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a b s t r a c t

Hypothesis testing using Bayes factors (BFs) is known not to be well defined under the improper prior. In
the context of latent variable models, an additional problemwith BFs is that they are difficult to compute.
In this paper, a new Bayesian method, based on the decision theory and the EM algorithm, is introduced
to test a point hypothesis in latent variable models. The new statistic is a by-product of the Bayesian
MCMC output and, hence, easy to compute. It is shown that the new statistic is appropriately defined
under improper priors because the method employs a continuous loss function. In addition, it is easy
to interpret. The method is illustrated using a one-factor asset pricing model and a stochastic volatility
model with jumps.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Latent variable models have been widely used in economics,
finance, and many other disciplines. They are appealing from both
the practical and the theoretical perspectives. One advantage of
using latent variables is that it reduces the dimensionality of data.
A well known example is the factor models. For example, in the
arbitrage pricing theory (APT) of Ross (1976), and Roll and Ross
(1980), returns of an infinite sequence of risky assets are assumed
to depend linearly on a set of common factors. Another example is
the stochastic volatility (SV) model that has been proven to be an
effective alternative to ARCH-type models; see Shephard (2005).
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The SV model is a special case of a more general class of models
known as the state-space (SS) models. While statistical analysis of
the linear Gaussian SS model is straightforward with the help of
the Kalman filter technique, statistical analysis of a nonlinear or
non-Gaussian SS model is much more challenging than its linear
Gaussian counterpart.

For many latent variable models, it is difficult to use traditional
frequentist estimation and inferential methods. The main reasons
are as follows. First, for some latent variable models, such as
the nonlinear or non-Gaussian SS models, the log-likelihood
function of the observed variables (termed the observed data
log-likelihood) often involves integrals which are not analytically
tractable.When the dimension of the integrals is high, the classical
numerical techniques may fail to work, and hence, the likelihood
function becomes difficult to evaluate accurately. Consequently,
the maximum likelihood (ML) method and all the tests based on
ML, are difficult to use.

Second, for dynamic latent variable models, the frequentist in-
ferential methods are almost always based on the asymptotic the-
ory. The validity of the classical asymptotic theory requires a set
of regularity conditions that may be too strong for economic data,
to hold. For example, a regularity condition often used is station-
arity. This condition may not be realistic for the macroeconomic
and financial time series. In the context of a particular class of la-
tent variable models, Chang et al. (2009) discussed the impact of
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nonstationarity on the asymptotic distribution of the ML estima-
tor. In the case of general hidden Markov models, the asymptotic
properties of the ML estimate remain largely unknown, with the
exception of consistency which was recently developed in Douc
et al. (2011).

Third, for the asymptotic theory toworkwell in finite samples, a
large sample size is typically required. However, in many practical
situations involved time series data, unfortunately, the sample size
is not very large. In some cases, even if the sample size of available
data is large, fully sampled data are not always utilized because
of the concern over possible structural changes in the data. As
a result, the classical asymptotic distribution may not be a good
approximation to the finite sample distribution, and the inference
based on the classical asymptotic theory may be misleading.

Due to the abovementioned difficulties in using the frequentist
methods, there has been increasing interest in the Bayesian meth-
ods to deal with latent variable models. With the advancement of
MCMC algorithms and the rapidly expanding computing facility,
the estimation of latent variable models has become increasingly
easier. Since Bayesian inference is based on the posterior distribu-
tion, no asymptotic theory is needed for making statistical infer-
ences.1

One of the most important statistical inferences is hypothesis
testing, for which the formulation of the null hypothesis typically
contains a unique value of a parameter which corresponds to
the prediction of an important theory. Bayes factors (BFs) are the
dominantmethodof Bayesianhypothesis testing (Kass andRaftery,
1995; Geweke, 2007). One serious drawback is that they are not
well defined when using an improper prior. This property is true
for all models, including models with latent variables. The use of
improper priors is typical in practice when noninformative priors
are employed. Since the improper priors are specified only up
to an undefined multiplicative constant, BFs contain undefined
constants (Kass and Raftery, 1995), and hence, take arbitrary
values.2 Another drawback is computational. Calculation of BFs
for comparing any two competing models requires the marginal
likelihoods, and thus, amarginalization over the parameter vectors
in each model. When the dimension of the parameter space is
large, as is typical in latent variable models, the high-dimensional
integration poses a formidable computational challenge, although
there have been several interesting methods proposed in the
literature for computing BFs from the MCMC output; see, for
example, Chib (1995), and Chib and Jeliazkov (2001).

To define BFswith improper priors, a simple approach is to view
part of the data as a training sample. The improper prior is then
updated with the training sample to produce a new proper prior
distribution. This leads to some variants of BFs; see, for example,
the fractional BFs (O’Hagan, 1995), and the intrinsic BFs (Berger and
Perrichi, 1996).3 Instead of using BFs, Bernardo and Rueda (2002),
BR hereafter suggested treating Bayesian hypothesis testing as a
decision problem, and introduced a Bayesian test statistic that is
well defined under improper priors. A crucial element in their
approach is the specification of the loss function. They showed that
the BFs approach to hypothesis testing is a special case of their
decision structure with the loss function being a simple zero–one
function.4

1 The posterior distribution is dependent on the choice of prior distributions,
however. In some cases, the posterior distribution is sensitive to the specification
of prior distributions; see, for example, Phillips (1991).
2 If an informative and thus proper prior distribution is specified, BFsmay bewell

defined.
3 Alternatively, one may use model selection criteria, such as the deviance

information criterion proposed by Spiegelhalter et al. (2002) and applied to the
stochastic volatility models by Berg et al. (2004).
4 Poirier (1997) developed a loss function approach for hypothesis testing for

models without latent variables.

In this paper, we generalize the Bayesian hypothesis testing
approach of BR to deal with latent variable models. Like the
approach of Bernardo and Rueda, our test statistic is also based
on the decision theory. However, our approach differs from theirs
in two ways. First, BR’s approach is based on the Kullback–Leibler
(KL) loss function. Unfortunately, for the latent variable models,
the KL function used in BR may involve calculation of intractable
high-dimensional integrals. Insteadwedevelop anew loss function
based on the theory of the powerful EM algorithm that was
originally proposed to do the maximum likelihood estimation
of parameters in latent variable models (Dempster et al., 1977).
Second, we prove that the new test statistic is well defined
under improper priors, show that it is a by-product of Bayesian
estimation, and hence, make the computation relatively easy.

