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Bayesian methods have been efficient in estimating parameters of stochastic volatility models for analyz-
ing financial time series. Recent advances made it possible to fit stochastic volatility models of increasing
complexity, including covariates, leverage effects, jump components, and heavy-tailed distributions. How-
ever, a formal model comparison via Bayes factors remains difficult. The main objective of this article is
to demonstrate that model selection is more easily performed using the deviance information criterion
(DIC). It combines a Bayesian measure of fit with a measure of model complexity. We illustrate the per-
formance of DIC in discriminating between various different stochastic volatility models using simulated
data and daily returns data on the Standard & Poors (S&P) 100 index.
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1. INTRODUCTION

Progress in Bayesian posterior computation due to Markov
chain Monte Carlo (MCMC) methods has made it possible to
fit increasingly complex statistical models and entailed the wish
to determine the best fitting model in a potentially huge class
of candidates. Thus, it has become more and more important
to develop efficient model selection criteria. A recent proposal
by Spiegelhalter, Best, Carlin, and van der Linde (2002) was
the deviance information criterion (DIC), a Bayesian version or
generalization of the well-known Akaike information criterion
(AIC) (Akaike 1973), related also to the Bayesian (or Schwarz)
information criterion (BIC) (Schwarz 1978). Similar to AIC
and BIC, it trades off a measure of model adequacy against a
measure of complexity. DIC is easy to calculate and applicable
to a wide range of statistical models. It is based on the posterior
distribution of the log-likelihoodor the deviance, following the
original suggestion of Dempster (1974) for model choice in the
Bayesian framework. This model comparison criterion has al-
ready been applied successfully to complex models in the field
of medical statistics (Zhu and Carlin 2000). In this article, we
demonstrate its usefulness in the model selection process for fi-
nancial time series. The aim of this article is, therefore, to intro-
duce DIC to the financial modeling community and show how
to use it for the family of stochastic volatility (SV) models.

Indeed, many model-checking criteria (Carlin and Louis
1996; Gelman, Carlin, Stern, and Rubin 1996; Gilks,
Richardson, and Spiegelhalter 1996; Key, Pericchi, and Smith
1999) have been proposed and discussed before the develop-
ment of DIC. Whereas Bayes factors (e.g., Kass and Raftery
1995) have been viewed for many years as the only correct way
to carry out Bayesian model comparison, they have come un-
der increasing criticism of late (Kass and Raftery 1995; Lavine

and Schervish 1999). One serious drawback is that they are not
well defined when using improper priors, which is typically the
case in practice when employing noninformative priors. This
led to modifications, such as the partial Bayes factor (O’ Hagan
1991), the intrinsic Bayes factor (Berger and Pericchi 1996),
and the fractional Bayes factor (O’Hagan 1994). These modi-
fications suffer from more or less arbitrary choices of training
samples, weights for averaging training samples, and fractions,
respectively. For specifying Bayesian stochastic volatility (SV)
models, however, informative and, thus, proper prior distribu-
tions are usually employed and Bayes factors are well defined.
Nonetheless, the number of unknown parameters in Bayesian
SV models is large (exceeding the number of observations)
because of the latent volatilities. Calculation of the Bayes factor
for comparing any two models requires the marginal likelihoods
and, thus, a marginalization over the parameter vectors in each
model. If the dimension of the parameter space is large, these
implicit, extremely high-dimensionalintegration problems pose
a formidable computational challenge. In the context of SV
models, Kim, Shephard, and Chib (1998) and Chib, Nardari,
and Shephard (2002) showed how to compute Bayes factors
using the marginal likelihoodapproach of Chib (1995) and eval-
uating the marginal likelihood at the posterior mean using parti-
cle filtering (Kitagawa 1996; Pitt and Shephard 1999a; Doucet,
de Freitas, and Gordon 2001). Still, it remains a computation-
ally intensive task and is not a particularly user-friendly tool
for practicing statisticians. In their review of MCMC methods
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for computing Bayes factors, Han and Carlin (2001, p. 29) con-
cluded that “all of the methods. . .discussed require substantial
time and effort (both human and computer) for a rather mod-
est payoff, namely a collection of posterior model probability
estimates. ... As a result, one might conclude that none of the
methods herein is appropriate for everyday, ‘rough and ready’
model comparison, and instead search for more computation-
ally realistic alternatives.”’

A well-known estimate of the marginal likelihood developed
by Newton and Raftery (1994)is the harmonic mean of the like-
lihood values. It is easy to compute and simulation consistent
but not stable because the inverse likelihood does not possess
a finite variance (Chib 1995). Other shortcuts to the calcula-
tion of Bayes factors that avoid multidimensional integration
through large sample approximationsof —2 In(Bayes factor) in-
clude the familiar BIC, also referred to as the Schwarz crite-
rion (Schwarz 1978), and the related penalized likelihood ratio
model choice criterion, AIC. Either criterion requires the spec-
ification of the number of free parameters in each model. If we
consider a nonhierarchical Bayesian model with parameter 6,
a flat prior would correspond to a flexible and, thus, complex
model, whereas a tight prior constrains the model. The classi-
cal definition of model complexity as the “number of unknown
parameters” could thus be considered as a special case corre-
sponding to a noninformative prior. However, for a complex hi-
erarchical model the specification of its dimensionality is rather
arbitrary. This is typically the case for an SV model, where the
parameters are augmented by the n latent volatilities, with n be-
ing the sample size. As these are not independent but exhibit
a Markovian dependence structure, they cannot be counted as
n additional free parameters. Thus, neither BIC nor AIC is ap-
plicable for SV model comparison. As detailed in Section 3,
DIC avoids this dilemma by using a complexity measure for the
effective number of parameters that is based on an information-
theoretic argument. This quantity is readily obtained from an
MCMC analysis, which makes algebraic forms and large sam-
ple approximations obsolete.

It is usually hard to specify prior model probabilities nec-
essary for the calculation of posterior model probabilities. By
using DIC as a formal approach to model selection, combin-
ing a measure of fit and complexity, we can avoid this need.
However, we caution in general against basing model choice
solely on information criteria, as many other factors such as
the model’s inherent plausibility and the robustness of its in-
ferences and model diagnostics (as, for instance, outlined in
Kim et al. 1998, sec. 4.2; Spiegelhalter et al. 2002, sec. 6)
need to be taken into account. In many instances, when none
of the models is clearly superior, model averaging (Hoeting,
Madigan, Raftery, and Volinsky 1999) might be more appropri-
ate. Whether DIC can be used as a basis for model averaging
is still an open question. And it should also be stressed that no
prior model probabilities are necessary for the calculation of
Bayes factors.

The outline of the article is as follows: Section 2 gives an
introduction to SV models, followed in Section 3 by the defi-
nition and properties of DIC. Section 4 reviews Chib’s (1995)
method for calculating the marginal likelihood based on parti-
cle filtering and Newton and Raftery’s (1994) harmonic mean
estimate of the marginal likelihood. In Section 5 we present re-
sults from a simulation study and compare the model ranking
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implied by the marginal likelihood, harmonic mean, and DIC.
Section 6 applies DIC to compare the fit of various SV models
to a dataset previously analyzed in the literature. We also assess
the performance of DIC using the Bayes factor as a gold stan-
dard and examine the prior sensitivity of DIC. In Section 7 we
present our conclusions.

