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ECONOMETRIC ANALYSIS OF
CONTINUOUS TIME MODELS:
A SURVEY OF PETER PHILLIPS’S
WORK AND SOME NEW RESULTS

JUN YU

Econometric analysis of continuous time models has drawn the attention of Peter
Phillips for 40 years, resulting in many important publications by him. In these pub-
lications he has dealt with a wide range of continuous time models and the associated
econometric problems. He has investigated problems from univariate equations to
systems of equations, from asymptotic theory to finite sample issues, from paramet-
ric models to nonparametric models, from identification problems to estimation and
inference problems, and from stationary models to nonstationary and nearly non-
stationary models. This paper provides an overview of Peter Phillips’s contributions
in the continuous time econometrics literature. We review the problems that have
been tackled by him, outline the main techniques suggested by him, and discuss
the main results obtained by him. Based on his early work, we compare the per-
formance of three asymptotic distributions in a simple setup. Results indicate that
the in-fill asymptotics significantly outperforms the long-span asymptotics and the
double asymptotics.

JEL Classifications: C22, C32

1. INTRODUCTION

The history of continuous time modeling in economics and finance dates back to
more than one hundred years ago when Bachelier (1900) first discussed the use of
Brownian motion to analyze price movements and to evaluate contingent claims
in financial markets. The use of continuous time models is now widely found in
economics, especially in macroeconomics and financial economics.

Many continuous time models used in practice are expressed in terms of a
stochastic differential equation (SDE):

d X (t) = μ(X (t))dt + ζ(dt), X (0) = X0, (1)

I gratefully acknowledge financial support from the Ministry of Education AcRF Tier 2 fund under Grant No.
MOE2011-T2-2-096. I would like to thank Peter Phillips for extensive discussions on the subject, seminar par-
ticipants at NZESG and Singapore Management University, Federico Bandi, Bruce Hansen, Xiaohu Wang, Qiankun
Zhou, and especially a referee for helpful comments.
Sim Kee Boon Institute for Financial Economics, School of Economics and Lee Kong Chian School of Business,
Singapore Management University, 90 Stamford Road, Singapore 178903; email: yujun@smu.edu.sg.

c© Cambridge University Press 2014 737



738 JUN YU

where X (t) = (X1(t), · · · , X M (t))′ is a M-dimensional continuous time ran-
dom process and ζ(dt) is a vector of white noise disturbances with covariance
σ(X (t))σ ′(X (t)). If M = 1, the model is univariate. If μ(X (t)) = μ(X (t),θ)
and σ(X (t)) = σ(X (t),θ), the model is parametrically specified. Otherwise,
the model is nonparametrically specified or semi-parametrically specified. When
ζ(dt) = σ(X (t))dW (t), where W (t) is a vector of standard Brownian motion,
Model (1) is a diffusion process. In this case, μ(X (t)) and σ(X (t)) are referred
to as the drift term and the diffusion term, respectively. Econometric analysis of
Model (1) is based on discretely sampled data, which are assumed to be recorded
at (0,h,2h, · · · ,nh(= T )) in the time interval [0,T ]. So n +1 is the total number
of observations, h the sampling interval, and T the time span of the data. While the
data are assumed equispaced, such an assumption is made for convenience of pre-
sentation and may be relaxed. Macroeconomic variables are typically available at
the annual and quarterly frequencies, and more recently, at the monthly frequency.
As a result, h = 1,1/4,1/12, corresponds to the annual, quarterly, and monthly
frequency, when measuring time in years. In this paper, we use X (t) to represent
a continuous time process and Xih to represent a discrete time process. When
there is no confusion, denote Xi := Xih .

Three alternative sampling schemes have been employed in the literature for
developing asymptotic theory, namely,

T → ∞, h is fixed, hence n → ∞ (A.1)

T → ∞, h → 0 and hence n → ∞ (A.2)

h → 0, T is fixed and hence n → ∞ (A.3)

Scheme (A1) is referred to as the long-span asymptotics, Scheme (A3) the in-fill
asymptotics, and (A2) the double asymptotics. Obviously, (A2) is stronger than
(A1) and (A3).

There are strong reasons why continuous time models appeal to economists
and financial specialists as “the economy does not cease to exist in between
observations” (Bartlett, 1946; Phillips, 1988). On aggregate levels, economic de-
cision making almost always involves many agents and is typically done at dif-
ferent times. With the vast advancement in globalization, economic integration
and information technology in the modern era, news arrives at shorter intervals
and economic activities take place in a nonstop fashion (Bergstrom and Nowman,
2007). As a result, continuous time models may provide a reasonable approxi-
mation to the actual dynamics of economic behavior. Another important advan-
tage with continuous time models is that they provide a convenient mathematical
framework for the development of financial economic theory, enabling simple and
often analytically tractable ways to price financial assets. Applications of contin-
uous time models to price financial contingent claims have created a field called
mathematical finance, which has undergone amazingly fast development in the
last three decades.
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There are other reasons why continuous time models are used in economics
and finance. For example, economics, finance, and related fields often distinguish
between quantities which are stocks and those which are flows. A stock variable
is measured at one specific time, and represents a quantity existing at that point
in time, which may have been accumulated in the past. A flow variable is mea-
sured over an interval of time. Therefore, a flow would be measured per unit of
time. Continuous time models allow for separate treatments of these two types of
variables. Another example would be that time aggregation is not an issue in the
continuous time setup, whereas it may present obstacles in discrete time models,
including some widely used specifications, such as GARCH models (Drost and
Nijman, 1993).

