ −
1
T


2 −

1 − e−2Tκ
Tκ


.

To obtain the limiting theory for κ̂ when κ > 0, we apply the
delta method to (9)
√
T (κ̂ − κ)

d
→N(0, (e2κh − 1)/h). (21)

The variance in the limiting distribution is identical to what was
found in Tang and Chen (2009).

Remark 2.4. Working with E(a2
−1) without approximating the

Cesaro sums, we get the expression for the first order MSE, which
is (e2kh − 1)/(Th). Interestingly, the exact calculation of the Cesaro
sums does not make any difference for the first order MSE as it is
the same as the asymptotic variance κ̂ given by (21). Furthermore,
when h → 0,MSE ≈ 2κ/T and κ̂

a
∼N(κ, 2κ/T ), the latter ofwhich

is well known in the statistics literature; see, for example, Brown
and Hewitt (1975).

Remark 2.5. Recently the higher order approximations were
developed for E(φ) and MSE(φ) in the AR(1) model in the
literature; see for example, Bao and Ullah (2007) and Bao (2007).
Bao (2007) gave the bias of φ, up to O(n−2), and MSE(φ),
also up to O(n−2). Although it may seem that these higher
order approximations can be used to improve the order of the
approximation to the bias of κ̂ , the actual treatment is less
straightforward. The complication lies in the fact that κ is related to
φ by a nonlinear function. In (10), the approximation in the Taylor
series expansion was up to O(n−1). To match the O(n−2) order in
approximating E(φ) and MSE(φ), we will have to keep two more
terms in the Taylor expansion, i.e.,

κ = −
1
h


lnφ +

(φ − φ)

φ
−
(φ − φ)2

2φ2

−
(φ − φ)3

18φ3
+
(φ − φ)4

96φ4
+ op(n−2)


= κ −

φ − φ

hφ
+
(φ − E(φ))2

2hφ2
−
(φ − φ)3

18hφ3

+
(φ − φ)4

96hφ4
+ op(T−1n−1), (22)
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Fig. 2. The bias as a function of κ for daily frequency (i.e., h = 1/252). The three graphs correspond to T = 3, 5, 10 (i.e., n = 756, 1260, 2520), respectively. The solid line
is from the simulations. The dashed line is from formula (12). The dotted line is from formula (17).

Fig. 3. The bias as a function of κ for weekly frequency (i.e., h = 1/52). The three graphs correspond to T = 3, 5, 10 (i.e., n = 156, 260, 520), respectively. The solid line is
from the simulations. The dashed line is from formula (12). The dotted line is from formula (17).

which suggests that the approximation to the skewness and
the kurtosis of φ, up to O(n−2), is needed. Such a result is
not available in the literature. Consequently, the higher order
approximation to the bias of κ̂ is beyond the scope of the present
paper.

3. Monte Carlo results

To examine the performance of the two alternative bias
formulae, we estimate κ in Model (1) using the LS estimators (3),
assuming κ takes various values from the region of (0, 3]. This range
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Fig. 4. The bias as a function of κ for monthly frequency (i.e., h = 1/12). The three graphs correspond to T = 3, 5, 10 (i.e., n = 36, 60, 120), respectively. The solid line is
from the simulations. The dashed line is from formula (12). The dotted line is from formula (17).

Fig. 5. Approximate bias from (17) and (20) for the daily frequency with T = 3, 5, 10. The solid line is from formula (17). The dotted line is from formula (20).

covers empirically reasonable values of κ for real data on interest
rates and volatilities. The mean reversion parameter is estimated
with 3, 5, 10 years of daily, weekly and monthly data. The
experiment is replicated 10,000 times to get the bias. Since the
number of simulated paths is large, the bias can be regarded as the
actual bias.

Figs. 2–4 report the simulation results for the daily, weekly and
monthly frequency, respectively. In the figures, we plot the actual
bias, the bias expression (12) and the bias expression (17) as a
function of κ .

Several features are apparent in the figures. First, the actual
bias can be substantial. The bias is especially large for small T
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Fig. 6. Approximate bias from (17) and (20) for the weekly frequency with T = 3, 5, 10. The dashed line is from formula (17). The dotted line is from formula (20).