2. THE STOCHASTIC VOLATILITY MODEL

In both the theoretic finance literature on option pricing and
the empirical finance literature, the SV model (Taylor 1982;
Hull and White 1987) has received much attention in recent
years. It has become a powerful alternative to the autoregressive
conditional heteroscedasticity (ARCH) and generalized autore-
gressive conditional heteroscedasticity (GARCH) models intro-
duced by Engle (1982) and Bollerslev (1986). Ghysels, Harvey,
and Renault (1996) and Shephard (1996) gave excellentreviews
of the model.

Given a time series of daily returns {y[};':1 , a basic SV model
consists of an observation equation

yilhy = eXp(ht/Q)Mt,

that describes the distribution of the data given unknown states,
the log-volatilities /;, and a state equation

Ml =+ @(h—1 — ) + vy,

which models the day-to-day variation of the volatilities as a
Markov process. Here y; is the response variable, /; is the
log-volatility process, and the errors u; and v, are uncorrelated
Gaussian sequences with u; ~ N(0, 1) and v; ~ N(0O, 72). We
collect the three model parameters in a vector z = (¢, i, '(2).
In Sections 5 and 6 we will introduce extensions of the basic
model to more complex SV models. An example of such an
extension is the inclusion of a level effect in the observation
equation, namely,

t=1,....n, (1

t=1,....,n, (2)

yt:x}/exp(h[/Z)u[, t=1,...,n,

where x; denotes a time-varying covariate. The parameter y
plays an important role in analyzing interest rate data (for de-
tails refer, e.g., to Chan, Karolyi, Longstaff, and Sanders 1992;
Brenner, Harjes, and Kroner 1996). In other applications, for
example, stock market data, it is common to set this parameter
equal to O (see Sec. 5).

Classical parameter estimation for this model is extremely
difficult, because of the nonanalytic form of the likelihood
function. Harvey, Ruiz, and Shephard (1994) employed a
quasi-maximum likelihood technique, whereas Sandmann and
Koopman (1998) used the maximum likelihood Monte Carlo
method. Several method-of-moment approaches such as the
efficient method of moments (Gallant and Tauchen 1996;
Andersen, Chung, and Sgrensen 1999), the spectral method of
moments (Singleton 2001; Chacko and Viceira 2003; Knight,
Satchell, and Yu 2002), the simulated method of moments
(Duffie and Singleton 1993) and the generalized method of
moments (Melino and Turnbull 1990; Andersen and Sgrensen
1996) have also been used to estimate the model parameters.

Whereas some of the previously mentioned techniques use
ad hoc criteria (see Andersen et al. 1999 for a review and com-
parison of various estimation techniques for the SV model),
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a Bayesian approach is based on a sound statistical paradigm.
Bayesian posterior computations are performed using MCMC
techniques. Several different algorithms have been proposed by
Jacquier, Polson, and Rossi (1994) and Kim et al. (1998) and
further developedin Chib et al. (2002). Although more efficient
updating techniques for SV models exist, we employ the all-
purpose Bayesian software package BUGS based on the single-
update Gibbs sampler as described in Meyer and Yu (2000) for
ease of implementation. The SV model is a typical example of
a hierarchical model, in which the number of unknowns, that
is, the parameters (z) and the unknown states (hy, ..., hy,), ex-
ceeds the number of observations. The number of free parame-
ters in the model could be the number of model parameters (3)
or the number of states plus the number of model parameters
(n + 3) or something in between. In any case this number is
not well defined and, thus, precludes the use of AIC or BIC for
model comparison. We will show that DIC provides an efficient
and straightforward approach to defining the effective number
of parameters and to identifying the most appropriate model.

3. THE DEVIANCE INFORMATION CRITERION

Assume, in general, that the distribution of the data, y =
(¥1,---,¥Yn), depends on a p-dimensional parameter vector 6.
(In the context of an SV model, 6 encompasses the parame-
ter vector z and the vector of log-volatilities A1, .. ., h,.) From
a frequentist point of view, model assessment is based on the
deviance, the difference in the log-likelihoods between the fit-
ted and the saturated model. The saturated model refers to the
model with as many parameters as observations, which yields a
perfect fit to the data. By analogy, Dempster (1974) suggested
examining the posterior distribution of the classical deviance
defined by

D(0) = =2Inf(y]0) +2Ing(y) 3)

for Bayesian model selection. Here f(y|0) is the likelihood
function, that is, the conditional joint probability density func-
tion of the observations given the unknown parameters, and
Ing(y) denotes a fully specified standardizing term that is a
function of the data alone [in our applicationsin Secs. 5 and 6,
g(y) = 1]. Dempster (1974) proposed comparing plots and po-
tential summaries such as the posterior mean of D(6), and
Spiegelhalteret al. (2002) followed these suggestionsin the de-
velopment of DIC as a model choice criterion. Based on the
posterior distribution of D(8), DIC consists of two components,
a term that measures goodness of fit and a penalty term for in-
creasing model complexity:

DIC = D + pp. 4

1. The first term, a Bayesian measure of model fit, is defined
as the posterior expectation of the deviance

D =Eg,[D(0)] = Egy[—21Inf (y|0)]. (5)

The “better” the model fits the data, the larger are the val-
ues for the likelihood. D, which is defined as —2 times
log-likelihood, therefore, attains smaller values for “bet-
ter” models.
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2. The second component measures the complexity of the
model by the effective number of parameters, pp, defined
as the difference between the posterior mean of the de-
viance and the deviance evaluated at the posterior mean 6
of the parameters:

pp =D — D(0) = Egy[D(0)] — D(Egy[0])

= Egy[—21Inf(y|0)] + 2Inf(y|6).

By defining —2Inf (y|@) as the residual informationin the
data y conditional on 6 and interpreting it as a measure
of uncertainty, (6) shows that pp can be regarded as the
expected excess of the true over the estimated residual in-
formation in data y conditional on 6. This means we can
interpret pp as the expected reduction in uncertainty due
to estimation.

(6)

Rearranging (6), one gets D= D(é) + pp. Thus, the DIC de-
fined in (4) can be reexpressed as

DIC = D(0) + 2pp, @)

which can be interpreted as a classical “plug-in” measure of fit
plus a measure of complexity. Therefore, the Bayesian measure
of fit D= D(0) + pa already includes a penalty term for model
complexity and could thus be better thought of as a measure of
“model adequacy” rather than pure goodness of fit.

