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a b s t r a c t

In this paper the correlation structure in the classical leverage stochastic volatility (SV) model is
generalized based on a linear spline. In the new model the correlation between the return and volatility
innovations is time varying and depends nonparametrically on the type of news arrived to the market.
Theoretical properties of the proposed model are examined. The model estimation and comparison are
conducted by Bayesianmethods. The performance of the estimates are examined in simulations. The new
model is fitted to daily and weekly US data and compared with the classical SV and GARCH models in
terms of their in-sample and out-of-sample performances. Empirical results suggest evidence in favor of
the proposed model. In particular, the newmodel finds strong evidence of time varying leverage effect in
individual stocks when the classical model fails to identify the leverage effect.
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1. Introduction

How volatility responds to return news has long been an active
research topic; see Black (1976), Christie (1982), Engle and Ng
(1993) and Wu and Xiao (2002) for a rather incomplete list of
studies in the literature. Answer to this question has important
implications for financial decision making and asset pricing. For
example, predictability of volatility critically depends on the
relationship between the return shock and volatility. Moreover,
there are important implications of the relationship for portfolio
selection and risk management (Bekaert and Wu, 2000) and for
‘‘betas’’ (Braun et al., 1995). Furthermore, an option contract would
be substantially mis-priced when the relationship is misspecified
(Duan, 1995).

It is now well accepted in the volatility literature that equity
volatility responds asymmetrically to return news, namely, a
piece of bad news has different impact on future volatility
from the good news of the same magnitude. The most popular
and convenient empirical method for examining the asymmetric
volatility response is via some form of ARCH-type models. The
motivation mainly comes from the so-called leverage hypothesis
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originally put forward by Black (1976). According to the leverage
hypothesis, when bad news arrives, it decreases the value of a
firm’s equity and hence increases its leverage. Consequently, the
equity becomesmore risky and its volatility increases. Likewise the
volatility decreases after good news arrives.

Volatility response can also be studied using stochastic
volatility (SV) models. Unlike ARCH-type models, SV models
specify volatility as a separate random process, which provides
certain advantages over the ARCH-type models for modeling the
dynamics of asset returns (Kim et al., 1998). The third method
for studying volatility response is to use realized volatility; see,
for example, Andersen et al. (2001, ABDE hereafter), Bandi and
Reno (forthcoming) and Hansen et al. (2010). In this literature
some important asymmetries are well documented in market-
wide equity index returns but not in individual stocks. This
observation leads some researchers to conclude that the significant
asymmetries in equity index returns are due to volatility feedback
effect but not leverage effect; see ABDE.

In the SV literature, the asymmetric volatility response is
often studied by specifying a negative correlation between the
return innovation and the volatility innovation. This classical
leverage SV model was first estimated by Harvey and Shephard
(1996). Themodel specification requires the correlation coefficient
between the two innovations remains constant, regardless of price
movements. On the other hand, Daouk and Ng (2007) reported
evidence of stronger leverage effect in down markets than in up
markets. Obviously, this empirical result cannot be explained by
the classical leverage SV model with a constant leverage effect.

The central focus of the present paper is to provide a more
general framework to investigate the asymmetric relationship

0304-4076/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2011.09.029



Author's personal copy

474 J. Yu / Journal of Econometrics 167 (2012) 473–482

between volatility and return news in the context of SV models.
Using the linear spline, we allow the correlation coefficient
between the two innovations to be time varying and depend
nonparametrically on the size and the direction of the previous
price movement. Since our model nests the SV model with the
constant leverage, we can easily check the validity of this classical
specification. Empirical applications reveal strong evidence against
the classical specification both in-the-sample and out-of-the-
sample.

Our model extends the specification studied in Harvey and
Shephard (1996), Yu (2005) and Omori et al. (2007). Following
Meyer and Yu (2000), the Bayesian Markov chain Monte Carlo
(MCMC) methods are used to estimate and compare alternative
models. Our model is closely related to the model of Wu and
Xiao (2002) where a flexible nonparametric model was used to
relate the log implied volatility and the lagged return innovation.
However, our work is different from Wu and Xiao in four aspects.
First, Wu and Xiao is an ARCH-type model while ours is an SV. The
twomodels do not nest each other. Although the model of Wu and
Xiao allows for a very general news impact function, it assumes
an additive functional form and cannot even nest the simplest SV
model. Second, different nonparametric methods are employed.
While we use the spline-based smoother, Wu and Xiao used the
Nadaraya–Watson kernel method in a partial linear framework.
One of themain advantages for the kernelmethod lies in its simpler
theoretical analysis. However, the kernel method cannot be used
in the context of SV due to the curse-of-dimensionality problem.
Third, the relationship between return and log-volatility is in the
physical measure in our study but is in the risk-neutral measure in
theirs. The risk-neutral measure is more useful for pricing whereas
the physical measure allows one to forecast volatility. Finally,
volatility is latent in our method whereas Wu and Xiao assumed
that the volatility of the US market index is well approximated by
the volatility index, VIX. For individual stocks, VIX is no longer a
valid approximation to the volatility.

Our model is somewhat related to that of Engle and Ng (1993)
in the sense that the linear spline is used. However, we use the
linear spline tomodel the correlation between the two innovations
while Engle and Ng used it as a regression tool to relate volatility to
the lagged return innovation. Robinson (1991) and others provided
more general ARCH models. All the models are of an additive
structure and hence do not nest ours. Finally, our model is related
to Bandi and Reno (forthcoming) where the time varying leverage
effect is estimated using a nonparametric method with intra-day
data. Unlike Bandi and Reno who tie the strength of the leverage
effect to the current level of volatility, we assume the driving factor
for the time varying leverage is the lagged return.

The article is organized as follows. In Section 2we introduce the
semiparametric SV model and develop some statistical properties
of the model. Section 3 discusses the MCMC methods for
parameter estimation and for model comparison and documents
the performance of MCMC in simulations. Empirical results based
on US data are presented and discussed in Section 4. Section 5
concludes. Appendix proves the theorem.

2. The proposed SV model

Let yt be the rate of return of a stock or a market portfolio in
time period t, σ 2

t be the conditional variance of yt , ht = ln σ 2
t , ϵt

be the return innovation. GARCH models specify a deterministic
relationship between σ 2

t+1 and yt (or ϵt ). Different models coex-
ist to capture the asymmetric volatility response. For example,
EGARCH(1, 1) of Nelson (1991) assumes

ht+1 = α + ϕht + β0ϵt + β1|ϵt |, (1)

where the asymmetry is induced by the term β0ϵt . Threshold
GARCH(1, 1) of Glosten et al. (1993) assumes

σ 2
t+1 = α + ϕσ 2

t + βy2t + β∗y2t 1(yt < 0), (2)

where 1(yt < 0) = 1 if yt < 0 and 0 otherwise. In this model, the
asymmetry is induced by 1(·). However, based on a nonparametric
technique, Mishra et al. (2010) have found the evidence of further
asymmetry in the residuals of fitted threshold GARCH(1, 1).

