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a b s t r a c t

Multivariate continuous time models are now widely used in economics and finance. Empirical
applications typically rely on some process of discretization so that the system may be estimated with
discrete data. This paper introduces a framework for discretizing linear multivariate continuous time
systems that includes the commonly used Euler and trapezoidal approximations as special cases and
leads to a general class of estimators for the mean reversion matrix. Asymptotic distributions and bias
formulae are obtained for estimates of the mean reversion parameter. Explicit expressions are given
for the discretization bias and its relationship to estimation bias in both multivariate and in univariate
settings. In the univariate context, we compare the performance of the two approximation methods
relative to exact maximum likelihood (ML) in terms of bias and variance for the Vasicek process. The
bias and the variance of the Euler method are found to be smaller than the trapezoidal method, which
are in turn smaller than those of exact ML. Simulations suggest that when the mean reversion is slow, the
approximation methods work better than ML, the bias formulae are accurate, and for scalar models the
estimates obtained from the two approximatemethods have smaller bias and variance than exact ML. For
the square root process, the Euler method outperforms the Nowman method in terms of both bias and
variance. Simulation evidence indicates that the Euler method has smaller bias and variance than exact
ML, Nowman’s method and the Milstein method.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Continuous time models, which are specified in terms of sto-
chastic differential equations, have foundwide applications in eco-
nomics and finance. Empirical interest in systems of this type has
grown particularly rapidly in recent years with the availability of
high frequency financial data. Correspondingly, growing attention
has been given to the development of econometric methods of in-
ference. In order to capture causal linkages among variables and al-
low formultiple determining factors,many continuous systems are
specified in multivariate form. The literature is now wide-ranging.
Bergstrom (1990) motivated the use of multivariate continuous
time models in macroeconomics; Sundaresan (2000) provided a
list ofmultivariate continuous timemodels, particularlymultivari-
ate diffusions, in finance; Piazzesi (2009) discusses how tousemul-
tivariate continuous time models to address various macrofinance
issues.
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Data in economics and finance are typically available at discrete
points in time or over discrete time intervals and many continu-
ous systems are formulated as Markov processes. These two fea-
tures suggest that the log likelihood function can be expressed as
the product of the log transition probability densities (TPD). Con-
sequently, the implementation of maximum likelihood (ML) re-
quires evaluation of TPD. But since the TPD is unavailable in closed
form for many continuous systems, several methods have been
proposed as approximations.

The simplest approach is to approximate the model using some
discrete time system. Both the Euler approximation and the trape-
zoidal rule have been suggested in the literature. Sargan (1974)
andBergstrom (1984) showed that theML estimators (MLEs) based
on these two approximations converge to the trueMLE as the sam-
pling interval h → 0, at least under a linear specification. This
property also holds for more general diffusions (Florens-Zmirou,
1989). Of course, the quality of the approximation depends on the
size of h. However, the advantage of the approximation approach
is that it is computationally simple and often works well when h is
small, for example at the daily frequency.

More accurate approximations have been proposed in recent
years. In-fill simulations and closed-form approximations are the
two that have received the most attention. Studies of in-fill
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simulations include Pedersen (1995) and Durham and Gallant
(2002). For closed-form approximations, seminal contributions
include Aït-Sahalia (1999, 2002, 2008)), Aït-Sahalia and Kimmel
(2007), and Aït-Sahalia and Yu (2006). These approximations have
the advantage that they can control the size of the approximation
errors even when h is not small. Aït-Sahalia (2008) provides
evidence that the closed-form approximation is highly accurate
and allows for fast repeated evaluations. Since the approximate
TPD takes a complicated form in both these approaches, no closed
form expression is available for the MLE. Consequently, numerical
optimizations are needed to obtain the MLE.

No matter which of the above methods is used, when the
system variable is persistent, the resulting estimator of the speed
of mean reversion can suffer from severe bias in finite samples.
This problem is well known in scalar diffusions (Phillips and
Yu, 2005a,b, 2009a,b) but has also been reported in multivariate
models (Phillips and Yu, 2005a; Tang and Chen, 2009). In the scalar
case, Tang and Chen (2009) and Yu (2009) give explicit expressions
to approximate the bias. To obtain these explicit expressions, the
corresponding estimators must have a closed-form expression.
That is why explicit bias results are presently available only for the
scalar Vasicek model (Vasicek, 1977) and the Cox-Ingersoll-Ross
(CIR, 1985) model.

The present paper focuses on extending existing bias formulae
to the multivariate continuous system case. We partly confine our
attention to linear systems so that explicit formulae are possible
for approximating the estimation bias of the mean reversion
matrix. It is known from previous work that bias in the mean
reversion parameter has some robustness to specification changes
in the diffusion function (Tang and Chen, 2009), which gives this
approach awider relevance. Understanding the source of themean
reversion bias in linear systems can also be helpful inmore general
situations where there are nonlinearities.

The paper develops a framework for studying estimation in
multivariate continuous time models with discrete data. In par-
ticular, we show how the estimator that is based on the Euler
approximation and the estimator based on the trapezoidal approx-
imation can be obtained by taking Taylor expansions to the first
and second orders. Moreover, the uniform framework simplifies
the derivation of the asymptotic bias order of the ordinary least
squares estimator and the two stage least squares estimator of
Bergstrom (1984). Asymptotic theory is provided under long time
span asymptotics and explicit formulae for thematrix bias approx-
imations are obtained. The bias formulae are decomposed into the
discretization bias and the estimation bias. Simulations reveal that
the bias formulae work well in practice. The results are specialized
to the scalar case, giving two approximate estimators of the mean
reversion parameter which are shown to work well relative to the
exact MLE when the mean reversion is slow.

The results confirm that bias can be severe in multivariate
continuous time models for parameter values that are empirically
realistic, just as it is in scalar models. Specializing our formulae to
the univariate case yields some useful alternative bias expressions.
Simulations are reported that detail the performance of the bias
formulae in the multivariate setting and in the univariate setting.

The rest of the paper is organized as follows. Section 2 in-
troduces the model and the setup and reviews four existing es-
timation methods. Section 3 outlines our unified framework for
estimation, establishes the asymptotic theory, and provides ex-
plicit expressions for approximating the bias in finite samples.
Section 4 discusses the relationship between the new estimators
and two existing estimators in the literature, and derives a new
bias formula in the univariate setting. Section 5 compares the per-
formance of the estimator based on the Euler scheme relative to
that the method proposed by Nowman (1997) in the context of
the square root process and a diffusion process with a linear drift
but amore general diffusion. Simulations are reported in Section 6.
Section 7 concludes and the Appendix collects together proofs of
the main results.
2. The model and existing methods

We consider an M-dimensional multivariate diffusion process
of the form (Phillips, 1972, cf.):

dX(t) = (A(θ)X(t)+ B(θ))dt + ζ (dt), X(0) = X0, (2.1)

whereX(t) = (X1(t), . . . , XM(t))′ is anM-dimensional continuous
time process, A(θ) and B(θ) areM ×M andM ×1matrices, whose
elements depend on unknown parameters θ = (θ1, . . . , θK ) that
need to be estimated, ζ (dt) (:= (ζ1(dt), . . . , ζM(dt))) is a vector
random process with uncorrelated increments and covariance
matrix Σdt . The particular model receiving most attention in
finance is when ζ (dt) is a vector of Brownian increments (denoted
by dW (t)) with covarianceΣdt , viz.,

dX(t) = (A(θ)X(t)+ B(θ))dt + dW (t), X(0) = X0, (2.2)

corresponding to a multivariate version of the Vasicek model
(Vasicek, 1977).

Although the process follows a continuous time stochastic dif-
ferential equation system, observations are available only at dis-
crete time points, say at n equally spaced points {th}nt=0, where h is
the sampling interval and is taken to be fixed. In practice, h might
be very small, corresponding to high-frequency data. In this paper,
we use X(t) to represent a continuous time process and Xt to repre-
sent a discrete timeprocess.When there is no confusion,we simply
write Xth as Xt .

Bergstrom (1990) provided arguments why it is useful for
macroeconomists and policymakers like central bankers to formu-
late models in continuous time even when discrete observations
only are available. In finance, early fundamental work by Black and
Scholes (1973) and much of the ensuing literature such as Duffie
and Kan (1996) successfully demonstrated the usefulness of both
scalar and multivariate diffusion models in the development of fi-
nancial asset pricing theory.

Phillips (1972) showed that the exact discrete time model
corresponding to (2.1) is given by

Xt = exp{A(θ)h}Xt−1 − A−1(θ)[exp{A(θ)h} − I]B(θ)+ εt (2.3)

where εt = (ε1, . . . , εM)
′ is a martingale difference sequence

(MDS) with respect to the natural filtration and

E(εtε′

t) =

∫ h

0
exp{A(θ)s}Σ exp{A(θ)′s}ds := G.

Letting F(θ) := exp{A(θ)h} and g(θ) := −A−1(θ)[exp{A(θ)h} −

I]B(θ), we have the system

Xt = F(θ)Xt−1 + g(θ)+ εt , (2.4)

which is a vector autoregression (VAR) model of order 1 with
MDS(0,G) innovations.

In general, identification of θ from the implied discrete model
(2.3) generating discrete observations {Xth} is not automatically
satisfied. The necessary and sufficient condition for identifiabil-
ity of θ in model (2.3) is that the correspondence between θ and
[F(θ), g(θ)] be one-to-one, since (2.3) is effectively a reduced form
for the discrete observations. Phillips (1973) studied the identi-
fiability of (A(θ),Σ) in (2.3) in terms of the identifiability of the
matrix A(θ) in the matrix exponential F = exp(A(θ)h) under pos-
sible restrictions implied by the structural functional dependence
A = A(θ) in (2.1). In general, a one-to–one correspondence be-
tween A(θ) and F , requires the structural matrix A(θ) to be re-
stricted. This is because if A(θ) satisfies exp{A(θ)h} = F and some
of its eigenvalues are complex, A(θ) is not uniquely identified. In
fact, adding to each pair of conjugate complex eigenvalues the
imaginary numbers 2ikπ and −2ikπ for any integer k, leads to an-
other matrix satisfying exp{Ah} = F . This phenomenon is well
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known as aliasing in the signal processing literature.When restric-
tions are placed on the structural matrix A(θ) identification is pos-
sible. Phillips (1973) gave a rank condition for the case of linear
homogeneous relations between the elements of a row of A. A spe-
cial case is when A(θ) is triangular. Hansen and Sargent (1983) ex-
tended this result by showing that the reduced form covariance
structure G > 0 provides extra identifying information about A,
reducing the number of potential aliases.