The paper is organized as follows. Section 2 introduces the
setup of the latent variable models and reviews the Bayesian
MCMC method. Section 3 motivates the use of continuous loss
functions in Bayesian decision problems. In Section 4, the new
Bayesian test statistic is introduced based on the decision theory
and the EM algorithm in the context of latent variable models.
Section 5 illustrates the new method using two models, a one-
factor asset pricing model and a stochastic volatility model with
jumps. Section 6 concludes the paper, and Appendix collects the
proof of the theoretical results in the paper.

2. Latent variable models and Bayesian estimation via MCMC

Without loss of generality, let y = (y1, y2, . . . , yn)T denote
observed variables and ω = (ω1,ω2, . . . ,ωn)

T , the latent
variables. The latent variable model is indexed by the parameter
of interest, θ, and the nuisance parameter, ψ. Let p(y|θ,ψ) be
the likelihood function of the observed data, and p(y,ω|θ,ψ), the
complete likelihood function. The relationship between these two
functions is:

p(y|θ,ψ) =

∫
p(y,ω|θ,ψ)dω. (1)

In many cases, the integral does not have an analytical expression.
Consequently, the statistical inferences, such as estimation and
hypothesis testing, are difficult to implement if they are based on
the ML approach.

In recent years, it has been documented that the latent
variables models can be simply and efficiently estimated using
MCMC techniques under the Bayesian framework. Let p(θ,ψ)
be the prior distribution of unknown parameter θ,ψ. Due to
the presence of the latent variables, the likelihood, p(y|θ,ψ), is
intractable; hence it is difficult to compute the expectation of the
posterior density, p(θ,ψ|y). To alleviate this difficulty, the data-
augmentation strategy of Tanner and Wong (1987) is applied to
augment the parameter space with the latent variable ω. Then,
the Gibbs sampler can be used to generate random samples
from the joint posterior distribution p(θ,ψ,ω|y). After the effect
of initialization dies off (with a sufficiently long period for the
burning-in phase), the simulated random samples can be regarded
as random observations from the joint distribution. Random
observations drawn from the posterior simulation can be used
to estimate the parameters. For example, Bayesian estimates of θ
and the latent variables ω may be obtained via the corresponding
sample mean of the generated random observations. For further
details about Bayesian estimation of latent variable models via
MCMC such as algorithms, examples and references, see Geweke
et al. (2011).

3. Bayesian hypothesis testing under decision theory

3.1. Hypothesis testing as a decision problem

After the model is estimated, often researchers are interested
in testing a null hypothesis, of which the simplest contains a point.
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Typically, the point null hypothesis corresponds to the prediction
of a theory. Assuming that the probabilistic behavior of observable
data, y ∈ Y , is described appropriately by the probability model
M ≡ {p(y|θ,ψ)} in term of the parameters of interest, θ ∈ Θ, and
the nuisance parameters,ψ ∈ Ψ . Consider the following point null
hypothesis:

H0 : θ = θ0

H1 : θ ≠ θ0.
(2)

Formally, this hypothesis testing problem can be taken as a
decision problem where the action space has only two elements,
namely, to accept (d0) or to reject (d1) the use of the null model,
M0 ≡ {p(y|θ0,ψ),ψ ∈ Ψ}, as a good proxy for the assumedmodel,
M1 ≡ {p(y|θ,ψ), θ ∈ Θ,ψ ∈ Θ}.

For the decision problem, a loss function, {L[di, (θ,ψ)], i =

0, 1}, which measures the loss of accepting H0 or rejecting H0 as
a function of the actual value of the parameters (θ,ψ), must be
specified. Given the loss function and data y, the optimal action
is to reject H0, if and only if (iff) the expected posterior loss of
accepting H0 is larger than the expected posterior loss of rejecting
H0, that is,∫

Θ

∫
Ψ

L[d0, (θ,ψ)]p(θ,ψ|y)dθdψ

−

∫
Θ

∫
Ψ

L[d1, (θ,ψ)]p(θ,ψ|y)dθdψ

=

∫
Θ

∫
Ψ

{L[d0, (θ,ψ)] − L[d1, (θ,ψ)]} p(θ,ψ|y)dθdψ

> 0.

Therefore, in practice, only the following net loss difference
function is required to be specified:

1L[H0, (θ,ψ)] = L[d0, (θ,ψ)] − L[d1, (θ,ψ)].

It measures the evidence against H0 as a function of (θ,ψ).
Following Berger (1985), any Bayesian admissible solution to the
decision problem must satisfy,

Reject H0 iff T (y, θ0)

=

∫
Θ

∫
Ψ

1L[H0, (θ,ψ)]p(θ,ψ|y)dθdψ > 0, (3)

for a pre-specified net loss difference function 1L[H0, (θ,ψ)].

3.2. Discrete loss function and Bayes factors

If the zero–one loss function is used, that is,

L[d0, (θ,ψ)] =


0 if θ = θ0
1 if θ ≠ θ0,

L[d1, (θ,ψ)] =


1 if θ = θ0
0 if θ ≠ θ0,

the net loss difference function 1L[H0, (θ,ψ)] is:

1L[H0, (θ,ψ)] =


−1 if θ = θ0
1 if θ ≠ θ0.

According to Eq. (3), the corresponding decision rule is:

Reject H0 iff
∫

Ψ

(−1)p(θ0,ψ|y)dψ

+

∫
Θ

∫
Ψ

1p(θ,ψ|y)dθdψ > 0.

In general, a positive probability ω, is assigned to the event
θ = θ0, such that a reasonable prior for θ with a discrete support

at θ0 is formulated as p(θ) = ω, when θ = θ0, and p(θ) =

(1 − ω)π(θ), when θ ≠ θ0, where π(θ) is a prior distribution.
Hence, the decision criterion is:

Reject H0 iff −

∫
Ψ

p(y|θ = θ0,ψ)ωπ(ψ|θ = θ0)dθ0

+

∫
Θ

∫
Ψ

p(y|θ,ψ)π(ψ|θ)(1 − ω)π(θ)dψ > 0.

To represent the prior ignorance, the probability ω is set to 0.5 and
the criterion becomes:

Reject H0 iff B01 =


Ψ
p(y|θ = θ0,ψ)π(ψ|θ = θ0)dψ
Θ


Ψ
p(y|θ,ψ)π(θ,ψ)dθdψ

< 1,

where B01 is the well-known BF (Kass and Raftery, 1995).
When a subjective prior is not available, an objective prior

or default prior may be used. Often, π(θk,ψ|Mk) is taken as
uninformative priors, such as the Jeffreys or the reference prior
(Jeffreys, 1961; BR, 1992). These priors are generally improper, and
it follows that π(θk,ψ|Mk) = Ckf (θk,ψ|Mk), where f (θk,ψ|Mk) is
a nonintegrable function, and Ck is an arbitrary positive constant,
with k = 0, 1. In this case, the BF is

B01 =
C0

C1


Ψ
p(y|ψ, θ0)f (θ0,ψ)dψ

Θ


Ψ
p(y|θ,ψ)f (θ,ψ)dθdψ

. (4)

Clearly the BF is ill-defined since it depends on the arbitrary
constants, C0/C1. To overcome this problem, onemay let part of the
data be a training sample to generate a proper prior; see O’Hagan
(1995), and Berger and Perrichi (1996). The choice of a training
sample may be arbitrary.