Engle and Ng (1993) introduced a partially nonparametric
model of the form

σ 2
t+1 = α + ϕσ 2

t + m(ϵt) (3)

where m(·) is an unknown function. Engle and Ng estimated m(·)
using the linear spline

m(ϵt) =

m+
i=0

θi1(ϵt > τi)(ϵt − τi) +

m−
i=0

δi1(ϵt < τ−i)(ϵt − τ−i),

where τi are the predetermined knots associated with the linear
spline.

In contrast to ARCH-type models, the SV models specify a
stochastic relationship between σ 2

t+1 (or ht+1) and yt by using
an additional innovation. It is very important to point out that
the meaning of σ 2

t+1 in SV models is NOT the same as that in
ARCH-type models. By assuming σ 2

t+1 is a conditional variance,
ARCH-type models adopt the one-step-ahead prediction approach
to volatility modeling. Whereas, due to the presence of an
additional innovation in the state equation of SV, σ 2

t+1 is not
measurable with respect to the natural filtration and hence is not a
conditional variance. This difference has an important implication
for the analysis of the news impact, which will be discussed in
detail later.

To account for volatility asymmetry, the classical leverage SV
model takes the form of

yt = µy + σ exp(ht/2)ϵt , ϵt ∼ i.i.d. N(0, 1), (4)

ht+1 = ϕht + γ vt , vt ∼ i.i.d. N(0, 1), (5)

where corr(ϵt , vt) = ρ. Eq. (5) can be equivalently represented by

ht+1 = ϕht + γ (ρϵt +


1 − ρ2wt), (6)

where wt is i.i.d. N(0, 1) and corr(ϵt , wt) = 0. Consequently, we
have

ht+1 = ϕht + γ ρϵt + γ

1 − ρ2wt

= ϕht + ρ
γ

σ
exp(−ht/2)(yt − µy) + γ


1 − ρ2wt , (7)

implying that on average ln σ 2
t+1 is a linear function in yt . When

ρ < 0, the linear function is downward sloping and this feature
is often referred to as the leverage effect. Clearly the relationship
between ln σ 2

t+1 and yt is independent of the sign and the size of ϵt
and hence the leverage effect, captured by ρ, is a constant in this
model.

There is ample evidence that the effect of bad news on volatility
is different from the good news of the same magnitude. Using the
firm level accounting data, Figlewski and Wang (2000) reported
a more remarkable leverage effect in down markets than in up
markets. A similar pattern of asymmetry found in Daouk and Ng
(2007) using unleveled firm volatility. The evident suggests that
a global linear relationship between ln σ 2

t+1 and yt may be too
restrictive and there is a clear need for a more general SV model
for the volatility asymmetry.

To introduce our semiparametric SV model, we first choose m
knots, denoted by τ1, . . . , τm with τ1 > · · · > τm, from the support
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of ϵt . Let τ0/τm+1 be the right/left bound of the support of ϵt .1 That
is, the support of ϵt is divided into m + 1 intervals. Note that the
sizes of the intervals need not be the same. The volatility equation
is defined by

ht+1 = ϕht + γ

m+1
i=1

(ρiϵt +


1 − ρ2

i wt)1(τi−1 ≥ ϵt > τi),

wt ∼ i.i.d. N(0, 1) (8)

where corr(ϵt , wt) = 0. Together with Eq. (4), it defines our
semiparametric SV model.

Let

vt =

m+1
i=1

(ρiϵt +


1 − ρ2

i wt)1(τi−1 ≥ ϵt > τi) (9)

be the innovation in the variance equation. It can be shown that

vt =


ρ1ϵt +


1 − ρ2

1wt if τ0 ≥ ϵt > τ1
...

ρm+1ϵt +


1 − ρ2

m+1wt if τm ≥ ϵt > τm+1.

Obviously, the construction of vt is based on the linear spline with
the basis functions, (x−τ1)+, . . . , (x−τm)+, where x+ is equal x if x
is positive and 0 otherwise. See Ruppert et al. (2003) for a detailed
account of spline smoothing.

When ρi = ρ, ∀i, vt = ρϵt +

1 − ρ2wt and the specification

becomes the classical leverage SV model. In general, ρi can
have different sizes and even different signs. Following the same
approach to deriving (7), we have

ht+1 =



ϕht + ρ1
γ

σ
exp(−ht/2)(yt − µy)

+ γ


1 − ρ2

1wt if τ0 ≥ ϵt > τ1

...

ϕht + ρm+1
γ

σ
exp(−ht/2)(yt − µy)

+ γ


1 − ρ2

m+1wt if τm ≥ ϵt > τm+1.

Clearly, on average ln σ 2
t+1 is a piecewise linear function in yt with

kinks at the τis. Between τ1 and+∞ the slope of the linear function
is ρ1 while between τ2 and τ1 it is ρ2. Below τm, the slope is ρm+1. In
thismodel, the leverage effect is time varying and themagnitude of
the leverage effect is determined by ϵt .We nowestablish statistical
properties for the model.

Theorem 2.1. Define the SV model by
yt = σ exp(ht/2)ϵt , ϵt ∼ i.i.d. N(0, 1)

ht+1 = ϕht + γ

m+1
i=1

(ρiϵt +


1 − ρ2

i wt)

× 1(τi−1 ≥ ϵt > τi), wt ∼ i.i.d. N(0, 1)

where corr(wt , ϵt) = 0 and τ0 = +∞, τm+1 = −∞. Then {yt} and
{ht} are covariance stationarity, strictly stationary and ergodic if and
only if |ϕ| < 1. Also, {yt} possesses finite moments of arbitrary order
and the expression for the moments of yt is

E(y2i−1
t ) = 0, E(y2it ) =

(2i)!
2ii!

σ 2iG(i, ρ, γ , ϕ), i = 1, 2, . . . ,

1 If the support of ϵt is the entire real line, then τ0 = +∞ and τm+1 = −∞.

where G(s, ρ, γ , ϕ) is defined by

G(s, ρ, γ , ϕ) =

∞
j=0


exp


1
2
s2γ 2ϕ2j


Φ(τm − sγ ϕjρm+1) + 1

− Φ(τ1 − sγ ϕjρ1) +

m
i=2

(Φ(τi−1 − sγ ϕjρi)

− Φ(τi − sγ ϕjρi))


,

with Φ(·) being the cumulative distribution function of N(0, 1), ρ =

(ρ1, . . . , ρm+1)
′.