To deal with the estimation of (2.1) using discrete data and in-
directly (because it was not mentioned) the problem of identifi-
cation, two approximate discrete time models were proposed in
earlier studies. The first is based on the Euler approximation given
by∫ th

(t−1)h
A(θ)X(r)dr ≈ A(θ)hXt−1,

which leads to the approximate discrete time model

Xt − Xt−1 = A(θ)hXt−1 + B(θ)h + ut . (2.5)

The second, proposed by Bergstrom (1966), is based on the trape-
zoidal approximation∫ th

(t−1)h
A(θ)X(r)dr ≈

1
2
A(θ)h(Xt + Xt−1),

which gives rise to the approximate nonrecursive discrete time
model

Xt − Xt−1 =
1
2
A(θ)h(Xt + Xt−1)+ B(θ)h + νt . (2.6)

The discrete timemodels are then estimated by standard statistical
methods, namely OLS for the Euler approximation and systems es-
timation methods such as two-stage or three-stage least squares
for the trapezoidal approximation. As explained by Lo (1988) in
the univariate context, such estimation strategies inevitably suf-
fer from discretization bias. The size of the discretization bias de-
pends on the sampling interval, h, and does not disappear even if
n → ∞. The bigger is h, the larger is the discretization bias. Sar-
gan (1974) showed that the asymptotic discretization bias of the
two-stage and three-stage least squares estimators for the trape-
zoidal approximation is O(h2) as h → 0. Bergstrom (1984) showed
that the asymptotic discretization bias of the OLS estimator for the
Euler approximation is O(h).

For the more general multivariate diffusion

dX(t) = κ(µ− X(t))dt +Σ(X(t);ψ)dW (t), X(0) = X0, (2.7)

whereW is standard Brownianmotion, two other approaches have
been used to approximate the continuous time model (2.7). The
first, proposed by Nowman (1997), approximates the diffusion
functionwithin each unit interval, [(i−1)h, ih) by its left end point
value leading to the approximate model

dX(t) = κ(µ− X(t))dt +Σ(X(i−1)h;ψ)dW (t)

for t ∈ [(i − 1)h, ih). (2.8)

Since (2.8) is a multivariate Vasicek model within each unit inter-
val, there is a corresponding exact discrete model as in (2.3). This
discrete time model, being an approximation to the exact discrete
time model of (2.7), facilitates direct Gaussian estimation.

To reduce the approximation error introduced by the Euler
scheme,Milstein (1978) suggested taking the second order term in
a stochastic Taylor series expansion when approximating the drift
function and the diffusion function. Integrating (2.7) gives∫ ih

(i−1)h
dX(t) =

∫ ih

(i−1)h
κ(µ− X(t))dt

+

∫ ih

(i−1)h
Σ(X(t);ψ)dW (t). (2.9)
By Itô’s lemma, the linearity of the drift function in (2.7), and using
tensor summation notation for repeated indices (p, q), we obtain

dµ(X(t); θ) =
∂µ(X(t); θ)

∂Xp
dXp(t),

and

dΣ(X(t);ψ) =
∂Σ(X(t);ψ)

∂Xp
dXp(t)

+
1
2
∂2Σ(X(t);ψ)
∂Xp∂X ′

q
dXp(t)dXq(t), (2.10)

where µj(X(t); θ) is the jth element of the (linear) drift function
κ(µ − X(t)), Σpq is the (p, q)th element of Σ and Xp is the pth
element of X . These expressions lead to the approximations

µ(X(t); θ) ≃ µ(X(i−1)h; θ),

and

Σ(X(t);ψ) ≃ Σ(X(i−1)h; θ)+
∂Σ(X(i−1)h;ψ)

∂Xp
Σpq(X(i−1)h;ψ)

×

∫ t

(i−1)h
dWq(τ ).

Using these approximations in (2.9) we find

Xih − X(i−1)h =

∫ ih

(i−1)h
κ(µ− X(t))dt +

∫ ih

(i−1)h
Σ(X(t);ψ)dW (t)

≃ µ(X(i−1)h; θ)h +Σ(X(i−1)h;ψ)

∫ ih

(i−1)h
dW (t)

+
∂Σ(X(i−1)h;ψ)

∂Xp
Σpq(X(i−1)h;ψ)

×

∫ ih

(i−1)h

∫ t

(i−1)h
dWq(τ )dW (t) . (2.11)

The multiple (vector) stochastic integral in (2.11) reduces as
follows:∫ ih

(i−1)h

∫ t

(i−1)h
dWq(τ )dWp (t)

=

∫ ih

(i−1)h


Wq(t)− Wq(i−1)h


dWp (t)

=


1
2


Wqih − Wq(i−1)h

2
− h


p = q∫ ih

(i−1)h


Wq(t)− Wq(i−1)h


dWp (t) p ≠ q.

(2.12)

The approximate model under a Milstein second order discretiza-
tion is then

Xih − X(i−1)h ≃ µ(X(i−1)h; θ)h +Σ(X(i−1)h;ψ)

Wih − W(i−1)h


+
∂Σ(X(i−1)h;ψ)

∂Xp
Σpq(X(i−1)h;ψ)

×

∫ ih

(i−1)h

∫ t

(i−1)h
dWq(τ )dWp (t) . (2.13)

In view of the calculation (2.12), when the model is scalar the
discrete approximation has the simple form (c.f., Phillips and Yu,
2009a,b)

Xih − X(i−1)h ≃

[
µ(X(i−1)h; θ)−

1
2
σ ′(X(i−1)h;ψ)σ(X(i−1)h;ψ)

]
h

+ σ(X(i−1)h;ψ)

Wih − W(i−1)h


+ σ ′(X(i−1)h;ψ)σ(X(i−1)h;ψ)

1
2


Wih − W(i−1)h

2
. (2.14)
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Since 1
2


Wqih − Wq(i−1)h

2
− h


has mean zero, the net contribu-

tion to the drift from the second order term is zero.
In the multivariate Vasicek model, Σ(X(t);ψ) = Σ , and the

Milstein approximation (2.13) reduces to
Xih − X(i−1)h ≃ µ(X(i−1)h; θ)h +Σ(X(i−1)h;ψ)


Wih − W(i−1)h


.

Thus, for the multivariate Vasicek model, the Milstein and Euler
schemes are equivalent.

3. Estimation methods, asymptotic theory and bias

In this paper, following the approach of Phillips (1972), we esti-
mate θ directly from the exact discrete time model (2.3). In partic-
ular, we first estimate F (θ) and θ from (2.3), assuming throughout
that A(θ) and θ are identifiable and that all the eigenvalues in A(θ)
have negative real parts. The latter condition ensures that Xt is sta-
tionary and is therefore mean reverting. The exact discrete time
model (2.3) in this case is a simple VAR(1) model which has been
widely studied in the discrete time series literature.We first review
some relevant results from this literature.

Let Zt = [X ′
t , 1]

′. The OLS estimator of H = [F , g] is

Ĥ = [F̂ , ĝ] =


n−1

n−
t=1

XtZ ′

t−1


·


n−1

n−
t=1

Zt−1Z ′

t−1

−1

. (3.1)

If we have prior knowledge that B(θ) = 0 and hence g = 0, the
OLS estimator of F is:

F̂ =


n−1

n−
t=1

XtX ′

t−1


·


n−1

n−
t=1

Xt−1X ′

t−1

−1

, (3.2)

for which the standard theory first order limit theory (e.g., Fuller
(1976, p. 340) and Hannan (1970, p. 329)) is well known.

Lemma 3.1. For the stationary VAR(1) model (2.4), if h is fixed and
n → ∞, we have

(a) F̂
p

→ F ;
(b)

√
n{Vec(F̂)− Vec(F)}

d
→ N(0, (Γ (0))−1

⊗ G),
where Γ (0) = Var(Xt) =

∑
∞

i=0 F
i
· G · F ′i and G = E(εtε′

t).

Under different but related conditions, Yamamoto and Kunit-
omo (1984) and Nicholls and Pope (1988) derived explicit bias ex-
pressions for theOLS estimator F̂ . The proof of the following lemma
is given in Yamamoto and Kunitomo (1984, Theorem 1).

Lemma 3.2 (Yamamoto and Kunitomo, 1984). Assume:
(A1) Xt is a stationary VAR(1) process whose error term is iid (0,G)

with G nonsingular;
(A2) For some s0 ≥ 16, E|εti|

s0 < ∞, for all i = 1, . . . ,M;

(A3) E
n−1∑n

t=1 Zt−1Z ′

t−1

−1
2 is bounded, where the operator

‖ · ‖ is defined by

‖Q‖ = sup
β

(β ′Q ′Qβ)1/2(β ′β ≤ 1),

for any vector β;
Under (A1)–(A3) if n → ∞, the bias of OLS estimator of F in the
VAR(1)model with an unknown intercept is

BIAS(F̂) = −n−1G
∞−
k=0

{F ′k
+ F ′k tr(F k+1)+ F ′2k+1

}D−1

+O

n−

3
2


, (3.3)

where

D =

∞−
i=0

F iGF ′i,
and the bias of the OLS estimator of F for the VAR(1) model with a
known intercept is

BIAS(F̂) = −
1
n
G

∞−
k=0

{F ′k tr(F k+1)+ F ′2k+1
}D−1

+O

n−

3
2


. (3.4)

We now derive a simplified bias formulae in the two models
which facilitates the calculation of the bias formulae in continuous
time models.