3.3. KL continuous loss function

BR (2002) noted that it is more natural to assume the net loss
function to be a continuous function of θ and θ0. A particular
function thatwas suggested in BR is the KL divergence function. For
any regular probability functions, p(x) and q(x), the KL divergence
can be expressed as:

K [p(x), q(x)] =

∫
p(x) log

p(x)
q(x)

dx, (5)

which is a non-negative measure and equal to 0 iff p(x) = q(x).
If the net loss function is chosen to be the KL divergence

between the unrestricted and the restricted likelihood functions,
the decision criterion becomes:

T (y, θ0) =

∫
Θ

∫
Ψ

1L[H0, (θ,ψ)]p(θ,ψ|y)dθdψ

=

∫
Θ

∫
Ψ

∫
log

p(y|θ,ψ)

p(y|θ0,ψ)
p(y|θ,ψ)dy


× p(θ,ψ|y)dθdψ.

This is the Bayesian hypothesis test statistic developed in BR. To
obtain somegoodproperties such as symmetry, BR suggestedusing
the following net loss function:

1L[H0, (θ,ψ)] = min{K [p(y|θ,ψ), p(y|θ0,ψ)],

K [p(y|θ0,ψ), p(y|θ,ψ)]}. (6)

As shown in BR, this net loss function measures the minimum
amount of information (in natural information units) that one
observation may be expected to provide in order to discriminate
between p(y|θ,ψ) and p(y|θ0,ψ). Based on this loss function,
the reference priors may be assigned to parameters to retain
objectiveness. An obvious advantage is that this statistic is
well defined under improper priors. Unfortunately, for latent
variable models, KL may involve calculation of intractable high-
dimensional integrals, and hence, may be difficult to evaluate.
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4. A new loss function for latent variable models

The test statistic based on the KL divergence function requires
that the observed data log-likelihood function be available
analytically or be easy to calculate numerically. As argued above,
however, formany latent variablemodels, evaluating the observed
data log-likelihood function, and hence, the KL loss function is
formidable. On the other hand, the EM algorithm has been widely
used in the literature of latent variable models. The new difference
loss function we propose in the present paper is based on the so-
called Q function used in the EM algorithm.

4.1. EM algorithm for latent variable models

Let ρ = (θ,ψ) and x = (y,ω) be the complete-data set
with a density p(x|ρ). The complete-data log-likelihood, Lc(x|ρ) =

log p(x|ρ), is often simple, whereas the observed data log-
likelihood, Lo(y|ρ) = log p(y|ρ), is very complicated in many
situations because it may involve intractable integrals.

The basic idea of the EM algorithm is to replace maximization
of the observed data log-likelihood function, Lo(y|ρ), with
successful maximization of Q


ρ|ρ(r)


, the conditional expectation

of the complete-data log-likelihood function, Lc(x|ρ), given the
observation data y and a current fit ρ(r) of the parameter. Thus, a
standard EM algorithm consists of two steps: the expectation (E)
step and the maximization (M) step. The E-step evaluates the Q
function which is defined by

Q

ρ|ρ(r)

= Eρ(r){Lc(x|ρ)|y, ρ(r)
}, (7)

where the expectation is taken with respect to the conditional
distribution, p(ω|y, ρ(r)). The M-step determines a ρ(r) that
maximizes Q (ρ|ρ(r)). Under some mild regularity conditions,
the sequence, {ρ(r)

}, obtained from the EM algorithm iterations
converges to theML estimate,ρ. For details about the convergence
properties of the sequence, ρ(r), see Dempster et al. (1977).

4.2. A new loss function

In a recent study, Ibrahim et al. (2008) proposed an information
criterion formodel selection based onQ (·|·). Inspired by this study
and the theoretical properties of the EM algorithm, we propose a
new difference loss function for Bayesian point hypothesis testing
in the context of latent variables models.

Consider the same nuisance parameter, ψ. For any θ, θ∗
∈ Θ ,

let Q (θ, θ∗) = Q

(θ,ψ)|(θ∗,ψ)


. The new loss function is:

D(θ, θ0) = {Q (θ, θ) − Q (θ0, θ)} + {Q (θ0, θ0) − Q (θ, θ0)} .

The following lemma establishes some desirable properties of the
new loss function, D. The proof of Lemma 1 can be found in
Appendix A.1.

Lemma 4.1. The loss function D has the following properties:

1. D(θ, θ0) = D(θ0, θ);
2. D(θ, θ0) ≥ 0;
3. D(θ, θ0) = 0 ⇐⇒ θ = θ0.

Remark 4.1. The new loss function is invariant under any one-to-
one transformation of the parameters. This property is not shared
by some simple loss functions, such as, the quadratic loss function.

Remark 4.2. In Appendix A.1, it is shown that

D(θ, θ0) = K [p(ω|y, θ,ψ), p(ω|y, θ0,ψ)]

+ K [p(ω|y, θ0,ψ), p(ω|y, θ,ψ)]. (8)

If the observable variable y is independent on ω, the new loss
function is reduced as a symmetric KL divergence function, that is,

K(p(ω|θ,ψ), p(ω|θ0,ψ)) + K(p(ω|θ0,ψ), p(ω|θ,ψ)).

Although it is difficult to interpret the new loss function from
the original definition, Eq. (8) suggests that it can be interpreted
using the KL divergence between the two posterior densities of
the latent variables. Similar to BR, the new loss function may
be explained as a measure for the amount of information that
the sample observations may be expected to provide in order
to discriminate between p(ω|y, θ,ψ) and p(ω|y, θ0,ψ). It seems
reasonable to use this KL divergence as the loss function for the
latent variable models.

Based on the new loss function, we define our Bayesian test
statistic as the posterior mean of the loss function, namely,

T (y, θ0) = E(θ,ψ|y) {Q (θ, θ) − Q (θ0, θ)

+ Q (θ0, θ0) − Q (θ, θ0)} . (9)

The following theoremgives themain result of this paperwhich
shows how to compute the Bayesian test statistic from the MCMC
output. The proof can be found in Appendix A.2.