Spiegelhalteret al. (2002) gave an asymptotic justification of
DIC in the case where the number of observations n grows with
respect to the number of parameters p and where the prior is
nonhierarchical and completely specified (i.e., without hyper-
parameters). In this situation AIC = D(é) + 2p, where 6 de-
notes the maximum likelihood (ML) estimate. This is the same
formula as (7) but with the posterior mean @ substituted by
the ML estimate &. Thus, DIC can be seen as a generalization
of AIC, and it also can be compared to the Schwarz informa-
tion criterion BIC = —21nf(y|é) + plnn. In the special case
where the prior is flat, a case that corresponds to a frequentist
analysis, AIC equals DIC because the ML estimate coincides
with the posterior mean. In the context of normal linear regres-
sion with uncertainty in the choice of regressors, George and
Foster (2001) developed empirical Bayes alternatives to penal-
ized likelihood criteria such as AIC and BIC, and Fernandez,
Ley, and Steel (2001) pointed out links of Bayes factors with
classical information criteria and provided a unifying frame-
work.

By applying a logarithmic loss function, Spiegelhalter et al.
(2002) gave a decision-theoretic justification for DIC and
showed that DIC approximately describes the expected pos-
terior loss when adopting a particular model. For additional
asymptotic properties of pp and D, the interested reader is re-
ferred to Spiegelhalteret al. (2002).

In striking contrast to calculating Bayes factors, computing
DIC via MCMC is almost trivial. An estimate of D is easily cal-
culated from the MCMC output by monitoring D(9) and then
taking the sample mean of the simulated values of D(8). The
effective number of parameters pp can be obtained by evalu-
ating D(0) at the sample average of the simulated values of 0
and subtracting this plug-in estimate of the deviance from the
estimate of D (see also Sec. 5.3).
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So far, no efficient method has been developed for calculat-
ing reasonably accurate MC standard errors of DIC. Zhu and
Carlin (2000) explored this problem, but their approach using
the multivariate delta method yields poor results. Their final
recommendationis the “brute force” approach, which is simply
replicating the calculation of DIC some N times and estimating
VAR(DIC) by its sample variance

N
o 1 —
VAR(DIC) = —— DIC; —DIC)~.
( )N_1k§_1( ¢ —DIC)

Althoughthisis a painfully time-consuming approach, it at least
gives an indication of the inherent variability of DIC.

4. MARGINAL LIKELIHOOD AND HARMONIC MEAN

Because we are going to compare the performance of DIC
with that of Chib’s marginal likelihood method and the har-
monic mean in the next two sections, it is worthwhile to first
review Chib’s method for calculating the marginal likelihood
and Newton and Raftery’s (1994) method for estimating the
marginal likelihood by the harmonic mean of the sampled like-
lihood values.

4.1 Chib’s Marginal Likelihood

By definition, the marginal likelihood m(y) is the integral of
the likelihood function with respect to the prior density 7 (z):

m(y) = /f(ylz)n(z) dz, (8)

with z denoting the vector of parameters in the model. As solv-
ing this integral would require high-dimensional integration,
Chib (1995) suggested evaluating the marginal likelihood by
rearranging Bayes’s theorem

:f(ylz)n(z)
@@y

where 7 (z|y) denotes the posterior probability density function
of z. Thus, the log-marginal likelihood, which is referred to as
InL in the following, can be calculated by

m(y)

InL =1nm(y) =Inf(y|z) +Inm(z) — Inm(z]y), 9

where z is an appropriately selected high-density point (in this
article we simply use the posterior mean z). The first term on
the right side of (9) is the log-likelihood evaluated at the pos-
terior mean of the parameter vector z (marginalized over the
latent volatilities /,) and the second term is the log prior den-
sity evaluated at z. The third quantity involves the posterior
density, which is only known up to a normality constant. How-
ever, an approximation can be obtained by using a multivariate
kernel density estimate as suggested in Kim et al. (1998) (see
also Silverman 1986, chap. 4), which is based on the posterior
MCMC sample of z.

We mentioned in Section 2 that the log-likelihood function
Inf(y|z) has no analytical form for the SV model as it is mar-
ginalized over the latent states A1, ..., h,, and this is why the
exact maximum likelihood method is extremely difficult to im-
plement. However, it is possible to approximate the likelihood
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by making use of the so-called particle filter method. Impor-
tant contributions in this area include Gordon, Salmond, and
Smith (1993), Kitagawa (1996), and Pitt and Shephard (1999a).
By successive conditioning, the log-likelihood Inf(|z) can be
decomposed into

n—1

Inf(y12) =Inf(y112) + Y _ Inf(yi411¥:. 2,

=1

(10)

where Y; = (y1, ..., Y) collects the available data up to time ¢.
Taking the latent volatilities into account, each one-step-ahead
prediction density has a mixture representation as

FOulYn3) = / FOurtlhests Yo Df Ghes Yoo 2 dhysy
= /f(yt+l|ht+la Y:,2)

X [/f(h[+1|h[7 Z)f(h[|Y[, Z) dh[:| d/’l[_;,_l

and can, thus, be estimated by

M
! 0
27 2 Grtlel)y),

i=1
where h;le |h§i) is drawn from the state equation (2) given sam-
ples h;l), the so-called filtered particles, from f(h;|Y;, Z).

In this article we utilize Kitagawa’s algorithm for particle fil-

tering, which is applicable to a broad class of nonlinear non-
Gaussian multidimensional state space models of the form

e =H(xg, uy),
(11)

X =FQx—1,vy),

where x; is a k-dimensional state vector (here x; = h; is the
one-dimensional log-volatility), v; is an /-dimensional white-
noise sequence with density g(v), u; is a one-dimensional
white-noise sequence with density r(#) and assumed uncorre-
lated with {v¢}"_,, and H and F are possibly nonlinear func-
tions. Let u; = G(y;, x;) and let G’ be the derivative of G as
a function of y,. The density of the initial state vector is as-
sumed to be po(x). We now summarize all the steps involvedin
Kitagawa’s algorithm:

1. Generate M [-dimensional particles from po(x), fo(j ) for
j=1,...,M.
2. Repeat the following steps fort =1, ..., n.
a. Generate M [-dimensional particles from g(v), v§j ) for
j=1,...,M.
b. Computepgj) :F(ft(ﬂ, vgj)) forj=1,...,M.
c. Compute ott(j) = r(G(y[,pﬁj))) forj=1,...,M.
d. Resample { pij)}jl‘f | to get {ft(j )}jl‘f | with probabilities

proportionalto {r(G(y; p)) x |G/(yt,P§j))|}in1-

It can be seen that almost all the SV models presented in the
next two sections can be rewritten in the state space form (11);
hence, it is straightforward to modify the preceding algorithm
to fit our needs. The only exception is Model 5, which violates
the assumption of no correlation between u; and v,y+;. When
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Model 5 is introduced in Section 5, we will show how a sim-
ple rewrite of the model allows for a direct use of Kitagawa’s
algorithm.

We should point out that more efficient particle filter algo-
rithms are available. An example is the auxiliary particle filter
introduced by Pitt and Shephard (1999a); see the implemen-
tation of this particle filter algorithm in Kim et al. (1998), Pitt
and Shephard (1999b), Chib, Nardari, and Shephard (1999) and
Chib et al. (2002) in the context of SV models. Our experience
suggests that by choosing M = 50,000 for Kitagawa’s algo-
rithm one obtains very similar results to the auxiliary particle
filter method with M = 2,500.