Fig. 7. Approximate bias from (17) and (20) for the monthly frequency with T = 3, 5, 10. The dashed line is from formula (17). The dotted line is from formula (20).

both in percentage and absolute terms. For example, if data from
a three-year time interval are used to estimate κ when κ = 0.1,
regardless of the frequency at which the data are collected, the
percentage bias is about 250% and the absolute bias is about 0.25.
This bias is very big and has important economic implications
for asset pricing. When κ is small, the bias formula (12) does
not perform well and the bias formula (17) offers substantial
improvement to (12). The bad performance of (12) is not surprising

since it is known to be difficult to correct the bias when φ is close
to 1 (Hurwicz, 1950). Because a small value for κ is empirically
reasonable, the improvement in the bias formula (17) is practically
useful.

Second, the actual bias is always a highly nonlinear function of
κ, especially when κ is small. The bias formula (12) is virtually
linear in κ whereas the bias formula (17) reproduces the curvature
in the actual bias function quite well.
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Third, as κ gets close to zero, the true bias seems to decrease
towards zero. Interestingly, the bias formula (17) but not the bias
formula (12) has the same feature. Fourth, the actual bias seems to
be dependent upon the data span but not the sampling frequency,
consistent with the two bias formulae.

To examine the performance of (20) relative to (17) (i.e., the
effect of small h), we adopt the same simulation design as before
but now plot the bias formulae (17) and (20). Figs. 5–7 are for
the daily, weekly and monthly frequency, respectively. Obviously,
the difference between (17) and (20) is the largest for monthly
data and the least for daily data, consistent with the prediction of
(20). Similarly to (17), (20) also suggests the bias converges to 0 as
κ → 0. Finally,when the true value ofκ is closer to 0, the difference
between (17) and (20) is very small, suggesting thatwe can replace
(17) with (20) to approximate the bias in practice.

4. Conclusions

Wehavepresented twoalternative expressions for approximat-
ing the bias of the mean reversion estimator in a continuous time
diffusion model, based on the method proposed by Bao and Ullah
(2007). The simpler expression mimics the bias formula derived
by Marriott and Pope (1954) for the discrete time AR model and
corresponds to the bias formula derived independently by Tang
and Chen (2009) for the samemodel but with unknownmean. The
complicated one includes an additional term from the exact eval-
uation of the Cesaro sums. We show that the additional term is
important for improving the quality of bias approximation, espe-
cially when the mean reversion parameter is close to zero. This
near unit case is practically realistic for financial time series. The
initial condition is assumed to be the stationary distribution in our
treatment. This initial condition is known to have important im-
plications for the finite sample theory (White, 1961) and even for
asymptotic theory in the unit root case (Phillips and Magdalinos,
2009). It is useful to derive the bias formula for alternative initial
conditions for the mean reversion parameter.

Appendix

Before proving Theorem 2.1, we first introduce a lemma.

Lemma 1. 1. If X ∼ N(0,Σ), A, A1, A2 and A3 are all symmetric
matrices, then

E(X ′AX) = tr(AΣ), (23)

E(X ′AX)2 = (tr(AΣ))2 + 2tr(AΣAΣ), (24)

E(X ′A1XX ′A2X) = tr(A1Σ)tr(A2Σ)+ 2tr(A1ΣA2Σ), (25)

and

E(X ′A1XX ′A2XX ′A3X)
= tr(A1Σ)tr(A2Σ)tr(A3Σ)+ 2{tr(A1Σ)tr(A2ΣA3Σ)

+ tr(A2Σ)tr(A1ΣA3Σ)+ tr(A3Σ)tr(A1ΣA2Σ)}

+ 8tr(A1ΣA2ΣA3Σ), (26)

where tr denotes the trace of a matrix.

2.


iφ−i
=

φ−φ1−n(1+n)+nφ−n

(1−φ)2
.

3.
 

φ|t−s|
= n 1+φ

1−φ −
2φ(1−φn)
(1−φ)2

.