Lemma 3.3. Assume (A1)–(A3) hold, h is fixed and n → ∞. The bias
of the least squares estimator for F in the VAR(1) is given by

Bn = E(F̂)− F = −
b
n

+ O

n−

3
2


. (3.5)

When the model has a unknown intercept,

b = G


(I − C)−1

+ C(I − C2)−1
+

−
λ∈Spec(C)

λ(I − λC)−1


×Γ (0)−1, (3.6)

where C = F ′, Γ (0) = Var(Xt) =
∑

∞

t=0 F
i
· G · F ′i, G = E(εtε′

t),
and Spec(C) denotes the set of eigenvalues of C. When the model has
a known intercept,

b = G


C(I − C2)−1

+

−
λ∈Spec(C)

λ(I − λC)−1


Γ (0)−1. (3.7)

Remark 3.1. The alternative bias formula (3.5) is exactly the same
as that given by Nicholls and Pope (1988) for the Gaussian case,
although here the expression is obtained without Gaussianity and
in a simpler way. If the bias is calculated to a higher order, Bao and
Ullah (2009) showed that skewness and excess kurtosis of the error
distribution figure in the formulae. In a related contribution, Ullah
et al. (2010) obtain the second order bias in the mean reversion
parameter for a (scalar) continuous time Lévy process.

We now develop estimators for A. To do so we use the matrix
exponential expression

F = eAh =

∞−
i=0

(Ah)i

i!
= I + Ah + H

= I + Ah + O(h2) as h → 0. (3.8)

Rearranging terms we get

A =
1
h
(F − I)−

1
h
H =

1
h
(F − I)+ O(h) as h → 0, (3.9)

which suggest the following simple estimator of A

Â =
1
h
(F̂ − I), (3.10)

where F̂ is the OLS estimator of F . We now develop the asymptotic
distribution for Â and the bias in Â.

Theorem 3.1. Assume Xt follows Model (2.1) and that all charac-
teristic roots of the coefficient matrix A have negative real parts.
Let {Xth}

n
t=1 be the available data and suppose A is estimated

by (3.10) with F̂ defined by (3.1). When h is fixed, as n → +∞, we
have

Â − A
p

→
1
h
(F − I − Ah) =

1
h
H = O(h) as h → 0, (3.11)
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where H = F − I − Ah, and

h
√
nVec

[
Â −

1
h
(F − I)

]
d

→ N(0,Γ (0)−1
⊗ G), (3.12)

where Γ (0) = Var(Xt) =
∑

∞

i=0 F
iGF ′i, G = E(εtε′

t).

Theorem 3.2. Assume that Xt follows Model (2.2) where W (t) is
a vector Brownian Motion with covariance matrix Σ and that all
characteristic roots of the coefficient matrix A have negative real
parts. Let {Xth}

n
t=1 be the available data and suppose A is estimated

by (3.10) with F̂ defined by (3.1). When h is fixed and n → ∞, the
bias formula is:

BIAS(Â) = E(Â − A) =
1
h
H +

−b
T

+ o(T−1), (3.13)

where H = F − I − Ah, and T = nh is the time span of the data. If
B(θ) is unknown, then

b = G[(I − C)−1
+ C(I − C2)−1

+

−
λ∈Spec(C)

λ(I − λC)−1
]Γ (0)−1, (3.14)

where Γ (0) = Var(Xt) =
∑

∞

i=0 F
i
·G · F ′i, G = E(εtε′

t), and Spec(C)
is the set of eigenvalues of C. If B(θ) is known, then

b = G[C(I − C2)−1
+

−
λ∈Spec(C)

λ(I − λC)−1
]Γ (0)−1. (3.15)

Remark 3.2. Expression (3.11) extends the result in Eq. (32) of
Lo (1988) to the multivariate case. According to Theorem 3.2, the
bias of the estimator (3.10) can be decomposed into two parts,
the discretization bias and the estimation bias, which take the
following forms:

discretization bias =
H
h

=
F − I − Ah

h
= O(h) as h → 0, (3.16)

estimation bias =
−b
T

+ o(T−1). (3.17)

It is difficult to determine the signs of the discretization bias and
the estimation bias in a general multivariate case. However, in the
univariate case, the signs are opposite to each other as shown in
Section 4.2.

Higher order approximations are possible. For example,wemay
take the matrix exponential series expansion to the second order
to produce a more accurate estimate using

F = eAh =

∞−
i=0

(Ah)i

i!

= I + Ah +
Ah
2

[
(eAh − I)+

−A2h2

3!
+

−2A3h3

4!
+ · · ·

+
−(n − 2)An−1hn−1

n!
+ · · ·

]
= I + Ah +

Ah
2

[F − I] + η

= I + Ah +
Ah
2

[F − I] + O(h3) as h → 0. (3.18)

Consequently,

A =
2
h
(F − I)(F + I)−1

−
2
h
η(F + I)−1
=
2
h
(F − I)(F + I)−1

+ ν

=
2
h
(F − I)(F + I)−1

+ O(h2) as h → 0. (3.19)

After neglecting terms smaller than O

h2

, we get the alternative

estimator

Â =
2
h
(F̂ − I)(F̂ + I)−1. (3.20)

Theorem 3.3. Assume that Xt follows Model (2.1) and that all
characteristic roots of the coefficientmatrix A have negative real parts.
Let {Xth}

n
t=1 be the available data and A is estimated by (3.20) with F̂

defined by (3.1). When h is fixed, n → +∞, we have

Â − A
p

→
2
h
(F − I)(F + I)−1

− A = O(h2) as h → 0,

and

h
√
nVec

[
Â −

2
h
(F − I)(F + I)−1

]
d

→ N(0,Ψ ),

where

Ψ = 16Υ [Γ (0)−1
⊗ G]Υ ′, Υ = (F ′

+ I)−1
⊗ (F + I)−1.

Theorem 3.4. Assume that Xt follows (2.2) where W (t) is a vector
Brownianmotionwith covariancematrixΣ and that all characteristic
roots of the coefficient matrix A have negative real parts. Let {Xth}

n
t=1

be the available data and suppose A is estimated by (3.20) with F̂
defined by (3.1). When h is fixed, n → ∞, and T = hn, the bias
formula is:

BIAS(Â) = −ν −
4
T
(I + F)−1b(I + F)−1

−
4
h
L(I + F)−1

+ o(T−1), (3.21)

where ν = A−
2
h (F − I)(F + I)−1,∆ = [IM ⊗ (I + F)−1

] ·Γ (0)−1
⊗

G · [IM ⊗ (I + F)−1
]
′, and L is a M × M matrix whose ijth element is

given by

Lij =
1
n

M−
s=1

e′

M(s−1)+i ·∆ · eM(j−1)+s, (3.22)

with ei being a column vector of dimension M2 whose ith element
is 1 and other elements are 0. If B(θ) is an unknown vector, then

b = G[(I − C)−1
+ C(I − C2)−1

+

−
λ∈Spec(C)

λ(I − λC)−1
]Γ (0)−1.

If B(θ) is a known vector, then

b = G[C(I − C2)−1
+

−
λ∈Spec(C)

λ(I − λC)−1
]Γ (0)−1.

Remark 3.3. Theorem 3.4 shows that the bias of the estimator
(3.20) can be decomposed into a discretization bias and an esti-
mation bias as follows:

discretization bias = −ν =
2
h
(F − I)(F + I)−1

− A

= O(h2) as h → 0, (3.23)

estimation bias = −
4
T
(I + F)−1b(I + F)−1

−
4
h
L(I + F)−1

+ o(T−1). (3.24)
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As before, it is difficult to determine the signs of the discretization
bias and estimation bias in a general multivariate case. However,
in the univariate case, the signs are opposite each other as reported
in Section 4.2.

Remark 3.4. The estimator (3.10) is based on a first order Taylor
expansion whereas the estimator (3.20) is based on a second
order expansion, so it is not surprising that (3.20) has a smaller
discretization bias than (3.10). It is not as easy to compare the
magnitudes of the two estimation biases. In the univariate case,
however, we show in Section 4.2 that the estimator (3.20) has a
larger estimation bias than the estimator (3.10).

4. Relations to existing results

4.1. The Euler and trapezoidal approximations

The estimators given above include as special cases the two es-
timators obtained from the Euler approximation and the trape-
zoidal approximation. Consequently, both the asymptotic and the
bias properties are applicable to these two approximation models
and the simple framework above unifies some earlier theory on the
estimation of approximate discrete time models.

The Euler approximate discrete time model is of the form:

Xt − Xt−1 = AhXt−1 + Bh + ut . (4.1)

The OLS estimator of A is given by

[ I + Ah, Bh] :=


n−1

n−
t=1

XtZ ′

t−1


n−1

n−
t=1

Zt−1Z ′

t−1

−1

=: [F̂ , ĝ]. (4.2)

If B is known a priori and assumed zero without loss of generality,
then the OLS estimator of A is

[ I + Ah] =


n−1

n−
t=1

XtX ′

t−1


n−1

n−
t=1

Xt−1X ′

t−1

−1

=: [F̂ ], (4.3)

where Zt−1, F̂ , ĝ are defined in the same way as before. Hence,

Â =
1
h
[F̂ − I]. (4.4)

This is precisely the estimator given by (3.10) based on a first order
expansion of the matrix exponential exp(Ah) in h.

The trapezoidal approximate discrete timemodel is of the form

Xt − Xt−1 =
1
2
Ah(Xt + Xt−1)+ Bh + νt . (4.5)

If B = 0, the approximate discrete model becomes

Xt − Xt−1 =
1
2
Ah(Xt + Xt−1)+ νt . (4.6)

Note that (4.6) is a simultaneous equations model, as emphasized
by Bergstrom (1966, 1984). We show that the two stage least
squares estimator of A from (4.5) is equivalent to the estimator
given by (3.20) based on a second order expansion of exp(Ah) in
h. To save space, we focus on the approximate discrete timemodel
with known B = 0. The result is easily extended to the case of
unknown B.