Theorem 4.1. The Bayesian test statistic, T (y, θ0), can be expressed
as

T (y, θ0) = E(ω,ψ,θ|y)


log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)


+ E(θ,ψ|y)


E(ω|y,θ0,ψ)

[
log

p(y,ω|θ0,ψ)

p(y,ω|θ,ψ)

]
. (10)

Remark 4.3. If the Q function has a tractable form, it is obvious
that the test statistic is only the by-product of the MCMC output
under the alternative hypothesis. This is in shape contrast to BFs
and the approach of BR.

Remark 4.4. To implement the BF approach for hypothesis testing,
numerical algorithms have to be applied to estimate BFs. However,
it is difficult to assess the estimation accuracy. From Eq. (9) to
(10), it can be seen that the standard error of the newly proposed
statistic is easily obtained.

Remark 4.5. If a prior distribution (such as the Jeffreys prior) is
invariant under reparametrization, the Bayesian test statistic is
robust to reparametrization.

Remark 4.6. While BFs are dependent on arbitrary constants
under the improper prior, it can be shown that the proposed test
statistic is well defined. The reason is that the arbitrary constants
are canceled out in our statistic. The proof of this property can be
found in Appendix A.3.

Remark 4.7. In some interesting cases, unfortunately, the Q
function does not have a tractable form.While the first term in (10)
is only the by-product of the MCMC output under the alternative
hypothesis, the second term in (10) is more difficult to calculate.
In Appendix A.4, we show how to approximate the second term by
treating the nuisance parameterψ as an additional latent variable,
so that T (y, θ0) can still be approximated using the MCMC output.

Remark 4.8. In practice, we need a threshold value for the
rejection and the acceptance of H0. Following BR, we use the
following decision rule:

Accept H0 if T (y, θ0) ≤ δ; Reject H0 if T (y, θ0) > δ,

where δ is the threshold value. How to determine the threshold
value is obviously important. Following McCulloch (1989), the
comparison between two Bernoulli distributions may regarded
as a reference case. McCulloch’s idea is as follows. Consider
two distributions, P1 and P2, whose corresponding densities are
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Table 1
The threshold values based on the probability.

q(C) 50% 55% 65% 75% 85% 95% 98% 99% 99.5% 99.9%
2C 0 0.010 0.094 0.288 0.732 1.660 2.544 3.220 3.918 5.522

respectively denoted as p1 and p2. Set the KL divergence between
P1 and P2 to be C , i.e., K(P1, P2) =


log(p1/p2)dP1 = C , which

measures the cost of predicting outcomes using P2 when P1 is
the correct description of uncertainty. Let B(p) be the Bernoulli
distribution that assigns probability p to an event. We may find
q(C), such that

K(B(0.5), B(q(C))) = K(P1, P2) = C . (11)

This means that the KL distance between P1 and P2 is required
to be the same as that between B(0.5) and B(q(C)). The latter
distance is easier to be appreciated. In particular, it can be shown
that K(B(0.5), B(q(C))) = − log(4q(C)(1 − q(C)))/2. Solving (11)
for q (>0.5), we get

q(C) = 0.5 + 0.5(1 − exp(−2C))0.5. (12)

If q(C) = 0.99, the two Bernoulli distributions, B(0.5) and B(0.99),
are very different. As a result, P1 and P2 must be very different too.
This may be explained by the following analogy. The predicting
outcomes with P2, when the random variable is in fact P1, is
comparable with describing an unobserved Bernoulli event with
probability 0.99, when in fact the probability is only 0.5. For the
new loss function developed in the present paper, the threshold
value is the sum of the two KL divergence functions, as in (8).
Hence, we use δ = 2C as the threshold value in this paper. Using
Eq. (12), we tabulate some threshold values in Table 1.

While the choice of a threshold value is up to the user, in
this paper we choose q(C) = 0.99 so that the two probability
distributions are distinctly different. Hence, we use 3.22 as the
threshold value in the present paper. Obviously, other threshold
values are possible. The use of threshold values is not new in
the Bayesian literature. For example, Jeffreys’ Bayes factor scale
tells the strength of evidence in favor of one model versus
another (Jeffreys, 1961). Perhaps a more natural approach is to
obtain the empirical threshold value from the repeated simulated
data. However, this model based calibration approach would be
computationally more demanding.

Remark 4.9. In the Bayesian framework, Bayesian credible inter-
vals may be used for hypothesis testing. In practice, however,
this approach has several problems. First, for any given cover-
age probability, there is no unique Bayesian credible interval. This
is an important concern as the posterior distributions are often
asymmetric. Although onemay use the highest probability density
(HPD) regions, the derivation of the HPD intervals require inten-
sive numerical calculations. Moreover, there is no way to derive a
marginal HPD region from a joint HPD region. In addition, as ar-
gued in Lindley (1965) and Kim (1991), the usage of a HPD region
for the purpose of hypothesis testing ‘‘is appropriate only for cir-
cumstances in which prior knowledge of the hypothesized param-
eter is vague or diffuse’’. Second, Bayesian credible intervals are not
robust to a one-to-one transformation of parameters.

5. Empirical illustrations

In this section, we first illustrate the proposed method using
an asset pricing model with a heavy-tailed distribution for which
the Q function is available analytically. We then we test for unit
root in a stochastic volatility model with jumps for which the Q

function does not have a closed form expression, and hence, has to
be approximated using the MCMC output.5

5.1. Testing asset pricing models under multivariate t

Asset pricing theory is a pillar in modern finance. Under the
Bayesian framework, Bayesian analysis of the asset pricing theory
has attracted a considerable amount of attentions in the empirical
asset pricing literature. For example, Avramov and Zhou (2010)
is an excellent review of the literature on Bayesian portfolio
analysis. The asset pricing test is an important topic in asset pricing
theory. Various econometric approaches have been proposed to
check the validity of various asset pricing models. For example,
Bayesian tests have been proposed by Shanken (1987), Harvey
and Zhou (1990), McCulloch and Rossi (1991), and Geweke and
Zhou (1996), etc. In addition, under the frequentist framework,
Gibbons et al. (1989) developed a multivariate finite sample test.
All these tests were developed based on the normality assumption.
Unfortunately, there has been overwhelming empirical evidence
against normality for asset returns, which have led researchers to
investigate asset pricing models with a heavy-tailed distribution,
including the family of elliptical distributions discussed in Zhou
(1993). In this section, we apply the new method to check the
validity of a factor asset pricing model with a multivariate t
distribution.

Let Rit be the excess return of portfolio i at period t with the
following factor structure,

Rit = αi + βiFt + ϵit , i = 1, 2, . . . ,N, t = 1, 2, . . . , T , (13)

where Ft is a K × 1 vector of factor portfolio excess returns, βi a
1 × K vector of scaled covariances, ϵit the random error following
the t distribution, N the number of portfolios, and T the length of
the time series. This asset pricing model can be rewritten in the
vector form,

Rt = α+ βFt + ϵt , t = 1, 2, . . . , T , (14)

where α is a 1 × N vector, β an N × K matrix, and ϵt ∼ t(0,Φ, ν).
The density function of the multivariate t is given by

f (ϵt) =
Γ


ν+N
2


(πν)

2
N Γ


ν
2


|Φ|

1
2


1 +

ϵ
′

tΦ
−1ϵt

ν

−
ν+N
2

.