One of the most important proponents of the use of continuous time econo-
metric models in macroeconomics is Rex Bergstrom, a New Zealand economist,
whose important work can be found in Bergstrom (1966, 1983, 1984, 1985a,
1985b, 1986, 1990) and Bergstrom and Wymer (1976). Phillips (1993) is a sum-
mary of the work of Bergstrom; see also Phillips (2010). The use of continu-
ous time models in finance is best seen in two of the most influential papers
in financial economics, Black and Scholes (1973) and Merton (1973). Merton
(1990) contains the most important work of his in the area. Model (1) is useful
not only in economics and finance but also in science.

Directly influenced by Bergstrom, Peter Phillips completed his Master’s the-
sis in 1971 at the University of Auckland, under the supervision of Bergstrom,
working on estimation issues of continuous time models. A research article from
his Master’s thesis appeared in Econometrica in 1972. This was a remarkable
kickoff to an illustrious career. Since then, Phillips has spent 40 years working
on continuous time models, leading to more than 20 publications in the area. His
written contributions cover many important issues in the literature, from univari-
ate equations to systems of equations, from asymptotic theory to finite sample
issues, from parametric models to nonparametric models, from identification
problems to estimation and inference problems, and from stationary models to
nonstationary and nearly nonstationary models. Naturally, his research focus
changed as the field evolved and over time the applications of continuous time
models have shifted from macroeconomics to finance.

Like the contributions he made to other areas in econometrics, Peter Phillips
has significantly raised the level of technicality and the level of rigor in the con-
tinuous time econometrics literature. Many contributions that he has made to
this literature are fundamental and have long-lasting effects. He has been the
frontrunner in estimation, identification, finite sample theory, and nonstationary
and nearly nonstationary issues in the continuous time literature.

It is a great honor and privilege for me to have this opportunity to write a review
article summarizing Peter Phillips’s extraordinary contributions to the continuous
time econometrics literature. There are several survey articles in the literature,
namely, Aı̈t-Sahalia (2007), Fan (2005), Phillips and Yu (2009a), and Sorensen
(2004). All these surveys review only estimation methods. The present survey
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focuses on Phillips’s contributions to the literature but the scope goes beyond
estimation.

The rest of the article is organized as follows. Section 2 reviews parametric
methods, including the identification problem. Section 3 reviews nonparametric
methods. Section 4 reviews his work in the near unit root continuous time model,
where his primary concerns are about the finite sample issues of traditional ap-
proaches. Section 5 presents a new set of results in a simple setup and shows that
the in-fill asymptotic theory is superior to the long-span asymptotic theory and the
double asymptotic theory. Section 6 concludes. The Appendix contains the proof
of a result in Section 5.

2. PARAMETRIC METHODS

2.1. Identification

The continuous time model, considered in Phillips (1972, 1974, 1976a, 1976b), is
a special parametric case of Model (1) in which μ(X (t)) = A(θ)X (t)+ B(θ) and
ζ(dt) is a vector of white noise disturbances with covariance �. See Bergstrom
(1984) for the definition of the white noise disturbances. It is important to re-
mark that ζ(dt) is not necessarily a Gaussian process. The interpretation of
(1) is that the random process X (t) satisfies the following stochastic integral
equation:

X (t) = X (0)+
∫ t

0
(A(θ)X (s)+ B(θ))ds +

∫ t

0
ζ(ds). (2)

When (2) is estimated with discretely sampled data, one must ensure the
set of parameters θ is identified. In general, unfortunately, θ is not identifiable
from discrete time models in the multivariate context. This is the well known
aliasing problem in statistics, signal processing, computer graphics and related
disciplines, which refers to an effect that causes different continuous signals to
become indistinguishable when sampled discretely. To the best of my knowledge,
Phillips (1973) is the first serious attempt to address this identification problem in
the continuous time econometrics literature. In my opinion, this is a fundamental
contribution to the literature.

The idea of aliasing can be explained simply by using a sinusoid, a periodic
function of time. Figure 1 plots a set of discrete samples whose sampling interval
is 1 (see the arrows) and two different sinusoids (see the two lines). Obviously,
the two functions could have produced the same samples. Hence, it is impossi-
ble to tell which function has produced the discrete sample. One solution to the
aliasing problem is to collect discrete time sample data at a frequency higher than
the Nyquist frequency. Although this may be a reasonable solution in natural sci-
ences, it may not work in economics as one cannot typically control the sampling
interval.
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FIGURE 1. Aliasing problem. Arrows represent a set of discrete samples whose sampling
interval is 1.

To illustrate the aliasing problem in continuous time econometrics models,
consider the first-order specification in only stock variables as observable,

d X (t) = A(θ)X (t)dt + ζ(dt), X (0) = X0, E(ζ(dt)) = 0,

E(ζ(dt)ζ(dt)′) = �dt. (3)

The exact discrete time model is given by:

Xt = exp(A(θ)h)Xt−1 + εt , X0 = X0, E(εt ) = 0, E(εtε
′
t ) = �. (4)

Phillips (1973) showed that:

exp(Ah)� exp(A′h)−� = A�+�A′.