4.
 

φ|t−s|+|t−s−1|
= n 2φ

1−φ2
−

φ(1+φ2)(1−φ2n)
(1−φ2)2

.

5.
 

(φ2|t−s|
+ φ|t−s+1|+|t−s−1|) = n 1+4φ2−φ4

1−φ2
−

2φ2(1−φ2n)
(1−φ2)2

.

Proof of Lemma 1.

1. Eqs. (23) and (24) are straightforward consequences of Exercise
3 in Ullah (2004, Page 12). To get Eqs. (25) and (26), we need to
define y = XΣ−1/2 and assume µ = 0 in Exercise 4 in Ullah
(2004, Page 12).

2. Working from the derivatives, we have
iφ−i

= −φ
∂(


φ−i)

∂φ
= −φ

∂((1 − φ−n)/(φ − 1))
∂φ

=
φ − φ1−n(1 + n)+ nφ−n

(1 − φ)2

3. Following from the last equation, we have 
φ|t−s|

= n + 2φn
n−1
i=1

iφ−i

= n + 2
φn+1

− nφ2
+ (n − 1)φ

(1 − φ)2

= n
1 + φ

1 − φ
+

2φn+1
− 2φ

(1 − φ)2
, 

φ|t−s|+|t−s−1|

= nφ +

n−1
i=1

(n − i)φ2i−1
+

n−1
i=1

(n − i)φ2i+1

= nφ + (1 + φ2)
φ2(φ2n−1

− φ)− (n − 1)(φ2
− 1)φ

(1 − φ)2

= n
2φ

1 − φ2
+
(1 + φ2)(φ2n+1

− φ)

(1 − φ2)2
,

and 
(φ2|t−s|

+ φ|t−s+1|+|t−s−1|)

=

 
φ2|t−s|

+

 
φ|t−s+1|+|t−s−1|

= n
1 + 4φ2

− φ4

1 − φ2
−

2φ2(1 − φ2n)

(1 − φ2)2
. �

Proof of Theorem 2.1. Denote X = (X0, . . . , Xn)
′,

C1 =
1
2



0 1 0 · · · 0 0 0
1 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 1
0 0 0 · · · 0 1 0


, and

C2 =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · 0 0

 . (27)

Note that the LS estimator of κ is obtained from the following
estimation equation,

1
n


Xi−1(Xi − e−κhXi−1) =

1
n
X ′C1X − e−κh 1

n
X ′C2X

:= Un − e−κhVn = 0. (28)

with Un =
1
nX

′C1X and Vn =
1
nX

′C2X .
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Since the property of κ is independent of σ 2, without loss of
generality, we assume σ 2

= 2κ . As a result, Xt ∼ N(0, 1) and
X ∼ N(0,Σ) where Σ is an (n + 1) × (n + 1) matrix with ij-th
element φ|i−j|. By Lemma 1, E(Un) = φ and E(Vn) = 1. Moreover,

E(UnVn) =
1
n2

E(X ′C1XX ′C2X)

=
1
n2

{tr(C1Σ)tr(C2Σ)+ tr(C1ΣC2Σ)}

= φ +
4φ

n(1 − φ2)
−

2φ(1 + φ2)(1 − φ2n)

n2(1 − φ2)2
, (29)

where the second and third equalities follow from Lemma 1.
Similarly

E(V 2
n ) =

1
n2

E(X ′C2X)2

= 1 +
2(1 + φ2)

n(1 − φ2)
−

4φ2(1 − φ2n)

n2(1 − φ2)2
, (30)

and

E(U2
n ) =

1
n2

E

X ′C1X

2
= φ2

+
1 + 4φ2

− φ4

n(1 − φ2)
−

4φ2(1 − φ2n)

n2(1 − φ2)2
. (31)

