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Abstract

The function form of a linear intertemporal relation between risk and return is suggested by Merton’s
[1973. Econometrica 41, 867–887] analytical work for instantaneous returns, whereas empirical studies
have examined the nature of this relation using temporally aggregated data, i.e., daily, monthly, quarterly, or
even yearly returns. Our paper carefully examines the temporal aggregation effect on the validity of the lin-
ear specification of the risk–return relation at discrete horizons, and on its implications on the reliability of
the resulting inference about the risk–return relation based on different observation intervals. Surprisingly,
we show that, based on the standard Heston’s [1993. Review of Financial Studies 6, 327–343] dynamics,
the linear relation between risk and return will not be distorted by the temporal aggregation at all. Neither
will the sign of this relation be flipped by the temporal aggregation, even at the yearly horizon. This finding
excludes the temporal aggregation issue as a potential source for the conflicting empirical evidence about
the risk–return relation in the earlier studies.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

How the risk and return of the aggregate stock market are related in their time-variations
is one of the most important questions in finance. Merton’s (1973) analytical work suggests
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a function form which linearly relates the instantaneous expected return to the conditional
volatility. Empirically, either daily, monthly, quarterly, or even yearly rates of return have been
used to estimate the parameter that measures such a linear risk–return relation.1 However,
the impact of temporal aggregation on the function form of the risk–return relation and on
the sign and magnitude of the parameter measuring this relation has not been carefully ana-
lyzed.

The main purpose of this paper is to analytically examine the possible effects of temporal
aggregation on the specification of the intertemporal risk–return relation and on the degree of
stability of this relation at different observation intervals. This is important given that the existing
empirical evidence is quite mixing about the risk–return relation2 and that temporal aggregation
could be a potential source for this confusing situation.

This work is particularly inspired by the finding of Longstaff (1989), who shows that, in
the context of cross-sectional asset pricing, the instantaneous CAPM model no longer holds
after temporal aggregation but becomes a nonlinear multifactor model for discretely-observed
returns. Longstaff further shows that making inference on the validity of the instantaneous CAPM
based on an analysis of the discrete-time CAPM could lead to erroneous results. A number of
other studies also illustrate the significant impact of temporal aggregation on estimation. See, for
example, Cartwright and Lee (1987) and Marcellino (1999). In all these papers, it is shown that
when the data observation intervals are longer than the data generating intervals, the empirical
analysis is usually marred by temporal aggregation effects, and further, that empirical inference
will be sensitive to the degree of data aggregation.

Our analysis starts with a continuous-time return dynamics, consisting of a return equation
capturing the linear instantaneous risk–return relation argued by Merton (1973, 1980) and a
conditional volatility equation following the widely-used Heston’s (1993) stochastic volatility
process.

We derive a close-form solution to the function form relating risk to return for any given dis-
crete horizon. Surprisingly, in contrast to those applications in the above-mentioned papers (e.g.,
the cross-sectional asset pricing of Longstaff, 1989), our result shows that the linear risk–return
relation will not be distorted by the temporal aggregation at all, however long the observation
intervals are.

Moreover, by formulating the parameter measuring the temporally aggregated risk–return re-
lation, in terms of the parameter measuring the instantaneous risk–return relation as well as the
parameters related to the volatility process, we show that when the volatility parameters capture
the key features in the data, such as the high degree of persistence in volatility and the signifi-
cant leverage effect, the risk–return relation will retain the same sign and similar magnitude for
the usual horizons used for empirical analysis. Again, differing from the temporal aggregation
effect in other areas, this result shows that the nature of the risk–return relation should be rather
insensitive to the chosen discrete horizons.

These results are the main contribution of our study to the literature because they show that the
temporal aggregation is unlikely to be the cause of the conflicting evidence about the risk–return
relation reported in the existing studies.

1 For example, Bali and Peng (2005) examine the daily horizon, Glosten et al. (1993) look at the monthly horizon,
Ludvigson and Ng (2005) study the quarterly horizon, and Harrison and Zhang (1999) use the yearly horizon.