So (A,�) is identifiable in Model (3), if and only if the matrix A is identifiable
in exp(Ah). In general, however, equation

exp(Ah) = B

does not have a unique solution for A. In particular, if some of the eigenvalues
of A are complex, then by adding the imaginary numbers ±2inπ to each pair of
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conjugate complex eigenvalues, the equation still holds true. In order to achieve
the identification, certain restrictions have to be placed on A. Phillips (1973) de-
rived a rank condition in the case where there are linear homogeneous relations
between the elements of a row of A. Hansen and Sargent (1983) extended the
result by showing that � provides extra identifying information about A. As a
result, identifiability may be less difficult than one would think. In certain regions
of the parameter space, there may be no identification problem at all, even if the
sampling frequency is lower than the Nyquist frequency. Further contributions on
this subject include Kessler and Rahbek (2004) and McCrorie (2003, 2009).

Since the 1980s, there has been a great deal of interest in unit roots and coin-
tegration in econometrics. Phillips (1991) formulated error correction models and
cointegrated systems in continuous time. A cointegrated system in continuous
time takes the form:

X1(t) = B X2(t)+u1(t) (5)

DX2(t) = u2(t), (6)

where X1(t) is a m1-vector process, X2(t) is a m2-vector process, u1(t) and u2(t)
are both stationary continuous time residuals. Phillips (1991) showed that the
exact discrete time model is given by:

Xi = exp(−E A)Xi−1 + εt = (I − E A)Xi−1 +ui (7)

ui = εi + 1

e
E AXi−1, (8)

where X = [X ′
1, X ′

2

]′, E = [I ′,0′]′, A = [I,−B], and ui is stationary, because
both εt and AXi−1 are stationary. As

exp(−E A) = I − E A − 1

2!
(E A)2 +·· · = I − e −1

e
E A,

the relationship between B and the autoregressive coefficients I − E A in the exact
discrete time model is linear. Hence, there is no aliasing problem here. This re-
sult is in sharp contrast to the stationary continuous time models. Phillips (1991)
proposed a frequency domain based estimation method and developed asymptotic
distributions for the estimates. It turns out that the estimates of the long-run equi-
librium coefficients converge at the rate Op(T −1), which is faster than that in the
case of stationary models. This feature is consistent with that found in the discrete
time framework. Kessler and Rahbek (2001, 2004) extended the results of Phillips
(1991).

2.2. Estimation of Linear Models

The difficulty with estimating the parameters of the continuous time model (2)
(i.e., θ ) lies in the fact that only discretely observed data are available. To facilitate
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estimation, Bergstrom (1966) proposed approximating the continuous time model
(2) by the following discrete time model:

Xi+1 − Xi =
(

1

2
A(θ){Xi+1 + Xi }+ B(θ)

)
h +ui+1, (9)

where the trapezoidal rule is used to approximate the integral, namely,∫ ih

(i−1)h
μ(X (s); θ)ds ≈ h

2
{μ(Xi ; θ)+μ(Xi−1; θ)} .

The discrete time model is then estimated by standard methods, such as the three-
stage least squares (LS). As model (9) is merely an approximation to model (2),
such an estimation approach inevitably suffers from the discretization bias that
is induced by the trapezoidal rule. Obviously, the bias depends on the sampling
interval, h, and does not disappear even if T → ∞. The bigger the h, the larger
the discretization bias.

The trapezoidal approximation is closely related to the Euler scheme approxi-
mation given by:∫ ih

(i−1)h
μ(X (s); θ)ds ≈ hμ(Xi−1; θ),

which leads to the approximate discrete time model:

Xi+1 − Xi = (A(θ)Xi + B(θ))h + vi+1. (10)

Obviously, (10) can be estimated by LS. As argued in Phillips and Yu (2009a), the
two approximations are equivalent to O(h). Obviously, Bergstrom’s approxima-
tion is an implicit method and in the multivariate case, it leads to a nonrecursive
simultaneous equations model approximation to a system of recursive stochastic
differential equations, whereas the Euler approximation is explicit and leads to a
recursive simultaneous equations model.

Alternatively, one can obtain the exact discrete time model in the sense that the
observations at the discrete points in time that are generated by (2) also satisfy the
exact discrete time model. The main advantage in the exact discrete time model
is that it avoids the discretization bias, no matter how big h is. This approach was
taken seriously in Phillips (1972) and is a fundamental contribution.

To obtain the discrete time model of (2), one can first solve the SDE for X (t).
Assume that A(θ) has distinct eigenvalues λ1(θ), . . . ,λM (θ), all with negative
real parts. Consequently, there must exist a matrix P(θ) such that:

P(θ)A(θ)P(θ)′ = diag(λ1(θ), · · · ,λM (θ)) := 
(θ).

Bergstrom (1966) showed that the solution to SDE (2) is given by:

X (t) =
[

X (0)+ A−1(θ)B(θ)
]

exp(A(θ)t)− A−1(θ)B(θ)+u(t), (11)
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where exp(A) := I + A + 1
2! A2 + 1

3! A3 + ·· · and u(t) = ∫ t
0 exp(A(θ)(t − s))

P exp(A(θ)(t −s))P ′ζ(ds). As a result, the exact discrete time model is given by:

Xi+1 = exp(A(θ)h)Xi − A−1(θ)(exp(A(θ)h)− I )B(θ)+ εi+1, (12)

where

E(εi ) = 0, E(εiε
′
i ) =

∫ h

0
exp(A(θ)s)� exp(A(θ)′s)ds := �.