Remark 2.1. The closed form expression for moments facilitates
calculations of all moments and model comparison. This result
holds true for any value ofm. Whenm → ∞, themoments involve
an infinite product and an infinite sum, and hence truncations are
inevitable.

Remark 2.2. Two choices have to be made in the proposed model,
m and τ s. Ideally, one should allow m to increase with the
sample size (such as o(n)). However, the larger the m, the more
parameters in the model and hence the higher the computational
cost. Essentially increasing m trades off smaller bias with larger
variance. The reason that the variance increases withm is because
less effective observations are used to estimate ρi with a larger
m. To control the computational cost, we fix m in this paper.
The choice of τ s could be based on trial and error or more
formally a model selection criterion. However, the exercise will be
computationally expensive if a large set of τ s is considered.

Remark 2.3. If m = 1, there are only two regimes. When we set
τ1 = 0, corr(ϵt , vt) = ρ1 if ϵt > 0 and corr(ϵt , vt) = ρ2 if ϵt ≤ 0.
This model nicely nests the classical leverage effect model and is
called Spline1 SV in this paper. The moments of yt is given by

E(y2i−1
t ) = 0,

E(y2it ) =
(2i)!
2ii!

σ 2iG1(i, ρ1, ρ2, γ , ϕ), i = 1, 2, . . . ,

where G1(s, ρ1, ρ2, γ , ϕ) =


∞

j=0{exp
 1
2 s

2γ 2ϕ2j

[Φ(sγ ϕjρ1) +

Φ(−sγ ϕjρ2)]}.

Remark 2.4. If m = 2 there are three regimes. This model is
called Spline2 SV in this paper. It is known in the GARCH literature
that when ϵt is very close to zero, volatility does not respond to
ϵt in a significant manner (Engle and Ng, 1993). As a result, it is
reasonable to choose τ1 to be a small, positive number, τ2 to be
a small, negative number. However, if τ s are too close to zero,
there are too few observations to estimate ρ2; if τ1 (or τ2) is too
far away from zero, there are too few observations to estimate ρ1
(or ρ3). In the empirical applications, we choose τ1,2 = ±0.4. Since
Pr(ϵt > 0.4) = Pr(ϵt < −0.4) = 34.5%, Pr(|ϵt | > 0.4) = 31%,
we have a nearly equal split of observations to estimate the ρs. A
drawbackwith such a choice is that the Spline2 SV does not nest the
Spline1 SV. Since ourmodel comparisonmethod is Bayesian-based,
such a drawback does not impose any problem to us.

Nearly all the existing ARCH models assume an additive
functional form to relate the conditional variance (or log-variance)
to the return news and the lagged conditional variance. Such an
additive structure greatly facilitates the news impact analysis.
The news impact function (NIF), first introduced in Pagan and
Schwert (1990) and extended by Engle and Ng (1993), treats the
conditional variance as a function of the return news lagged one-
period, holding constant the other lagged variables. Consequently,
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in the ARCH-typemodels the functional formof theNIF is explicitly
specified and determined solely by the term that contains the
lagged return news and hence time invariant. For example, in the
GARCH(1, 1), σ 2

t+1 is a quadratic function of εt which centered at
the original, i.e.,

σ 2
t+1 = α + ϕσ 2

t + βσ 2
t ε2

t |σ 2
t =σ 2 := α∗

+ β∗ε2
t ,

where σ 2 is the unconditional mean of σ 2
t . The NIF for EGARCH

(1, 1) is

σ 2
t+1 =


exp(α∗

+ (β0 + β1)εt), if εt ≥ 0
exp(α∗

+ (β0 − β1)εt), if εt < 0. (10)

The NIF for threshold GARCH(1, 1) is

σ 2
t+1 =


α∗

+ βσ̄ 2
t ε2

t , if εt ≥ 0
α∗

+ (β + β∗)σ̄ 2ε2
t , if εt < 0.

(11)

Hence, the NIF combines two quadratic functions of εt in the
threshold GARCH model and two exponential functions in the
EGARCHmodel. When β1 ≠ 0 (or β∗

≠ 0), the response of volatil-
ity is asymmetric in the EGARCH model (or the threshold GARCH
model). InWu andXiao (2002) and Linton andMammen (2005) the
parametric dependence of σ 2

t+1 on εt is replaced by a kernel func-
tion which enters the conditional variance function additively.

In the SVmodels, the conditional variance is not explicitly spec-
ified but implied from the structure of the model specification.
Unfortunately, even for the simplest SV model, the NIF does not
have a closed form expression, nor has an additive structure in the
measurable variables. Although ht+1 is not measurable in the SV
models, one may be attempted to define the functional relation
between ht+1 and yt as the NIF, holding ht and other variables con-
stant, as in (7). While this definition of NIF is analytically attractive
for the SV models, it has a number of drawbacks. First, in the basic
SV model, ρ = 0 and hence (7) implies that ht+1 is not a func-
tion of yt . This result seems to be at odd with the intuition that the
return news must have some impact on future volatility. Second,
exp(ht+1) is not a conditional variance in the SV model and hence
theNIF defined on exp(ht+1) is not comparablewithwhat has been
used in the ARCH literature. Due to these two drawbacks, we de-
cide to follow the ARCH literature and define NIF to be the func-
tion that relates the conditional variance to the return innovation
lagged one period, holding constant of other variables.

Whenϕ < 1, themodel is strictly stationary and the conditional
distribution is

pdf(yt |y1, . . . , yt−1) =
pdf(y1, . . . , yt−1, yt)
pdf(y1, . . . , yt−1)

=


· · ·

pdf(y1, . . . , yt , h1, . . . , ht)dh1 · · · dht

· · ·

pdf(y1, . . . , yt−1, h1, . . . , ht−1)dh1 · · · dht−1

.

From the conditional distribution, one can obtain the conditional
mean and the conditional variance. Since the conditional mean is
zero, the conditional variance is

Var(yt |y1, . . . , yt−1)

=


· · ·

y2t pdf(y1, . . . , yt , h1, . . . , ht)dh1 · · · dhtdyt

· · ·

pdf(y1, . . . , yt−1, h1, . . . , ht−1)dh1 · · · dht−1

. (12)

As an example, for the basic SV model (i.e. ρ = 0 in Eq. (6)), this
becomes Eq. (13) (see Box I) whereφ(x; µ, σ 2)denotes the density
function of N(µ, σ 2).