The two stage least squares estimator of Bergstrom (1984) takes
the form

Â =


n−

t=1

1
h
(Xt − Xt−1)V ′

t


n−

t=1

1
2
(Xt + Xt−1)V ′

t

−1

, (4.7)
where

Vt =
1
2
(X∗

t + Xt−1), (4.8)

X∗

t =


n−

t=1

XtX ′

t−1


n−

t=1

Xt−1X ′

t−1

−1

Xt−1. (4.9)

Theorem 4.1. The two stage least squares estimator suggested in
Bergstrom (1984) has the following form

Â =
2
h
[F̂ − I][F̂ + I]−1, (4.10)

and is precisely the same estimator as that given by (3.20) based on a
second order expansion of exp(Ah) in h.

4.2. Bias in univariate models

The univariate diffusion model considered in this section is the
OU process:

dX(t) = κ(µ− X(t))dt + σdW (t), X(0) = 0, (4.11)

where W (t) is a standard scalar Brownian motion. The exact dis-
crete time model corresponding to (4.11) is

Xt = φXt−1 + µ(1 − e−κh)+ σ


1 − e−2κh

2κ
ϵt , (4.12)

where φ = e−κh, ϵt ∼ iid N(0, 1) and h is the sampling interval.
The ML estimator of κ (conditional on X0) is given by

κ̂ = − ln(φ̂)/h, (4.13)

where

φ̂ =
n−1ΣXtXt−1 − n−2ΣXtΣXt−1

n−1ΣX2
t − n−2(ΣXt−1)2

, (4.14)

and κ̂ exists provided φ̂ > 0. Tang and Chen (2009) analyzed
the asymptotic properties and derived the finite sample variance
formula and the bias formula, respectively,

Var(κ̂) =
1 − φ2

Thφ2
+ o(T−1), (4.15)

E(κ̂)− κ =
1
T


5
2

+ eκh +
e2κh

2


+ o(T−1). (4.16)

When µ is known (assumed to be 0), the exact discrete model
becomes

Xt = φXt−1 + δ


1 − e−2κh

2κ
ϵt , (4.17)

and the ML estimator of κ is κ̂ = − ln(φ̂)/h, where φ̂ = ΣXt
Xt−1/ΣX2

t−1. In this case, Yu (2009) derived the following bias for-
mula under stationary initial conditions

E(κ̂)− κ =
1
2T
(3 + e2κh)−

2(1 − e−2nκh)

Tn(1 − e−2κh)
+ o(T−1). (4.18)

When the initial condition is X(0) = 0, the bias formula becomes

E(κ̂)− κ =
1
2T
(3 + e2κh)+ o(T−1). (4.19)

Since the MLE is based on the exact discrete time model, there is
no discretization bias in (4.12) and (4.17). The bias in κ̂ is induced
entirely by estimation and is always positive.

We may link our results for multivariate systems to the uni-
variate model. For example, κ = −A in (4.11) and the first order
Taylor series expansion (i.e., the Eulermethod) gives the estimator
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κ1 =
1
h
[1 − φ̂]. (4.20)

In this case the results obtained in Theorems 3.1 and 3.2 may be
simplified as in the following two results.

Theorem 4.2. Assuming κ > 0, when h is fixed, and n → ∞, we
have

κ̂1 − κ
p

→ −
exp(−κh)− 1 + κh

h
= O(h) as h → 0, (4.21)

and

h
√
n
[
κ̂1 −

1 − exp(−κh)
h

]
d

→ N(0, 1 − exp(−2κh)). (4.22)

For the OU process with an unknown mean,

BIAS(κ̂1) = −
H
h

+
1 + 3 exp(−κh)

T
+ o(T−1), (4.23)

For the OU process with a known mean,

BIAS(κ̂1) = −
H
h

+
2 exp(−κh)

T
+ o(T−1), (4.24)

where 1+3 exp(−κh)
T + o(T−1) and 2 exp(−κh)

T + o(T−1) are the
estimation biases in the two models, respectively. In both models, the
discretization bias has the following form:

−H
h

= −
exp(−κh)− 1 + κh

h
. (4.25)

Remark 4.1. From (4.22) the asymptotic variance for κ̂1 is

AsyVar(κ̂1) =
1 − exp(−2κh)

Th
. (4.26)

Remark 4.2. The estimation bias is always positive in bothmodels.
If κh ∈ (0, 3] which is empirically realistic, the discretization bias
may be written as

−H
h

= −κ2h
∞−
i=2

(−κh)i−2

i!

= −κ2h
−

j=2,4,...

(−κh)j−2

(j + 1)!
(j + 1 − κh)

< 0. (4.27)

This means that the discretization bias has sign opposite to that of
the estimation bias.

Remark 4.3. For the unknown mean model, if T < h(1 + 3φ)/
(κh + φ − 1), the estimation bias is larger than the discretization
bias in magnitude because this condition is equivalent to

1 + 3 exp(−κh)
T

>
κh + exp(−κh)− 1

h
.

Further

h(1 + 3φ)/(κh + φ − 1) =
h(1 + 3(1 − κh + O(h2)))
1
2κ

2h2 −
1
6κ

3h3 + O(h4)

=
2
κ2h

(4 − 3κh + O(h2))


1 −

1
3
κh + O(h2)

−1

=
2
κ2h

(4 − 3κh + O(h2))


1 +

1
3
κh + O(h2)


=

8
κ2h

(1 + O(h)) .
In empirically relevant cases, 8/(κ2h) is likely to take very
large values, thereby requiring very large values of T before the
estimation bias is smaller than the discretization bias. For example,
if κ = 0.1 and h = 1/12, T > 9600 years are needed for the bias
to be smaller. The corresponding result for the knownmean case is
2hφ/(κh+φ−1) =


4/(κ2h)


(1 + O(h)) and again large values of

T are required to reduce the relative magnitude of the estimation
bias.

Similarly, the second order expansion (i.e. the trapezoidal
method) gives the estimator

κ̂2 = −Â = −
2
h
[F̂ − I][F̂ + I]−1

=
2(1 − φ̂)

h(1 + φ̂)
, (4.28)

for which we have the following result.

Theorem 4.3. Assuming κ > 0, when h is fixed, and n → ∞, we
have

κ̂2 − κ
p

→
2(1 − exp(−κh))
h(1 + exp(−κh))

− κ = O(h2) as h → 0, (4.29)

and

h
√
n
[
κ̂2 −

2(1 − exp(−κh))
h(1 + exp(−κh))

]
d

→ N

0,

16(1 − exp(−κh))
(1 + exp(−κh))3


. (4.30)

For the OU process with an unknown mean,

BIAS(κ̂2) = ν +
8

T (1 + exp(−κh))
+ o(T−1). (4.31)

For the OU process with a known mean,

BIAS(κ̂2) = ν +
4

T (1 + exp(−κh))
+ o(T−1), (4.32)

where 8
T (1+exp(−κh)) + o(T−1) and 4

T (1+exp(−κh)) + o(T−1) are the two
estimation biases. In both models, the discretization bias has the form

ν = −κ +
2(1 − exp(−κh))
h(1 + exp(−κh))

= O(h2). (4.33)

Remark 4.4. From (4.30) the asymptotic variance for κ̂2 is

AsyVar(κ̂2) =
16(1 − exp(−κh))
Th(1 + exp(−κh))3

. (4.34)

Remark 4.5. The estimation bias is always positive in bothmodels.
If κh ∈ (0, 2], the discretization bias may be written as

ν = −κ +
2(1 − exp(−κh))
h(1 + exp(−κh))

=
−κ

1 + exp(−κh)

∞−
i=3

(i − 2)(−κh)i−1

i!

=
−κ

1 + exp(−κh)

−
j=3,5,...

(−κh)j−1

(j + 1)!

× ((j − 2)(j + 1)− κh(j − 1))
< 0. (4.35)

Hence, the discretization bias has the opposite sign of the estima-
tion bias.

Remark 4.6. For the unknown mean model, if T < 8h/(κh(1
+φ)−2(1−φ)), the estimation bias is larger than the discretization
bias in magnitude because this condition is equivalent to

8
T (1 + exp(−κh))

> κ −
2(1 − exp(−κh))
h(1 + exp(−κh))

.
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Further
8h

κh(1 + φ)− 2(1 − φ)

=
8h

κh(2 − κh +
1
2κ

2h2 + O(h3))− 2(κh −
1
2κ

2h2 +
1
6κ

3h3 + O(h4))

= 8h

1
6
κ3h3 + O(h4)

−1

=
48
κ3h2

(1 + O(h))−1

=
48
κ3h2

(1 + O(h)) .

Again, in empirically relevant cases, 48/(κ3h2) is likely to take very
large values thereby requiring very large values of T before the
estimation bias is smaller than the discretization bias. For example,
if κ = 0.1 and h = 1/12, T > 6912,000 years are needed for the
bias to be smaller. Hence the estimation bias is inevitably much
larger than the discretization bias in magnitude for all realistic
sample spans T .

Remark 4.7. It has been argued in the literature that ML should be
usedwhenever it is available and the likelihood function should be
accurately approximated when it is not available analytically; see
DurhamandGallant (2002) andAït-Sahalia (2002) for various tech-
niques to accurately approximate the likelihood function. From the
results in Theorems 4.2 and 4.3 we can show that the total bias of
the MLE based on the exact discrete timemodel is bigger than that
based on the Euler and the trapezoidal approximation. For exam-
ple, for the estimator based on the trapezoidal approximation, con-
sidering ν = O(h2) as h → 0, when the model is the OU process
with an unknown mean,BIAS(κ̂ML)

− BIAS(κ̂2)
=

5 + 2eκh + e2κh

2T
−

 8
T (1 + e−κh)

+ v

+ o(T−1)

=
5 + 2eκh + e2κh

2T
−

8
T (1 + e−κh)

− v + o(T−1)

=
(1 − φ)2(1 + 5φ)

2Tφ2(1 + φ)
− v + o(T−1)

> 0. (4.36)

Using the same method, it is easy to prove the result still holds for
the OU process with an knownmean. Similarly, onemay show thatBIAS(κ̂ML)

− BIAS(κ̂1) > 0,

in both models.