2 For example, French et al. (1987), Ghysels et al. (2005), Guo and Whitelaw (2006), and Ludvigson and Ng (2005)
find a positive relation between the expected return and conditional volatility. In contrast, Campbell (1987), Breen et al.
(1989), Glosten et al. (1993), Whitelaw (1994), and Brandt and Kang (2004) document a negative relation.
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A paper closely related to ours is Bollerslev and Zhou (2006). Using a return dynamics ex-
actly identical to the one used in our study, Bollerslev and Zhou examine the empirical linkages
between returns and integrated and implied volatilities. Their focus is however quite different
from ours. One result of their study concerns the volatility feedback effect. In the instantaneous
dynamics, the volatility feedback effect and the risk–return relation are captured by the same
parameter. These two concepts, however, differ in the temporally aggregated specification. Re-
garding the temporally aggregated returns, the volatility feedback effect is measured by the slope
coefficient of the regression of the returns on the integrated (and hence ex post) volatility, as in
Bollerslev and Zhou (2006), whereas the risk–return relation is by definition measured by the
regression of the returns on the ex ante conditional return volatility, as in our study. Bollerslev
and Zhou show that the feedback effect measured by regressing the returns on the integrated
volatility has a downward bias from the true feedback effect due to the leverage effect in returns.
Focusing on a different issue but giving a quite surprising result relative to theirs, we show that
regressing the returns on the conditional volatility is unlikely to give misleading inference about
the sign of the true risk–return relation.

The organization of the paper is as follows. In Section 2, we briefly discuss the work of
Longstaff (1989) to illustrate the importance of the temporal aggregation issue in asset pric-
ing and to motivate our study of this issue in the investigation of the intertemporal risk–return
relation. Section 3 theoretically analyzes a standard continuous-time model and derives its im-
plication for the temporally aggregated risk–return relation. Section 4 examines the effect of the
temporal aggregation on the sign of the risk–return relation. Section 5 concludes.

2. Motivations

2.1. Importance of temporal aggregation issue (Longstaff, 1989)

In the context of cross-sectional asset pricing model, Longstaff (1989) gives a clear demon-
stration that a continuous-time single-factor CAPM relation can be significantly distorted by
temporal aggregation of returns. In particular, he shows that the single-factor CAPM which holds
instantaneously does not hold for discretely-observed returns but becomes a multifactor model
after the temporal aggregation. We will briefly present the results of his work here to motivate
our discussions in the following sections. For ease of illustration, we use exactly the same nota-
tions as in his paper. Details of these notations as well as the analytical derivations can be found
in Longstaff (1989).

Merton (1971, 1973) derives the continuous-time CAPM, which in the Cox et al. (1985)
framework can be written as

(1)αi = λ0 + λ1σiM,

where αi denotes the instantaneous expected return of asset i, σiM is the instantaneous covariance
of the return of asset i with the market return, and λ0 and λ1 are constants.

Model (1) suggests that, at the instantaneous moment, the cross-sectional variation in market
covariance explains all the cross-sectional variation in expected returns. Naturally, we would
expect that such a linear relation between expected return and market covariance can be translated
from the instantaneous horizon to discrete horizons, at least sufficiently well in the sense of
approximation, yielding a temporally aggregated model

(2)Mi = γ0 + γ1Ci,
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where Mi denotes the expected return of asset i of the horizon τ and Ci is its covariance with
the market return at that horizon.3 However, by temporally aggregating instantaneous returns to
discrete returns and exactly deriving the restrictions of (1) on the cross-sections of asset returns
at the discrete horizons, Longstaff (1989) shows that this is actually not the case, i.e., (2) does
not hold. He shows that for the discrete horizon, at which data are practically observable, Mi is
actually a nonlinear function of the variance of asset i, its covariance with the market return, and
its first-order autocovariance, denoted by Vi , Ci , and Ai , respectively. This suggests that the tem-
poral aggregation can indeed have a significant distortion on the form of the asset pricing model.
That is, the asset pricing model changes from a linear form to a nonlinear form. Further, although
the temporally aggregated CAPM (in terms of Mi , Ci , Vi , and Ai ) is shown to be nonlinear, when
the return horizon is short (e.g., one month), the nonlinear model can be approximated by a linear
expression

(3)Mi = γ0 + γ1Ci + γ2Vi + γ3Ai,

where γ0, γ1, γ2, and γ3 are constants. Equation (3) is a multifactor model, which explicitly
shows that the single-factor CAPM no longer holds for discretely-observable returns even in
approximation.

