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Economic and econometric analysis of continuous-time affine asset pricing
models often necessitates solving systems of ordinary differential equations
(ODEs) numerically. Explicit Runge–Kutta (ERK) methods have been
suggested to solve these ODEs both in the theoretical finance literature
and in the financial econometrics literature. In this paper we show that
under many empirically relevant circumstances the ODEs involve stiffness,
a phenomenon which leads to some practical difficulties for numerical
methods with a finite region of absolute stability, including the whole class
of ERK methods. The difficulties are highlighted in the present paper in the
context of pricing zero-coupon bonds as well as econometric estimation of
dynamic term structure models via the empirical characteristic function. To
overcome the numerical difficulties, we propose to use implicit numerical
methods for the ODEs. The performance of these implicit methods relative
to certain widely used ERK methods are examined in the context of
bond pricing and parameter estimation. The results show that the implicit
methods greatly improve the numerical efficiency.

1 INTRODUCTION

“· · · around 1960, things became completely different and everyone
became aware that world was full of stiff problems.”

Dahlquist (1985)

When valuing financial assets in a continuous-time, arbitrage-free framework,
one often needs to find the numerical solution to a partial differential equation
(PDE) (examples include the Feynman–Kac PDE for bond prices; see Duffie
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(2001) for details and references). Given the fact that in many practically rel-
evant cases solving the PDE is computationally demanding and even becomes
impractical when the number of states is modestly large, considerable attention
has been paid to the class of affine asset pricing models where the risk-neutral
drift and volatility functions of the process for the state variables are affine. Under
the affine specification, many asset prices have either completely or nearly closed-
form expressions. Important examples from the first category include Black and
Scholes (1973) for pricing equity options, Vasicek (1977) and Cox, Ingersoll, and
Ross ((1985); hereafter CIR) for pricing bonds and bond options, and Heston
(1993) for pricing equity and currency options. Important examples from the
second category include Duffie and Kan (1996) for pricing bonds, Chacko and
Das (2002) for pricing interest derivatives, Bates (1996) for pricing currency
options, and Duffie et al (2000) for a treatment of very general pricing relations.
The solutions have nearly closed-form expressions in the sense that the PDE is
decomposed into a system of ordinary differential equations (ODEs) and hence
only a system of ODEs, as opposed to a PDE, has to be solved numerically.
Such decomposition greatly facilitates the numerical implementation of pricing
(Piazzesi (2003)).

Computational burdens are even heavier for econometric analysis of
continuous-time dynamic asset pricing models based on discretely sampled
observations. The reasons for this are: (i) the implied transition density of
discretely sampled observations are solutions to PDEs which have to be solved
numerically at every data point and at each iteration in the numerical optimizations
(examples include the apparent need to solve the Kolmogorov forward and
backward equations for the transition density in the maximum likelihood (ML)
approach; see Lo (1988) for details and references1); (ii) as argued above, the
asset prices themselves are numerical solutions to PDEs. However, the additional
affine specification of the drift and volatility functions of the state process under
the physical measure will greatly facilitate econometric estimation of continuous-
time models via the empirical characteristic function (ECF). In particular, in an
influential study Duffie et al (2000) showed that the conditional characteristic
function (CCF) of the state variable(s) and hence the CCF of the observable(s)
have nearly closed-form expressions for the class of affine models in the sense
that only a system of ODEs has to be solved, although the likelihood functions
are more difficult to obtain. Exploiting these nearly closed-form expressions of
CCF, Singleton (2001) proposed several estimation procedures based on the ECF
and CCF, circumventing the numerical problem in solving the PDEs. Yu (2004)
provides a detailed review of the literature on the estimation problem via the ECF.

Due to the specific functional form of the ODEs found in the literature (ie,
the so-called Ricatti equations), it is generally believed by many researchers
that these ODEs can be solved fast and numerically efficiently using traditional

1In a recent contribution, however, Aït-Sahalia and Kimmel (2003) showed that it is no
longer necessary to solve the Kolmogorov forward and backward equations to implement the
approximate ML approach of Aït-Sahalia (2003).
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numerical solvers for initial problems, such as explicit Runge–Kutta method.
Specifically, Piazzesi (2003) recommended the MATLAB command ode452 to
solve the ODEs.3 In spite of its high order of accuracy, like any other explicit
Runge–Kutta (ERK) method, ode45 has a finite region of absolute stability (see
Huang (2005) for a detailed discussion of stability of Runge–Kutta methods and
Butcher (2003) for a textbook treatment). The stability properties of numerical
methods are important for obtaining a good approximation to the true solution. As
is known, at each mesh point there are differences between the exact solution and
the numerical solution, known as the error. Sometimes the accumulation of the
error will cause instability and the numerical solution will no longer follow the
path of the true solution. Therefore, a method must satisfy the stability condition
so that the numerical solution will converge to the exact solution. In this paper,
we show that under many situations that are empirically relevant in finance, the
ODEs involve stiffness; that is, there are processes in the system with significantly
different time scales (Dahlquist and Björck (1974)). In the term structure of
interest rates literature, a typical finding in multi-factor models is that one factor
has a very slow mean reversion and another has a much faster reverting rate; see,
for example, Chen and Scott (1993), Geyer and Pichler (1999), and Jagannathan
et al (2003). Moreover, in the financial volatility literature, it is empirically found
that, when two volatility factors are used, one factor corresponds to the short
memory component which has a very fast decay rate and the other corresponds
to a long memory component which has a very slow decay rate; see, for example,
Chernov et al (2003) and Engle and Lee (1999). In both cases, the processes in
the system have very different time scales and hence exhibit stiffness. When an
explicit method is used to solve a stiff problem, a small stepsize has to be chosen
to ensure stability and hence the algorithm becomes numerically inefficient.

To address the problem of computational inefficiency of ERK methods for stiff
systems, this paper introduces implicit numerical methods which ensure the so-
called A-stability (that is, the stability region includes all of the left half-plane;
see Section 2 for the formal definition). In particular, we examine the performance
of two implicit methods in two different contexts. The two implicit methods
considered are an implicit Runge–Kutta method and an implicit linear multistep
method. In the first context we price zero-coupon bonds, while in the second
context we estimate an affine term structure model. While implicit methods have
received much attention in the recent numerical ODE literature (see Huang (2005)
for a survey on implicit methods) and have been extensively used in engineering,
physics, and chemistry (Aiken (1985)), to the best of our knowledge, we know of
no earlier application in the finance literature.