The mean–variance efficiency implies that the excess premium α
should not be statistically different from zero. The hypothesis can
be formulated as:

H0 : α = 0 × 1N , H1 : α ≠ 0 × 1N ,

where 1N is N × 1 vector with component 1.
It has been noted in Kan and Zhou (2006) that under the

multivariate t specification, a direct numerical optimization of the
observed data likelihood function is difficult. The scale mixture of
multivariate normals may be used to represent the multivariate
t distribution. As a consequence, Model (14) can be alternatively
specified as:

Rt = α+ βFt + ϵt , ϵt ∼ N(0 × 1N ,Φ/ωt),

ωt ∼ Γ

ν

2
,
ν

2


.

By treating ωt as a latent variable, the powerful EM algorithm
can be used to obtain the Q function. Hence, one can obtain the

5 In an earlier version, Li and Yu (2010) examined the finite sample performances
of the proposed method in the same context and found strong evidence to support
the method in both cases.
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proposed Bayesian test statistic. The detail of the derivation is as
follows.

LetR = {R1, R2, . . . , RT },ω = {ω1, ω2, . . . , ωT },ψ = (β,Φ, ν).
In the present paper, we consider Φ as a diagonal matrix. The
observed data log-likelihood function, Lo(R|α,ψ), is:

C −
T
2

N−
i=1

logφii −
ν + N

2

T−
t=1

N−
i=1

log

1 +

(Rit − αi − βiFt)2

νφii


,

where C is a remainder, independent of the parameters of
interest. Based on the normal-gamma mixture representation
for the multivariate t distribution, the complete log-likelihood,
Lc(R,ω|α,ψ), can be expressed as

C +
N
2

T−
t=1

logωt −
T
2

N−
i=1

logφii

−
1
2

T−
t=1

N−
i=1

ωtφ
−1
ii (Rit − αi − βiFt)

2.

Thus, the posterior expectation of ωt , given the data and the
parameters, is

E(ωt |α,ψ,Rt) =
ν + N

ν +

N∑
i=1

φ−1
ii (Rit − αi − βiFt)2

,

t = 1, 2, . . . , T .

For the asset pricing model considered in the simulation study, we
can show that,

Q (α|α) − Q (α0|α)

=

∫
[Lc(R,ω|α,ψ) − Lc(R,ω|α0,ψ)]p(ω|R,α,ψ)dω

=

∫ T−
t=1

N−
i=1


ωtφ

−1
ii

[
(Rit − βiFt)αi −

1
2
α2
i

]
× p(ω|R,α,ψ)dω

=

T−
t=1

N−
i=1


E(ωt |α,ψ,Rt)φ

−1
ii

[
(Rit − βiFt)αi −

1
2
α2
i

]
,

and that

Q (α0|α0) − Q (α|α0)

=

∫
[Lc(R,ω|α0,ψ) − Lc(R,ω|α,ψ)] p(ω|R,α0,ψ)dω

=

T−
t=1

N−
i=1


−E(ωt |α0,ψ,Rt)φ

−1
ii

[
(Rit − βiFt)αi −

1
2
α2
i

]
.

Therefore, the Bayesian test statistic is given by,

T (y,α0)

= E(α,ψ|R) [Q (α|α) − Q (α0|α) + Q (α0|α0) − Q (α|α0)]

= E(α,ψ|R)


T−

t=1

N−
i=1

[E(ωt |α,ψ,Rt)

− E(ωt |α0,ψ,Rt)]φ
−1
ii

[
(Rit − βiFt)αi −

1
2
α2
i

] 
.

When K = 1 in Eq. (14), the model becomes the single-factor
market price model given by:

Rit = αi + βiRMt + ϵit ,

where RMt is the excess return of themarket, and ϵit is independent
over i. In the first empirical study, we test the market price model.

We consider the monthly returns of 25 portfolios and the
market excess return. Theportfolios, constructed at the endof each

June, are the intersections of 5 portfolios formed on size (market
equity, ME) and 5 portfolios formed on the ratio of book equity
to market equity (BE/ME). This sample period is from July 1926 to
December 2009, so that N = 25, T = 1002. The data are freely
available from the data library of Kenneth French.6

Before estimating the model, we need to check the normality
assumption. Young (1993) considered some Bayesian diagnostic
measures and showed that the ratio of the expectations of the
posteriors of the slope and variance and the expectation of the ratio
give similar results to the Shapiro–Wilk statistic (Shapiro andWilk,
1965) when non-informative priors are used. When calculating
the Shapiro–Wilk statistic, we found overwhelming evidence
against normality. Consequently, we replace normality with the t
distribution. Since the Q function is known analytically, it is easy
to obtain the proposed Bayesian test statistic.7 In the Bayesian
analysis, we specify the vague conjugate prior distributions to
represent the prior ignorance, namely,

αi ∼ N[0, 100], βi ∼ N[0, 100],
φ−1
ii ∼ Γ [0.001, 0.001].

Under these prior specifications, we run 30,000 Gibbs iterations
with a burning-in sample of 20,000. The remaining 10,000
iterations are regarded as effective random samples for the
posterior Bayesian inference. The convergence of Gibbs sampling
is checked using the Raftery–Lewis diagnostic test statistic (Raftery
and Lewis, 1992). The posterior mean of the degrees of freedom is
2.444, with standard error 0.1175. The other estimation results are
reported in Table 2. The Bayesian test statistic for α = 0 × 125 is
19.08, which is more extreme than the difference between B(0.5)
and B(0.999). Hence, we conclude that the asset pricing model is
strongly rejected.

It is important to emphasize that, although our method is
motivated from the case of objective priors, informative priors can
be also used in our method. In a recent study, Tu and Zhou (2010)
explored a general approach to forming informative priors based
on economic objectives and found that the proposed informative
priors outperform significantly the objective priors in terms of
investment performance. Our method can be used in conjunction
with the informative prior specifications.