One important implication of the above results is that the empirical evidence which rejects a
single-factor CAPM at discrete horizons (e.g., model (2) at the monthly horizon), cannot be in-
terpreted as evidence rejecting the continuous-time CAPM model (1). In fact, Longstaff tests the
continuous-time CAPM model (1) by testing the three-factor model (3) using monthly returns,
and find supporting evidence for (1). In contrast, the discrete-time CAPM, model (2), is rejected
by the data.

In summary, Longstaff (1989) illustrates the importance of the temporal aggregation issue
in the context of asset pricing by showing that if the horizon, over which returns are measured,
differs from the implicit time frame of the original CAPM, then the familiar linear CAPM relation
need not hold for the observed returns. He also shows that ignoring the temporal aggregation
issue and blindly using the continuous- and discrete-time versions of a model interchangeably
for empirical purpose could be a dangerous practice and could lead to spurious inferences.

2.2. A close look at the intertemporal risk–return relation

Having understood that the temporal aggregation can have significant distortions on the form
of cross-sectional asset pricing models, we now turn to another important question in finance,
the intertemporal risk–return relation, where the temporal aggregation issue is also involved and
may cause serious concerns too as we will show in the following.

Merton (1973) employs a continuous time framework to effectively linearize the consumption
and portfolio problem in a time-varying economy by taking the decision horizon as infinitely
small. This technique allows him to obtain analytical solutions for the demand functions as
well as the intertemporal capital asset pricing model (ICAPM). As Merton (1980) argues, under
certain conditions the ICAPM suggests a function form linearly relating instantaneous market

3 In empirical studies, discrete- and continuous-time asset pricing models are frequently used interchangeably also
because the CAPM has been directly derived both in a discrete-time setting (e.g., Sharpe, 1964; Lintner, 1965) and
continuous-time setting (e.g., Merton, 1971, 1973).
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expected return to instantaneous conditional variance

(4)Et(dP) = α + βVart (dP),

where α and β are constant parameters and P is the log price of the market portfolio.4

The coefficient β measures how the expected market return, Et(dP), and the conditional
volatility, Vart (dP), are related in their time-variations. If the aggregate risk aversion of investors
remains the same over time, it is generally expected that the equilibrium expected return on the
market is an increasing function of the conditional volatility of the market, indicating a positive
value for β . However, theoretical studies (e.g., Abel, 1988; Backus and Gregory, 1992) suggest
that the expected return on the market could, in equilibrium, be lower during relatively riskier
times if aggregate risk aversion is time-varying, which has already been empirically documented
(e.g., Campbell and Cochrane, 1999; Brandt and Wang, 2003).

Thus, it becomes an empirical question as to how the expected return and conditional volatil-
ity of the market covary over time. Following the theoretical foundation of Merton (1973) and
the pioneering empirical study of Merton (1980), dozens of papers have empirically examined
relation (4), particularly the sign of β . But, because data are not available on a continuous-time
basis, those studies proceed by estimating its discrete-time analogue using discretely observed
data5:

(5)EtR(t, t + τ) = θ + ϕVtR(t, t + τ),

where R(t, t + τ) denotes the continuously compounded market return from time t to t + τ , and
depending on τ , R(t, t + τ) could represent daily, monthly, or quarterly returns and relation (5)
could describe the intertemporal risk–return relation corresponding to different horizons. Exam-
ples include French et al. (1987), Campbell (1987), Breen et al. (1989), Glosten et al. (1993),
Whitelaw (1994), Harvey (2001), and Ghysels et al. (2005).

By making inference about the sign of instantaneous risk–return relation, as measured by
β in (4), with the estimation results obtained for ϕ in (5), those studies implicitly make two
critical assumptions. First, for a given horizon τ , Eq. (5) provides a close approximation to (4).
In other words, the linear risk–return relation, as described in (4), holds sufficiently well even
after temporal aggregation of returns. Second, given the first assumption holds, the coefficient ϕ

in (5) should at least share the same sign, if not the same magnitude, as the parameter β in (4). If
ϕ and β could possibly take different signs, then inferring the sign of β based on the estimate of
ϕ could give misleading results.