As in the ARCH literature, the NIF is defined as Var(yt |y1 =

0, . . . , yt−2 = 0, yt−1). It can be shown that NIF is continuous
and symmetric in yt−1 for the basic SV model. Unfortunately,
the integrals in (12) and (13) cannot be solved analytically.

As a result, Var(yt |y1, . . . , yt−1) does not have an analytic form.
In general, Var(yt |y1, . . . , yt−1) is not an additive function in
y1, . . . , yt−1. Also, Var(yt |y1, . . . , yp−1) ≠ Var(yt |y1, . . . , yq−1)
when p ≠ q. Moreover, when t ≠ s,Var(yt |y1, . . . , yt−1) ≠

Var(ys|y1, . . . , ys−1). All these observations suggest that the news
impact analysis in the SV model is much more complicated than
that in the ARCH-type model. The SV models, including the basic
SV model, are not nested by any existing ARCH-type models that
assume an additive functional form.

Whenm = 1, our model is related to the asymmetric SV model
recently proposed by Asai and McAleer (2006), where the specifi-
cation of the volatility equation is given by

ht+1 = ϕht + γ I(yt < 0) + ρσvϵt + σv


1 − ρ2wt . (14)

It can be shown that when γ ≠ 0, the conditional variance is dis-
continuous in yt at yt = 0. This restriction is yet to be empirically
justified.

The distinctive difference in the NIF between the SV models
and the ARCH-type models is surprising. From Nelson (1990) it
is known that the two classes of models have the same diffusion
limit. Hence, the conditional distributions should have the same
limit. However, as pointed out by Wang (2002), when discrete
observations are available, the two classes of models are NOT
asymptotically equivalent in terms of Le Cam’s deficiency distance.
This is because there is an important difference between the
structure with respect to noise propagation in their conditional
variances and hence conditional distributions.

3. Econometric analysis

3.1. Model estimation and comparison method

The SV models belong to the family of nonlinear non-Gaussian
state spacemodels. To do themaximum likelihood (ML) estimation
and calculate the likelihood function of SV models, one has to deal
with a high-dimensional integral since the latent process h needs
to be integrated out from the joint density function, pdf(y,h),
where y = (y1, . . . , yT ) and h = (h1, . . . , hT+1). Unfortunately,
such an integral cannot be solved analytically in general. Several
numerical methods have been proposed to approximate the inte-
gral via importance sampling techniques; see, for example, Shep-
hard and Pitt (1997), Durbin and Koopman (1997) and Richard and
Zhang (2007). However, the asymptotic properties of the ML esti-
mate remain largely unknown, with the exception of consistency
which was recently developed in Douc et al. (2011). For this rea-
son, we decide to adopt Bayesian MCMC as the inferential frame-
work because MCMC does not rely on asymptotic approximations
to conduct inference.

Various MCMC methods have been developed to sample the
parameters in the context of the SV models, including the single-
move Metropolis–Hastings algorithm of Jacquier et al. (1994)
and the multi-move algorithms of Kim et al. (1998) and Omori
et al. (2007). Following Meyer and Yu (2000), we make use
of a freely available Bayesian software, WinBUGS, to do the
single-move Gibbs sampling. The Gibbs sampler, first proposed
in Geman and Geman (1984), generates iterative samples from
all the full conditional distributions. It can be justified by the
Clifford–Hammersley theorem (Hammersley and Clifford, 1970).
WinBUGS provides an easy and efficient implementation of the
Gibbs sampler and has been widely used to estimate latent
variables model. Both the simulation studies and the out-of-
the-sample forecasting exercise carried out in present paper are
implemented using R2WinBUGS (Sturtz et al., 2005).

To fix the idea of the MCMC, let p(θ) be the prior distribution
of the unknown parameter θ. Bayesian methods overcome the
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
· · ·

y2t

t
i=1

φ(yi; 0, ehi)
t

i=2
φ(hi; ϕhi−1, γ

2)φ

h1; 0,

γ 2

1−φ2


dh1 · · · dhtdyt


· · ·
 t−1

i=1
φ(yi; 0, ehi)

t−1
i=2

φ(hi; ϕhi−1, γ 2)φ

h1; 0,

γ 2

1−φ2


dh1 · · · dht−1

(13)

Box I.

difficulty in ML by the data-augmentation strategy (Tanner and
Wong, 1987), namely, the parameter space is augmented from θ
to (θ,h). By successive conditioning, the joint prior density is

p(θ,h) = p(θ)p(h0)

T+1
t=1

p(ht |ht−1, θ). (15)

The likelihood function is

p(y|θ,h) =

T
t=1

p(yt |ht , θ). (16)

Obviously, both the joint prior density and the likelihood function
are available analytically, provided that the analytical expressions
for the prior distributions of θ are supplied. By Bayes’ theorem, the
joint posterior distribution of the unobservables given the data is
given by:

p(θ,h|y) ∝ p(θ)p(h0)

T+1
t=1

p(ht |ht−1, yt , θ)
T

t=1

p(yt |ht , θ). (17)

The Gibbs sampler, used to generate a Markov chain (i.e. corre-
lated samples) whose stationary distribution is the joint posterior
distribution (17), works as follows in the first step. Given the ini-
tialization (θ(0),h(0)), we draw from each of the following distri-
butions:

θ
(1)
1 ∼ p(θ1|θ

(0)
2 , . . . , θ

(0)
K ,h(0), y);

...

θ
(1)
K ∼ p(θK |θ

(1)
1 , . . . , θ

(1)
K−1,h

(0), y);

h(1)
1 ∼ p(h1|θ

(1), h(0)
2 , . . . , h(0)

T+1, y);
...

h(1)
T+1 ∼ p(hT+1|θ

(1), h(1)
1 , . . . , h(1)

T , y).

For a Markov chain to have a unique stationary distribution,
it has to be irreducible and aperiodic. If, in addition, the chain is
positive Harris-recurrent, it is ergodic and a central limit theorem
is applicable for sample-path averages. Roberts and Smith (1994)
established general conditions under which the Markov chain
generated from theGibbs sampler converges to the target posterior
distribution when more and more iterations are obtained.