From the estimation Eq. (28), using the same notations as in Bao
and Ullah (2004), we have H1 = φhVn, Q = 1/(φh), H1 = φh,
V = φh(Vn − 1), H2 = −φh2Vn, H2 = −φh2, H3 = φh3Vn,
W = φh2(1−Vn), andH3 = φh3. Substituting all these expressions
to the individual terms in the stochastic expansion of κ̂ given by
Eq. (14), we obtain

a−1/2 = −
Un − φVn

φh
, (32)

and

a−1 =
U2
n − φ2V 2

n

2φ2h
−

Un − φVn

φh
. (33)

Substituting (29)–(31) into (32) and (33), taking expectation, and
collecting terms, we have

E(a−1/2) = 0, (34)

E(a−1) =
E(U2

n )− φ2E(V 2
n )

2φ2h

=
1

2φ2h


φ2

+
1 + 4φ2

− φ4

n(1 − φ2)
−

4φ2(1 − φ2n)

n2(1 − φ2)2


−

φ2

2φ2h


1 +

2(1 + φ2)

n(1 − φ2)
−

4φ2(1 − φ2n)

n2(1 − φ2)2


=

1
2T
(3 + e2κh)−

2(1 − e−2nκh)

Tn(1 − e−2κh)
.

This proves Eq. (18). �

References

Abadir, K.M., 1993. OLS bias in a nonstationary autoregression. Econometric Theory
9, 81–93.

Aït-Sahalia, Y., 1999. Transition densities for interest rate and other nonlinear
diffusions. Journal of Finance 54, 1361–1395.

Aït-Sahalia, Y., 2002. Maximum likelihood estimation of discretely sampled
diffusion: a closed-form approximation approach. Econometrica 70, 223–262.

Aït-Sahalia, Y., Yu, J., 2006. Saddlepoint approximation for continuous-timeMarkov
processes. Journal of Econometrics 134, 507–551.

Aït-Sahalia, Y., 1996a. Nonparametric pricing of interest rate derivative securities.
Econometrica 64, 527–560.

Aït-Sahalia, Y., 1996b. Testing continuous-time models of spot interest rate
derivative securities. Review of Financial Studies 9, 385–426.

Andersen, T., Bollerslev, T., Diebold, F.X., Labys, P., 2001. The distribution of realized
exchange rate volatility. Journal of the American Statistical Association 96,
42–55.

Andrews, D.W.K., 1993. Exactly median-unbiased estimation of first order
autoregressive/unit root models. Econometrica 61, 139–166.

Ball, C.A., Torous, W.N., 1996. Unit roots and the estimation of interest rate
dynamics. Journal of Empirical Finance 3, 215–238.

Bandi, F., Phillips, P.C.B., 2003. Fully nonparametric estimation of scalar diffusion
models. Econometrica 71, 241–283.

Bandi, F., Phillips, P.C.B., 2007. A simple approach to the parametric estimation of
potentially nonstationary diffusions. Journal of Econometrics 137, 354–395.

Bao, Y., 2007. The approximate moments of the least squares estimator for
the stationary autoregressive model under a general error distribution.
Econometric Theory 23, 1013–1021.

Bao, Y., Ullah, A., 2007. The second-order bias andmean squared error of estimators
in time-series models. Journal of Econometrics 140, 650–669.

Barndorff-Nielsen, O., Shephard, N., 2002. Econometric analysis of realized volatility
and its use in estimating stochastic volatility models. Journal of the Royal
Statistical Society, Series B 64, 253–280.

Bartlett, M.S., 1946. On the theoretical specification and sampling properties of
autocorrelated time-series. Journal of Royal Statistical Society 8, 27–41.

Bergstrom, Albert R., 1990. Continuous Time Econometric Modelling. Oxford
University Press, Oxford.

Brown, B.M., Hewitt, J.I., 1975. Asymptotic likelihood theory for diffusion processes.
Journal Applied Probability 12, 228–238.

Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison
of alternative models of short term interest rates. Journal of Finance 47,
1209–1227.

Dai, Q., Singleton, K.J., 2000. Specification analysis of affine term structure models.
Journal of Finance 55, 1943–1978.

Duffie, D., Kan, R., 1996. A yield-factor model of interest rate. Mathematical Finance
6, 379–406.

Duffie, D., Singleton, K.J., 1993. Simulated moments estimation of markov models
of asset prices. Econometrica 61, 929–952.