As the proposed implicit solvers have an unbounded stability region, the
stepsize can be large or small, depending on the degree of stiffness. This flexibility

2It is an order four embedded in order five Runge–Kutta method; see Shampine and Reichelt
(1997) for details.
3From personal communications, we have found that many researchers who are working in this
area have used ode45 to solve the Ricatti equations numerically.
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in the choice of the stepsize makes the procedures numerically more efficient than
the ERK methods when the underlying system involves stiffness. For example,
when a 20-year zero coupon bond is priced under a stiff three-factor model, we
find that an implicit method is about 70 times more efficient than ode45. More
details of this implementation and comparison are provided in Section 4.

Compared with the situation in asset pricing, the numerical efficiency would
be more of an issue in the econometric analysis of continuous-time affine models
via the ECF. This is because: (i) estimation requires numerical optimizations
and at each iteration in the numerical optimizations a system of ODEs has to
be solved numerically; (ii) pricing only requires solving one system of ODEs,
which is associated with the risk-neutral measure, to be solved whereas estimation
requires an additional system of ODEs, which is associated with the physical
measure, to be solved. Our finding indicates that, without sacrificing the statistical
efficiency of parameter estimates, the implicit methods substantially reduce the
computer time when a stiff two-factor CIR model and a three-factor affine model
are estimated.

This paper is organized as follows. Section 2 defines the stiffness for initial
value problems, reviews general approaches for non-stiff and stiff problems, and
discusses the stability properties of numerical solvers. Section 3 explains the
practical relevance of stiffness in the context of asset pricing and econometric
estimation. In Section 4 we compare the performance of implicit methods with
ERK methods in the two contexts. Section 5 concludes and outlines some further
applications of implicit methods.

2 STIFFNESS AND IMPLICIT METHODS

2.1 What is stiffness?

Any initial problem of ODEs can be classified into one of two types, non-stiff and
stiff. Although the difference between the two types of problems is not clear cut,
stiffness is widely found (Aiken (1985)) in many applied sciences such as robotics,
fluid dynamics, electric circuits, and chemical kinetics. However, to the best of
our knowledge, stiffness has not been reported in finance. Several attempts at a
rigorous definition of stiffness have been made in the numerical analysis literature.
In this paper, we follow the definition of Gear (1971, p. 209).

DEFINITION 1 Stiff differential equations are differential equations with greatly
differing time constants (ie, rates of decay).

Since, in a stiff system, some components of the solution decay much more
rapidly than the others, for a numerical method with a finite region of stability, we
are forced to use excessively small stepsizes in relation to the smoothness of the
solution, which inevitably decreases computational efficiency and accumulates
more machine roundoff error. As a result, stiffness leads to some practical
difficulties for explicit methods.
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To illustrate the problem, we consider the following simple, hypothetical
example,

dy1(t)

dt
= y1(t)− 2y2(t) (1)

dy2(t)

dt
= 1,001y1(t)− 1,002y2(t) (2)

with initial conditions y1(0)= 1 and y2(0)= −1. This linear system has the
following exact solution,

(
y1(t)

y2(t)

)
= 1,003

999

(
1
1

)
e−t − 2,002

999




2

1,001

1


 e−1,000t (3)

The component of the solution involving the term e−1,000t decays very fast
whereas the other component involving e−t decays very slowly. This feature can
obviously be captured by the Jacobian matrix of the ODEs

(
1 −2

1,001 −1,002

)

which has two distinct eigenvalues λ1 = −1, λ2 = −1,000, and hence the system
can be rotated into a system of two independent differential equations,

dz(t)

dt
= −z(t) (4)

dw(t)

dt
= −1,000w(t) (5)

To explain the numerical difficulty of explicit methods, we consider the explicit
Euler method (other explicit methods share the same spirit) and obtain

wn+1 = (1 − 1,000h)wn = (1 − 1,000h)n+1w(0) (6)

where h is the stepsize and wn+1 is the numerical approximation to w((n+ 1)h).
Note that the exact solution decays as t increases, thus the numerical solution
should do the same. This clearly requires that |1 − 1,000h|< 1 and hence 0<
h < 0.002 for a real value of h to fulfill the stability requirement. For this reason,
we say the explicit Euler method has a finite region of absolute stability. It is clear
that after a few steps, the magnitude of w(t) will be very small compared with
z(t) which still contains the significant information that we are interested in.

Formally, for a linear problem y ′(t)= λy(t) with λ < 0, the stability region of
the explicit Euler method is given by |1 + z| ≤ 1 where z= λL with L being a lag
operator. The stability region is plotted in Figure 1.

Stiffness can be understood in the following linear system

y ′(t)=My(t) (7)

www.journalofcomputationalfinance.com
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FIGURE 1 Stability region of explicit Euler method (shaded area).
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where M is an N × N matrix which has distinct eigenvalues λj (j = 1, . . . , N).
The system can be rotated into a system of N independent differential equations

z′(t)= diag(λ1, . . . , λN)z(t) (8)

The solution of the above equation is of the form

z(t)= (C1 eλ1t , . . . , CN eλN t )� (9)

where the Ci are constants which depend on the initial conditions. Let Re(·) be the
real part of a complex number. If Re(λj ) < 0 for j = 1, . . . , N , then Ci eλi t → 0
when t → ∞. Consider the case where these eigenvalues are very different, for
example, one of the eigenvalues has a very negative real part relative to the others.
This means that

R = maxj |Re(λj )|
minj |Re(λj )| � 1 (10)

Denote maxj |Re(λj )| by λ0. Hence, the exponential function exp(λ0t) decays to
zero much more rapidly than the function based on the eigenvalue, minj |Re(λj )|.
As a result, the system is difficult to solve for explicit methods. The ratio R is
called the “stiffness ratio” which provides a measure of stiffness (only eigenvalues
with negative real parts are considered).