4.2 Harmonic Mean

Newton and Raftery (1994) suggested the calculation of
approximate Bayes factors for model comparison using the har-
monic mean of the sampled likelihood values as a simulation-
consistent estimator of the required marginal likelihood. Let 6
denote the parameter vector (augmented by latent volatilities),
that is, 8 = (z, hy, ..., hy), as in Section 3. Similar to (8), the
marginal likelihood m(y) can be expressed as

m(y)Z/f(yIG)f(O)dG,

where f(0) denotes the joint prior density function of 6. The

importance sampling method for evaluating this integral is to

generate a sample {#);i=1,..., M} from a so-called impor-

tance sampling density f*(0). Under quite weak assumptions,

a simulation-consistentestimate of m(y) is given by
i wif (y169)

(y) = SELITE 2
i=1 Wi

12)

where w; :f(O(i))/f* (0D). The Gibbs sampler gives us a sam-
ple 6 approximately drawn from the posterior density f*(6) =
f@1y) =f(y10)f©)/m(y). Using these 6 in (12) yields the
harmonic mean estimator of m(y):

AR
My (y) = {MZW} S

i=1

(13)

Here iy, (y) converges almost surely to the correct value m(y)
as M goes to 0o, but it does not, in general, satisfy a Gaussian
central limit theorem as 1/f(y|6) is often not square integrable
with respect to the posterior distribution. Thus, a few outlying
values 8 with small likelihood values can have a large effect
on the estimate. For this reason Newton and Raftery (1994) also
proposed modified estimators that are much more stable than
the straight harmonic mean that we used here.

5. A SIMULATION STUDY

The main objective of this simulation study is to see whether
DIC is capable of identifying the true model from which the
data are generated. Following suggestions by the referees,
we also calculate Chib’s marginal likelihood and the har-
monic mean estimate for each model within the set of com-
peting models. However, we want to point out an argument by
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Spiegelhalter et al. (2002, rejoinder) that cautions against us-
ing the Bayes factor (or marginal likelihood) as a gold standard
against which to assess DIC. The Bayes factor addresses how
well the prior has predicted the observed data, whereas DIC ad-
dresses how well the posterior might predict future data gener-
ated by the same mechanism that gave rise to the observed data.
Thus, these criteria cannot, in general, be expected to arrive at
the same conclusions as they are designed to answer different
questions. Especially for the practical selection of models of
financial time series, we consider this posterior predictive out-
look of DIC to be potentially more relevant.

We simulate a dataset comprising 2,000 observations from
a stochastic volatility model that includes a jump component
as described later. The data are plotted in the first panel of
Figure 1. This SV + jumps model (Model 6) is very simi-
lar to the one proposed in the simulation analysis by Chib
et al. (2002). We use the BUGS (Bayesian Inference Using
Gibbs Sampling) software package (Spiegelhalter, Thomas,
Best and Gilks 1996), available online at http:/www.mrc-
bsu.cam.ac.uk/bugs/welcome.shtml, for posterior computation.
BUGS is an easy-to-learn and easy-to-use Bayesian software
package that implements the Gibbs sampler for generating sam-
ples from a Markov chain whose equilibrium distribution is
the posterior distribution. As demonstrated by Meyer and Yu
(2000), it can be applied to fit stochastic volatility models. Al-
though more efficient Markov chain Monte Carlo techniques
exist for fitting SV models (Kim et al. 1998), the use of BUGS
is highly attractive due to the ease of implementation. In the
following, we describe the list of competing models under con-
sideration.

5.1 The Models

We fit eight different stochastic volatility models to the sim-
ulated data, including the true model from which the data are
generated (Model 6). For each of the models we list the obser-
vation and state equations (for t =1, ..., n) and their distribu-
tional assumptions. For all cases we assume u; and {vs};':1 are
uncorrelated unless we claim otherwise. Prior distributions for
the unknown parameters are stated in Section 5.2.

Model 1. This model is identical to the basic SV model in
Section 2:

ii.d.
yilhy = exp(he/2)ur, w =~ N, 1),
2 iid. 2
hilhi—1, w, d, =+ p(hi—1 — 1) + vy, vi ~ N(,17),

with ko ~ N(u, 72).

Model 2. An additional nonzero mean « is added to the ob-
servation equation:

Vilhe, o0 = o + explie/2)us, w N, 1),
iid.
hl|hl—17:u/7¢7t2::u/+¢(hl—l_:u’)+vl7 thlv N(O, Tz)-

Model 3. An AR(2) process for the state equation:
yilhe = exp(hi/2)uy, u XN, 1),
helh—t. s @, ¥, T8 = 1+ @ (et — 1) + Y (ha — ) + v,

ii.d.
Ve ©~

N(O, 72).
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Figure 1. Time Series Plots for Simulated Data, S&P 100, VIX, Logarithm of Absolute Value of S&P 100 Returns.

Model 4. Two independent AR(1) processes as in Harvey of this model gives
etal. (1994), Shephard (1996), Gallant and Tauchen (2001), and

Chernov, Gallant, Ghysels, and Tauchen (2003): yilhy = exp(hy/2)us, 1}3‘ N(O, 1),
yilhe = exp(u/2 + bV /2 + 12 )2)u,, Bl 1, Viets s @, T2 = e+ b (et — @)
0 8 N, 1), + pTexp(—.5hi—1)yi—1
e
N S L () M B

(2) 2 (2) 2 (2) i 1 d. ii.d.
1h—y. ¢2, tz ¢2-hZ + v, ~ N(0, 73 ). where w, "~ N(0, 1) and cor(u;, w;) = 0. Based on the new

o ) . . representation, steps 2a and 2b in Kitagawa’s algorithm can be
Model5. Thisis Model 1 includinga leverage or asymmetric modified by:

effect by allowing for correlation between u; and v.1, thatis,
2a. Generate M particles, called v(/) j=1,....,M, from a
( Uy ) i.i-j‘.N{ (0) (1 Pg )} normal distribution with mean pt exp(—.Sh;_l)y;_l and
Vi+1 0 variance t2(1 — p?).

PT T
This effect is often observed in financial time series, for exam- BB L O

ple, in time series of exchangerates and, even stronger, in stock ( D _

market data. It reveals the market behavior, first discovered by

Black (1976) and described in Engle and Ng (1993). ) .
Although the correlation between u; and v,.y; makes where p;” can be regarded as independent draws from

Kitagawa’s algorithm not directly applicable, a simple rewrite phlyi—1).

(.ft(j)ls (/))’ jzl,...,M,
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Model6. The SV + jumps model includes a jump component
and lagged observations in the observation equation:

Yilhe, S, G, B = Byi—1 + 5:q: + exp(h:/2) uy,

ii.d.
u =N, 1),

Bl $, T2 = o By — )+, v RN, T,
where g; follows a Bernoulli distribution that takes a value of 1
with probability « and O with probability 1 —«, and In(1 +s;) ~
N(—8%/2,8%).