By the ergodic lawof largenumbers, posteriormoments of θ and
h and posterior marginal densities may be estimated by averaging
the corresponding functions over the sample after convergence is
achieved. For example, let {θ(j),h(j), j = 1, . . . , J} be a simulated
sample form the joint posterior distribution p(θ,h|y). The poste-
rior mean of θ can be estimated by

θ̂ =
1
J

J
j=1

θ(j). (18)

Since any measurable function of a stationary and ergodic se-
quence is stationary and ergodic, the ergodic law of large numbers

is applicable to f (θ,h) where f is any measurable function. For ex-
ample, the posterior variance–covariance of θmay be estimated by

Var(θ|Y) =
1
J

J
j=1

(θ(j)
− θ̂)(θ(j)

− θ̂)′. (19)

Similarly, one can obtain the estimate of any posterior credible in-
terval.

For any simulation-based estimation method, it is important to
assess the numerical quality of a point estimate and in this paper
we calculate and report theMonte Carlo standard error (MCSE). Let
the parameter of interest be θ1. Applying the ergodic central limit
theory to a converged Markov chain of θ1, we have
J(θ1 − E(θ1|y))

d
→N


0,Var(θ (1)

1 ) + 2
∞
j=2

Cov(θ (1)
1 , θ

(j)
1 )


.

(20)

The MCSE, defined by

Var(θ (1)

1 ) + 2


∞

j=2 Cov(θ
(1)
1 , θ

(j)
1 )/J , tells

how reliable the estimate of the posterior mean of θ1 is. It can
be estimated by the method of batch means or by the spectral
method (Geweke, 1992). It is obvious that conceptually MCSE is
very different from the posterior standard error.

Several alternative methods are available to estimate the
posterior marginal density. One way is to use the kernel method.
The second way is the so-called Rao–Blackwellization. When the
simulation size is large, the marginal density can be regarded as
exact, enabling exact finite sample inferences.

It is crucial to check if convergence has been achieved because
all the estimates are supposed to be obtained from a converged
sample coming from the stationary distribution. In this paper
we make use of Heidelberger and Welch test (Heidelberger and
Welch, 1983) to check convergence and all the results we report
in the present paper are based on samples which have passed the
Heidelberger and Welch convergence test.

To compare two models, say M0 and M1, let π(Mk) be the
prior model probability density, p(y|Mk) the marginal likelihood
of model k, and p(Mk|y) the posterior probability density, where
k = 0, 1. Comparison of two models in the Bayesian framework
is amount to calculate the posterior odds ratio. By Bayes’ theorem,
we have

p(M0|y)
p(M1|y)

=
p(y|M0)

p(y|M1)
×

π(M0)

π(M1)
, (21)

that is,

ln (Posterior Odds Ratio) = ln (BF) + ln (Prior Odds Ratio), (22)

where the BF is referred to as the Bayes factor which is defined as
the ratio of the marginal likelihood values of the two competing
models. If the prior odds ratio is set to 1, as is done in much of
the Bayesian literature and also in the present paper, the posterior
odds ratio takes the same value as the BF. BFs are the leading
method of Bayesian model comparison. They are the Bayesian
analogues of the classical likelihood ratio tests. Jeffreys (1961) gave
a scale for interpretation of BFs. If ln(BF) is less (bigger) than 0,
there is evidence for (against)M0. Moreover, if ln(BF) ∈ (0, 1), the
evidence againstM0 is barely worthmentioning; if ln(BF) ∈ (1, 3),
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the evidence against M0 is positive; if ln(BF) ∈ (1, 3) (or (3, ∞)),
the evidence againstM0 is strong (or very strong). However, model
comparison via BFs is not the same as the classical likelihood ratio
tests because BFs automatically includes a penalty for including too
much model structure and hence guards against overfitting.

Calculating BFs requires the marginal likelihood p(y|Mk) to be
evaluated. By definition, p(y|Mk) is the integral of the likelihood
function with respect to the prior density

p(y|Mk) =


p(y|θ,Mk)p(θ,Mk)dθ. (23)

To calculate the marginal likelihood, we follow Chib (1995) by
rearranging Bayes’ theorem

p(y|Mk) =
p(y|θ,Mk)p(θ|Mk)

p(θ|y,Mk)
.

Thus, the log-marginal likelihood can be calculated by

ln(p(y|Mk)) = ln(p(y|θ,Mk)) + ln(p(θ|Mk)) − ln(p(θ|y,Mk)),

(24)

where θ is an appropriately selected high density point which is
chosen to be the posterior mean (θ) in the present paper. The
first term on the right hand sight of (24) is the log-likelihood and
the second term is the log prior density, both evaluated at θ. The
third quantity involves the posterior density which is only known
up to a normality constant. Following Kim et al. (1998), we use a
multivariate kernel density estimate to approximate it.

Regarding the prior distributions of θ, we follow the literature,
namely, all components of θ are assumed to be independent; γ 2

∼

Inverse-Gamma(2.5, 0.025); ϕ∗
∼ Beta(20, 1.5), where ϕ∗

=

(ϕ + 1)/2; µ, µy ∼ N(0, 25), where µ = exp(σ/2); ρ, ρi ∼

Uniform(−1, 1), for all i.
The log-likelihood function p(y|θ,Mk) has no analytical form

for the SV models as it is marginalized over the latent states
h. However, it is possible to approximate it with simulation
techniques. In the paper, we follow Shephard and Pitt (1997) and
Skaug and Yu (2008) by using the importance sampling method
based on the Laplace-approximation.

Once the model is estimated by MCMC, the one-period-ahead
volatility can easily be calculated as a by-product because the
smoothed estimates of hT+1 and exp(hT+1) are obtainable as the
posterior means of the Markov chains of hT+1 and exp(hT+1). To
obtain the K -period-ahead volatility, we only need to redefine h =

(h1, . . . , hT+K ).

3.2. Sampling performance

To check the reliability of the proposed estimation method, we
simulate data from three SV models, the basic SV, the leverage
SV and the Spline1 SV. In the simulations, the values of ϕ, σ and
γ are always set to 0.9, 1, 0.135, respectively. We fix µy to zero
and assume it is known. In the leverage SV model, we set ρ =

−0.3. In the Spline1 SV, two sets of parameter values are selected
for (ρ1, ρ2) : (−0.5, −0.5), (−0.5, 0). As it will be clear from
the empirical studies reported below, these parameter values are
practically realistic.

For each parameter setting, 1000 observations are simulated
from the true model. We then replicate the experiment for 500
times to obtain themean and the standard error for each parameter
estimate across 500 replications. For the basic SV and the leverage
SV, the number of the total iterations in MCMC is 30,000 with the
first 10,000 iterations used as the burn-in. For the Spline1 SV and
Spline2 SV, the number of the total iterations is 150,000 with the
first 50,000 iterations used as the burn-in. Table 1 summarizes the
results. The most important finding from this table is that MCMC

is reliable for all the parameters in all cases, reinforcing what has
been found in the literature; see Jacquier et al. (1994) and Yu
(2005). Moreover, it seems more difficult to estimate σ , ρ1 and ρ2
when ρ1 and ρ2 are further away from each other.