As many ODEs encountered in continuous-time finance are actually non-linear,
it is useful to generalize the stiffness ratio to non-linear systems:

y ′(t)= f (y(t)), f : RN → RN

y0 = y(t0)

For non-linear systems the Jacobian is used to determine the stiffness. If the
eigenvalues of the Jacobian J = ∂f /∂y (an N × N matrix of partial derivatives,
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∂fi/∂yj ) satisfy the same condition as in (10), then the initial value problem is
stiff. In general, there are two types of error introduced by a numerical method,
truncation error and roundoff error. On the one hand, stability requires the use of
a small stepsize for the component with the fastest rate, which of course decreases
the truncation error. On the other hand, the choice of a small stepsize leads
to a large number of steps and hence long computer time. Moreover, because
roundoff error will accumulate, after a large number of steps there will be a
large accumulation of roundoff error for the slowest moving component where
the derivatives are small and relatively constant. Clearly, for a stiff system, the
trade-off is between large stepsizes to reduce computer time and roundoff error
and small stepsizes to reduce truncation error.

2.2 A-stability and implicit methods

In this section we review certain numerical solvers and their properties that are
relevant in finance, paying particular attention to the so-called A-stability and its
linkage to implicit methods.

We begin the review with the definition of order. For any point tn, let Y denote
the approximation of y(tn). For some positive integer p, if we have ‖Y (tn)−
y(tn)‖/hp bounded, then we would define “the numerical solution to be of order
p”. If p is the highest value such that ‖Y (tn)− y(tn)‖/hp is bounded, we would
define “the order of the numerical solution to be p”. A comparison of the Euler
solution Y (tn) with the Taylor series of y(tn) gives the order of the Euler method
as at least 1.

The Euler method discussed above is explicit. The next formula is referred to
as the implicit Euler method,

yn = yn−1 + hnf (yn), n= 1, 2, . . . , N, y0 = y(t0) (11)

It is implicit as Equation (11) is an implicit function in yn. The stability region
for the implicit method is |1 − z| ≥ 1, which is shown in Figure 2. Obviously the
stability region of the implicit Euler method is unbounded.

Runge–Kutta methods can be understood as one way to generalize the Euler
method. They allow for a multiplicity of evaluations of function f within one
step, and then use the information obtained to match a Taylor series expansion
up to some higher order. For an ODE system y ′ = f (y), a general Runge–Kutta
method is of the form

Yi = yn−1 + h

s∑
j=1

aijf (Yj ), i = 1, . . . , s (12)

yn = yn−1 + h

s∑
i=1

bif (Yi) (13)

where the quantities Y1, Y2, . . . , Ys are called stage values, which are approx-
imations to solution values y(tn−1 + cih) at points tn−1 + cih. The integer s is
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FIGURE 2 Stability region of implicit Euler method (unshaded area).
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the number of stages of the method. The ci represent the position of the internal
stages within one step. The Runge–Kutta formula can be conveniently represented
by Butcher tableau,

c A

b�

where A= {aij }, b� = {bi}, and c= {ci}. The set of numbers aij are the coef-
ficients used to find the internal stages using linear combinations of the stage
derivatives. The components of the vector b are coefficients which represent how
the numerical solution at this step depends on the derivatives of the internal stages.
The vector c = [c1, c2, . . . , cs]� is called the abscissae. If matrix A is strictly
lower triangular, ie, the internal stages can be calculated without depending on
later stages, the method is explicit.

One widely used ERK method was proposed by Dormand and Prince (1980)
(ode45 is the corresponding MATLAB command). Another example of ERK
methods was proposed by Bogacki and Shampine (1989) (ode23 is the cor-
responding MATLAB command). It is of smaller order than ode45, but may
be more efficient at crude tolerances and in the presence of moderate stiffness
(Shampine and Reichelt (1997)).

A well-known result in the numerical ODE literature (see, for example, Butcher
(2003)) is that an ERK method with order p has the stability function of

R(z)= 1 + z+ z2

2! + · · · + zp

p! +O(zp+1) (14)

which determines the stability region of the underlying method via

S = {z ∈ C : |R(z)| ≤ 1}
Journal of Computational Finance Volume 10/Number 3, Spring 2007
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FIGURE 3 The boundaries of the stability regions of ERK of order one, two,
three, four, correspond to f (z)= 1 + z+ z2/2! + · · · + zp/p! with p = 1, 2, 3, 4.
In each case the stability region is the bounded set enclosed by these curves.
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As a result, all ERK methods have bounded stability regions. The stability regions
of order one, two, three, and four ERK methods with p = 1, 2, 3, 4 are given
in Figure 3. It can be seen that although the stability region of a higher-order
ERK method is slightly wider than that of the explicit Euler method, it is still
highly restrictive. This will create, as shown above, numerical inefficiency for
stiff systems. To deal with stiffness, a method with a much wider stability region
is called for. A typical approach in the numerical ODE literature is to use a method
with an unbounded stability region. This is the motivation behind the concept of
A-stability (Dahlquist (1963)).

DEFINITION 2 A method whose stability region contains the whole of the left
half-plane is called A-stable.

Since all of the ERK methods have bounded stability regions, obviously they
are not A-stable (Iserles (1996)). In a ground-breaking paper, Dahlquist (1963)
showed that explicit linear multistep methods cannot be A-stable either. These
results lead to the following recommendation: for a stiff problem, it is always
better to use implicit procedures; see, for example, Dahlquist and Björck (1974)
and Huang (2005).
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A simple implicit method is the implicit Euler method defined by Equation
(11). As already demonstrated in Figure 2, the stability region of the implicit
Euler method includes the whole half-plane and hence is A-stable. For the Runge–
Kutta methods, if matrix A in the Butcher tableau is not strictly lower triangular,
the method is implicit. A particular type of implicit Runge–Kutta method is the
modified Rosenbrock method of Zedan (1990). The MATLAB code ode23s
implements the method of order two.

Another way to generalize the Euler method is the use of linear multistep
methods. The idea is to use several previous solutions and derivative values in
computing the updated solution. The general form of a linear k-step method for
an ODE y ′ = f (y) is

yn = α1yn−1 + · · · + αkyn−k + h(β0f (yn)+ · · · + βkf (yn−k))

where yn is the numerical approximation to the exact solution at the point
tn and α1, α2, . . . , αk, β0, β1, . . . , βk are fixed numbers. The values of α1,
α2, . . . , αk, β0, β1, . . . , βk are chosen to obtain the highest possible order and
characterize a method. If β0 
= 0 and βi = 0, i = 1, . . . , k, the methods are
obviously implicit and known as backward difference formulae (BDF; see, for
example, Gear (1971)). A closely related implicit linear multistep method is
based on the numerical differential formulae (NDF) of Klopfenstein (1971). The
MATLAB code ode15s is a variable order solver which implements these two
sets of formulae, with the default being NDF.