However, without theoretical justifications these two assumptions seem to be very strong be-
cause, with intuitions as well as the above Longstaff’s (1989) illustration, it is reasonable to
speculate that, given that (4) holds instantaneously, the discrete-time linear relation (5) will hold,
at best, approximately. In other words, the risk–return relation need not be linear anymore for
temporally aggregated returns. Perhaps the linear risk–return relation can be substantially dis-
torted by the temporal aggregation when τ represents a monthly horizon for example. Perhaps

4 Merton (1980) argues that model (4) should be a close approximation to the equilibrium relation and therefore uses
it for expected return estimation. In particular, (4) arises from the CAPM assuming a constant riskless interest rate. As
Merton argues, the market return should be the dominant factor among other possible risk factors, and thus the CAPM
should “provide a reasonable ‘first approximation’ theory for equilibrium expected returns.”

5 As we discussed in the introduction, based on (5) the risk–return relation for discretely observed data can be obtained
by regressing Rt,t+τ on a constant term and Vt (Rt,t+τ ). Of course, Vt (Rt,t+τ ) is unobservable and has to be estimated
in practice. It is important to note that this regression differs from the regression of Rt,t+τ on the integrated volatility
discussed in Bollerslev and Zhou (2006), who mainly address the issue of measuring volatility feedback effect.
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the sign of ϕ can be changed from the sign of β by the temporal aggregation. Perhaps the sign
of ϕ can differ at different horizons, for example between the monthly horizon and the quar-
terly horizon. Excluding the last possibility will be particularly important for empirical studies
because, otherwise, the inference will be sensitive to the horizon that is chosen for the study. In
fact, a variety of horizons have been used in earlier studies in examining the risk–return relation.
For example, Bali and Peng (2005) examine the daily horizon, Glosten et al. (1993) look at the
monthly horizon, Ludvigson and Ng (2005) study the quarterly horizon, and Harrison and Zhang
(1999) use the yearly horizon. But, those studies have produced conflicting evidences about the
sign of the risk–return relation, which is an undesirable situation in finance.

Given that the temporal aggregation issue is clearly involved in this risk–return relation ques-
tion, as shown above, and that the importance of temporal aggregation issue has been well
recognized in other areas, it is important to take a closer look at the question about the risk–return
relation from the perspective of the temporal aggregation because to the extent that model (5)
does not sufficiently capture the dynamics implied by model (4), the practice of inferring the
sign of β by estimating ϕ based on (5) will be misleading. Accordingly, in the following sections
we systematically investigate whether the temporal aggregation issue is a potential source for the
mixing evidence in the existing studies.

3. The function form of temporally aggregated risk–return relation

The above discussion motivates us to examine whether and how temporal aggregation will
affect the linear risk–return relation (4) which holds instantaneously as justified by Merton (1973,
1980). We will show in this section that, surprisingly, the temporal aggregation will not distort
the linear risk–return relation at all under the Heston’s framework. In other words, the linear
relation (5) holds exactly for any horizon τ .

Relation (4) suggests a continuous-time return dynamics

(6)dP = (
α + βσ 2)dt +

√
σ 2 dZP ,

where α and β are constant parameters, P is the log price, σ 2 is the instantaneous volatility, and
ZP is a Wiener process. The conditional volatility follows the model of Heston (1993), which
is one of the most widely-used continuous-time stochastic volatility model in finance and is also
utilized in Longstaff (1989) and Bollerslev and Zhou (2006). That is,

(7)dσ 2 = k
(
μ − σ 2)dt + γ

√
σ 2 dZσ ,

where k, μ, and γ are parameters, Zσ is a Wiener process, and ρ denotes the correlation between
dZP and dZσ . The parameter k measures the speed of mean reversion in volatility, μ determines
the unconditional long-run average of conditional volatility, and γ is the volatility of volatility,
directly related to the tails of the return distribution. Equation (6) together with (7) completely
describe the investment opportunity set and the distribution of future market returns.6 This setting
is also very close to the standard CIR model except that the log price instead of the simple price
is used and that expected return is allowed to be time-varying to be consistent with the existing
empirical evidence for return predictability.