Phillips (1972) used a generalized LS procedure to estimate θ that is equiva-
lent to maximum likelihood (ML) if the covariance matrix of the disturbances is
known, and showed that the estimators are consistent and asymptotically efficient
when T → ∞ and a fixed h, i.e., the long-span asymptotic theory. With simulated
data from a three-variable trade-cycle model, Phillips (1972) examined the finite
sample properties of the estimates and found the superior finite sample perfor-
mance of the exact discrete model relative to the approximate discrete model.

Sargan (1974) showed that the discretization bias of the three-stage LS estima-
tors for the trapezoidal approximation is asymptotically O(h2) as h → 0, whereas
Bergstrom (1984) showed that the discretization bias of the LS estimator for the
Euler approximation is asymptotically O(h). So the double asymptotics is re-
quired. To illustrate the magnitude of the discretization error in the approximate
model (10), consider the following univariate continuous time model:

d X (t) = κ(μ− X (t))dt + ζ(dt). (13)

So A = −κ and B = κμ. If κ > 0, X (t) is stationary with μ as the long-run mean,
κ as the speed of mean reversion, 1/(κ ln2) as the half-life of a shock. The Euler
scheme leads to the following approximate model:

Xi+1 = κμh + (1−κh)Xi + vi+1, (14)

whereas the exact discrete time model is:

Xi+1 = μ
(
1− e−κh)+ e−κh Xi + εi+1. (15)

Clearly, we use κμh to approximate μ
(
1−e−κh

)
and 1−κh to approximate e−κh .

The order of the approximation error may be obtained from the following Taylor
expansions:

μ
(
1− e−κh)= κμh + O

(
h2), (16)

e−κh = 1−κh + O
(
h2). (17)

Consequently, if h is small, the Euler scheme should provide a good approxima-
tion to the exact discrete time model. However, if h is large, the Euler approx-
imation can be poor. For a numerical example, consider the case where κ = 2
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(an empirically realistic value) and h = 1/12 (i.e., monthly data) in which case
e−κh is 0.8465, whereas 1 − κh is 0.8333 and the approximation is reasonable.
But if κ = 2 and h = 1 (i.e., annual data), e−κh is 0.1353 whereas 1 − κh is −1.
The quality of the approximation is unsatisfactory with the sign of the coef-
ficient flipped. The economic implications of these two values would be very
different. Note that the autoregressive coefficient implied by the Euler model is
always smaller than that implied by the exact model when κh ∈ (0,1), because
e−κh > 1−κh.

The model considered by Phillips (1972) in the Monte Carlo study is the
three-variable trade-cycle model given by:

dC(t) = α[(1− s)Y (t)+α −C(t)]dt + ζ1(dt), (18)

dY (t) = λ[C(t)+ DK (t)−Y (t)]dt + ζ2(dt), (19)

d K (t) = γ [νY (t)− K (t)]dt + ζ3(dt), (20)

where C = consumption, Y = income, and K = capital. There are 6 parameters
in the model. Phillips (1972) simulated 25 observations from the model and per-
formed the generalized least square estimation to the exact discrete model and the
three-stage least squares to the approximate discrete model. While the setup may
seem easy from today’s perspective, given the rapid development in computing
technology and software in recent years, it was conceivably much harder in the
1960s to develop the computer program and do the computing.

As his first publication in econometrics, Phillips (1972) is filled with major
conceptual advances, cutting edge technical innovation and sophisticated Monte
Carlo exercise for the time, and perhaps most importantly, enormous practical
relevance to empirical studies in economics and finance. It was masterfully put
together with good knowledge of linear algebra, differential equations, computa-
tional mathematics, statistics, and economics. It is even more remarkable given
the fact that it was based on his Master’s thesis. Indeed, the argument of elimi-
nating the discretization bias has had a long-run impact on the literature. Concern
about discretization bias has motivated many researchers to introduce various new
methods to estimate continuous time financial models over the last 2 decades
(see, for example, Lo (1988), Pedersen (1995), Elerian, Chib, and Shephard
(2001), and Aı̈t-Sahalia (2002)).

Phillips (1974) generalized the results by allowing the presence of identi-
ties, higher order of derivatives, and exogenous variables. These augmentations
are practically important in macroeconomics. For instance, often imposed into
the macroeconometric model are well known identities such as the balance of
payments identity and the national income identity. In the context of the exact
discrete model, Phillips (1974) showed that the presence of identities, whether it
is in the first-order model or in the higher order models, is unlikely to cause any
estimation problems, whereas the introduction of exogenous variables represents
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a more serious complication. To explain the complication, consider the following
model:

d X (t) = (A(θ)X (t)+ B(θ)Z(t))dt + ζ(dt), (21)

where Z(t) is a vector of exogenous variables, observed at the same discrete point
in time as for X (t). The exact discrete time model of (21) is given by:1

Xi = exp(Ah)Xi−1 − A−1(exp(Ah)− I )B +
∫ h

0
exp(s A)B Z(ih − s)ds + εi ,

(22)

where εi = ∫ ih
(i−1)h exp(A(θ)(ih − s))P exp(A(θ)(ih − s))P ′ζ(ds). If Z(t) is not

a simple integrable function of time, it cannot be integrated out analytically and
hence a continuous record is needed for Z(t) before the model can be estimated.
Since in practice Z(t) is always observable only at a grid of discrete points, we
have to approximate the integral. Noting that polynomials are simple integrable
functions, Phillips (1974) proposed to expand Z(ih − s) in a second order Taylor
series about s = 0 and to use the three-point Lagrange interpolation formula to
approximate Z(ih − s), namely:

Ẑ(ih − s) = Zi − s (Zi−2 −4Zi−1 +3Zi )+ s2 (Zi −2Zi−1 + Zi−2)/
(
2h2).