The underlying data are generated from this model using
nw=-—10,¢=.96,7=.345,8 = .1,k =.08,and § = .03.

Model 7. This model includes a jump component in the ob-
servation equation but without taking the lagged observations
into consideration:

iid.

Yilhy, 8¢, gr = s1qy + exp(hy/2)uy, u; ~ N(O, 1),

ii.d.
ht|ht—1yﬂa¢,T2:M+¢(ht—l—M)+Vt’ thlv N(O, Tz)-

Model 8. Gaussian observation errors are substituted by in-
dependentcentral Student ¢ distributions with v degrees of free-
dom:

yelhy = CXP(ht/z)Mt’ Mt. ’
ht|ht—1yﬂa¢,T2:M+¢(ht—l—M)+Vt’ th'

5.2 Prior Distributions

For the parameters ¢ and 72 of the basic SV model, we fol-
low exactly the prior specifications of Kim et al. (1998): 72 ~
Inverse-Gamma(2.5,.025), which has a mean of .167 and a
standard deviation of .024. Defining ¢ = 2¢* — 1, Kim et al.
(1998) specified a beta distribution with parameters 20 and 1.5
for ¢*, which implies a mean of .86 and a standard deviation
of .11. Following Kim et al. (1998), we choose an informative
but reasonably flat prior distribution for the parameter p, a nor-
mal distribution with mean —10 and variance 25.

For o in Model 2 a normal distribution with mean parameter
Mo = 0 and variance 03 = 10 is specified.

For Model 3 we use the same prior for ¢ as for the basic
SV model and center the prior for ¥ around 0 using a uniform
distributionon [—1, 1].

In Model 4 we again use the same prior for ¢ as for the basic
SV model and center a vague prior for ¢2 around 0 using a beta
distribution with parameters 2 and 2.

The correlation parameter o in Model 5 is assumed to be
uniformly distributed with support between —1 and 1.

As the parameter B in Model 6 is assumed to be small a
priori, we use an informative normal distribution with hyper-
parameters ug = 0 and oé = .2. The parameter g; represents
the frequency of a jump occurrence with a Bernoulli distribu-
tion with parameter «. Following Chib et al. (2002), we spec-
ify a Beta(2, 100) prior distribution, which implies a mean of
.02 and suggests that a priori on average one jump in approxi-
mately every 50th observation. Finally, as in Chib et al. (2002),
we assume that In(8) follows a normal prior distribution with
mean —3.07 and variance .149.
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A well-known alternative to the direct fitting of many sym-
metric but nonnormal error distributions is through scale mix-
tures of normals (Andrews and Mallows 1974). Thus, in
Model 8 we use the alternative mixture representation of a
14 distribution by

yi ~ N(0, exp(hy) /wi),

1 5 . (v v)
Wy~ — S = - = ).
St X amma 7’7
We choose a uniform distribution for v on [2, 128] as in Chib
et al. (2002).

5.8 Implementation in WinBUGS

WinBUGS is the BUGS version operating under Windows.
A DIC module that automatically calculates values for DIC
and related parameters is implemented in the latest WinBUGS
version. Even without the DIC module, DIC is easily obtained
from any MCMC output.

The first part of DIC, D, is easily calculated using the
MCMC output 9, i =1,...,N. We simply calculate D(6?)
fori=1,...,N and estimate D by the sample mean (1/N) x

f\]:lD(O(i)). In practice, using BUGS, this is accomplished
by adding the variable D(6). For the second part, the effective
number of parameters pp, we only need to evaluate D(0) at
the sample posterior mean 6 = (1/N) Zf\lzl 6. WinBUGS of-
fers several useful convergence-checkingcriteria availablein an
attached CODA (Convergence Diagnosis and Output Analysis
Software for Gibbs sampling output; Best, Cowles, and Vines
1995) module running, for example, under S-Plus. It is neces-
sary to check whether convergence has been achieved because
it is crucial that the sample is taken from the stationary distri-
bution. The CODA package consists of a selection of model-
checking criteria, one of which is the Heidelberger—Welch test
(Heidelberger and Welch 1983). All the results we report in this
article are based on samples that have passed the Heidelberger—
Welch convergencetest for all parameters.

5.4 Results

In Table 1 we report means and standard errors (numbers in
parentheses) of both prior and posterior distributions, as well
as the computing time to generate 100 iterations for each of
the eight models. The numbers in square brackets are the true
values of the parameters. In Table 2 we report Chib’s marginal
likelihood, harmonic mean, and DIC together with D and PD
for each of the eight models as well as their associated rank-
ings by each criterion. For SV Models 1-5, after a burn-in pe-
riod of 50,000 iterations and a follow-up period of 250,000,
we stored every 20th iteration. Due to higher posterior correla-
tions among the parameters and thus slower convergence of the
Gibbs sampler in the remaining models, we chose a burn-in pe-
riod of 100,000 iterations, a follow-up period of 900,000, and
stored every 40th iteration. All calculations were performed on
a Pentium-III PC, 550 MHz, running the WinBUGS 131 ver-
sion updated with the DIC tool.

From the examination of these two tables, we first note that
the correct model (Model 6) is estimated by MCMC with rea-
sonably accurate results for all six parameters. Moreover, the
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Table 1. Parameter Estimates for Simulated Data

Model
Parameter  Distribution 1 2 3 4 ) 6 7 8
" Prior —-10.0 -10.0 -10.0 —-10.0 -10.0 —-10.0 —-10.0 —-10.0
(5.00) (5.00) (5.00) (5.00) (5.00) (5.00) (5.00) (5.00)
[—10] Posterior -9.836 -9.837 -9.845 —9.859 -9.837 —-10.13 —10.08 —10.31
(.0844) (.0847) (.0933) (.1615) (.0848) (.1499) (.1474) (.1512)
¢ Prior .86 .86 .86 .86 .86 .86 .86 .86
(.11) (.11) (.11) (.11) (.11) (.11) (.11) (.11)
[.96] Posterior .6502 .6496 4146 .9494 .6518 .9353 .9330 .9457
(.0398) (.0401) (.0703) (.0182) (.0399) (.0139) (.0147) (.0143)
T Prior 12 12 12 12 12 12 12 12
(.05) (.05) (.05) (.05) (.05) (.05) (.05) (.05)
[.345] Posterior 1.128 1.130 1.205 .2803 1.130 .3959 .3988 .3244
(.0617) (.0622) (.0567) (.0646) (.0624) (.0438) (.0450) (.0462)
o Prior S .00 S S S S S S
(3.16)
Posterior — 3.7¢7% = = = = = =
(.0001)
v Prior — — .00 — — — — —
(.58)
Posterior — — .2569 o o o = =
(.0754)
¢o Prior — — — .00 — — — —
(.45)
Posterior — — — .2135 — — — —
(.0963)
To Prior — — — .38 — — — —
(.16)
Posterior — — — 1.187 — — — —
(.0606)
P Prior — — — — .00 — — —
(.58)
Posterior — S S S —.079 S S S
(.0423)
B Prior o — — — — .00 — —
(.45)
[.1] Posterior — — — — — .0807 — —
(.0121)
K Prior — — — — — .02 .02 —
(.01) (.01)
[.08] Posterior — — — — — .0727 .0691 —
(.0099) (.0100)
1) Prior — — — — — .05 .05 —
(.02) (.02)
[.03] Posterior — — — — — .0342 .0348 —
(.0026) (.0028)
v Prior — — — — — — — 65.0
(36.4)
Posterior — — — — — — — 2.563
(.1866)
Time (seconds) 4.30 4.84 7.54 7.38 31.31 36.45 31.29 42.59

correct model provides the smallest value for DIC as well as
for the posterior mean of the deviance despite the fact that the
effective number of parameters is not the smallest. We get only
a slightly larger value of DIC for the SV + jumps model with-