6 This model is first studied in the context of option pricing by Scott (1987), and later formally analyzed by Heston
(1993).
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Denote the continuously compounded return from time t to t + τ by R(t, t + τ) ≡ P(t + τ)−
P(t). According to (6), the return R(t, t + τ) can be written as

R(t, t + τ)≡P(t + τ) − P(t)

(8)=ατ + β

∫ t+τ

t

σ 2(s)ds +
∫ t+τ

t

√
σ 2(s)dZP (s).

Applying Itô’s lemma to ektσ 2(t) gives

σ 2(s) = μ + e−k(s−t)
(
σ 2(t) − μ

) + γ e−ks

∫ s

t

ekv
√

σ 2(v)dZσ (v).

Substituting this expression into the first integral in (8) and applying a modified version of Fu-
bini’s Theorem (Ikeda and Watanabe, 1981, Lemma 4.1, p. 116) yields

R(t, t + τ)=ατ + β

[
μτ + (

σ 2(t) − μ
)1 − e−kτ

k

]

+ γβ

∫ t+τ

t

√
σ 2(v)

1 − e−k(t+τ−v)

k
dZσ (v) +

∫ t+τ

t

√
σ 2(s)dZP (s).

With the property of the stochastic integral, the conditional expected return and volatility can
be obtained as

EtR(t, t + τ) = ατ + β

[
μτ + (

σ 2(t) − μ
)1 − e−kτ

k

]
,

VartR(t, t + τ) =
[
μτ + (

σ 2(t) − μ
)1 − e−kτ

k

]
+ γ 2β2

k2
A1 + 2γβρ

k
A2,

where Et(·) and Vart (·) denote the expectation and variance conditional at the information set
available at time t , which is spanned by the Wiener processes ZP and Zσ up to time t .

A1 = a11 + a12 · σ 2(t), A2 = a21 + a22 · σ 2(t),

and

a11 = μ

(
τ + 1 − e−2kτ

2k
− 3

1 − e−kτ

k
− e−kτ − e−2kτ

k
+ 2τe−kτ

)
,

a12 = 1 − e−kτ

k
+ e−kτ − e−2kτ

k
− 2τe−kτ ,

a21 = μ

(
τ − 2

1 − e−kτ

k
+ τe−kτ

)
,

a22 = 1 − e−kτ

k
− τe−kτ .

Noting that EtR(t, t + τ), VartR(t, t + τ), A1, and A2 are all functions of σ 2(t), we can
derive, with some algebra, the exact form for the temporally aggregated risk–return relation

(9)EtR(t, t + τ) = θ(τ ) + ϕ(τ)VartR(t, t + τ),
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where θ(τ ) and ϕ(τ) are constants, which depend on the return horizon τ

θ(τ ) = ατ + βμτ + β
1 − e−kτ

k

[
μ( 1−e−kτ

k
− τ) − γ 2β2

k2 a11 − 2γβρ
k

a21

1−e−kτ

k
+ γ 2β2

k2 a12 + 2γβρ
k

a22

− μ

]
,

ϕ(τ ) = β 1−e−kτ

k

1−e−kτ

k
+ γ 2β2

k2 a12 + 2γβρ
k

a22

.

Equation (9) gives a closed-form solution for the function form of the temporally aggregated
risk–return relation. It suggests that the linear risk–return relation is well inherited from the in-
stantaneous model by the temporally aggregated model. In other words, regardless of the horizon
τ at which the returns are sampled, the expected return is exactly linearly related to the condi-
tional volatility in their time-variations.

This result partially supports the conventional practice of examining the instantaneous rela-
tion (4) by estimating its discrete-time counterpart (5). It is, however, quite surprising and is in
sharp contrast to the illustration of Longstaff (1989), where the temporal aggregation is shown
to have substantial distortions on the form of the cross-sectional asset pricing model.

It is also important to note that although we are studying a different question from Longstaff
(1989), we use a continuous-time return dynamics very similar to Longstaff (1989). So, it is
unlikely that the contrasting difference about the temporal aggregation effect between our in-
tertemporal setting and his cross-sectional setting is caused by the model specifications.

Although (9) retains the linear form of (4), ϕ(τ) differs from β and could potentially take
different sign from β , in which case blindly making inference about the sign of β based on
the estimation of (5) could still produce spurious results. In the next section, we will carefully
examine whether this possibility could occur.