Elerian, O., Chib, S., Shephard, N., 2001. Likelihood inference for discretely observed
non-linear diffusions. Econometrica 69, 959–993.

Gouriéroux, C., Monfort, A., Renault, E., 1993. Indirect inference. Journal of Applied
Econometrics 8, S85–S118.

Hong, Y., Li, H., 2005. Nonparametric specification testing for continuous time
model with application to spot interest rates. Review of Financial Studies 18,
37–84.

Hurwicz, L., 1950. Least square bias in time series. In: Koopmans, T. (Ed.), Statistical
Inference in Dynamic Economic Models. Wiley, New York, pp. 365–383.

Kendall, M.G., 1954. Note on bias in the estimation of autocorrelation. Biometrika
41, 403–404.

Lo, A.W., 1988. Maximum likelihood estimation of generalized Itô processes with
discretely sampled data. Econometric Theory 4, 231–247.

MacKinnon, J.G., Smith, A.A., 1998. Approximate bias correction in econometrics.
Journal of Econometrics 85, 205–230.

Marriott, F., Pope, J., 1954. Bias in the estimation of autocorrelations. Biometrika 41,
390–402.

Merton, R.C., 1990. Continuous-Time Finance. Massachusetts, Blackwell.
Merton, R.C., 1980. On estimating the expected return on themarket: an exploratory

investigation. Journal of Financial Economics 8, 323–361.
Pedersen, A., 1995. A new approach to maximum likelihood estimation for

stochastic differential equations based on discrete observation. Scandinavian
Journal of Statistics 22, 55–71.

Phillips, P.C.B., 1972. The structural estimation of a stochastic differential equation
system. Econometrica 40, 1021–1041.

Phillips, P.C.B., Magdalinos, T., 2009. Unit root and cointegrating limit theory when
initialization is in the infinite past. Econometric Theory 25, 1682–1715.

Phillips, P.C.B., Yu, J., 2005. Jackknifing bond option prices. Review of Financial
Studies 18, 707–742.

Phillips, P.C.B., Yu, J., 2009a. Maximum likelihood and gaussian estimation of
continuous time models in finance. In: Handbook of Financial Time Series.
pp. 497–530.

Phillips, P.C.B., Yu, J., 2009b. Simulation-based estimation of contingent-claims
prices. Review of Financial Studies 22, 3669–3705.

Pritsker, M., 1998. Nonparametric density estimation and tests of continuous time
interest rate models. Review of Financial Studies 11, 449–487.

Quenouille, M.H., 1956. Notes on bias in estimation. Biometrika 43, 353–360.
Rilstone, P, Srivastava, V.K., Ullah, A., 1996. The second-order bias andmean squared

error of nonlinear estimators. Journal of Econometrics 75, 369–395.
Smith, A.A., 1993. Estimating nonlinear time-series models using simulated vector

autoregressions. Journal of Applied Econometrics 8, S63–S84.
Stanton, R., 1997. A nonparametric model of term structure dynamics and the

market price of interest rate risk. Journal of Finance 52, 1973–2002.
Tang, C.Y., Chen, S.X., 2009. Parameter estimation and bias correction for diffusion

processes. Journal of Econometrics 149, 65–81.
Taylor, S.J., 1982. Financial returns modelled by the product of two stochastic

processes — a study of the daily sugar prices 1961–75. In: Anderson, O.D. (Ed.),
Time Series Analysis: Theory and Practice, vol. 1. North-Holland, Amsterdam,
pp. 203–226.

Ullah, A., 2004. Finite Sample Econometrics. Oxford University Press, Oxford.
Vasicek, O., 1977. An equilibrium characterization of the term structure. Journal of

Financial Economics 5, 177–186.
Vinod,H.D., Shenton, L.R., 1996. Exactmoments for autoregressive and randomwalk

models for a zero or stationary initial value. Econometric Theory 12, 481–499.
White, J., 1961. Asymptotic expansions for the mean and variance of the serial

correlation coefficient. Biometrika 48, 85–94.