Remark 4.8. The two approximate estimators reduce the total bias
over the exact ML and also the asymptotic variance when κ > 0.
This is because

AsyVar(κ̂ML)− AsyVar(κ̂1) =
1 − φ2

Thφ2
−

1 − φ2

Th
> 0 (4.37)

and

AsyVar(κ̂ML)− AsyVar(κ̂2) =
1 − φ2

Thφ2
−

16(1 − φ)

Th(1 + φ)3
(4.38)

=
(1 − φ)3

Thφ2


φ2

+ 6φ + 1


(1 + φ)3
> 0.

(4.39)

In consequence, the two approximate methods are preferred to
the exact ML for estimating the mean reversion parameter in the
univariate setting. Of course, the two approximate methods do
NOT improve the asymptotic efficiency of the MLE. This is because
the asymptotic variance of theMLE is based on large T asymptotics
whereas the asymptotic variance of κ̂1 and κ̂2 is based on large n
asymptotics and the two approximate estimators are inconsistent
with fixed h. Nevertheless, Eqs. (4.22) and (4.30) seem to indicate
that in finite (perhaps very large finite) samples, the inconsistent
estimators may lead to smaller variances than the MLE, which will
be verified by simulations.

Remark 4.9. Comparing Theorems 4.2 and 4.3, it is easy to see
the estimator (4.28) based on the trapezoidal approximation leads
to a smaller discretization bias than the estimator (4.20) based
on the Euler approximation. However, when κh > 0 and hence
φ = e−κh

∈ (0, 1), the gain in the discretization error is earned
at the expense of an increase in the estimation error. For the OU
process with an unknown mean,

estimation bias (κ̂2)− estimation bias (κ̂1)

=
8

T (1 + e−κh)
−

1 + 3e−κh

T
+ o(T−1)

=
(1 − φ)(7 + 3φ)

T (1 + φ)
+ o(T−1) > 0. (4.40)

Similarly, for the OU process with a known mean,

estimation bias (κ̂2)− estimation bias (κ̂1)

=
4

T (1 + e−κh)
−

2e−κh

T
+ o(T−1)

=
(1 − φ)(4 + 2φ)

T (1 + φ)
+ o(T−1) > 0. (4.41)

Since the sign of the discretization bias is opposite to that of the
estimation bias, and the trapezoidal rule makes the discretization
bias closer to zero than the Euler approximation, we have the
following result in both models.BIAS(κ̂2)− BIAS(κ̂1) > 0.

Remark 4.10. The estimator based on the Euler method leads not
only to a smaller bias but also to a smaller variance than that based
on the trapezoidal method when κ > 0. This is because

AsyVar(κ̂2)− AsyVar(κ̂1) =
16(1 − φ)

Th(1 + φ)3
−

1 − φ2

Th

=
(1 − φ)2(3 + φ)[4 + (1 + φ)2]

Th(1 + φ)3
> 0. (4.42)

In consequence, the Euler method is preferred to the trapezoidal
method and exactML for estimating themean reversion parameter
in the univariate setting.

5. Bias in general univariate models

5.1. Univariate square root model

The square root model, also known as the Cox et al. (1985) (CIR
hereafter) model, is of the form

dX(t) = κ(µ− X(t))dt + σ

X(t)dW (t). (5.1)

If 2κµ/σ 2 > 1, Feller (1951) showed that the process is stationary,
the transitional distribution of cXt given Xt−1 is non-central χ2

ν (λ)

with the degree of freedom ν = 2κµσ−2 and the non-central
component λ = cXt−1e−κh, where c = 4κσ−2(1 − e−κh)−1. Since
the non-central χ2-density function is an infinite series involving
the central χ2 densities, the explicit expression of the MLE for
θ = (κ, µ, σ ) is not attainable.

To obtain a closed-form expression for the estimator of θ , we
follow Tang and Chen (2009) by using the estimator of Nowman.
The Nowman discrete time representation of the square root
model is
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Xt = φ1Xt−1 + (1 − φ1)µ+ σ


Xt−1

1 − φ2
1

2κ
ϵt , (5.2)

where φ1 = e−κh, ϵt ∼ iid N(0, 1) and h is the sampling interval.
Hence, Nowman’s estimator of κ is

κ̂Nowman = −
1
h
ln(φ̂1), (5.3)

where

φ̂1 =

n−2
n∑

t=1
Xt

n∑
t=1

X−1
t−1 − n−1

n∑
t=1

XtX−1
t−1

n−2
n∑

t=1
Xt−1

n∑
t=1

X−1
t−1 − 1

. (5.4)

For the stationary square root process, Tang and Chen (2009) de-
rived explicit expressions to approximate E(φ̂1 − φ1) and Var(φ̂1).
Using the following relations,

E(κ̂Nowman − κ) = −
1
h

[
1
φ1

E(φ̂1 − φ1)

−
1

2φ2
1
E(φ̂1 − φ1)

2
+ O(n−3/2)

]
, (5.5)

and

Var(κ̂Nowman) =
1

h2φ2
1
[Var(φ̂1)+ O(n−2)], (5.6)

they further obtained the approximations to E(κ̂Nowman − κ) and
Var(κ̂Nowman). With a fixed h and n → ∞ they derived the asymp-
totic distribution of

√
n(κ̂Nowman−κ). The fact that themean of the

asymptotic distribution is zero implies that the Nowman method
causes no discretization bias for estimating κ .

The estimator of κ based on the Euler approximation also has
a closed form expression under the square root model. The Euler
discrete time model is

Xt = φ2Xt−1 + (1 − φ2)µ+ σ

Xt−1hϵt , (5.7)

where φ2 = (1 − κh). Hence, the Euler scheme estimator of κ is

κ̂Euler = −
1
h
(φ̂2 − 1), (5.8)

where

φ̂2 =

n−2
n∑

t=1
Xt

n∑
t=1

X−1
t−1 − n−1

n∑
t=1

XtX−1
t−1

n−2
n∑

t=1
Xt−1

n∑
t=1

X−1
t−1 − 1

. (5.9)

Obviously φ̂2 = φ̂1. Hence, κ̂Euler = −
1
h (φ̂1 − 1). Considering

φ1 = e−κh
= 1 − κh +

∑
∞

i=2(−κh)
i/i!, the finite sample bias

for κ̂Euler can be expressed as

E(κ̂Euler − κ) = −
1
h
E(φ̂1 − φ1)−

1
h
H, (5.10)

where

−
1
h
H = −

1
h

∞−
i=2

(−κh)i/i! = O(h), as h → 0, (5.11)

which is the discretization bias caused by discretizing the drift
function. Since the asymptotic mean of

√
n(φ̂1 − φ1) and hence

the asymptotic mean of
√
n(κ̂Euler − κ +

1
hH) is zero for a fixed

h and n → ∞, the Euler discretization of the diffusion function
introduces no discretization bias to κ under the square root model.
Furthermore, the finite sample variance for κ̂Euler is

Var(κ̂Euler) =
1
h2

Var(φ̂1). (5.12)

If κ > 0, φ1 = e−κh < 1. When h is fixed, we have

Var(κ̂Nowman) =
1

h2φ2
1


Var(φ̂1)+ O(n−2)


>

1
h2

Var(φ̂1)

= Var(κ̂Euler), (5.13)
leading to

Var(κ̂Euler)
Var(κ̂Nowman)

= φ2
1 + O(n−1) < 1. (5.14)

According to (5.14), the Euler scheme always gains over Nowman’s
method in terms of variance. The smaller is φ1, the larger the gain.

Tang and Chen (2009) obtained a bias formula of E(φ̂1 − φ1)
for the Nowman estimator under the square root model. Unfor-
tunately, the expression is too complex to be used to determine
the sign of the bias analytically. However, the simulation results
reported in the literature (Phillips and Yu, 2009a,b, for example)
and in our own simulations reported in Section 6 suggest that
E(κ̂Euler − κ) > 0. Since H > 0, (5.10) implies that

E(φ̂1 − φ1) < 0,

and the estimation bias−
1
hE(φ̂1−φ1) dominates the discretization

bias −
1
hH in the Euler approximation. Consequently, the negative

discretization bias−
1
hH reduces the total bias in the Euler method.

Consequently, the bias in κ̂Nowman is larger than that in κ̂Euler
because
E(κ̂Nowman − κ)

= −
1
h

[
1
φ1

E(φ̂1 − φ1)−
1

2φ2
1
E(φ̂1 − φ1)

2
+ O(n−3/2)

]
≥ −

1
h

1
φ1

E(φ̂1 − φ1)

≥ −
1
h
E(φ̂1 − φ1)−

1
h
H = E(κ̂Euler − κ). (5.15)

The Milstein scheme is another popular approximation ap-
proach. For the square root model, the discrete time model ob-
tained by the Milstein scheme is given by

Xt = Xt−1 + κ(µ− Xt−1)h + σ

Xt−1hϵt +

1
4
σ 2h


ϵ2t − 1


.(5.16)

Let a = σ
√
Xt−1h, b =

1
4σ

2h, Yt = Xt−Xt−1−κ(µ−Xt−1)h+ 1
4σ

2h,
then Eq. (5.16) can be represented by

Yt = aϵt + bϵ2t = b
[
ϵt +

a
2b

2
−

a2

4b2

]
. (5.17)

Since ϵt ∼ iid N(0, 1), Z =

ϵt +

a
2b

2 follows a noncentral χ2

distributionwith 1 degree of freedomand noncentrality parameter
λ =

a2

4b2
. Elerian (1998) showed that the density of Z may be

expressed as

f (z) =
1
2
exp


−
λ+ z
2

 z
λ

−1/4
I−1/2

√
λz

, (5.18)

where

I−1/2(x) =


2
x

∞−
i=0

(x/2)2i

i!Γ (j + 0.5)
=


1

2πx
{exp(x)+ exp(−x)}.