5.2. Unit root test in a stochastic volatility model with jumps

Whether or not there is a unit root in volatility of financial assets
has been a long-standing topic of interest to econometricians and
empirical economists. In a log-normal stochastic volatility (SV)
model, the volatility is often assumed to follow an AR(1) model
with the autoregressive coefficientφ. The test of unit root amounts
to testing φ = 1. Based on the BF, So and Li (1999) proposed a
Bayesian approach to test a unit root in the basic SV model. In this
section, we consider the unit root test in the SVmodel with jumps.
The presence of jumps in returns is an important stylized fact.
Without including jumps, the jumps in the pricewill bemistakenly
attributed to volatility, and hence, potentially change the dynamic
properties of volatility. The model is specified as:

yt = stqt + exp(ht/2)ut , ut ∼ N(0, 1),
ht = τ + φ(ht−1 − τ) + σvt , vt ∼ N(0, 1),

where t = 1, 2, . . . , T , qt is an ordinary Bernoulli trial with P(qt =

1) = π , and log(1 + st) ∼ N(−η2/2, η2). stqt can be viewed as
a discretization of a finite activity Lévy process. This model was

6 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
7 Even in this simple case, the approach of BR cannot be implemented because a

closed-form expression for KL[p(y|θ), p(y|θ0)] cannot be obtained.
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Table 2
Bayesian estimation and standard error of the parameters for the market model
with the multivariate t distribution.

Portfolio α β Ψ

EST SE EST SE EST SE

S1B1 −0.0087 0.0014 1.4040 0.0370 0.0025 0.0001
S1B2 −0.0028 0.0010 1.2700 0.0274 0.0014 0.0001
S1B3 −0.0014 0.0009 1.1690 0.0244 0.0011 0.0001
S1B4 −0.0006 0.0008 1.0870 0.0215 0.0008 0.0001
S1B5 0.0013 0.0009 1.1600 0.0245 0.0011 0.0001
S2B1 −0.0038 0.0009 1.2970 0.0232 0.0010 0.0001
S2B2 −0.0003 0.0007 1.1830 0.0183 0.0006 0.0000
S2B3 0.0014 0.0006 1.0890 0.0168 0.0005 0.0000
S2B4 0.0016 0.0007 1.1020 0.0176 0.0006 0.0003
S2B5 0.0012 0.0009 1.2130 0.0226 0.0010 0.0000
S3B1 −0.0016 0.0006 1.2350 0.0186 0.0006 0.0000
S3B2 0.0010 0.0006 1.1180 0.0150 0.0004 0.0000
S3B3 0.0016 0.0005 1.0720 0.0143 0.0004 0.0000
S3B4 0.0018 0.0006 1.0630 0.0154 0.0004 0.0000
S3B5 0.0014 0.0008 1.1590 0.0213 0.0008 0.0000
S4B1 −0.0006 0.0005 1.1380 0.0138 0.0004 0.0000
S4B2 −0.0001 0.0004 1.0670 0.0119 0.0003 0.0000
S4B3 −0.0006 0.0005 1.0580 0.0128 0.0003 0.0000
S4B4 −0.0007 0.0006 1.0560 0.0157 0.0005 0.0000
S4B5 −0.0001 0.0008 1.1970 0.0228 0.0010 0.0000
S5B1 0.0001 0.0004 0.9937 0.0109 0.0002 0.0000
S5B2 −0.0009 0.0004 0.9573 0.0107 0.0002 0.0000
S5B3 −0.0001 0.0005 0.8935 0.0128 0.0003 0.0000
S5B4 0.0001 0.0006 0.9629 0.0156 0.0004 0.0000
S5B5 0.0003 0.0010 1.0630 0.0283 0.0014 0.0001

introduced in Chib et al. (2002). The estimation of φ is complicated
by the fact that volatility and jump components are both latent. For
the same reason, the frequentist tests, including the Dickey–Fuller
method, are difficult to use, and so are the BFs.

In the second empirical study, we test the unit root hypothesis
in volatility of S & P 500 index sampled over the period that covers
the 2007–2008 subprime crisis. The data are the demeaned daily
returns of S & P 500 from January 3, 2005 to January 31, 2009. There
are 1512 observations in the data. As in So and Li (1999), Chib et al.
(2002) and Yu (2005), we specify some proper prior distributions
for the nuisance parameters:

τ ∼ N[0.0, 100],
1
σ 2

∼ Gamma(2 + 10−10, 0.1),

π ∼ Beta(2, 100), log(η) ∼ N(−3.07, 0.149).

For φ, we consider a prior density that assigns a positive mass at
unity, namely,

f (φ) = π I(φ = 1) + (1 − π)Uniform(0, 1),
π ∼ Uniform(0, 1), (15)

where I(x) is the indicator function, such that I(x) = 1 if x is true
and 0 otherwise,π theweight that represents the prior probability
for model M0 formulated under the null hypothesis. The Uniform
distribution is assigned for π to represent the prior ignorance
for model uncertainty. Since the Q function is not analytically
available, Appendix A.5 shows how to compute T (y, φ0) where
φ0 = 1.

The empirical results are obtained based on 30,000 iterations
after a burn-in of 20,000. The convergence of Gibbs sampling
is checked using the Raftery–Lewis diagnostic test statistic. The
results are reported in Table 3 and show that the unit root
hypothesis is rejected.

6. Conclusion and discussion

In this paper,we have proposed a new loss function for Bayesian
point hypothesis testing in the context of latent variable models.
The loss function is based on the Q function of the EM algorithm

Table 3
Empirical results for S&P 500.

Model π η τ φ σ 2 Test

EST 0.0096 0.0504 −0.8130 0.9822 0.0281 6.2675
SE 0.0065 0.0202 0.2597 0.0092 0.0113 NA

and can be interpreted meaningfully using the KL functions. Based
on the new loss function, a newBayesian test statistic is developed.
The main advantages of the new statistic is that it is a by-product
of the MCMC output under the alternative hypothesis, and hence,
easy to compute. The second advantage is that it is well-defined
even under a non-informative prior specification.

While it is necessary to specify a threshold value to implement
our test, various strategies are available for calibrating the
threshold value. McCulloch (1989) provided a simple and effective
approach. Soofi et al. (1995) extendedMcCulloch’smethod to cases
that involve distributions other than Bernoulli, and proposed a
calibrationmethod based on a normalized transformation of the KL
information. Both approaches are independent of the data. Perhaps
a more natural approach is to borrow the idea from the bootstrap
method by generating the empirical threshold value from the data.
However, this necessitates higher computational cost.

The new approach has been applied to test a simple one-
factor asset pricing model and the unit root hypothesis in a SV
model with jumps. However, the technique itself is quite general
and can be applied in many other contexts. Examples includes
the Fama–French three factor models with dependent covariance
structure and the testing of the number of factors in latent factor
models, just to name a few.