Table 2. Chib’s Marginal Likelihood, Harmonic Mean, and DIC for Simulated Data

out lagged observations (Model 7). This is because differences
between this model and the correct model are very small. Not
surprisingly, this model is ranked second by DIC. All the other
models clearly perform worse. For example, compared with

InL Harmonic mean DIC
Model Value  Ranking Value  Ranking Value Ranking D PD
1 6,472.67 7 6,888.43 7 —13,442.5 7 —-14,002.5 560.0
2  6,467.51 8 6,882.43 8 —13,441.9 8 —-14,003.4 561.5
3  6,474.38 5 6,890.43 6 —13,463.3 4 —14,040.7 577.4
4  6,495.51 4 6,948.43 4 —13,496.2 3 -14,102.4 606.2
5 6,472.82 6 6,901.42 5 —13,453.9 5 —-14,018.9 565.0
6  6,569.16 1 7,172.00 1 —14,450.0 1 —-14,5682.7 132.7
7  6,548.27 2 7,102.92 2 —14,362.0 2 —14,485.3 123.3
8 6,517.44 3 6,949.62 3 —13,448.0 6 —14,096.1 648.1




Berg, Meyer and Yu: Stochastic Volatility Models

115

Table 3. Deviance and Harmonic Mean (HM) Summaries for Simulated Data

Model Dmin Dmax PDmin  PDmax DICpin DiCmax HMin HMmax
1 —14,003.5 —14,000.1 557.3 560.5 —13,443.8 -—13,441.5 6,871.41 6,890.55
2 —14,004.4 —14,001.1 561.5 563.4 —13,443.9 —-13,439.7 6,860.43 6,886.79
3 —14,040.7 —14,036.8 574.4 5778 —-13,465.4 —-13,461.2 6,870.30 6,893.43
4 —14,103.9 —14,100.2 603.3 606.4 —13,499.7 —13,4956 6,939.66 6,957.15
5 —14,022.9 —14,018.9 565.0 568.1 —13,456.5 —13,453.9 6,890.98 6,912.18
6 —14,585.7 —14,580.0 131.7 1334 —14,452.0 —14,4486 7,139.71 7,172.00
7 —14,485.3 —14,479.5 123.3 124.7 —-14,362.0 —14,354.8 7,091.90 7,111.97
8 —14,099.3 —14,096.0 648.1 650.2 —13,453.1 —13,448.1 6,933.15  6,949.62

DIC values of —14,450 and —14,362 for the two models with
jumps, the basic SV model provides a DIC value of —13,442.5.
In fact, the DIC margins among all the models excluding the
jump models are reasonably small. For example, DIC of the
third best model differs from that of the worst model by 54.3,
whereas the difference between the second best and the third
best is 865.8. Moreover, the effective number of parameters is
much larger for all the models except the jump models and none
of these models fits the data as well as the jump models, indi-
cated by the highest value for the posterior mean of the de-
viance. Not surprisingly, the higher values of D and pp add up
to the higher DIC values.

Model 4, with two independent AR(1) components, gives a
relatively good fit, being ranked the best fitting after the jump
models by DIC and the best fitting after the jump and SV-# mod-
els by Chib’s marginal likelihood. It can thus be considered as
a good alternative to using SV models with jumps.

Another interesting result emerging from these two tables is
the performance of DIC relative to Chib’s marginal likelihood
and the harmonic mean. Neither DIC nor the harmonic mean
provides the same model ranking as Chib’s marginal likelihood
but the differences are not substantial. Differences between the
two marginal likelihood methods and DIC are not surprising as
the focus of DIC is different to that of the marginal likelihood
methods, as explained in detail in the previous sections.

The computing time to generate 100 iterations suggests that
the MCMC program runs substantially slower for the SV Mod-
els 5-8 than for the SV Models 1-4. This is because most of
the full conditional distributions for SV Models 5-8 are no
longer log-concave and a Metropolis—Hastings updating step is
needed. To conserve space, the correlograms are not plotted in
the article, but they are available from the authors upon request.

Comparison between DIC and Chib’s marginal likelihood re-
veals that the mixture normal-Gamma ¢ SV model (Model 8) is
the only cause of the discrepancy. Here it is helpful to divide
DIC into a pure measure of fit D(9) and a measure of complex-
ity 2pp as in (7) to see that the # SV model is heavily penalized
by its high effective number of parameters. Considering D)
gives a value of —14,715.4 for the true (Model 6) and a value of
—14,744.1 for the t SV model (Model 8). Thus, the £ SV model
provides a better fit but its high complexity tips the scales. Al-
though not reported, we have also estimated the nonscale mix-
ture £ SV model and found that the performance of these two
representations are quite different. The nonscale mixture ¢t SV
model performs even worse than the scale mixture SV model
according to DIC. It has been recognized that different mixture
distributions can generate different DIC values, due to the fact

that different mixture distributions correspond to different pre-
diction problems, and more research and experience is needed
as to the performance of DIC in the area of mixture models
(Spiegelhalter et al. 2002).

Table 3 shows the smallest and largest values for DIC and the
harmonic mean, the number of effective parameters pp, and the
goodness of fit D, respectively, obtained for six runs for each
of the seven models. It serves to demonstrate that DIC varies
from one run to another but is reasonably stable across runs.
This is in contrast to the well-known instability problem of the
harmonic mean, which is apparent from the large discrepancies
between the smallest and largest values for the harmonic mean.
However, the reader should note that slightly modified estima-
tors of the harmonic mean as proposed by Newton and Raftery
(1994) are much more stable and do not suffer from the lack of
a central limit theorem.

6. AN EMPIRICAL STUDY

6.1 The Data

The dataset consists of 1,512 mean-corrected daily continu-
ously compounded returns, y;, in decimals, on the Standard &
Poors (S&P) 100 index, covering the period of time between
January 1993 and December 1998. The S&P 100 index re-
turns have been used often in the literature. For instance, Blair,
Poon, and Taylor (2001a) estimated the GJR-GARCH model
proposed by Glosten, Jagannathan, and Runkle (1993) based
on the S&P 100 index returns for four different sample periods
from March 1984 to December 1998, one of which is identical
to that in this article. We also use data from the Chicago Board
Options Exchange Market Volatility Index (VIX) for the same
period of time as a covariate, measuring the so-called implied
volatility. For a detailed explanation of the Chicago Board Op-
tions Exchange Market Volatility Index, the reader is referred
to Hol and Koopman (2000) and Fleming, Ostdiek, and Wha-
ley (1995). Both data series are plotted in the second and third
panels of Figure 1.