3 STIFFNESS IN ASSET PRICING MODELS

Affine asset pricing models have recently received much attention both in the
theoretical finance literature and in the financial econometrics literature. Important
contributions in this area include Duffie and Kan (1996), Dai and Singleton
(2000), Duffie et al (2000), and Singleton (2001).

3.1 Stiffness in zero-coupon bonds

The multi-factor affine term structure model, introduced in Duffie and Kan (1996)
and empirically investigated in Dai and Singleton (2000), adopts the following
specifications.

1. Under the risk-neutral measure, the state variables, denoted by Y (t)=
(Y1(t), . . . , YN(t))

�, follow an affine diffusion,

dY (t)= K̃(θ̃ − Y (t)) dt +� diag(
√
αj + β�

j Y (t)) dW̃ (t)

where K̃ and� areN × N matrices, αj is an scalar, βj is anN-dimensional
vector, for j = 1, . . . , N , and W̃ (t) is an N-dimensional independent
standard Brownian motion under the risk-neutral measure.
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2. The short rate is an affine function of Y (t),

r(t)= δ0 + δ�y Y (t)

3. The market price of risk associated with factor j takes the form of

λj(t)= λj

√
αj + β�

j Y (t) (15)

The specification implies that the physical measure of state variables has the
affine form of

dY (t)=K(θ − Y (t)) dt +� diag(
√
αj + β�

j Y (t)) dW(t)

where W(t) is an N-dimensional independent standard Brownian motion under
the physical measure, K = K̃ − ��, θ =K−1(K̃θ̃ +�ψ), with the j th row in
matrix � being given by λjβj and the ith element in vector ψ being given by
λjαj .

Under these three assumptions, the yield-to-maturity at time t of a zero-coupon
bond that matures at t + τ takes the following affine expression (Duffie and Kan
(1996)),

y(t; τ)= −A(τ)
τ

+ B(τ)�

τ
Y (t)= a(τ)+ b(τ)�Y (t) (16)

where A(τ), B(τ) satisfy a system of N + 1 ODEs (known as Ricatti equations)

dA(τ)

dτ
= −θ̃�K̃�B(τ)+ 1

2

N∑
j=1

[��B(τ)]2
jαj − δ0 (17)

dB(τ)

dτ
= −K̃�B(τ)− 1

2

N∑
j=1

[��B(τ)]2
jβj + δy (18)

with initial conditions A(0)= 0 and B(0)= 0. Note that the assumption about
market price of risk in Equation (15) is more than enough for deriving the affine
pricing relation in Equation (16). This assumption was relaxed in Duffee (2002)
and further relaxed in Duarte (2004) without changing the pricing result.

It is known that the above affine model may not be econometrically identified.
Dai and Singleton (2000) defined a model to be “maximal” if it has the maximum
number of identifiable parameters and if it generates admissible (ie, well-defined)
dynamics of state vectors. To find the maximal model, Dai and Singleton classified
the affine models into N + 1 subfamilies according to the number “m” of the
Y that determines the conditional variance of Y . Dai and Singleton called this
subfamily Am(N) and illustrated the idea in the case of N = 3. For example, the

www.journalofcomputationalfinance.com
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maximum A1(3) model (called A1(3)Max) takes the form


dν(t)

dθ(t)
dr(t)


 =


 µ 0 0

0 ν 0
κrν −κ κ








ν̄θ̄
θ̄


 −


ν(t)θ(t)

r(t)





 dt +


 η 0 0
ησθν 1 σθr
ησrν σrθ 1




×



√
ν(t) 0 0
0

√
ζ 2 + βθν(t) 0

0 0
√
αr + ν(t)





dWν(t)

dWθ(t)

dWr(t)


 (19)

So,

α1 = α2 = ζ 2, α3 = αr, β1 =

1

0
0


 , β1 =


βθ0

0


 , β3 =


1

0
0




As a result,

K̃ =

 µ+ ηλ1 0 0
ησθνλ1 + λ2βθ + λ3σθr ν 0
κrν + ηλ1σrν + λ2βθσrθ −κ κ




With suitable restrictions on certain parameters, one obtains the A1(3)BDFS

and A1(3)DS models. For example, if κrν = σθν = σrθ = σrθ = αr = β = 0, the
A1(3)Max model becomes the A1(3)BDFS model.

The maximum A2(3) model (called A2(3)Max) takes the form


dν(t)

dθ(t)
dr(t)


 =


 µ κνθ 0
κθν ν 0
κrν κrθ − κ κ








ν̄θ̄
r̄


 −


ν(t)θ(t)

r(t)





 dt +


 η 0 0

0 ζ 0
ησrν ζσrθ 1




×



√
ν(t) 0 0
0

√
θ(t) 0√

αr + βθν(t)+ θ(t) 0 0





dWν(t)

dWθ(t)

dWr(t)


 (20)

As a result,

K̃ =

 µ+ ηλ1 κrθ 0

κrθ ν + ζλ2 0
κrν + λ1ησrν + λ3 κrθ − κ + λ2ζσrθ + λ3βθ κ




With suitable restrictions on certain parameters, one obtains the A2(3)Chen and
A2(3)DS models. For example, if κνθ = σrθ = αr = βθ = 0, the A2(3)Max model
becomes the A2(3)DS model.

Dai and Singleton (2000) further empirically estimated and tested two maximal
three-factor models and some of the restricted specifications in each of the two
families. Using the empirical results reported by Dai and Singleton, we find
the stiffness in the ODEs (18). For example, the estimates of (µ, η, λ1, ν, κ) in
the A1(3)BDFS model are (0.602, 0.007197, 67,900, 0.0523, 2.05). Using these
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estimates we obtain

K̃ =

 489.3 0 0

0 0.0523 0
230,617.2 −2.05 2.05




Three eigenvalues of K̃ are 489.3, 0.0523, 2.05 which lead to a stiffness ratio
of 9,355.6 in (18). For another example, the estimates of (µ, η, λ1, ν, ζ, λ2, κ)

in the A2(3)DS model are (0.636, 0.0109, 13,000, 0.103, 0.055857, −152, 2.7).
Using these estimates we obtain

K̃ =

 142.45 0 0

−33.9 −8.387 0
−26,537.3 −2.7 2.7




The implied stiffness ratio is 52.76 and hence there is mild stiffness involved.