4. Empirical results

4.1. Estimation results from daily data

In this subsection we fit the basic SV, the classical leverage SV,
the Spline1 SV and the Spline2 SV to two continuously compounded
daily return series in the US, namely the S&P500 from January 2,
1985 to December 31, 1989 and the Microsoft (MSFT) from
January 2, 1987 to December 31, 1991. The number of observations
is 1263 and 1264 for the two series. In both series, the data is
subtracted by the sample mean and hence µy is not estimated.

Estimation results, including the parameter estimates, the
posterior standard errors (in parenthesis), the MCSE (in bracket)
and the minus log-marginal-likelihood values are reported in
Table 2. Several conclusions can be drawn. First, ϕ is highly
significant in all cases. Second, in the leverage SV, ρ is estimated
to be negative for both series, featured by −0.3691 and −0.1343.
However, ρ is significant only for the S&P500. That is why the
leverage SV provides a significant improvement over the basic SV
in terms of the marginal likelihood only for the S&P500. For the
MSFT, ρ is insignificant and ln(BF) of the basic SV against the
leverage SV is less than 0. Although the fact that the estimated ρ
is much larger in indices than in stocks is in odd with the leverage
hypothesis, this finding is consistentwith those documented in the
literature; see for example, Tauchen et al. (1996) and ABDE (2001).
The result indicates that one would conclude the absence of the
leverage effect if only the leverage SV is fitted to the MSFT. As it
will be clear below, this conclusion is misleading.

Third, the Spline1 SV provides a significant improvement over
the leverage SV in both cases. In particular, the log-marginal-
likelihood improves by 19.73 and 65.47 from the leverage SV
to the Spline1 SV, indicating that the single threshold model is
inadequate to explain all the asymmetry in volatility response.
More interesting results emerge if one examines the estimates of
ρ1 and ρ2. In the Spline1 SV model, ρ1 is more negative than ρ
in the leverage SV and statistically significant for both series. On
the other hand, ρ2 is estimated to be positive. While not reported,
the inference based on ρ1 − ρ2 suggests that ρ1 ≠ ρ2 in the
estimated Spline1 SV model for both series. It is rather surprising
to find positive estimates for ρ2. We will examine the out-of-the-
sample performance of Spline1 SV in Section 4.3. While we fail to
find a significant leverage effect in the leverage SV for theMSFT,we
do find the strong evidence of leverage effect in Spline1 SV. Fourth,
in Spline2 SV, as expected,ρ2 is close to 0with a large standard error
for the S&P500. The estimates for the other two ρs are similar to
those in Spline1 SV. Not surprisingly, the marginal likelihood value
decreases by adding one more knot to Spline1 SV. The results in
the estimated Spline2 SV are slightly different for the MSFT. The
estimate of ρ2 is −0.963. While this is significantly different from
zero but not significantly different from the estimate of ρ1 in the
same model (−0.7541). The marginal likelihood values of Spline1
SV and Spline2 SV indicate there is little evidence to support Spline2
SV over Spline1 SV for both series.

4.2. Estimation results from weekly data

In this subsectionwe first fit the SVmodels to theweekly return
series of MSFT from April 4, 1986 to December 24, 2007. Only the
returns for the individual stock are selected due to the empirical
results reported earlier. The number of observations is 1133 in the
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Table 1
Finite sample properties ofMCMC for three SVmodels based on500 simulated sample paths of 1000 observations
in each path. For the basic SV and the leverage SV, the number of total iterations inMCMC is 30,000 with the first
10,000 iterations used as the burn-in. For the Spline1 SV, the number of total iterations in MCMC is 150,000 with
the first 50,000 iterations used as the burn-in.

σ ϕ γ ρ σ ϕ γ ρ1 ρ2

Basic SV Spline1 SV
True 1 0.9 0.135 1 0.9 0.135 −0.5 −0.5
Mean 1.0031 0.8806 0.1208 1.0115 0.8733 0.1251 −0.4086 −0.5276
Std 0.0318 0.0466 0.0225 0.1104 0.0436 0.0285 0.2716 0.2192

Leverage SV Spline1 SV
True 1 0.9 0.135 −0.3 1 0.9 0.135 −0.5 0
Mean 1.0081 0.8649 0.1222 −0.2895 0.9486 0.8584 0.1130 −0.4116 −0.0737
Std 0.0353 0.0639 0.0224 0.2107 0.1326 0.0483 0.0139 0.2060 0.2352

Table 2
Estimation results from daily data. The number in parenthesis is the posterior standard error. The number in bracket
is the Monte Carlo standard error.

Data Model -Log MargLik σ ϕ γ ρ1 ρ2 ρ3

S&P500 Basic 1730.26 0.9302 0.9426 0.2621
(0.067) (0.019) (0.042)
[0.001] [0.0008] [0.0021]

Leverage 1720.13 0.9336 0.9212 0.3066 −0.3691
(0.055) (0.024) (0.049) (0.087)
[0.0014] [0.0012] [0.0030] [0.0041]

Spline1 1700.40 2.077 0.9135 0.3689 −0.8386 0.1435
(0.3961) (0.019) (0.058) (0.090) (0.137)
[0.015] [0.0008] [0.0026] [0.0133] [0.005]

Spline2 1704.38 1.874 0.9157 0.3458 −0.8446 0.2059 0.1429
(0.3537) (0.019) (0.051) (0.1079) (0.3484) (0.1672)
[0.014] [0.0007] [0.0022] [0.0046] [0.011] [0.0066]

MSFT Basic 3017.76 2.685 0.9444 0.2422
(0.274) (0.029) (0.063)
[0.0088] [0.0016] [0.0037]

Leverage 3020.49 2.669 0.9397 0.2603 −0.1343
(0.2892) (0.030) (0.063) (0.097)
[0.0131] [0.0018] [0.004] [0.0045]

Spline1 2955.02 24.42 0.7778 1.509 −0.9724 0.9003
(6.57) (0.0317) (0.1921) (0.0243) (0.046)
[0.2795] [0.0014] [0.009] [0.001] [0.0021]

Spline2 2967.30 8.304 0.7136 1.627 −0.7541 −0.963 0.6941
(2.38) (0.051) (0.1407) (0.069) (0.024) (0.064)
[0.099] [0.0022] [0.006] [0.0026] [0.0009] [0.0021]

return series. In this empirical exercise, µy is estimated but not
reported to save space.