This expression may be used to compute the log-likelihood func-
tion of the approximate model (5.16). Unfortunately, the ML esti-
mator does not have a closed form expression and it is therefore
difficult to examine the relative performance of the bias and the
variance using analytic methods. The performance of the Milstein
scheme is therefore compared to other methods in simulations.
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5.2. Diffusions with linear drift

We consider the following general diffusion process with a lin-
ear drift
dX(t) = κ(µ− X(t))dt + σq(X(t);ψ)dW (t), (5.19)
as a generalization to the Vasicek and the square root models,
where σq(X(t);ψ) is a general diffusion functionwith parameters
ψ , and θ = (κ, µ, σ , ψ) ∈ Rd is the unknown parameter vector.
This model include the well known Constant Elasticity of Variance
(CEV)model, such as the Chan et al. (1992, CKLS)model, as a special
case. In this general case, the transitional density is not analytically
available.

The Nowman approximate discrete model is

Xt = φ1Xt−1 + (1 − φ1)µ+ σq(Xt−1;ψ)


1 − φ2

1

2κ
ϵt , (5.20)

The Euler approximate discrete model is

Xt = φ2Xt−1 + (1 − φ2)µ+ σq(Xt−1;ψ)
√
hϵt . (5.21)

Theorem 5.1. For Model (5.19), the MLE of κ based on the Nowman
approximation is

κ̂Nowman = −
1
h
ln(φ̂1), (5.22)

where φ̂1 is the ML estimator for φ1 in (5.20). The MLE of κ based on
the Euler approximation is

κ̂Euler = −
1
h
(φ̂2 − 1), (5.23)

where φ̂2 is the ML estimator for φ2 in (5.21). Then we have

φ̂2 = φ̂1. (5.24)

Remark 5.1. The ML estimator of φ1 does not have a closed-form
expression. Neither does the ML estimator of φ2. So numerical
calculations are needed for comparisons. However, according to
Theorem 5.1, even without a closed-form solution, we can still
establish the equivalence of φ̂1 and φ̂2. After φ̂1 and φ̂2 are found
numerically, onemay find the estimators of κ byusing the relations
κ̂Nowman = −

1
h ln(φ̂1) and κ̂Euler = −

1
h (φ̂2 − 1).

To compare the magnitude of the bias in κ̂Nowman to that of
κ̂Euler, no general analytic result is available. However, under some
mild conditions, comparison is possible. In particular, wemake the
following three assumptions. Assumption 1: φ̂1 −φ1 ∼ Op(n−1/2);
Assumption 2: E(φ̂1 − φ1) < 0; Assumption 3: −

1
hE(φ̂1 − φ1) >

−
1
hH , i.e., the estimation bias dominates the discretization bias in

Euler approximation. Under Assumption 1, we get

E(κ̂Nowman − κ) = −
1
h

[
1
φ1

E(φ̂1 − φ1)

−
1

2φ2
1
E(φ̂1 − φ1)

2
+ O(n−3/2)

]
, (5.25)

Var(κ̂Nowman) =
1

h2φ2
1
[Var(φ̂1)+ O(n−2)], (5.26)

E(κ̂Euler − κ) = −
1
h
E(φ̂1 − φ1)−

1
h
H, (5.27)

and

Var(κ̂Euler) =
1
h2

Var(φ̂1), (5.28)

where H =
∑

∞

i=2(−κh)
i/i! = O(h2).
If κ > 0, κ̂Euler has a smaller finite sample variance than κ̂Nowman
because

Var(κ̂Nowman) =
1

h2φ2
1


Var(φ̂1)+ O(n−2)


≥

1
h2

Var(φ̂1)

= Var(κ̂Euler). (5.29)

Under Assumptions 1–3, κ̂Euler has a smaller bias than κ̂Nowman
because

E(κ̂Nowman − κ)

= −
1
h

[
1
φ1

E(φ̂1 − φ1)−
1

2φ2
1
E(φ̂1 − φ1)

2
+ O(n−3/2)

]
≥ −

1
h

1
φ1

E(φ̂1 − φ1)

≥ −
1
h
E(φ̂1 − φ1)−

1
h
H = E(κ̂Euler − κ). (5.30)

6. Simulation studies

6.1. Linear models

To examine the performance of the proposed bias formulae
and to compare the two alternative approximation scheme in
multivariate diffusions,we estimate κ = −A in the bivariatemodel
with a known mean:

dXt = AXtdt +ΣdWt , X0 = 0, (6.1)

where Wt is the standard bivariate Brownian motion whose com-
ponents are independent, and

Xt =


X1t
X2t


, κ = −A =


κ11 0
κ21 κ22


,

and Σ =


σ11 0
0 σ22


.

Since A is triangular, the parameters are all identified. While keep-
ing other parameters fixed, we let κ22 take various values over the
interval (0, 3], which covers empirically reasonable values of κ22
that apply for data on interest rates and volatilities. The mean re-
version matrix is estimated with 10 years of monthly data. The ex-
periment is replicated 10,000 times. Both the actual total bias and
the actual standard deviation are computed across 10,000 replica-
tions. The actual total bias is split into two parts – discretization
bias and estimation bias – as follows. The estimation bias is calcu-
lated asH/h and−v as in (3.13) and (3.21) for the two approximate
methods. The estimation bias is calculated as:

estimation bias = actual total bias − discretization bias

Fig. 1 plots the biases of the estimate of each element in the
mean reversion matrix κ , based on the Euler method, as a function
of the true value of κ22. Four biases are plotted, the actual total
bias, the approximate total bias given by the formula in (3.13), the
discretization bias H/h as in (3.13), and the estimation bias.

Several features are apparent in the figure. First, the actual total
bias in all cases is large, especially when the true value of κ22 is
small. Second, except for κ12 whose discretization bias is zero, the
sign of the discretization bias for the other parameters is opposite
to that of the estimation bias. Not surprisingly, in these cases, the
actual total bias of estimator (3.10) is smaller than the estimation
bias. The discretization bias for κ12 is zero because it is assumed
that the true value is zero. In the bivariate set-up, however, it
is possible that the sign of the discretization bias for the other
parameters is the same as that of the estimation bias (for example
when κ12 = 5 and κ21 = −0.5). Third, the bias in all parameters
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Fig. 1. The bias of the elements in Â in Model (6.1) as a function of κ22 at the monthly frequency and T = 10. The estimates are obtained from the Euler method. The solid
line is the actual total bias; the broken line is the approximate total bias according to the formula (3.13); the dashed line is the discretization bias H/h; the point line is the
estimation bias. The true value for κ11 , κ12 , and κ21 is 0.7, 0, and 0.5, respectively.
Fig. 2. The bias of the elements in Â in Model (6.1) as a function of κ22 at the monthly frequency and T = 10. The estimates are obtained from the trapezoidal method. The
solid line is the actual total bias; the broken line is the approximate bias according to the formula (3.13); the dashed line is the discretization bias −v; the point line is the
estimation bias. The true value for κ11 , κ12 , and κ21 is 0.7, 0, and 0.5, respectively.



X. Wang et al. / Journal of Econometrics 161 (2011) 228–245 239
Fig. 3. The bias of the elements in Â in Model (6.1) as a function of κ22 at the monthly frequency and T = 10. The estimates are obtained from the Euler and the trapezoidal
methods, respectively. The solid line is the actual total bias for the Euler method; the broken line is the actual total bias for the trapezoidal method. The true value for κ11 ,
κ12 , and κ21 is 0.7, 0, and 0.5, respectively.
is sensitive to the true value of κ22. Finally, the bias formula (3.13)
generally works well in all cases.

Fig. 2 plots the biases of the estimate of each element in the
mean reversion matrix κ , based on the trapezoidal method, as a
function of the true value of κ22. Four biases are plotted, the actual
total bias, the approximate total bias given by the formula in (3.21),
the discretization bias−ν as in (3.21), and the estimation bias. In all
cases, the discretization bias is closer to zero than that based on the
Euler approximation. This suggests that the trapezoidal method
indeed reduces the discretization bias. Moreover, the bias formula
(3.21) generally works well in all cases.

The performance of the two approximation methods is com-
pared in Fig. 3, where the actual total bias of the estimators given
by (3.10) and (3.20) is plotted. It seems that the bias of the esti-
mator obtained from the trapezoidal approximation is larger than
that from the Euler approximation for all parameters except κ12.
For κ12, the performance of the two methods are very close with
the Euler method being slightly worse when κ22 is large.

Fig. 4 plots the actual standard deviations for the two approx-
imate estimators, (3.10) and (3.20) as a function of κ22. We notice
that, for all the parameters, the standard deviation of the Euler
method is smaller than that of the trapezoidal method. The per-
centage difference can be as high as 20%.

We also design an experiment to check the performance of the
alternative estimators in the univariate case. Data are simulated
from the univariate OU process with a known mean

dX(t) = −κX(t)dt + σdW (t), X(0) = 0. (6.2)

Fig. 5 reports the bias inκ obtained from the Euler method and
the trapezoidal method in the OU process with a known mean.
Three biases are plotted: the actual total bias, the estimation bias
and the discretization bias. Fig. 6 compares the bias inκ obtained
from the exact ML methods with that of the two approximate
methods. Several conclusions may be drawn from these two
Figures. First, our bias formula provides a good approximation to
the actual total bias. Second, for the two approximate estimators,
(4.20) and (4.28), the sign of the discretization bias is opposite to
that of the estimation bias. Third, while the trapezoidal method
leads to a smaller discretization bias than the Euler method, it has
a larger estimation bias. Finally, the actual total bias for the Euler
method is smaller than that of the trapezoidal method and both
methods lead to a smaller total bias than the exact ML estimator
(4.13).

Fig. 7 reports the standard deviations for estimators (4.13),
(4.20) and (4.28). It is easy to find that the standard deviations
of estimator (4.20) is the smallest among those of all estimators.
The standard deviations of estimator (4.28) are almost the same
with those from the exact ML estimator (4.13), but smaller when
κ is bigger than 1. Considering the sample size is 120, we can
roughly say that, focusing on bias and standard deviation, the
estimator (4.20) from the Euler approximation is better than the
other estimators in comparatively small sample sizes.