3.2 Stiffness in parameter estimation

Based on the assumption that the state variables Y (t) follow an affine diffusion
under the following physical measure

dY (t)=K(θ − Y (t)) dt +� diag(
√
αj + β�

j Y (t)) dW(t)

Duffie et al (2000) derived the CCF of Yt+1 conditional on Yt :

cY(t)(r)= E[exp(ir�Y (t + 1))|Y (t)] = exp(C(1)+D(1)�Y (t)) (21)

where i = √−1, r is the transform variable which takes real values, and C(·)
andD(·) satisfy the following complex-valued ODEs (which are Ricatti equations
once again):

dC(τ)

dτ
= θ�K�D(τ)+ 1

2

N∑
i=1

[��D(τ)]2
jαj (22)

dD(τ)

dτ
= −K�D(τ)+ 1

2

N∑
i=1

[��D(τ)]2
jβj (23)

with initial conditions C(0)= 0 and D(0)= ir .4

Under an affine pricing environment where y(t; τ) = a(τ)+ b(τ)�Y (t), the
CCF of y(t + 1; τ) conditional on y(t; τ) is given by

cy(t)(r)= exp(ir�a(τ))cY(t)(b(τ)r) (24)

Exploiting this nearly closed-form solution for the CCF of y(t), Singleton
(2001) and Chacko and Viceira (2003) proposed several estimation methods based

4The ODEs were given as a boundary problem by Duffie et al (2000). Piazzesi (2003) and Yu
(2004) provided equivalent initial value representations for C(τ) and D(τ).
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on the ECF. Yu (2004) provided a detailed review of these methods and more
generally the literature on the parameter estimation via the ECF.

Stiffness may be present in the ODEs (23). For example, taking the estimates
reported in Geyer and Pichler (1999), the stiffness ratio is 2,847.2 in the estimated
five-factor CIR model. The estimates reported in Chen and Scott (1991, 1992)
for a two-factor CIR model imply a stiffness ratio of 351.9. These numbers
indicate the presence of modest to severe stiffness. The implied stiffness ratios
in A1(3)BDFS, A1(3)DS, and A1(3)Max of Dai and Singleton (2001) are 39.2,
77.0, and 78.9, respectively. The implied stiffness ratios in A2(3)Chen, A2(3)DS,
and A2(3)Max of Dai and Singleton are 28.9, 26.2, and 40.7, respectively. These
numbers indicate the presence of mild stiffness.

4 PERFORMANCE OF NON-STIFF SOLVERS AND STIFF SOLVERS

To investigate the numerical inefficiency of ERK methods for stiff systems and
to compare the performance of explicit solvers with implicit solvers, we focus on
a two-factor CIR model (ie, an A2(2) model) and a three-factor affine model of
Balduzzi et al (1996) (ie, the A1(3)BDFS model).

4.1 A two-factor CIR model

There are several reasons why we use the two-factor CIR model to study the
numerical efficiency. First, the CIR model is a special case of affine models.
As a result, the bond price can be calculated by solving a system of real-valued
ODEs and the CCF can be obtained by solving a system of complex-valued ODEs.
Second, the CIR model has a closed-form expression for bond prices, enabling an
examination of approximation errors of alternative numerical methods for bond
pricing. Third, the model has only two factors so that a large-scale Monte Carlo
study of parameter estimation via the ECF is computationally feasible.

In particular, we design two experiments, one for pricing bonds and the other
for estimating model parameters. In both experiments, we use four numerical
solvers for ODEs, two ERK methods, one implicit Runge–Kutta method and one
implicit linear multistep method. The two explicit methods are ode45 and ode23
while the two implicit methods are ode23s and ode15s. All four methods are
built-in functions in MATLAB.

The two-factor CIR model has two independent factors, each evolving over
time according to a square-root process:

dYi(t)= κi(µi − Yi(t)) dt + σiY
1/2
i (t) dWi(t), i = 1, 2 (25)

The market price of risk for each factor is assumed to be λiY
1/2
i (t). As a result the

risk-neutral measure is

dYi(t)= (κi + λi)

(
κiµi

κi + λi
− Yi(t)

)
dt + σiY

1/2
i (t) dW̃i(t), i = 1, 2 (26)
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TABLE 1 Computational efficiency of explicit and implicit solvers for bong pricing
under the two-factor CIR model. CPU is the CPU time in seconds when the system
is solved repeatedly 5,000 times, Yield is the yield-to-maturity, and Stepsize is the
average value of stepsizes.

10-year bond 20-year bond

CPU (s) Yield Stepsize CPU (s) Yield Stepsize

ode45 310 0.097471474 0.025 562 0.0978857433 0.026
ode23 237 0.097471469 0.077 367 0.0978857286 0.080
ode23s 122 0.097471778 0.345 115 0.0978866689 0.667
ode15s 82 0.097470910 0.218 82 0.0978864351 0.417

Exact 0.097471410 0.0978857088

The instantaneous default-adjusted rate is assumed to be the sum of the two state
variables:

r(t)= Y1(t)+ Y2(t)

The parameters in the two experiments are set to be

κ1 = 0.06, µ1 = 0.03, σ1 = 0.03, λ1 = −0.01

and
κ2 = 100, µ2 = 0.02, σ2 = 0.1, λ2 = −70

so that

K =
(

0.06 0
0 100

)
and K̃ =

(
0.05 0

0 30

)

Obviously there exists severe stiffness in the ODEs (18) and ODEs (23) with
stiffness ratios of 600 and 1,667, respectively.

4.1.1 Comparison for pricing bonds
Using the two-factor CIR model, we price two long-term bonds with maturities
of 10 and 20 years. Both the analytical and numerical approaches are used to
compute the yields of zero-coupon bonds. The analytical expression for prices of
zero-coupon bonds is obtained from CIR (1985) and used to calculate the exact
values for the yields. The numerical calculation is performed in MATLAB. The
initial state variables are assumed to take the values of 0.03 and 0.02. To obtain
the CPU time, we follow the suggestion made by a referee of replicating the
experiment 5,000 times. Table 1 shows the CPU time (in seconds) on a Pentium-
M laptop (1,600 MHz), the yield, and the average value of stepsizes used by each
solver.