Substituting out Z(ih − s) in (22) by Ẑ(ih − s) and integrating out the polynomi-
als, we have:

Xi+1 = exp(A(θ)h)Xi + E2 Zi + E3 Zi−1 + E4 Zi−2 +ηi+1, (23)

where the expressions for Ej , j = 2,3,4 are given in Phillips (1974). The gen-
eralized least squares procedure can then be applied to estimate the approximate
model. In general, there is an approximation error in (23) which depends on h. The
smaller is h, the smaller the discretization error. However, if elements of Z(t) are
polynomials in t of degree of at most two, there is no approximation error in (23),
because in this case (23) is the exact discrete model. Phillips (1976a, 1976b) made
further contributions along this line of research.

So far all the variables are assumed to be observed at specific points in
time. This assumption is reasonable for stock variables. Flow variables, such as
C(t) and Y (t) in the trade-cycle model given by (18), (19), and (20), can be
observed only as the integrals, such as

∫ ih
(i−1)h C(s)ds and

∫ ih
(i−1)h Y (s)ds. Let

Xi = ∫ ih
(i−1)h C(s)ds when C(t) is a flow variable. The exact discrete time model

for Xi is different from that when C(t) is assumed to be a stock variable. Phillips
(1978) made several contributions in this context.

It is important to point out that the continuous time models discussed in this
section have been widely applied to describe and forecast the movement of the
economies of many industrial countries. For example, Bailey, Hall, and Phillips
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(1987) used a continuous time model to make predictions of the New Zealand
economy. Bergstrom (1996) provided a comprehensive list of the applications.

An important special case of Model (2) is when ζ(dt) is a Gaussian process. In
the univariate case, the model takes the form:

d X (t) = κ(μ− X (t))dt +σ dW (t), X (0) = X0. (24)

This Ornstein-Uhlenbeck (OU) process is used by Vasicek (1977) to describe the
movement of short term interest rates. From (12), the exact discrete model is of
the form:

Xi = μ
(

1− e−κh
)

+ e−κh Xt−1 +σ

√
(1− e−2κh)/(2κ)εi , (25)

where εi ∼ i.i.d. N (0,1) where i.i.d. denote independent and identically dis-
tributed. This is a Gaussian AR(1) process and can be estimated by LS/ML. As a
result, the asymptotic theory developed by Phillips (1972) under stationarity as-
sumptions (i.e., κ > 0) is applicable. The results in the multivariate Vasciek model
can be established in the same manner.2

2.3. Estimation of Nonlinear Models

An important class of continuous time models is nonlinear diffusion processes.
A general time homogenous parametric diffusion process takes the form:

d X (t) = μ(X (t); θ)dt +σ(X (t); θ)dW (t), (26)

where μ(X (t); θ) is a nonaffine function of X (t) or σ(X (t); θ) 	= σ or both
and θ is a vector of unknown parameters. This class of parametric models has
been widely used to characterize the temporal dynamics of financial variables,
including stock prices, interest rates, exchange rates, and volatilities. Typically
financial variables are measured in years and observed at higher frequencies than
macroeconomic variables. If X (t) is observed monthly (weekly or daily), we have
h = 1/12 (1/52 or 1/252). However, ultrahigh frequency data have become avail-
able in recent years.

Arguably, the most important continuous time model in finance is the
so-called affine model of Duffie and Kan (1996), where both μ(X (t); θ) and
σ(X (t); θ)σ (X (t); θ)′ are affine functions of X (t). Vasicek’s model is of course
a simple but important special univariate case in the affine family.

Another important special case was proposed by Cox, Ingersoll, and Ross
(1985, CIR, hereafter). This so-called square root process, often used to describe
movements in short term interest rates and in volatility, takes the form:

d X (t) = κ(μ− X (t))dt +σ
√

X (t)dW (t), X0 ∼ �
(

2κ/σ 2,2κμ/σ 2
)
),

(27)
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where �(α,β) is a Gamma distribution with parameters α and β. The error term
in the exact discrete model is non-Gaussian. The same model was used by Heston
(1993) to describe movements in volatility.

One advantage of using affine continuous time models is that the formulation
permits closed-form or nearly closed-form solutions to many important pricing
formulae. For a general treatment, see Duffie and Kan (1996). In the context of the
OU process, Vasicek (1977) derived the expression for bond prices and Jamshid-
ian (1989) gave the corresponding formula for bond option prices. In the context
of the square root process, CIR (1985) derived the expressions for bond prices
and bond option prices.

While the affine models are analytically tractable in terms of asset pricing,
they may not necessarily fit the data well. Chan, Karolyi, Longstaff, and Sanders
(1992) (CKLS, hereafter) considered a univariate interest rate diffusion process:

d X (t) = κ(μ− X (t))dt +σ Xγ (t)dW (t), (28)

where γ is a free parameter that is to be determined by data. Obviously, this model
has a more flexible diffusion term than the affine models. Unfortunately, the exact
discrete time model is not analytically available and the error term is not Gaussian
unless γ = 0.