6.2 The Models and Prior Distributions

In this section we fit the models introduced in Section 5 to
the preceding dataset. We drop Model 4 from the list due to a
great deal of convergence problems that we have encountered
(it may be possible to achieve convergence by using different
parameterizations or using different MCMC algorithms, how-
ever). Instead we consider as an additional extension a model
that includes implied volatility:
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Model 9. This model is very similar to the SVX model in-
troduced in Hol and Koopman (2000), which includes implied
volatility as expressed by an additional covariate x;:

iid.

yilhy = exp(he/2)uy, u, ~ N(,1),

hulhi—y, . @, 7% 0= i+ @it — 1) + A =) + v,
v SN, 7).
The implied volatility is used in this model as an alterna-
tive source for predicting volatility and is based on calculations
of option price models. The specification of the variance equa-
tion is motivated by the empirical result that implied volatilities
contain useful information in forecasting future volatilities (see,
e.g., Blair, Poon, and Taylor 2001b). In the last panel of Fig-
ure 1, we plot the logarithm of the absolute value of S&P 100
returns, which is regarded as an approximation of unobserved
log-volatility. It can be seen that the VIX and the logarithm of
the absolute value of S&P 100 returns are highly correlated.
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Note that we demean the observations in vector x; for conver-
gence purposes.

A priori, A is assumed to be uniformly distributed in the in-
terval [—1, 1]. Due to the inclusion of the implied volatility, it
is not clear a priori whether the log-volatility 4, is still highly
persistent. Instead of using a rather informative prior of a beta
distribution with parameters 20 and 1.5 for ¢*, we choose a less
informative prior for ¢*, namely, a uniform distribution with
support between 0 and 1.

6.3 Resulis

In Table 4 we report means and standard errors (numbers in
parentheses) of both prior and posterior distributions, as well as
the computing time to generate 100 iterations for each of the
eight models. For Models 1-5, after a burn-in period of 50,000
iterations and a follow-up period of 250,000, we stored every
20th iteration. In the remaining models, we chose a burn-in pe-
riod of 100,000 iterations, a follow-up period of 900,000, and
stored every 40th iteration.

Table 4. Parameter Estimates for S&P 100 Data

Model
Parameter  Distribution 1 2 3 ) 6 7 8 9
" Prior -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0 -10.0
(5.00) (5.00) (5.00) (5.00) (5.00) (5.00) (5.00) (5.00)
Posterior —9.971 -9.956 —9.986 —9.951 —-10.06 —-10.07 —-10.34 —-9.942
(.2573) (.2408) (.2663) (.2019) (.2889) (.2897) (.3213) (.0460)
¢ Prior .86 .86 .86 .86 .86 .86 .86 .00
(11) (.11) (.11) (.11) (.11) (.11) (.11) (.58)
Posterior .9803 .9789 .8375 .9743 .9868 .9873 .9923 —.2745
(.0088) (.0094) (.1525) (.0100) (.0070) (.0069) (.0044) (.1155)
T Prior 12 12 12 12 12 12 12 12
(.05) (.05) (.05) (.05) (.05) (.05) (.05) (.05)
Posterior .1674 1729 .1886 .1947 .1331 .1302 .1005 .4375
(.0297) (.0317) (.0442) (.0319) (.0284) (.0286) (.0189) (.0763)
o Prior — .00 — — — — — —
(3.16)
Posterior = 1.03e~4 = = = = = =
(1.7e™%)
v Prior — — .00 — — — — —
(.58)
Posterior — — 1413 — — — — —
(.1495)
P Prior — — — .00 — — — —
(.58)
Posterior — — — —.4139 o o o o
(.0860)
B Prior — — — — .00 — — —
(.45)
Posterior — — — — .0050 — — —
(.0263)
K Prior — — — — .02 .02 — —
(.01) (.01)
Posterior — — — — .0114 .0115 — —
(.0076) (.0075)
8 Prior — — — — .05 .05 o o
(.02) (.02)
Posterior — — — — .0315 .0324 — —
(.0119) (.0121)
v Prior — — — — — — 65.0 —
(36.4)
Posterior — — — — — — 7.306 —
(1.532)
A Prior — — — — — — — .0
(.58)
Posterior — — — — — — — 1527
(.0159)
Time (seconds) 3.25 3.66 5.70 23.67 27.56 23.65 32.20 4.27
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Table 5. Chib’s Marginal Likelihood, Harmonic Mean, and DIC for S&P 100 Data

InL Harmonic mean DIC
Model Value  Ranking Value  Ranking Value Ranking D PD
1 5,227.45 6 5,270.40 8 -10,529.6 8 -10,613.1  83.5
2 5,223.17 8 5,276.64 7 —10,530.0 7 -10,616.9 86.9
3 5,226.17 7 5,277.29 6 -10,531.5 6 -10,616.7 85.2
5 5,229.87 5 5,300.43 3 -10,610.9 4 —-10,936.3 325.4
6 5,241.54 3 5,279.58 5 —10,649.7 2 -10,677.2 27.5
7 5,243.76 1 5,288.27 4 —10,653.5 1 —-10,679.3 25.8
8 5,242.38 2 5,331.00 1 —10,566.1 5 -10,788.9 222.8
9 5,234.48 4 5,301.30 2 -10,618.8 3 —-10,741.3 122.5

From Table 4 it can be seen that the estimated means and
standard deviations for the parameters appear quite reasonable
and comparable with previous estimates in the literature. For
instance, in Model 1, the volatility process is estimated to be
highly persistent. In Model 5 the posterior mean of p is —.4139
with the upper limit of the 95% posterior credibility interval
less than 0. This suggests that the leverage effect is an impor-
tant feature for the S&P 100 index. The parameter estimates for
the two SV + jumps models provide similar results for those
parameters already covered by the SV models without jumps.
As already observed in Chib et al. (2002), we note that the jump
parameters k and § are not as precisely estimated as other pa-
rameters. However, they are well identified as their posterior
distributions are substantially different from their prior distri-
butions. The posterior mean of the jump intensity « is .011,
which means an average daily probability of 1.1% of a jump
occurring. This implies that a jump can be expected to occur
roughly every 90th day. The standard deviation of the jump size
is about .03; that is, daily jumps are usually around 6%.

In Model 8 the posterior mean of v is 7.306 and similar to the
values of 7.7 and 8.9 for the S&P 500 index in Sandmann and
Koopman (1998) and Chib et al. (2002), respectively. The pos-
terior mean of A in Model 9 indicates that the implied volatil-
ity contains important information about the volatility process.
Interestingly, allowing for the implied volatility as a covariate
induces a negative posterior mean of the autoregressive coeffi-
cient in the model. This finding is similar to what was obtained
in Hol and Koopman (2000) based on an S&P 100 index for a
different period.