Estimation results are reported in Table 3. Several conclusions
can be drawn. First, in the leverage SV, ρ is estimated to be−0.075.
As in the daily MSFT, ρ is statistically insignificant. Once again
the results are reinforced by a small difference in the marginal
likelihood values of the basic SV and the leverage SV models.
Hence, onewould conclude the absence of the leverage effect if the
leverage SV is fitted, consistent with the usual claim for individual
stocks.

Second, the Spline1 SV provides a significant improvement over
the leverage SV model with ln(BF) ≫ 0. The estimated ρ1 is
negative (−0.2968) and the estimated ρ2 is positive (0.2678). The
10% credible interval of ρ1 excludes 0. This signs for estimated
ρs corroborate well with those in the daily data. Third, in the
estimated Spline2 SV, ρ1 is close to ρ2. They are both close to the
estimate of ρ1 in the Spline1 SV. Also, ρ3 in the estimated Spline2 SV
is close to ρ2 in the estimated Spline1 SV. Not surprisingly, adding
one more knot to the Spline1 SV decreases the marginal likelihood

value. Hence, there is no evidence to support the Spline2 SV in the
weekly data.

To check the robustness of the empirical results, we fit the
classical leverage SV and the Spline1 SV to three weekly return
series of Johnson and Johnson (JnJ), 3M, and Kellogg, all from
April 4, 1986 to December 24, 2007. The number of observations
is 1133 in all cases. To save space, we choose not to report results
on the basic SV and the Spline2 SV because both models are found
to be outperformed by the Spline1 SV.

Estimation results are reported in Table 4. Similar conclusions
can be drawn from Table 4 as from Table 3. For example, in
all cases, ρ is statistically insignificant in the leverage SV. The
Spline1 SV provides a significant improvement over the leverage
SV in all cases. The ln(BF)s are 13.14, 8.06 and 5.24, suggesting
very strong evidence in favor of Spline1 SV. The estimated ρ1
is always very negative (−0.5161, −0.4408, and −0.5409) and
significantly less than 0. On the other hand, the estimated ρ2 is
always insignificantly different from 0. Therefore, the leverage
effect is found to be significant in one regime albeit not globally.



Author's personal copy

480 J. Yu / Journal of Econometrics 167 (2012) 473–482

Table 3
Estimation results from weekly data of Microsoft. The number in parenthesis is the posterior standard error. The
number in bracket is the Monte Carlo standard error.

Data Model -LogMargLik σ ϕ γ ρ1 ρ2 ρ3

MSFT Basic 3297.75 7.353 0.9936 0.1133
(1.885) (0.0062) (0.0265)
[0.097] [0.0003] [0.0016]

Leverage 3299.11 7.337 0.9938 0.1202 −0.075
(1.694) (0.0049) (0.0207) (0.1425)
[0.0959] [0.0002] [0.0013] [0.0080]

Spline1 3289.99 10.86 0.9855 0.1245 −0.2968 0.2678
(2.468) (0.0055) (0.0236) (0.1565) (0.1766)
[0.1034] [0.0002] [0.0011] [0.0058] [0.0071]

Spline2 3291.02 10.63 0.9864 0.124 −0.2529 −0.3358 0.320
(2.402) (0.0055) (0.027) (0.1782) (0.4106) (0.1801)
[0.0099] [0.0002] [0.0013] [0.0071] [0.0139] [0.007]

Table 4
Estimation results from weekly data of JnJ, 3M and Kellogg. The number in parenthesis is the posterior
standard error. The number in bracket is the Monte Carlo standard error.

Data Model -LogMargLik σ ϕ γ ρ1 ρ2

JnJ Leverage 2833.57 3.564 0.9728 0.163 −0.1545
(0.6939) (0.0205) (0.0424) (0.1214)
[0.0365] [0.0012] [0.0027] [0.006]

Spline1 2820.43 0.6.375 0.964 0.1912 −0.5161 0.2319
(1.38) (0.0119) (0.0381) (0.1536) (0.1605)
[0.049] [0.0005] [0.0018] [0.0056] [0.0057]

3M Leverage 2778.22 2.767 0.9423 0.2122 −0.1681
(0.1803) (0.027) (0.0548) (0.1294)
[0.0049] [0.0016] [0.0035] [0.0069]

Spline1 2770.16 4.212 0.9279 0.2657 −0.4408 0.1206
(1.044) (0.0267) (0.067) (0.1778) (0.1983)
[0.042] [0.0011] [0.0032] [0.0072] [0.0083]

Kellogg Leverage 2795.49 3.585 0.9881 0.1186 −0.1915
(0.7277) (0.0097) (0.0336) (0.131)
[0.035] [0.0004] [0.0018] [0.0073]

Spline1 2790.25 5.758 0.9839 0.1192 −0.5409 −0.0115
(1.216) (0.0077) (0.03) (0.1746) (0.1975)
[0.051] [0.0003] [0.0014] [0.0075] [0.0083]

As in the weekly MSFT, the leverage effect cannot be identified in
the leverage SVmodel but becomes prominent in Spline1 SV for all
three series.

4.3. Forecasting results from weekly data

Superior in-the-sample performance does not necessarily lead
to any gain out-of-the-sample. In this section, we compare the
out-of-the-sample performance of the proposedmodel against the
classical models for forecasting volatility using the four weekly
return series from the last subsection, Microsoft, JnJ, 3M and
Kellogg from April 7, 1986 to December 24, 2007. Three competing
models, namely, the basic SV, the leverage SV and the Spline1 SV,
are fitted to the return data and used to obtain one-period-ahead
out-of-sample forecasts of weekly volatility.

We measure weekly volatility using the so-called realized
volatility (RV) obtained from daily data. Let RVt denote the weekly
RV and p(t, k) denote the daily log-price. Then RVt is defined byNt

k=1(p(t, k) − p(t, k − 1))2 where Nt is the number of trading
days in week t and p(t, 0) = p(t − 1,Nt−1). The theoretical
justification of RV as a measure of volatility can be found in
Andersen et al. (2001) and Barndorff-Nielsen and Shephard (2002).