4. The sign of temporally aggregated risk–return relation

Although we have shown that the linear risk–return relation remains valid even after the tem-
poral aggregation, it is still of concern that as the horizon increases, ϕ(τ) may change the sign
from β . This possibility can be seen by noting that

lim
τ→0

ϕ(τ) = β

and

lim
τ→∞ϕ(τ) = β

1 + γ 2β2/k2 + 2γβρ/k
.

As ρ is typically negative to reflect the leverage effect while k and γ are typically positive in
the U.S. data, it could potentially occur that β is positive whereas ϕ(τ) is negative for sufficiently
large τ , in which case inferring the sign of β based on the estimate for ϕ will be incorrect. We
will show in the following that when the parameters take values realistic to the U.S. market, it
is unlikely that ϕ(τ) will change sign from β , even at the yearly horizon which is the longest
horizon used in the literature.

As the risk–return relation is of the main interest to our study, the characteristics of ϕ(τ)

depending on parameter values will be the main focus of this section. To this end, we first need
to determine the realistic values of the key parameters, β , k, γ , ρ, which ϕ(τ) relies on, noting
that ϕ(τ) is independent of α and μ.
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Table 1
This table computes the values of ϕ(τ) implied by the true positive values of β , according to (9), for a range of realistic
parameter values for γ , ρ, and k determined in the literature. The return horizon τ takes values of 1/12 (one month),
3/12 (one quarter), 1 (one year), 5 (five years), 10 (ten years), and ∞ (infinity)

(A) γ = 0.1, ρ = −0.2, k = 0.1 (B) γ = 0.1, ρ = −0.2, k = 0.2

τ β τ β

0.5 1.0 1.5 2.0 4.0 6.0 8.0 10.0 0.5 1.0 1.5 2.0 4.0 6.0 8.0 10.0
1
12 0.5 1.0 1.5 2.0 4.0 6.0 8.0 10.1 1

12 0.5 1.0 1.5 2.0 4.0 6.0 8.0 10.1
3
12 0.5 1.0 1.5 2.0 4.0 6.1 8.2 10.3 3

12 0.5 1.0 1.5 2.0 4.0 6.1 8.2 10.3
1 0.5 1.0 1.5 2.0 4.1 6.0 7.6 8.9 1 0.5 1.0 1.5 2.0 4.1 6.0 7.7 9.0
5 0.5 1.0 1.4 1.8 2.3 2.1 1.8 1.5 5 0.5 1.0 1.5 1.9 2.7 2.5 2.2 1.9
10 0.5 0.9 1.2 1.3 1.1 0.8 0.6 0.5 10 0.5 0.9 1.3 1.6 1.6 1.2 0.9 0.8
∞ 0.4 0.6 0.5 0.4 0.2 0.1 0.1 0.1 ∞ 0.5 0.9 1.1 1.2 0.9 0.6 0.5 0.4

(C) γ = 0.1, ρ = −0.3, k = 0.1 (D) γ = 0.1, ρ = −0.3, k = 0.2

τ β τ β

0.5 1.0 1.5 2.0 4.0 6.0 8.0 10.0 0.5 1.0 1.5 2.0 4.0 6.0 8.0 10.0
1
12 0.5 1.0 1.5 2.0 4.0 6.0 8.1 10.2 1

12 0.5 1.0 1.5 2.0 4.0 6.0 8.1 10.2
3
12 0.5 1.0 1.5 2.0 4.1 6.2 8.3 10.5 3

12 0.5 1.0 1.5 2.0 4.1 6.2 8.3 10.5
1 0.5 1.0 1.5 2.0 4.2 6.4 8.2 9.7 1 0.5 1.0 1.5 2.0 4.2 6.4 8.3 9.8
5 0.5 1.0 1.5 2.0 2.6 2.3 1.9 1.6 5 0.5 1.0 1.6 2.0 3.0 2.8 2.4 2.0
10 0.5 1.0 1.3 1.5 1.2 0.8 0.6 0.5 10 0.5 1.0 1.5 1.8 1.8 1.3 1.0 0.8
∞ 0.5 0.7 0.6 0.5 0.2 0.1 0.1 0.1 ∞ 0.5 1.0 1.3 1.4 1.0 0.7 0.5 0.4