To enable a Gaussian discrete time representation of (28), Nowman (1997) as-
sumed that the conditional volatility is constant between two consecutive observa-
tion points, [(t −1)h, th), t = 1,2...,n. Namely, the CKLS model is approximated
by the OU process locally, with the diffusion term σ Xγ (t) replaced with σ Xγ

(s−1)h
when t ∈ [(s −1)h,sh). From Phillips (1972), the exact discrete time model of the
approximate continuous time model is:

Xi = μ
(

1− e−κh
)

+ e−κh Xi−1 +σ Xγ
i−1

√
(1− e−2κh)/(2κ)vi , (29)

where vi ∼ i.i.d. N (0,1). Equation (29) is amenable to ML estimation, since the
transition density is Gaussian. Since there is a discretization bias in (29), the dou-
ble asymptotics is needed for a consistent estimation of μ and κ.

Motivated from the observation that (29) is not the exact discrete time model
of (28), Yu and Phillips (2001) (see also a correction made in Phillips and Yu
(2011)) obtained an exact discrete time model of (28) using the stopping time
argument. The approach is based on the idea that any continuous time martingale
can be written as a Brownian motion after a suitable time change (Mt = W[M]t ).
That is, if the chronological time in a local martingale Mt is adjusted to time
based on the evolution of the quadratic variation process [M]t of M, we have the
time change given by Tt = inf{s|[M]s > t} and the process is transformed to a
Brownian motion (called the DDS Brownian motion).
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To see how this approach can be used to estimate equation (28), first write (28)
as:

X (t +h) = μ
(

1− e−κh
)

+ e−κh X (t)

+σ

∫ h

0
e−κ(h−s) Xγ (t + s)dW (t + s), ∀h > 0. (30)

Let

Mt (h) = σ

∫ h

0
e−κ(h−s) Xγ (t + s)dW (t + s)

= e−κh
∫ h

0
eκs Xγ (t + s)dW (t + s) = e−κh Ht (h) ,

where Ht (h) := ∫ h
0 σeκs Xγ (t + s)dW (t + s) is a continuous martingale whose

quadratic variation is given by:

[Ht ]s =
∫ s

0
σ 2e2κs X2γ (t + s)ds,

so that

X (t +h) = μ
(

1− e−κh
)

+ e−κh X (t)+ e−κh Ht (h) .

To construct the DDS Brownian motion to represent Ht (h), one may apply the
DDS Theorem to Ht with timing constant a so that

h̃ j+1 = inf
{

s :
[
Htj

]
s
≥ a
}

= inf

{
s :
∫ s

0
σ 2e2κs X2γ

(
tj + s

)
ds ≥ a

}
, (31)

we have

X
(
tj+1
)= μ

(
1− e−κh

)
+ e−κ h̃ j+1 X

(
tj
)+ e−κ h̃ j+1 Htj

(
h̃ j+1

)
,

where tj+1 = tj + h̃ j+1. By the DDS Theorem, Htj

(
h̃ j+1

)
∼ N (0,a). Since the

step size tj and stopping times h̃ j+1 are both endogenous, the ordinary least
squares or weighted least squares procedures are inconsistent. To consistently es-
timate μ and κ , we may use (1, X (tj )) as the instrument and set up the estimating
equations:

∑
j

(
eκ h̃ j+1 X (tj+1)−μ

(
e−κ h̃ j+1 −1

)
− X (tj )

)
X (tj ) = 0, (32)

and

∑
j

(
eκ h̃ j+1 X (tj+1)−μ

(
e−κ h̃ j+1 −1

)
− X (tj )

)
= 0. (33)
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The instrumental variable (IV) estimators of μ and κ can be obtained from solving
these two equations jointly. The idea of using the stopping time argument to in-
duce normality was more recently employed in different contexts by Park (2008b)
and Chang (2012).

While the SDE (26) is formulated in continuous time, the sample data are
always collected at discrete points in time or over discrete intervals in the case
of flow data. One may argue that for financial variables, the sampled data are so
frequently observed as to be nearly continuously available.

If a continuous record from [0,1] is indeed available, Phillips (1987b) proposed
to estimate κ in the model:

d X (t) = −κ X (t)dt +dW (t), (34)

by the following ML estimator:

κ̃ = −
∫ 1

0 X (t)d X (t)∫ 1
0 X (t)2dt

. (35)

This is because the log-likelihood function of X (t), t ∈ [0,1], has the following
form:

�(κ) =
∫ 1

0
−κ X (t)d Xt − 1

2

∫ 1

0
κ2 X (t)2dt.

As a consequence of (35), the finite sample distribution of κ̂ −κ is:

κ̃ −κ =
∫ 1

0 X (t)dW (t)∫ 1
0 X (t)2dt

. (36)

Phillips and Yu (2009b) proposed an alternative method to estimate parameters
in (26) based on the following two properties: (1) the diffusion term can be fully
uncovered from a continuous record and (2) for a diffusion process with a known
diffusion term, the likelihood function of the process is analytically available via
the Girsanov theorem. The method of Phillips and Yu (2009b) contains two steps.