First, all four methods provide very accurate yields for both bonds. Second,
although ode45 and ode23 are slightly more accurate, the marginal improve-
ment in precision comes with higher computational cost. Compared with ode15s,
for instance, ode45 is nearly a factor of three and six less efficient for the
two bonds while ode23 is nearly a factor of two and three and a half times
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TABLE 2 Computational efficiency and statistical efficiency of explicit and implicit
solvers for parameter estimation under the two-factor CIR model. CPU is the
averaged CPU time in seconds. The first number in each cell is the mean of the
estimates while the second number is the standard deviation of the estimates.

κ1 µ1 σ1 λ1 κ2 µ2 σ2 λ2 CPU (s)

True 0.06 0.03 0.03 −0.01 100 0.02 0.1 −70
ode45 0.0903 0.0292 0.0308 −0.0088 105.9 0.0205 0.096 −66.5 28,578.0

0.0100 0.0055 0.0101 0.0068 11.30 0.0041 0.0255 9.11
ode23 0.0902 0.0293 0.0307 −0.0088 105.9 0.0206 0.096 −66.8 21,619.1

0.0099 0.0055 0.0102 0.0068 11.31 0.0040 0.0252 9.08
ode23s 0.0903 0.0293 0.0305 −0.0086 105.8 0.0207 0.097 −66.6 10,152.6

0.0099 0.0054 0.0103 0.0069 11.32 0.0041 0.0256 9.10
ode15s 0.0904 0.0294 0.0304 −0.0087 105.9 0.0205 0.096 −66.8 6,460.2

0.0099 0.0055 0.0102 0.0069 11.29 0.0040 0.0252 9.09

less efficient. The longer the maturity, the less the relative efficiency of the
explicit methods. Third, the improvement in numerical efficiency by the implicit
methods is manifest in the average value of stepsizes used by each solver. For both
bonds, the two explicit methods use much smaller stepsizes than the two implicit
methods. This is because the ODE is stiff and the ERK methods must choose
small enough stepsizes to ensure stability. Moreover, when the maturity increases,
the stepsize increases nearly in the same proportion for the two implicit methods
while it remains constant for the two explicit methods. Therefore, it is expected
that the computational efficiency of the implicit methods relative to the explicit
methods increases with the maturity and with the stiffness.

4.1.2 Comparison for parameter estimation
In this section we estimate the two-factor CIR model based on 600 discretely
sampled observations on six-month and 10-year zero-coupon bonds that are
simulated from the same model. We repeat the experiment 1,000 times. As before,
the numerical calculation is performed in MATLAB. Although the likelihood
function is available for the two-factor CIR model and hence ML is feasible (see
Chen and Scott (1992) and Phillips and Yu (2005) for the implementation of ML
in this context), we estimate the model using the ECF method of Chacko and
Viceira (2003) in order to highlight the importance of numerical efficiency when
solving the stiff Ricatti equations.

The basic idea for the ECF method is to match the CCF implied from the
model with the ECF obtained from the data over a grid of discrete points (ie,
transform variables). One should keep in mind that the ECF method of Chacko
and Viceira (2003) does not address the issue of the optimal choice of transform
variables, and hence in general their estimator is statistically inefficient. However,
their method is advantageous in that it is computationally less intensive than the
method of Singleton (2001). This computational advantage makes a comparison
of alternative ODE solvers feasible.
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To use the method of Chacko and Viceira (2003), a grid of discrete points
has to be chosen for r = (r1, r2)

�. In this paper 30 points are used and listed in
Appendix A. The only guidance for the choice is that the characteristic function
contains more information around the origin (Yu (1998)). At each iteration in
the numerical optimizations, one stiff system of real-valued ODEs in the form of
(18) and 30 stiff systems of complex-valued ODEs in the form of (23) are solved
numerically.

Table 2 shows the average values of the estimates (the first number in each
cell), the standard errors of the estimates (the second number in each cell), and the
CPU time (in seconds), all across 1,000 simulated series.

Several interesting results emerge from Table 2. First, the ECF method works
well in all cases for all of the parameters, suggesting that the ECF method is a
viable estimation technique for continuous-time affine models. Second, similar
to a finding reached in the previous experiment where the four methods provide
almost identical prices, the four methods produce almost the same results for the
parameter estimation. Third, given the fact that the estimation involves the numer-
ical bond pricing and the numerical calculation of the characteristic function, it
is computationally expensive to obtain parameters estimates, consistent with our
expectation. For example, it took approximately 8 and 6 hours to complete 1,000
replications for ode45 and ode23. Most importantly, similar to the situation in
bond pricing where the two implicit methods are more efficient than the explicit
methods, the two implicit methods continue to perform better than the explicit
methods for the parameter estimation. For example, it took ode23s and ode15s
approximately 2.8 and 1.8 hours of CPU time to complete 1000 replications. They
are a factor of 1.8 and 3.4 more efficient than ode45, and a factor of 1.3 and 2.3
more efficient than ode23. Fourth, numerical efficiency is accomplished by the
two implicit methods without compromising the gains by less statistical efficiency.
Finally, a comparison of the two implicit solvers suggests that we should use
ode15s as it not only provides accurate bond prices, as shown in Table 1, but
also obtains parameter estimates in a shorter time.

4.2 A three-factor model

Although we have clearly identified the numerical problems of explicit methods in
the context of the CIR model, CIR itself is a textbook example of a term structure
model and has been overwhelmingly rejected by actual data; see Dai and Singleton
(2000). To demonstrate the numerical problems of explicit methods in more
complex and realistic frameworks, we consider a three-factor model of Balduzzi
et al (1996) which is defined below. For this A1(3)BDFS model, there is no closed-
form expression for bond prices, neither is there a closed-form expression for the
likelihood function.