Appendix

A.1. Proof of Lemma 4.1

For any θ1, θ2 ∈ Θ , by the definition of Q (·|·),

Q (θ1|θ2) = E{Lc(y,ω|θ1,ψ)|y, θ2,ψ}

=

∫
Ω

log p(y,ω|θ1,ψ)p(ω|y, θ2,ψ)dω

=

∫
Ω

log p(y,ω|θ1,ψ)p(ω|y, θ2,ψ)dω

=

∫
Ω

log[p(ω|y, θ1,ψ)p(y|θ1,ψ)]

× p(ω|y, θ2,ψ)dω

=

∫
Ω

log p(ω|y, θ1,ψ)p(ω|y, θ2,ψ)dω

+ log p(y|θ1,ψ)

= H(θ1|θ2) + log p(y|θ1,ψ).

It follows that,

Q (θ|θ) − Q (θ0|θ)

= H(θ|θ) + log p(y|θ,ψ) − H(θ0|θ) − log p(y|θ0,ψ)

= H(θ|θ) − H(θ0|θ) + log p(y|θ,ψ) − log p(y|θ0,ψ)

=

∫
Ω

log
p(ω|y, θ,ψ)

p(ω|y, θ0,ψ)
p(ω|y, θ,ψ)dω

+ log p(y|θ,ψ) − log p(y|θ0,ψ)

= K [p(ω|y, θ,ψ), p(ω|y, θ0,ψ)] + log p(y|θ,ψ)

− log p(y|θ0,ψ)

Q (θ0|θ0) − Q (θ|θ0)

= K [p(ω|y, θ0,ψ), p(ω|y, θ,ψ)]

+ log p(y|θ0,ψ) − log p(y|θ,ψ)
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where K [·, ·] is the KL divergence function. Therefore,
D(θ, θ0) = {Q (θ|θ) − Q (θ0|θ)} + {Q (θ0|θ0) − Q (θ|θ0)}

= K [p(ω|y, θ,ψ), p(ω|y, θ0,ψ)]

+ K [p(ω|y, θ0,ψ), p(ω|y, θ,ψ)], (16)
and the three properties stated in Lemma 4.1 naturally follow.

A.2. Proof of Theorem 4.1

From Lemma 4.1, we have.

Q (θ|θ) − Q (θ0|θ) =

∫
Ω

log
p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)
p(ω|y, θ,ψ)dω

= E(ω|y,θ,ψ)


log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)


,

Q (θ0|θ0) − Q (θ|θ0) =

∫
Ω

log
p(y,ω|θ0,ψ)

p(y,ω|θ,ψ)
p(ω|y, θ0,ψ)dω

= E(ω|y,θ0,ψ)


log

p(y,ω|θ0,ψ)

p(y,ω|θ,ψ)


.

Hence, the Bayesian test statistic can be expressed as:

T =

∫
Θ

∫
Ψ

{Q (θ|θ) − Q (θ0|θ) + Q (θ0|θ0)

− Q (θ|θ0)} p(θ,ψ|y)dθdψ
= E(θ,ψ|y){Q (θ|θ) − Q (θ0|θ)}

+ E(θ,ψ|y){Q (θ0|θ0) − Q (θ|θ0)}.

It can be shown that,
E(θ,ψ|y){Q (θ|θ) − Q (θ0|θ)}

= E(θ,ψ|y)


E(ω|y,θ,ψ)

[
log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)

]
=

∫
Θ

∫
Ψ

E(ω|y,θ,ψ)


log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)


p(θ,ψ|y)dθdψ

=

∫
Θ

∫
Ψ

∫
Ω

log
p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)
p(ω|y, θ,ψ)dω


× p(θ,ψ|y)dθdψ

=

∫
Θ

∫
Ψ

∫
Ω

log
p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)
p(ω, θ,ψ|y)dωdθdψ

= E(ω,θ,ψ|y)


log

p(y,ω|θ,ψ)

p(y,ω|θ0,ψ)


,

which proves Theorem 4.1.

A.3

In this Appendix, we will show that the proposed statistic,
T (y, θ0), is free of arbitrary constants. First, assume that some gen-
eral improper priors satisfy p(ψ|θ,Hk) = Akf (ψ|θ,Hk), p(θ|Hk) =

Bkf (θ|Hk) where f (ψ|θ,Hk), f (θ|Hk) are the nonintegrable func-
tion, andAk, Bk are arbitrary positive constantswith k = 0, 1. Then,
it can be shown that,
p(ω,ψ, θ|y,Hk)

=
p(ω,ψ, θ|y,Hk)

p(y|Hk)
=

p(y,ω,ψ, θ|Hk)
Θ


Ψ


Ω
p(y,ω,ψ, θ|Hk)dωdψdθ

=
p(y,ω|ψ, θ,Hk)p(ψ, θ|Hk)

Θ


Ψ


Ω
p(y,ω|ψ, θ,Hk)p(ψ, θ|Hk)dωdψdθ

=
p(y,ω|ψ, θ,Hk)Akf (ψ|θ,Hk)Bkf (θ|Hk)

Θ


Ψ


Ω
p(y,ω|ψ, θ,Hk)Akf (ψ|θ,Hk)Bkf (θ|Hk)dωdψdθ

=
p(y,ω|ψ, θ,Hk)f (ψ, θ|Hk)

Θ


Ψ


Ω
p(y,ω|ψ, θ,Hk)f (ψ, θ|Hk)dωdψdθ

.

Hence, p(ω,ψ, θ|y,Hk) is independent on Ak, Bk. Similarly, we
can show that p(θ,ψ|y,Hk) and p(ω|y, θ,ψ,Hk) are also inde-
pendent on Ak, Bk. Furthermore, from Appendices A.1 and A.2, we
have,

E(ω,θ,ψ|y)


log

p(y,ω,ψ|θ)

p(y,ω,ψ|θ0)


= E(ω,θ,ψ|y)


log

p(y,ω|ψ, θ)p(ψ, θ)

p(y,ω|ψ, θ0)p(ψ|θ0)


= E(ω,θ,ψ|y)


log

p(y,ω|ψ, θ)A1B1f (ψ, θ)

p(y,ω|ψ, θ0)A0f (ψ|θ0)


= E(ω,θ,ψ|y)


log

p(y,ω|ψ, θ)f (ψ, θ)

p(y,ω|ψ, θ0)f (ψ|θ0)


+ log

A1B1

A0

E(θ,ψ|y)


E(ω|y,θ0,ψ)

[
log

p(y,ω,ψ|θ0)

p(y,ω,ψ|θ)

]
= E(θ,ψ|y)


E(ω|y,θ0,ψ)

[
log

p(y,ω|ψ, θ0)p(ψ|θ0)

p(y,ω|ψ, θ)p(ψ, θ)

]
= E(θ,ψ|y)


E(ω|y,θ0,ψ)

[
log

p(y,ω|ψ, θ0)A0f (ψ|θ0)

p(y,ω|ψ, θ)A1B1f (ψ, θ)

]
= E(θ,ψ|y)


E(ω|y,θ0,ψ)

[
log

p(y,ω|ψ, θ0)f (ψ|θ0)

p(y,ω|ψ, θ)f (ψ, θ)

]
+ log

A0

A1B1
.