To fix the idea, consider the SDE:

d X (t) = μ(X (t); θ1)dt +σ(X (t); θ2)dW (t). (37)

In the first step, parameters in the diffusion term are estimated from the empir-
ical quadratic variation process. In the continuous time econometrics literature,
the empirical quadratic variation is known as the realized variance (RV). The ap-
proach is justified by the fact that RV is a natural consistent estimate of quadratic
variation. Also, RV has convenient distributional characteristics that are deter-
mined asymptotically by the (functional) central limit theory (CLT), as derived
by Jacod (1993) and Barndorff-Nielsen and Shephard (2002).
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To proceed, assume that X (t) is observed at the following time points:

t = h,2h, · · · , Mhh

(
= T

K

)
︸ ︷︷ ︸, (Mh +1)h, · · · ,2Mhh

(
= 2T

K

)
︸ ︷︷ ︸, · · · ,nhh(= T ),

where nh = K Mh with K a fixed and positive integer and Mh = O(nh). Phillips
and Yu (2009b) constructed the nonoverlapping K subsamples:

((k −1)Mh +1)h, · · · ,kMhh, where k = 1, · · · , K ,

so that each subsample has Mh observations over the interval ((k −1) T
K ,k T

K ].
As h → 0 and Mh → ∞,

Mh

∑
i=2

(X(k−1)Mh+ih − X(k−1)Mh+(i−1)h)2 p→ [X ]k T
K

− [X ](k−1) T
K
, (38)

and

ln(∑Mh
i=2

(
X(k−1)Mh+ih − X(k−1)Mh+(i−1)h

)2 − ln
(

[X ]k T
K

− [X ](k−1) T
K

)
+ 1

2 s2
k

sk
d→ N (0,1), (39)

where

sk = min

⎧⎪⎪⎨⎪⎪⎩
√√√√√ r2

k(
∑Mh

i=2

(
X(k−1)Mh+ih − X(k−1)Mh+(i−1)h

)2)2 ,

√
2

Mh

⎫⎪⎪⎬⎪⎪⎭ ,

and

rk =
√√√√2

3

Mh

∑
i=2

(
X(k−1)Mh+ih − X(k−1)Mh+(i−1)h

)4
,

for k = 1, · · · , K . Note that [X ]T is the quadratic variation of X which can be
consistently estimated by the empirical counterpart [Xh]T defined as:

[Xh]T =
nh

∑
i=2

(
Xih − X(i−1)h

)2 := RV .

The definition of quadratic variation gives the limit (38), while the CLT (39) is
based on the asymptotic theory of Barndorff-Nielsen and Shephard (2005). Based
on the CLT (39), θ2 can be estimated in the first stage by running a nonlinear least
squares regression of

ln
(

∑Mh
i=2(X(k−1)Mh+ih − X(k−1)Mh+(i−1)h)2

)
+ 1

2 s2
k

sk
(40)
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on

ln
(
∑M

i=2 σ 2
(

X(k−1)Mh+(i−1)h ; θ2
)

h
)− 1

2 s2
k

sk
(41)

for k = 1, · · · , K . This produces a consistent estimate θ̂2 of θ2 as h → 0. This is
the in-fill asymptotics. In the second stage, the approximate in-fill log-likelihood
function is maximized with respect to θ1, i.e.,

argmaxθ1

{
n

∑
i=2

μ(X(i−1)h ; θ1)

σ 2(X(i−1)h ; θ̂2)
(Xih − X(i−1)h)− h

2

n

∑
i=2

μ2(X(i−1)h ; θ1)

σ 2(X(i−1)h ; θ̂2)

}
. (42)

This produces a consistent estimate θ̂1 of θ1 as T → ∞ and h → 0 (i.e., the
double asymptotics). The asymptotic theory for θ̂1 and θ̂2 is fully developed in
Phillips and Yu (2009b). Other studies that have used realized variance to estimate
and compare parametric models include Corradi and Distaso (2006, 2010) and
Kristensen (2010a).

3. NONPARAMETRIC METHODS

Parametric continuous time models have proven very useful for predicting fu-
ture economic activities and for pricing financial assets. However, theory usually
is silent about which parametric forms to use. Often, parametric specifications
are adopted for mathematical convenience. Misspecification of the model by a
specific parametric form might lead to erroneous decision making. For example,
Aı̈t-Sahalia (1996) showed that when pricing bond options, traditional parametric
models can yield significant pricing errors. In this section, we will review various
nonparametric methods proposed by Peter Phillips.

3.1. Estimation of Drift and Diffusion Terms

Nonparametric estimation of continuous time models was pioneered by Aı̈t-
Sahalia (1996). The model he investigated takes the form:

d X (t) = κ(μ− X (t))dt +σ(X (t))dW (t), (43)

where the diffusion term σ(X (t)) is an unknown function. The linearity in the
drift term is an identification restriction, through which the diffusion term can be
identified from the marginal distribution, without assuming h → 0. Assuming the
process X (t) is stationary and π(x) is the marginal distribution of the process, the
relation between the diffusion term and the marginal distribution is given by:

σ 2(x) = 1

π(x)

∫ x

0
κ(μ− s)π(s)ds.

Replacing π(x) with a nonparametric density estimator would yield a nonpara-
metric estimator for σ(x). Aı̈t-Sahalia (1996) used a kernel function to estimate
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π(x) and σ(x), and established the asymptotic normality of the estimates under
the long-span asymptotics. Two assumptions are critical to the development of
the method, namely stationarity of the process and linearity of the drift term. It is
important to remark that Aı̈t-Sahalia (1996) developed the long-span asymptotic
theory. Other nonparametric methods in the literature that rely on the long-span
asymptotics include Chen, Hansen, and Scheinkman (2000, 2009) and Kristensen
(2010a, 2010b).