In this comparison, we also designed two experiments, one for pricing bonds
and the other for estimating model parameters. In both experiments, we used four
numerical solvers for ODEs, namely ode45, ode23, ode23s, and ode15s, and
MATLAB to perform numerical computations.
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TABLE 3 Computational efficiency of explicit and implicit solvers for bong pricing
under a three-factor model. CPU is the CPU time in seconds when the system
is solved repeatedly 100 times, Yield is the yield-to-maturity, and Stepsize is the
average value of stepsizes.

10-year bond 20-year bond

CPU (s) Yield Stepsize CPU (s) Yield Stepsize

ode45 99 0.0681304278 0.0018 202 0.0740219723 0.0018
ode23 63 0.0681304857 0.0055 125 0.0740219785 0.0055
ode23s 4.9 0.0681278444 0.204 5.2 0.0740219671 0.385
ode15s 2.6 0.0681304661 0.143 2.7 0.0740231149 0.263

The model proposed by Balduzzi et al (1996) is a three-factor model with
stochastic mean and stochastic variance and, under the physical measure, takes
the form of


dν(t)

dθ(t)
dr(t)


 =


µ 0 0

0 ν 0
0 −κ κ








ν̄θ̄
θ̄


 −


ν(t)θ(t)

r(t)





 dt +


 η 0 0

0 1 0
ησrν 0 1




×



√
ν(t) 0 0
0 ζ 0
0 0

√
ν(t)





dWν(t)

dWθ(t)

dWr(t)


 (27)

By assuming that λi is the market price of risk associated with factor i, the model
is affine under the risk-neutral measure.

The parameters are set at

µ= 1, ν = 0.5, κ = 30, ν̄ = 0.002, θ̄ = 0.1, σrν = 3

and
ζ = 0.03, η = 0.03, λ1 = 15,000, λ2 = 10, λ3 = 50

so that

K =

1 0 0

0 0.5 0
0 −30 30


 and K̃ =


 451 0 0

0 0.5 0
1400 −30 30




Obviously there exists severe stiffness in the ODE (18) and moderate stiffness
in the ODE (23) with stiffness ratios of 902 and 60, respectively. However, the
implied stiffness ratio in (18) is much smaller than that in the estimatedA1(3)BDFS

model of Dai and Singleton (2000).
Using this three-factor model, we price two long-term bonds with maturities of

10 and 20 years. The initial state variables are assumed to take the values of 0.008,
0.02, and 0.08. To obtain the CPU time, we replicate the experiment 100 times.
Table 3 shows the CPU time (in seconds) on a Pentium-M laptop (1,600 MHz),
the yield, and the average value of stepsizes used by each solver.
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TABLE 4 Computational efficiency of explicit and implicit solvers for parameter
estimation under a three-factor model. CPU is the CPU time in seconds.

Method µ ν κ ν̄ θ̄ σrν ξ η λ1 λ2 λ3 CPU (s)

ode45 1.15 0.71 33.4 0.00188 0.108 2.96 0.031 0.029 13,286 9.1 45.3 47,549.1
ode23 1.15 0.71 33.5 0.00191 0.108 2.95 0.031 0.029 13,294 9.1 45.0 42,784.3
ode23s 1.16 0.70 33.4 0.00190 0.111 2.97 0.032 0.029 13,277 8.9 44.7 6,317.4
ode15s 1.16 0.72 33.6 0.00191 0.110 2.96 0.032 0.028 13,271 8.7 45.5 4,961.2

Several interesting results emerge from Table 3. First, all four methods provide
almost identical yields. Second, the two explicit methods are numerically much
less efficient than the two implicit methods. For example, compared with ode15s,
ode45 is a factor of 37 and 76 less efficient for the two bonds while ode23 is
a factor of 23 and 47 less efficient. The longer the maturity, the less the relative
efficiency in the explicit methods. Third, the improvement in numerical efficiency
by the implicit methods is manifest in the difference of the average values of
stepsizes used by each solver. For both bonds, the two explicit methods use
much smaller stepsizes than the two implicit methods. Comparing the results in
Table 2 with those in Table 1, it seems reasonable to claim that the computational
efficiency of the implicit methods relative to the explicit methods increases with
the number of factors.

To estimate the three-factor model, we simulate 600 discretely sampled obser-
vations on six-month, two-year and 10-year zero-coupon bonds from the same
model. Different from the CIR model where we repeated the experiment 1,000
times, we only estimate the three-factor model once due to the high computational
cost involved. Although the approximate ML method of Aït-Sahalia (2003) can be
used to estimate this model, we use the ECF method for estimation, which requires
solving two systems of ODEs numerically. A grid of 52 discrete points is chosen
for r = (r1, r2, r3)

� and listed in Appendix A.
Table 4 shows all of the estimates and CPU time (in seconds) obtained from

all four solvers. Several interesting results emerge. First, the ECF method seems
to yield reasonable estimates. Second, the four methods produce almost identical
parameter estimates. Third, compared with bond pricing, parameter estimation is
computationally much more demanding. For example, it took approximately 13
and 12 hours to get a set of parameter estimates when ode45 and ode23 are
used. Most importantly, the two implicit methods continue to achieve a great deal
of numerical efficiency relative to the explicit methods. For example, it only took
1.75 and 1.38 hours of CPU time to get a set of parameter estimates when ode23s
and ode15s are used.

4.3 Implementation in FORTRAN

As MATLAB is an interpreted computing language, it may not be accurate in
obtaining CPU timing. In this section we use FORTRAN to compare relative
performances of explicit and implicit solvers in terms of computational efficiency.
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TABLE 5 Computational efficiency of explicit and implicit solvers for bong pricing
under a three-factor model. CPU is the CPU time in seconds when the system is
solved repeatedly 5,000 times; Yield is the yield-to-maturity, Total function calls
is the number of function evaluations.

20-year bond

CPU (s) Yield Total function calls

ERK 43.513 0.0740220547 19,968
Implicit BDF 1.532 0.0740220249 109

In particular, we use the explicit fifth-order and fourth-order Runge–Kutta method
and the implicit BDF method of Gear (1971) to price two long-term bonds
with maturities of 10 and 20 years based on A1(3)BDFS. The same parameter
settings are used as in Section 4.2. The CPU time is obtained by replicating the
experiment 5,000 times. In addition to its ability to more accurately obtain CPU
time, FORTRAN also allows us to obtain the number of function calls.