Merton (1973, 1980) shows that the parameter β can be interpreted as the representative
agent’s relative risk aversion if the relative risk aversion stays constant over time. He further
estimates β to be around 1.5 using both monthly and daily data. Therefore, we use the value 1.5
as a benchmark for β . The parameters k, γ , and ρ all relate to the stochastic volatility process (7),
which has been analyzed extensively in the volatility literature. The existing empirical evidence,
such as the recent study of Bollerslev et al. (2006), has consistently shown a strong degree of
volatility persistence and a highly significant contemporaneous leverage effect, so we take 0.1
and −0.2 as the benchmark values for k and ρ, respectively. Bollerslev et al. (2006) also estimate
γ to be around 0.1, which we take as the benchmark value for γ . To examine the sensitivity of
our results to the parameter values, we also study a variety of cases where these parameters take
various combinations of realistic values around their benchmark values. The results are quite
consistent. To save space, we only report several representative cases.

Table 1 presents the implied values of ϕ(τ) when the stochastic volatility parameters k, γ , and
ρ take a range of realistic values determined in the literature. The true value of β ranges from 0.5
to 10, which covers the estimate of Merton (1980) and is in line with the estimate for investors’
risk aversion in the literature. We make several observations from the results in the table. First, the
results consistently show that with realistic parameter values for the stochastic volatility process,
it is unlikely that ϕ(τ) will have a different sign from β at the usual horizons examined in the
empirical studies, even when the horizon gets infinitely large (τ = ∞). In other words, with
correctly specified models, empirical studies should yield the same conclusion about the sign of
the risk–return relation regardless of the horizons they choose to study. Second, at the monthly
and quarterly horizons, ϕ(τ) is also very close to β in magnitude. Third, by comparing the results
in panel (A) (or (C)) with those in panel (B) (or (D)), it appears that the lower the persistence in
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Table 2
This table computes the values of ϕ(τ) implied by the true negative values of β , according to (9), for a range of realistic
parameter values for γ , ρ, and k determined in the literature. The return horizon τ takes values of 1/12 (one month),
3/12 (one quarter), 1 (one year), 5 (five years), 10 (ten years), and ∞ (infinity)

(A) γ = 0.1, ρ = −0.2, k = 0.1 (B) γ = 0.1, ρ = −0.2, k = 0.2

τ β τ β

−1.0 −2.0 −4.0 −6.0 −8.0 −10.0 −1.0 −2.0 −4.0 −6.0 −8.0 −10.0
1
12 −0.9 −1.9 −3.9 −5.9 −7.8 −9.8 1

12 −0.9 −1.9 −3.9 −5.9 −7.8 −9.8
3
12 −0.9 −1.9 −3.9 −5.7 −7.5 −9.3 3

12 −0.9 −1.9 −3.9 −5.7 −7.6 −9.3
1 −0.9 −1.9 −3.5 −4.8 −5.8 −6.6 1 −0.9 −1.9 −3.5 −4.8 −5.9 −6.6
5 −0.8 −1.3 −1.6 −1.5 −1.3 −1.1 5 −0.8 −1.4 −1.8 −1.7 −1.6 −1.4
10 −0.7 −0.9 −0.8 −0.6 −0.5 −0.4 10 −0.7 −1.1 −1.1 −0.9 −0.7 −0.6
∞ −0.4 −0.3 −0.2 −0.1 −0.1 −0.1 ∞ −0.6 −0.8 −0.6 −0.5 −0.4 −0.3

(C) γ = 0.1, ρ = −0.3, k = 0.1 (D) γ = 0.1, ρ = −0.3, k = 0.2

τ β τ β

−1.0 −2.0 −4.0 −6.0 −8.0 −10.0 −1.0 −2.0 −4.0 −6.0 −8.0 −10.0
1
12 −0.9 −1.9 −3.9 −5.9 −7.8 −9.7 1