In Table 5 we report Chib’s marginal likelihood, harmonic
mean, and DIC together with D and pp for each of the eight
models as well as their associated rankings by each criterion.
The most adequate models to describe the S&P 100 accord-
ing to DIC are the jump model without lagged observations
(Model 7) and the jump model with lagged observations
(Model 6), followed by the implied volatility model (Model 9)

and the model including the leverage effect (Model 5). Al-
though the posterior means of the deviance for the jump models
are higher than those of most of the other models, the effective
number of parameters is much lower. The effective number of
parameters is around 26 for the jump models, which is less than
one-third of the effective number of parameters for the clos-
est competitor. Model 5 has the lowest posterior means of the
deviance, which suggests the best fit to the data. However, its
effective number of parameters is much higher than that of the
other models. In particular, it is more than 10 times larger than
that of the jump models. This renders a larger value of DIC.

As for the simulated data, neither DIC nor the harmonic
mean provides the same model ranking as Chib’s marginal like-
lihood. According to Chib’s marginal likelihood, the strength
of evidence to distinguish between the models is much weaker
for the S&P 100 data than for the simulated data. For exam-
ple, the marginal likelihood values from the second best model
and the third best model only differ by .84, which is not worth
more than a bare mention according to Jeffrey’s Bayes factor
scale [exp(.84) = 2.316]. Nonetheless, both DIC and Chib’s
marginal likelihood select Model 7 (i.e., the jump model with-
out lagged observations) as the best performing model, whereas
the harmonic mean picks Model 8 (i.e., the £ SV model).

A close look at Table 5 reveals that the mixture normal-
Gamma ¢t SV model (i.e., Model 8) is the major cause of the
discrepancy between the DIC ranking and Chib’s marginal like-
lihood ranking. This is a similar finding to the simulated data.
Another minor discrepancy arises from the first three models.
Chib’s marginal likelihood ranks Model 2 the worst model,
whereas DIC ranks Model 1 the worst.

Table 6 shows the smallest and largest values for DIC and the
harmonic mean, the number of effective parameters pp and the
goodness of fit D, respectively, obtained for six runs for each of
the seven models. Again it demonstrates that DIC varies from
one run to another but is reasonably stable across runs and DIC
is more stable than the harmonic mean. Also, it can be seen

Table 6. Deviance and Harmonic Mean (HM) Summaries for S&P 100 Data

Model Dnin Dmax PDmin  PDmax DICrin DICmax HMmin HMmax
1 -10,6171 —-10,611.6 81.9 85.8 —-10,531.3 —-10,527.4 5,266.96 5,275.31
2 -10,6184 —10,615.9 85.1 88.2 -10,531.4 —-10,529.6 5,271.53 5,279.98
3 -10,621.3 —10,613.1 83.1 88.8 —-10,532.8 —-10,530.0 5,270.33 5,277.29
5 —10,941.4 -10,9349 3230 3286 —10,613.3 —10,610.9 5,297.65 5,308.88
6 -10,681.5 —10,674.9 24.9 29.8 -10,656.7 —10,645.1 5,279.58 5,287.72
7 —10,680.7 —10,675.9 24.1 30.3 -10,655.1 —-10,645.7 5,278.56 5,288.27
8 -10,791.5 -10,787.3 2222 226.1 —10,565.5 —10,566.9 5,324.47 5,331.00
9 -10,741.5 -10,738.8 1208 1240 -10.618.8 —10,617.1 5,298.71  5,302.28
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Table 7. Sensitivity of DIC and Chib’s Marginal Likelihood to the Prior

Model 1, Model 5, Model 7
Prior 2 Prior 2 Prior 2 Prior 3
" -9.970 -9.963 —10.10 —-10.20
(.2543) (.2240) (.3250) (.3232)
) .9806 .9768 .9886 .9887
(.0092) (.0098) (.00678) (.00694)
T .1680 .1865 1271 .1266
(.0327) (.0317) (.0271) (.0290)
) — —.4145 — —
(.0883)
K — — .0107 .0121
(.0064) (.0080)
) — — .0337 .0298
(.0113) (.0120)
DIC -10,530.7 —-10,618.1 —10,646.5 —10,659.0
InL 5,225.39 5,228.03 5,242.27 5,240.88

that the ranges of DIC overlap with each other for the first three
models. This explains why the first three models are difficult to
distinguish.

6.4 Robustness Check

In this section we examine the implications of alternative
prior distributions on DIC and Chib’s marginal likelihood. In
particular, we focus on a subset of hyperparameters, namely,
¢ and k. Also, for brevity we only consider a subset of the mod-
els, namely, the basic SV model (Model 1), the SV model with
a leverage effect (Model 5), and the SV + jumps model without
lagged observations (Model 7). Following Chib et al. (2002),
we consider the following two alternative priors:

e Prior2: ¢* ~U(0, 1).
e Prior3: ¢* ~ U(0, 1), x ~ Beta with mean .0385 and stan-
dard error .0264.

We reestimate all three models with Prior 2 and Model 7 with
Prior 3 and calculate DIC and Chib’s marginal likelihood ac-
cordingly. The posterior means, standard errors, DIC, and the
marginal likelihood are reported in Table 7. A comparison with
the results in Table 4 shows that Prior 2 yields a posterior dis-
tribution that is almost identical to that with the original prior
and that Prior 3 yields a posterior distribution that is reasonably
close to that with the original prior. More important, DIC seems
quite robust to the change of prior. Moreover, it preserves the
ranking of the models considered and the ranking is consistent
with that based on the marginal likelihood.

7. CONCLUSION

In this article we have explored the practical performance of
DIC as a model selection criterion for comparing various sto-
chastic volatility models. DIC is a Bayesian version of the clas-
sical deviance for model assessment. It is particularly suited to
compare Bayesian models whose posterior distributions have
been obtained using MCMC simulation. Similar to AIC and
BIC, DIC comprises two parts, a goodness-of-fit measure, the
posterior distribution of the deviance, and a penalty term, the ef-
fective number of parameters, measuring complexity. Using the
concept of effective number of parameters, DIC can be used in

complex hierarchical models where the number of unknowns
often exceeds the number of observations and the number of
free parameters is not well defined. This is in contrast to AIC
and BIC, where the number of free parameters needs to be spec-
ified. DIC has been implemented as a tool in the BUGS soft-
ware package.

We carry out a simulation study using an SV + jumps model
as the true model. Our estimation results with respect to the
simulated data are quite accurate for the true model, and DIC
clearly identifies the correct model out of eight different alter-
natives. If one were to omit the mixture # SV model, DIC would
give the same model ranking as Chib’s marginal likelihood. By
comparing eight different SV models for the S&P 100 index,
comprising 1,512 observations from 1993 to 1998, the jump
volatility model without lagged observations turns out to be the
most adequate as indicated by both DIC and Chib’s marginal
likelihood. The Monte Carlo error of DIC is fairly low for all
the models, indicating a stable performance for model compari-
son purposes. Finally, DIC appears robust to the change of prior
distributions.
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