From Theorem 4.1, it can be seen that the arbitrary constants are
canceled. As a result, the Bayesian test statistic is free of the arbi-
trary constants.

A.4

In this Appendix,wewill propose amethod to calculate T (y, θ0)
whenQ is not analytically tractable. To do so, we treat the nuisance
parameters ψ as latent variables. The Bayesian test statistic is
shown to take the form of:

T (y, θ0) = E(ω,θ,ψ|y)


log

p(y,ω,ψ|θ)

p(y,ω,ψ|θ0)


+ E(θ|y)


E(ω,ψ|y,θ0)

[
log

p(y,ω,ψ|θ0)

p(y,ω,ψ|θ)

]
.

The first expectation is only a by-product of Bayesian estimation
under the alternative hypothesis and can be easily approximated
with the MCMC output. To approximate the second expectation,
let

f (θ) =

∫
Ψ

∫
Ω

log p(y,ω,ψ|θ)p(ω,ψ|y, θ0)dωdψ,

and

ḟ (θ) =
∂ f (θ)
∂θ

, f̈ (θ) =
∂2f (θ)

∂θ∂θT
.

Taking the second Taylor expansion of f at θ0, we get,

f (θ) ≈ f (θ0) + ḟ (θ0)(θ − θ0) + (θ − θ0)
T f̈ (θ0)

2
(θ − θ0).

It follows that,

E(θ|y)


E(ω,ψ|y,θ0)


log

p(y,ω,ψ|θ0)

p(y,ω,ψ|θ)


= E(θ|y){f (θ0) − f (θ)}

≈

∫
Θ


−ḟ (θ0)(θ − θ0) − (θ − θ0)

T f̈ (θ0)
2

(θ − θ0)


p(θ|y)dθ

= E(θ|y)


−ḟ (θ0)(θ − θ0) − (θ − θ0)

T f̈ (θ0)
2

(θ − θ0)


.

Assuming the exchange between the integration and the differen-
tiation in the θ, we then get,
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ḟ (θ) =
∂ f (θ)
∂θ

=

∫
Ω

∂ log p(y,ω,ψ|θ)

∂θ
p(ω,ψ|y, θ0)dω

f̈ (θ) =
∂2f (θ)

∂θ∂θT
=

∫
Ω

∂2 log p(y,ω,ψ|θ)

∂θθT
p(ω,ψ|y, θ0)dω.

At θ0, the first-order and the second-order differentiations can
be easily approximated using MCMC samples of the posterior
distribution, p(ω,ψ|y, θ0).

A.5. Calculation of T (y, φ0) for the SV model

Let y = {y1, y2, . . . , yT }, h = {h1, h2, . . . , hT }, s =

{s1, s2, . . . , sT }, q = {q1, q2, . . . , qT }. The joint density function is:

p(y, h, s, q|π, η, τ , φ, σ 2)

=

T∏
t=1

p(yt , ht , st , qt |ht−1, π, η, τ , φ, σ 2)

=

T∏
t=1


p(yt |ht , st , qt)p(ht |ht−1, τ , φ, σ 2)p(qt |π)p(st |η)


=

T∏
t=1


Cσ−1 exp

[
−(yt − stqt)2 exp(−ht) − ht

2

−
(ht − τ − φ(ht−1 − τ))2

2σ 2

]
× π qt (1 − π)(1−qt ) 1

η(1 + st)
exp

[
−

(log(1 + st) + 0.5η2)2

2η2

]
, (17)

where C is a known constant. The observed data log-likelihood
function is given by,

Lo(y|π, η, τ , φ, σ 2)

= log
∫

p(y, h, s, q|π, η, τ , φ, σ 2)dhdsdq


.

We can see that this function involves a 3T -dimensional integral.
When T is large, the optimization is extremely difficult.

For the SV model with jumps, the method shown in Ap-
pendix A.4 can be used to approximate the Bayesian test statistic,
T (y, φ0). In this case, φ is the parameter of interest and π, η, τ , σ 2

are the nuisance parameters. Following Appendix A.4, we treat the
nuisance parameters as latent variables. Based on the prior distri-
butions specified in Section 5.2, we get

log p(y, h, s, q, π, η, τ , σ 2, φ)

= log p(y, h, s, q|π, η, τ , σ 2, φ) + log p(π, η, τ , σ 2, φ)

= log p(y, h, s, q|π, η, τ , σ 2, φ) + log p(π, η, τ , σ 2)

+ log p(φ).

To compute the Bayes test statistic, several components are
required. For example,

log p(y, h, s, q, π, η, τ , σ 2
|φ) − log p(y, h, s, q, π, η, τ , σ 2

|φ0)

= log p(y, h, s, q|π, η, τ , σ 2, φ) + log p(π, η, τ , σ 2
|φ)

− log p(y, h, s, q|π, η, τ , σ 2, φ0) − log p(π, η, τ , σ 2
|φ0)

= log p(y, h, s, q|π, η, τ , σ 2, φ)

− log p(y, h, s, q|π, η, τ , σ 2, φ0).

It follows that,

log p(y, h, s, q|π, η, τ , σ 2, φ) − log p(y, h, s, q|π, η, τ , σ 2, φ0)

=
1

2σ 2

T−
t=1

{(φ2
0 − φ2)(ht−1 − τ)2

− 2(φ0 − φ)(ht − τ)(ht−1 − τ)}.

Moreover,

ḟ (φ) =

∫
∂ log p(y, h, s, q, π, η, τ , σ 2

|φ)

∂φ

× p(h, s, q, π, η, τ , σ 2
|y, φ0)dhdsdqdπdηdτdσ 2

=

∫
∂ log p(y, h, s, q|π, η, τ , σ 2, φ)

∂φ

× p(h, s, q, π, η, τ , σ 2
|y, φ0)dhdsdqdπdηdτdσ 2

= E(h,s,q,π,η,τ ,σ 2|y,φ0)

×


1
σ 2

T−
t=1

[(ht − τ − φ(ht−1 − τ))(ht−1 − τ)]


,

f̈ (φ) =

∫
∂2 log p(y, h, s, q, π, η, τ , σ 2

|φ)

∂2φ

× p(h, s, q, π, η, τ , σ 2
|y, φ0)dhdsdqdπdηdτdσ 2

= E(h,s,q,π,η,τ ,σ 2|y,φ0)


−

1
σ 2

T−
t=1

[(ht−1 − τ)2]


,

...
f (φ) = 0.
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