We split the weekly sample into an ‘in-sample’ estimation
period and an ‘out-of-sample’ forecast evaluation period. For

estimation we use the rolling window scheme, where the size
of the sample, which is used to estimate the competing models,
is fixed at 990. Therefore, we first estimate all the competing
models with weekly returns over the period from April 7, 1986 to
April 1, 2005. The first forecast is made for the week beginning
April 4, 2005. When a new observation is added to the sample,
we delete the first observation and re-estimate all the models.
The re-estimated models are then used to forecast volatility. This
process is repeated until we reach the end of the sample, December
24, 2007. Therefore, the final forecast is for the week that begins
December 31, 2007. In total, we need to make 144 forecasts
from each model. We match each forecasted volatility with the
corresponding realized volatility. Following the suggestion of a
referee, we also forecast the weekly volatility with three GARCH
models, namely, GARCH(1, 1), GJR-GARCH(1, 1) and EGARCH(1, 1).
All three GARCH models are estimated by ML.

In Table 5, we report theMean Absolute Error (MAE) to evaluate
forecast accuracy. Most importantly, in all four cases, Spline1 SV
performs the best, not only better than the two classical SVmodels
but also better than the three GARCH models. In particular, the
percentage improvement of Spline1 SV over the leverage SV ranges
between 1% and 4%. Interestingly, GARCH(1, 1) always performs
better than the two GARCH rivals except in one case. Within the
SV family, in 3 out of 4 cases (MSFT, JnJ and 3M), the leverage SV
performs worse than the basic SV. This is not surprising to us since
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Table 5
Forecasting results from weekly data.

MAE × 1000
Basic SV Leverage SV Spline1 SV GARCH GJR-GARCH EGARCH

MSFT 9.866 9.906 9.671 11.392 10.714 10.860
JnJ 10.681 10.723 10.377 10.406 11.472 10.609
3M 10.984 11.112 10.969 10.988 11.422 11.682
Kellogg 6.901 6.889 6.725 6.739 6.816 7.381

ρ is insignificant in the leverage SV in these three cases. In all cases,
the improvement from the Spline1 SV over the leverage SV is more
remarkable than the difference between the leverage SV and the
basic SV. The empirical result suggests that the newmodel not only
provides a better in-the-sample fit to the data, but also gains on
predicting volatility out-of-the-sample.

5. Conclusion

Using the linear splinewe introduce a semiparametric SVmodel
with time varying leverage effects. The driving factor for time
varying leverage is the size and the sign of the lagged return. The
model nests the basic SV and the leverage SV models. Statistical
properties of the proposedmodel are discussed. Themodel is fitted
to daily and weekly US index and stock returns and found to have
the superior in-the-sample performance. Although one could not
find a significant leverage effect in the classical leverage SV for the
daily and weekly stock returns, strong evidence of leverage effect
was found in the newmodel when the leverage effect is allowed to
be time varying. Not only does the new model perform better in-
the-sample, but also it yields more accurate forecasts of volatility
than the classical models.

This paper focuses on models in univariate. While it is perhaps
desirable to consider multivariate extensions of the proposed
model, this task is beyond the scope of the current paper. It isworth
pointing out there are several recent studies where alternative
asymmetric multivariate SV models have been introduced (Asai
and McAleer, 2009).

Appendix

To prove the theorem, we first give a lemma.

Lemma 1. Suppose X, Y ∼ i.i.d. N(0, 1) and X and Y are indepen-
dent. Define

Z =


ρ1X +


1 − ρ2

1Y , if ∞ ≥ X > τ1
...

ρm+1X +


1 − ρ2

m+1Y , if τm ≥ X > −∞.

Then the moment generate function (mgf) of Z is

mZ (s) = exp(s2/2)


Φ(τm − sρm+1) + 1 − Φ(τ1 − sρ1)

+

m
i=2

(Φ(τi−1 − sρi) − Φ(τi − sρi))


.

Proof of Lemma 1. Let φ(·) and Φ(·) be the pdf and the cdf of
N(0, 1). The mgf of Z is

mZ (s) = E{exp(sz)} =


exp(sz)pdfX,Y (x, y)dxdy

=


∞

−∞

pdfY (y)


exp(sy


1 − ρ2

m+1)

 τm

−∞

× exp (sρm+1x) pdfX (x)dx + · · · + exp(sy

1 − ρ2

1 )

×


+∞

τm

exp(sρ1x)pdfX (x)dx


dy.

Since τm

−∞

exp(sρm+1x)pdfX (x)dx = exp(s2ρm+1/2)Φ(τm − sρm+1), τi−1

τi

exp(sρix)pdfX (x)dx

= exp(s2ρi/2)[Φ(τi−1 − sρi) − Φ(τi − sρi)],
∞

τ1

exp(sρ1x)pdfX (x)dx = exp(s2ρ1/2)(1 − Φ(τ1 − sρ1)),

we get the mgf of Z . If ρi = ρ, ∀i, this mgf becomes es
2/2 which is

the mgf of N(0, 1). �

Proof of Theorem 2.1. Since |ϕ| < 1, we may rewrite Eq. (5) as
ht+1 = γ


∞

j=0 ϕjvt−j. Thus, the mgf of ht+1 is

E(exp(sht+1)) =

∞
j=0


exp


1
2
s2γ 2ϕ2j


[Φ(τm − sγ ϕjρm+1) + 1

− Φ(τ1 − sγ ϕjρ1) +

m
i=2

(Φ(τi−1 − sγ ϕjρi)

− Φ(τi − sγ ϕjρi))]


:= G(i, ρ, γ , ϕ). (A.1)

The existence of mgf for vt implies that the variance of vt is
finite. Since ht+1 is a linear process with finite innovation variance,
the stationarity and ergodicity are ensured if and only |ϕ| < 1.

The moments of ht can be obtained by differentiating the log
mgf. To obtain the moments of yt , note that for i = 1, 2, . . . ,

E(y2i−1
t |ht) = E


σ 2i−1 exp


2i − 1

2
ht


ϵ2i−1
t |ht


= σ 2i−1 exp


2i − 1

2
ht


E(ϵ2i−1

t |ht) = 0,

E(y2it |ht) = E(σ 2i exp(iht)ϵ
2i
t |ht) = σ 2i exp(iht)

(2i)!
2ii!

.

Hence,

E(y2i−1
t ) = E(E(y2i−1

t |ht)) = 0,

E(y2it ) = E(E(y2it |ht))

= σ 2iE(exp(iht))
(2i)!
2ii!

= σ 2i (2i)!
2ii!

G(i, ρ, γ , ϕ).
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Whenm = 1, ρ = (ρ1, ρ2) and it is easy to verify that

G(i, ρ, γ , ϕ) =

∞
j=0


exp


1
2
s2γ 2ϕ2j



× [Φ(sγ ϕjρ1) + Φ(−sγ ϕjρ2)]


. �
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