Table 5 shows the CPU time (in seconds) on a Pentium-M laptop (1600 MHz),
the yield, and the number of function evaluations by each solver. Several findings
emerge from the table. First, the yields obtained from the FORTRAN routines
are very similar to those calculated from MATLAB, suggesting that MATLAB is
reliable in terms of computing yields. Second, the yields obtained from the two
FORTRAN routines are very close to each other. Third, the implicit BDF method
is more than 27 times as efficient as the ERK method. The order of magnitude in
the relative efficiency seems to be consistent with those obtained from MATLAB,
suggesting that the MATLAB ODE solvers can reasonably accurately obtain the
CPU time. Fourth, the relative efficiency is manifest in the difference in the
numbers of function evaluations by the two methods. While the ERK method has
to evaluate 19,968 functions, the implicit BDF method only needs to calculate 109
functions.

As suggested by the referee, we conduct a convergence study by examining the
relationship between the global error and the CPU time for both the ERK method
and the implicit BDF method. To obtain the global error, we assume than the true
solution is the same as the numerical solution with a very small tolerance level for
error control (we use 10−9). This is a standard approach in the numerical analysis
literature. Figure 4 plots the logarithmic global error against the logarithmic CPU
time for both methods. There are some interesting results. First, it can be seen
that ERK is always much more time consuming than the implicit BDF method.
Second, in both cases, the global error is a decreasing function of the CPU time.
Third, initially ERK has a smaller global error than the implicit BDF method. The
error slowly decreases with the CPU time for ERK. This result is consistent with
what was reported by Hull et al (1972). On the other hand, the error decreases
with the CPU time in a faster fashion for the implicit BDF method, suggesting
that the implicit BDF is indeed more efficient than ERK and converges faster.

Journal of Computational Finance Volume 10/Number 3, Spring 2007



On stiffness in affine asset pricing models 119

FIGURE 4 The logarithmic global error as a function of the logarithmic CPU time
for both the ERK method and the implicit BDF method.

Logarithmic CPU Time

Lo
ga

rit
hm

ic
 G

lo
ba

l E
rr

or

3.760 3.764 3.768 3.772

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

Convergence Study for ERK

Logarithmic CPU Time

Lo
ga

rit
hm

ic
 G

lo
ba

l E
rr

or

-0.6 -0.4 -0.2 0.0 0.2 0.4

-1
8

-1
7

-1
6

-1
5

-1
4

-1
3

-1
2

Convergence Study for BDF

5 CONCLUSIONS AND IMPLICATIONS

Stiffness in ODEs exists widely in the continuous-time finance literature. The
presence of stiffness causes all of the explicit solvers that have been suggested
and widely used in the literature to be numerically inefficient. The procedures
proposed in the present paper are based on implicit numerical methods which
have unbounded stability regions, greater flexibility on the choice of the stepsize,
and hence lead to improved numerical efficiency.

We apply the implicit methods to price zero-coupon bonds and to estimate
affine dynamic term structure models via ECF under two affine models. We show
that the procedures are highly effective to improve numerical efficiency without
sacrificing statistical efficiency. As a result, affine models can be much more
efficiently analyzed and hence computationally even more attractive than non-
affine models. However, the techniques themselves are quite general and can be
applied in many other contexts. For example, the methods can be used in connec-
tion with more efficient ECF procedures for estimation, including the procedures
of Singleton (2001) and Carrasco et al (2006). Since these more efficient ECF
procedures require more intensive numerical calculation of ODEs, one naturally
expects greater gains in using the implicit methods. Also, the methods extend
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naturally to more complicated affine models, including the affine jump-diffusion
models (Duffie et al (2000); Chacko and Das (2002)) and semi-affine models
(Duffee (2002); Duarte (2004)), where greater gains should be expected in the
implicit methods as the dimension of the system grows. Furthermore, the methods
can be applied to specifications outside of the affine family. An example is the
quadratic affine model of Ahn et al (2002), where bond prices are shown to be
dependent on a system of ODEs, although not Ricatti equations.

We have provided evidence of stiffness in bond markets. However, other
financial markets can also have stiff problems. For example, using the estimates
in the two-factor volatility models (termed LL2V, LL2V1, and LL2VF) obtained
by Chernov et al (2003) from stock market data, we obtain the following stiffness
ratios: 8,886.6, 1,028.6 and 426.5. These suggest severe stiffness.

Our methods can be applied to price many other financial assets as long
as stiffness is a feature in a system. Examples include coupon-bearing bonds,
swaptions, captions, mortgage-back securities, bond options, stock options, and
currency options. As the calculation of these financial instruments is usually
computationally more demanding than zero-coupon bonds, there may be further
advantages of using the implicit methods over the explicit methods.

The implicit methods examined in the present paper include an implicit Runge–
Kutta method and an implicit linear multi-step method. Both methods have their
own merits. To take advantage of the merits of both methods, a new type of hybrid
method, called the implicit general linear method, has appeared in the numerical
ODE literature in recent years (Butcher (2003); Huang (2005)). How well the
implicit general linear methods perform in financial stiff problems will be reported
later.

APPENDIX A

When estimating the two-factor CIR model via ECF, the following 30 points
were used to evaluate the CCF and ECF: (0.01, 0), (0, 0.01), (0.01, 0.01), (0.02,
0.01), (0.01, 0.02), (0.02, 0.02), (0.03, 0.02), (0.02, 0.03), (0.03, 0.03), (0.04,
0.03), (0.03, 0.04), (0.04, 0.04), (0.04, 0.05), (0.05, 0.04), (0.05, 0.05), (−0.01,
0), (0, −0.01), (−0.01, −0.01), (−0.02, −0.01), (−0.01, −0.02), (−0.02, −0.02),
(−0.03, −0.02), (−0.02, −0.03), (−0.03, −0.03), (−0.04, −0.03), (−0.03,
−0.04), (−0.04, −0.04), (−0.04, −0.05), (−0.05, −0.04), (−0.05, −0.05).

When estimating the three-factor model of Balduzzi et al (1996) via ECF, the
following rule is used to select 52 points to evaluate the CCF and ECF. First,
ri takes one of the three values 0, 0.01, or 0.02. All possible combinations in
(r1, r2, r3), excluding the origin, yield 26 different points. We then take negative
values of these 26 points to get another 26 points.
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