12 −0.9 −1.9 −3.9 −5.9 −7.8 −9.7
3
12 −0.9 −1.9 −3.8 −5.7 −7.4 −9.1 3

12 −0.9 −1.9 −3.8 −5.7 −7.4 −9.1
1 −0.9 −1.8 −3.4 −4.6 −5.5 −6.2 1 −0.9 −1.8 −3.4 −4.6 −5.6 −6.2
5 −0.8 −1.3 −1.5 −1.4 −1.2 −1.1 5 −0.8 −1.3 −1.7 −1.6 −1.5 −1.3
10 −0.6 −0.8 −0.7 −0.6 −0.4 −0.4 10 −0.7 −1.0 −1.0 −0.8 −0.7 −0.6
∞ −0.3 −0.3 −0.2 −0.1 −0.1 −0.1 ∞ −0.6 −0.7 −0.6 −0.5 −0.4 −0.3

the conditional volatility, the less distortion the temporal aggregation will have on the magnitude
of ϕ(τ). It is intuitively expected that when the horizon lengthens, the distortion on the magnitude
of the risk–return relation will accumulate faster if the conditional volatility is highly persistent
than if the returns are independent over time. By comparing the results in panel (A) (or (B)) with
those in panel (C) (or (D)), it appears that the more significant the leverage effect, the closer ϕ(τ)

will be to the value of β for a given τ . If ρ is zero, ϕ(τ) is sure to be smaller than β , according to
the expression of ϕ(τ) in (9), as a12 is positive. When ρ becomes more negative, the denominator

of ϕ(τ) becomes closer to 1−e−kτ

k
, bringing ϕ(τ) closer to β .

The parameter β should be positive if the aggregate risk aversion remains the same over time.
However, if changes in preferences or in the distribution of wealth are such that the aggregate
risk aversion is lower when the market is riskier, then a higher market risk level may imply a
lower expected return, leading to a negative value of β . Indeed, it has been well accepted in
the literature that the aggregate risk aversion is changing over time in a counter-cyclical pattern
(Brandt and Wang, 2003).7 Therefore, both signs are actually possible for β . For this reason,
Table 2 computes the implied values of ϕ(τ) for the cases where the true value of β is negative.
Again, the results consistently shows that the sign of the risk–return relation will not be flipped
by the temporal aggregation. Figure 1 plots the risk–return relation at the monthly horizon, as
measured by ϕ( 1

12 ), as a function of the instantaneous risk–return relation, as measured by β

7 In a habit formation model, the representative agent’s risk aversion changes with the difference between consumption
and his habit formed through past consumption. Since the consumption growth exhibits a business cycle pattern, it is
reasonable to expect that periods of strong economic conditions to be associated with low or falling risk aversion while
recessions are associated with high or rising risk aversion.
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Fig. 1. This figure plots the implied risk–return relation at the monthly horizon, as measured by ϕ( 1
12 ), as a function of

the instantaneous risk–return relation, as measured by β ranging from −100 to 100. The values for other parameters are
taken as k = 0.1, ρ = −0.2, γ = 0.1.

ranging from −100 to 100, while the values for other parameters are taken as k = 0.1, ρ = −0.2,
γ = 0.1. Clearly, ϕ is a monotonic function of β and takes the same sign as β .

All the above evidence shows that, with the parameter values capturing the key characteristics
documented in the volatility literature, i.e., the high degree of persistence and the evident leverage
effect, the temporal aggregation is unlikely to flip the sign of the risk–return relation. This result
is important as it provides theoretical justification for empirical studies to examine the risk–return
relation using a variety of different discrete horizons by showing that the subsequent inference
will not be sensitive to the chosen horizons.

5. Conclusion

Empirical studies have examined the linear risk–return relation of the aggregate market at
daily, monthly, quarterly, and yearly horizons whereas such a linear relation is only analytically
justified for instantaneous return moments by Merton (1973, 1980). In this paper, we carefully
assess the impact of the temporal aggregation of returns on the empirical investigation of the risk–
return relation. By explicitly deriving the implied temporally aggregated risk–return relation,
we show a surprising result. That is, not only the linear function form relating risk to return
remains valid for any discrete horizon, but also the parameter measuring the risk–return relation
retains the same sign and similar magnitude for the horizons (e.g., month) often examined in the
empirical studies. Our results justify the practice of earlier empirical studies which examine the
risk–return relation at different discrete horizons, and more importantly, exclude the temporal
aggregation issue as a potential source for the existing conflicting empirical evidence about the
risk–return relation.
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