6.2. Square root model

For the square root model, we designed an experiment to com-
pare the performance of the various estimationmethods, including
the exact ML, the Euler scheme, the Nowman scheme and the Mil-
stein scheme. In all cases we fix h = 1/12, T = 120, µ = 0.05,
σ = 0.05, but vary the value of κ from 0.05 to 0.5. These settings
correspond to 10 years of monthly data in the estimation of κ . The
experiment is replicated 10,000 times.
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Fig. 4. The standard deviation of the elements in Â in Model (6.1) as a function of κ22 at the monthly frequency and T = 10. The estimates are obtained from the Euler and
the trapezoidal methods, respectively. The solid line is the standard deviation for the Euler method; the broken line is the standard deviation for the trapezoidal method.
The true value for κ11 , κ12 , and κ21 is 0.7, 0, and 0.5, respectively.
Fig. 5. The bias of the κ estimates in the univariate model as a function of κ at the monthly frequency and T = 10 for the two approximate methods. The left panel is for
the Euler method and the right panel is for the trapezoidal method. The solid line is the actual total bias; the dashed line is the approximate total bias; the dotted line is the
estimation bias; the broken line is the discretization bias.
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Fig. 6. The actual total bias of the κ estimates in the univariate model as a function
of κ at themonthly frequency and T = 10 for the two approximatemethods and the
exact ML. The solid line is for the exact ML; the dashed line is for the Euler method;
the broken line is for the trapezoidal method.

Fig. 7. The standard deviation of the κ estimates in the univariate model as a
function of κ at the monthly frequency and T = 10. The solid line is for the exact
ML; the broken line is for the Euler method; the dotted line is for the trapezoidal
method.

Table 1 reports the bias, the standard error (Std err), and the
root mean square error (RMSE) of κ for all estimation methods,
obtained across 10,000 replications. Several conclusions emerge
from the table. First, all estimation methods suffer from a serious
bias problem. Second, the Euler scheme performs best both in
terms of bias and variance. Third, the ratios of the standard error ofκEuler and that ofκNorman are 0.9958, 0.9917, 0.9835, 0.9592when κ
is 0.05, 0.1, 0.2, 0.5, respectively. The ratio decreases as κ increases,
as predicted in (5.14). Finally, although the bias for the Milstein
method is larger than that for the Euler method, the variances for
these two methods are very close.

7. Conclusions

This paper provides a framework for studying the implications
of different discretization schemes in estimating the mean rever-
sion parameter in both multivariate and univariate diffusion mod-
els with a linear drift function. The approach includes the Euler
method and the trapezoidal method as special cases, an asymp-
totic theory is developed, and finite sample bias comparisons are
conducted using analytic approximations. Bias is decomposed into
Table 1
Exact and approximate ML estimation of κ from the square root model using 120
monthly observations. The experiment is replicated 10,000 times.

Method Exact Euler Nowman Milstein

κ = 0.05

Bias 0.1156 0.1126 0.1152 0.1132
Std err 0.2251 0.2205 0.2249 0.2206
RMSE 0.2531 0.2476 0.2526 0.2480

κ = 0.1

Bias 0.1392 0.1342 0.1387 0.1350
Std err 0.2670 0.2590 0.2668 0.2592
RMSE 0.3011 0.2917 0.3007 0.2922

κ = 0.2

Bias 0.1615 0.1529 0.1610 0.1538
Std err 0.3178 0.3070 0.3178 0.3068
RMSE 0.3565 0.3430 0.3562 0.3432

κ = 0.5

Bias 0.1869 0.1625 0.1862 0.1639
Std err 0.4210 0.3999 0.4209 0.3993
RMSE 0.4607 0.4317 0.4603 0.4316

a discretization bias and an estimation bias. It is shown that the dis-
cretization bias is of order O(h) for the Euler method and O(h2) for
the trapezoidal method, respectively, whereas the estimation bias
is of the order of O(T−1). Since in practical applications in finance
it is very likely that h is much smaller than 1/T , estimation bias is
likely to dominate discretization bias.

Applying the multivariate theory to univariate models gives
several new results. First, it is shown that in the Euler and trape-
zoidal methods, the sign of the discretization bias is opposite that
of the estimation bias for practically realistic cases. Consequently,
the bias in the two approximate method is smaller than the ML es-
timator based on the exact discrete time model. Second, although
the trapezoidal method leads to a smaller discretization bias than
the Euler method, the estimation bias is bigger. As a result, it is not
clear if there is a gain in reducing the total bias by using a higher
order approximation.When comparing the estimator based on the
Euler method and the exact ML, we find that the asymptotic vari-
ance of the former estimator is smaller. As a result, there is clear
evidence for preferring the estimator based on the Euler method
to the exact ML in the univariate linear diffusion when the mean
reversion is slow.

Simulations suggest the bias continues to be large in finite
samples. It is also confirmed that for empirically relevant cases,
the magnitude of the discretization bias in the two approximate
methods is much smaller than that of the estimation bias. The two
approximate methods lead to a smaller variance than exact ML.
Most importantly for practical work, there is strong evidence that
the bias formulae work well and so they can be recommended for
analytical bias correction with these models.

For the univariate square root model, the Euler method is
found to have smaller bias and smaller variance than the Now-
man method. Discretizing the diffusion function both in the Euler
method and the Nowman method causes no discretization bias on
the mean reversion parameter. For the Euler method, we have de-
rived an explicit expression for the discretization bias caused by
discretizing the drift function. The simulation results suggest that
the Euler method performs best in terms of both bias and variance.

The analytic and expansion results given in the paper are ob-
tained for stationary systems. Bias analysis for nonstationary and
explosive cases require different methods. For diffusion models
with constant diffusion functions, it may be possible to extend
recent finite sample and asymptotic expansion results for the
discrete time AR(1) model (Phillips, 2010) to a continuous time
setting. Such an analysis would involve a substantial extension of
the present work and deserves treatment in a separate study.
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Appendix

Proof of Lemma 3.3. Let C = F ′ and then
∞−
t=0

F ′k
= (I − F ′)−1

= (1 − C), (A.1)

∞−
k=0

F ′k tr(F k+1) =

∞−
k=0

F ′k
−

λ∈spec(F)

λk+1

=

−
λ∈spec(F)


λ

∞−
k=0

λkF ′k



=

−
λ∈spec(C)


λ

∞−
k=0

λkCk


=

−
λ∈spec(C)

λ(I − λC)−1, (A.2)

where Spec(C) denotes the set of eigenvalues of C . Thus,

∞−
k=0

F ′2k+1
=

∞−
k=0

C2k+1
= C(I − C2)−1, (A.3)

Γ (0) = Var(xt) =

∞−
i=0

F i
· G · F ′i

= D, (A.4)

Bn = BIAS(F̂) = E(F̂)− F = −
b
n

+ O(n−
3
2 ). (A.5)

Proof of Theorem 3.1. By Lemma 3.1, for fixed h, as n → ∞,
F̂

p
→ F . Hence,

Â − A =
1
h
[F̂ − F ] +

1
h
H

p
→

1
h
H.

From Eq. (3.8), 1
hH =

1
h [F − I − Ah] = O(h) as h → 0, proving the

first part.
(b) According to Lemma 3.1, fixed h, as n → ∞,
√
n{Vec(F̂)− Vec(F)}

d
→ N(0, (Γ (0))−1

⊗ G),
√
nhVec[Â −

1
h
(F − I)] =

√
nVec[Âh − (F − I)]

=
√
nVec[F̂ − F ]

d
→ N(0, (Γ (0))−1

⊗ G),

giving the second part. �

Proof of Theorem 3.2. According to formulae (3.8), (3.9) and
Lemma 3.3,

E(Â − A) =
1
h
E(F̂ − F)+

1
h
H =

1
h
E


−b
n

+ O(n−3/2)


+

1
h
H

= −
b
T

+
1
h
H + o(T−1). �

Proof of Theorem 3.3a. From formulae (3.19),
Â − A =
2
h
(F̂ − I)(F̂ + I)−1

−
2
h
(F − I)(F + I)−1

− ν

=
2
h
(F̂ + I − 2I)(F̂ + I)−1

−
2
h
(F − I)(F + I)−1

− ν

=
2
h
[I − 2(F̂ + I)−1

] −
2
h
[I − 2(F + I)−1

] − ν

= −
4
h
[(F̂ + I)−1

− (F + I)−1
] − ν

=
4
h
(I + F)−1(F̂ − F)(I + F̂)−1

− ν. (A.6)

As h is fixed, according Lemma 3.1, as n → ∞, F̂
p

→ F , the first
part of above equation goes to zero. And from formula (3.19),

Â − A
p

→ −ν =
2
h
(F − I)(F + I)−1

− A. �

Proof of Theorem 3.3b.

Vec(Â − A + ν) = Vec
[
Â −

2
h
(F − I)(F + I)−1

]
=

4
h
Vec[(I + F)−1(F̂ − F)(I + F̂)−1

]

=
4
h
{(F̂ ′

+ I)−1
⊗ (F + I)−1

}Vec(F̂ − F).

Again when h is fixed, according to Lemma 3.1, as n → ∞,
√
n(F̂ − F)

d
→ N(0,Γ (0)−1

⊗ G), and we get

h
√
nVec[Â −

2
h
(F − I)(F + I)−1

]
d

→ N(0,Ψ ),

where

Ψ = 16Υ [Γ (0)−1
⊗ G]Υ ′, Υ = (F ′

+ I)−1
⊗ (F + I)−1. �

Proof of Theorem 3.4. From the proof of Theorem 3.3, we have

E[Â] − A = −
4
h
E[(F̂ + I)−1

− (F + I)−1
] − ν

= −
4
h
E[(F̂ + I)−1

] +
4
h
(F + I)−1

− ν.

For the first term, we note that

(F̂ + I)−1
= (I + F + F̂ − F)−1

= [(I + F)(I + (I + F)−1(F̂ − F))]−1

= [I + (I + F)−1(F̂ − F)]−1(I + F)−1,

and

[I + (I + F)−1(F̂ − F)]−1
=

∞−
i=0

(−1)i[(I + F)−1(F̂ − F)]i

= I − (I + F)−1(F̂ − F)+ [(I + F)−1(F̂ − F)]2

+

∞−
i=3

(−1)i[(I + F)−1(F̂ − F)]i.

By Lemma 3.1, we have
√
n[Vec(F̂)− Vec(F)]

d
→ N(0,Γ (0)−1

⊗ G),

and so,

F̂ij − Fij = OP


n−

1
2


.

Then,
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[(I + F)−1(F̂ − F)]3 = Op


n−

3
2


and [(I + F)−1(F̂ − F)]i = op


n−

3
2


, i ≥ 3,

[I + (I + F)−1(F̂ − F)]−1
= I − (I + F)−1(F̂ − F)

+ [(I + F)−1(F̂ − F)]2 + Op


n−

3
2


,

and

E[Â − A] = −
4
h
E{[I + (I + F)−1(F̂ − F)−1

]}(I + F)−1

+
4
h
(F + I)−1

+ O(h2)

=
4
h
E{(I + F)−1(F̂ − F)(I + F)−1

}

−
4
h
E{[(I + F)−1(F̂ − F)]2(I + F)−1

}

+
1
h
O

n−

3
2


− ν.

Now let ĝ = [(I + F)−1(F̂ − F)], so that
√
n · Vec[ĝ] =

√
n · Vec[(I + F)−1(F̂ − F)]

= [IM ⊗ (I + F)−1
]
√
nVec(F̂ − F)

d
→ N(0,∆),

where∆ = [IM ⊗ (I + F)−1
] · Γ (0)−1

⊗ G · [IM ⊗ (I + F)−1
]
′. As a

result,

Var
√

n · Vec(ĝ)


= ∆+ o(1) → Var[Vec(ĝ)] =
∆

n
+ o(n−1),

and

E[Vec(ĝ) · Vec(ĝ)′] = Var[Vec(ĝ)] + E[Vec(ĝ)] · E[Vec(ĝ)]′

=
∆

n
+ E[Vec(ĝ)] · E[Vec(ĝ)]′ + o(n−1).

From Lemma 3.3,

Bn = E(F̂)− F = −
b
n

+ O

n−

3
2


.

When the exact discretemodel involves an unknown B(θ)we have

b = G


(I − C)−1

+ C(I − C2)−1
+

−
λ∈Spec(C)

λ(I − λC)−1


Γ (0)−1,

and when we have a prior knowledge that B(θ) = 0 in (2.2), we
have

b = G[C(I − C2)−1
+

−
λ∈Spec(C)

λ(I − λC)−1
]Γ (0)−1.

Then

E[Vec(ĝ)] = E[(IM ⊗ (I + F)−1)Vec(F̂ − F)]

= [IM ⊗ (I + F)−1
]E[Vec(F̂ − F)]

= [IM ⊗ (I + F)−1
]Vec[E(F̂ − F)]

= [IM ⊗ (I + F)−1
]Vec

[
−

b
n

+ O

n−

3
2

]
= O(n−1)

→ E[Vec(ĝ)Vec(ĝ)′] =
∆

n
+ o(n−1).

Here we assume Ŵ = [(I + F)−1(F̂ − F)]2 = ĝ ĝ and Ŵij =∑M
s=1 ĝisĝsj. It is easy to find that ĝis is the (M(s− 1)+ i)th element

of Vec(ĝ), and ĝisĝsj is the (M(s − 1)+ i,M(j − 1)+ s)th element
of Vec(ĝ)Vec(ĝ)′. Defining ei to be the column vector of dimension
M2 whose ith element is 1 and other elements are 0, we have

E[ĝisĝsj] = e′

M(s−1)+iE[Vec(ĝ)Vec(ĝ)′]eM(j−1)+s

=
1
n
e′

M(s−1)+i ·∆ · eM(j−1)+s + o(n−1),

E[Ŵij] =

M−
s=1

E[ĝisĝsj]

=

M−
s=1

1
n
e′

M(s−1)+i ·∆ · eM(j−1)+s + o(n−1).

Next, define the matrix Lwith (i, j) element

Lij =
1
n

M−
s=1

e′

M(s−1)+i ·∆ · eM(j−1)+s.

Then

E{[(I + F)−1(F̂ − F)]2} = E(Ŵ ) = L + o(n−1).

Again, using Lemma 3.3, the formula for the estimation bias is

E[Â − A] =
4
h
E{(I + F)−1(F̂ − F)(I + F)−1

}

−
4
h
E{[(I + F)−1(F̂ − F)2](I + F)−1

}

+
1
h
O

n−

3
2


− ν

=
4
h
(I + F)−1

[
−

b
n

+ O

n−

3
2

]
(I + F)−1

−
4
h

· L · (I + F)−1
+

1
h
o(n−1)+

1
h
O

n−

3
2


− ν

= −
4
T
(I + F)−1

· b · (I + F)−1
−

4
h

· L · (I + F)−1

− ν + o(T−1). �

Proof of Theorem 4.1. Using (4.8) and (4.9) in (4.7), we have
n−

t=1

1
h
(Xt − Xt−1)V ′

t =
1
2h

n−
t=1

XtX ′

t−1 −
1
2h

n−
t=1

Xt−1X ′

t−1

+
1
2h

n−
t=1

XtX ′

t−1


n−

t=1

Xt−1X ′

t−1

−1 n−
t=1

Xt−1X ′

t

−
1
2h

n−
t=1

Xt−1X ′

t

=
1
2h

 n−
t=1

XtX ′

t−1


n−

t=1

Xt−1X ′

t−1

−1

− I

+


n−

t=1

XtX ′

t−1


n−

t=1

Xt−1X ′

t−1

−1  n−
t=1

Xt−1X ′

t



×


n−

t=1

Xt−1X ′

t−1

−1

−


n−

t=1

Xt−1X ′

t



×


n−

t=1

Xt−1X ′

t−1

−1
 n−

t=1

Xt−1X ′

t−1



=
1
2h

F̂ − I + F̂


n−

t=1

Xt−1X ′

t


n−

t=1

Xt−1X ′

t−1

−1
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−


n−

t=1

Xt−1X ′

t


n−

t=1

Xt−1X ′

t−1

−1
 n−

t=1

Xt−1X ′

t−1



=
1
2h
(F̂ − I)

I +

n−
t=1

Xt−1X ′

t


n−

t=1

Xt−1X ′

t−1

−1


×

n−
t=1

Xt−1X ′

t−1

=
1
2h
(F̂ − I)


n−

t=1

Xt−1X ′

t−1 +

n−
t=1

Xt−1X ′

t



=
1
2h
(F̂ − I)


n−

t=1

Xt−1X ′

t−1


(F̂ ′

+ I). (A.7)

By the same method, it is easy to obtain
n−

t=1

1
2
(Xt + Xt−1)V ′

t

−1

=


1
4
(F̂ + I)


n−

t=1

Xt−1X ′

t−1


(F̂ ′

+ I)

−1

. (A.8)

Using the above two formulae in (4.7), the two stage least squares
estimator is

Â =
2
h
(F̂ − I)(F̂ + I)−1. � (A.9)

Proof of Theorem 5.1. The Nowman approximate discrete time
model yields the following transition function

f (XiXi−1) =
[(1 − e−2κh)/2κ]−1/2

√
2πσg(Xi−1;ψ)

× exp

−

[Xi − φ1Xi−1 − (1 − φ1)µ]
2

2σ 2g2(Xi−1;ψ)(1 − e−2κh)/2κ


, (A.10)

and the following log-likelihood function

ℓ(θ) = −
n
2
ln(σ 2)−

n−
i=1

ln[g(Xi−1;ψ)] −
n
2
ln

1 − e−2κh

2κ



−

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ]
2

2σ 2g2(Xi−1;ψ)(1 − e−2κh)/2κ
. (A.11)

The first order conditions are

∂ℓ(θ)

∂µ
= 0 ⇒

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ]

g2(Xi−1;ψ)
= 0, (A.12)

∂ℓ(θ)

∂σ 2
= 0 ⇒ σ 2


1 − e−2κh

2κ


−

1
n

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ]
2

g2(Xi−1;ψ)
= 0, (A.13)

∂ℓ(θ)

∂κ
= 0 ⇒ 0 = −

n
2

[
2he−2κh

1 − e−2κh
−

1
κ

]
− he−κh

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ](Xi−1 − µ)

σ 2g2(Xi−1;ψ)(1 − e−2κh)/2κ

−

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ]
2

2σ 2g2(Xi−1;ψ)

×

[
2(1 − e−2κh)− 4κhe−2κh

(1 − e−2κh)2

]
(A.14)
and

∂ℓ(θ)

∂ψj
= 0 ⇒ 0 = σ 2 1 − e−2κh

2κ

n−
i=1

∂g(Xi−1;ψ)/∂ψj

g(Xi−1;ψ)

−

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ]
2

g2(Xi−1;ψ)

∂g(Xi−1;ψ)/∂ψj

g(Xi−1;ψ)
. (A.15)

Taking Eq. (A.13) into (A.14), the first term and the third term can-
cel and we obtain

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ](Xi−1 − µ)

g2(Xi−1;ψ)
= 0. (A.16)

Taking Eq. (A.13) into (A.15), we have

0 =
1
n

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ]
2

g2(Xi−1;ψ)

n−
i=1

∂g(Xi−1;ψ)/∂ψj

g(Xi−1;ψ)

−

n−
i=1

[Xi − φ1Xi−1 − (1 − φ1)µ]
2

g2(Xi−1;ψ)

∂g(Xi−1;ψ)/∂ψj

g(Xi−1;ψ)
. (A.17)

Eqs. (A.12), (A.16) and (A.17) yield the ML estimators, φ̂1, µ̂ and ψ̂
and Eq. (A.13) gives the ML estimator, σ̂ 2.

The Euler approximate discrete model yields the following log-
likelihood function,

ℓ(θ) = −
n
2
ln(σ 2)−

n−
i=1

ln[g(Xi−1;ψ)]

−

n−
i=1

[Xi − φ2Xi−1 − (1 − φ2)µ]
2

2σ 2hg2(Xi−1;ψ)
. (A.18)

It is easy to obtain the first order conditions, three of which are
identical to those in (A.12), (A.16) and (A.17). Hence,

φ̂2 = φ̂1. (A.19)
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