Bandi and Phillips (2003) significantly extended the results by developing a
nonparametric method to estimate both the drift and diffusion terms without im-
posing the stationarity assumption. This absence of the stationarity assumption
is important in financial time series analysis, because many financial time series,
such as interest rates, stock prices, exchanges rates, and volatility, may be better
modeled by martingale processes or processes of other forms of nonstationarity.
Bandi and Phillips used both the long-span and in-fill asymptotics to solve the
identification problem and avoid the aliasing problem. To achieve identification
of the drift, the condition of recurrence is further assumed, so that the process
repeats itself. Asymptotic theory is developed using the chronological local time
process, a standardized local time process that is defined in terms of pure time
units. For further details about the chronological local time process, see Park and
Phillips (2001) and Phillips and Park (1999).

To fix the idea, assume the time homogenous diffusion model is nonparametri-
cally specified as:

d X (t) = μ(X (t))dt +σ(X (t))dW (t). (44)

Note that:

E [d X (t) | X (t)] = μ(X (t))dt, (45)

E
[
(d X (t))2 | X (t)

]
= σ 2(X (t))dt. (46)

Application of the Nadaraya-Watson kernel method to (45) and (46) gives rise
to the nonparametric estimator of μ(x):

μ̂(x) =
∑n

i=1 K
(

Xih−x
b

)
μ̃(Xih)

∑n
i=1 K

(
Xih−x

b

) ,

and the nonparametric estimator of σ 2(x):

σ̂ 2(x) =
∑n

i=1 K
(

Xih−x
b

)
σ̃ 2 (Xih)

∑n
i=1 K

(
Xih−x

b

) ,
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where:

μ̃(Xih) = 1

m(ih)h

m(ih)−1

∑
j=0

[
Xt (ih)j +h − Xt (ih)j

]
,

σ̃ 2(Xih) = 1

m(ih)h

m(ih)−1

∑
j=0

[
Xt (ih)j +h − Xt (ih)j

]2
,

m(ih) =
n

∑
j=1

1[|X jh−Xih |≤ε],∀i ≤ n,

and b is the bandwidth. To develop the asymptotic distributions of μ̂(x), it is
assumed that n → ∞, T → ∞, h = T/n → 0, and b → 0 (i.e., the double asymp-
totics). Unlike μ̂(x), σ̂ 2(x) is consistently estimated without requiring T → ∞
(i.e., the in-fill asymptotics). Bandi and Phillips (2003) developed the asymptotic
distributions of σ̂ 2(x) for the case when T is finite and also for the case when
T → ∞.

The nonparametric estimates have recently been applied to various contexts.
Bandi (2002) used them to estimate the short term interest rate model. Corradi
and Distaso (2010) employed it to design a test statistic to distinguish one fac-
tor models against two factor models. Jeffrey, Kristensen, Linton, Nguyen, and
Phillips (2004) made use of it to estimate a multifactor Heath-Jarrow-Morton
model. Bandi and Phillips (2007) used it to develop a simple and robust approach
for the parametric estimation of scalar homogeneous SDEs, which we briefly
discuss below.

Suppose a parametric continuous time model takes the form

d X (t) = μ(X (t); θ1)dt +σ(X (t); θ2)dW (t). (47)

The estimator of θ1 can be obtained by

min
θ1∈�1

||μ̂−μ(X (t); θ1)||,

and the estimator of θ2 can be obtained by

min
θ2∈�2

‖σ̂ 2 −σ 2(X (t); θ2)‖,

where μ̂(x) and σ̂ 2(x) are the nonparametric estimates defined above,

‖ μ̂−μ(·; θ1) ‖=
n

∑
i=1

(
μ̂(Xih)−μ(Xih ; θ1)

)2
,

and

‖ σ̂ 2 −σ 2(·; θ2) ‖=
n

∑
i=1

(
σ̂ 2(Xih)−σ 2(Xih ; θ2)

)2
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are the Euclidean distance. Bandi and Phillips (2007) developed the asymptotic
theory for the estimates of θ1 and θ2 under different sets of assumption. In partic-
ular, it was also shown that the consistency of θ2 can be guaranteed with h → 0
but does not need T → ∞, so the in-fill asymptotics is sufficient for the param-
eters in the diffusion function. On the other hand, the consistency of θ1 requires
the long-span asymptotics. The results are consistent with those noted by Merton
(1980).

The estimators of Bandi and Phillips (2003) have been used in the literature
in a similar manner. Examples include Brugiere (1993), Florens-Zmirou (1993),
Geman (1979), and Stanton (1997). The work of Bandi and Phillips (2003) has
been extended in a number of more recent studies, namely, Bandi and Nguyen
(2003), Bandi and Moloche (2008), and Park (2008a). Bandi and Phillips (2009)
reviewed the literature of nonstationary continuous time methods.

3.2. Estimation of Integrated Variance

Financial market volatility is a key concept in financial economics. In diffusion
processes, the diffusion term corresponds to an important measure of volatility—
spot volatility. In previous sections, we have seen a variety of ways to estimate the
diffusion term. Another important measure of volatility is the integrated variance,
defined by,

I V =
∫ 1

0
σ 2(t)dt. (48)

Obviously, this is the quadratic variation of the SDE

d X∗(t) = μ(X∗(t))dt +σ(t)dW (t),

over a unit interval [0,1], where X∗ is an efficient equilibrium price. Let
0 = t0,m < t1,m < · · · < tm,m = 1 be a sequence of deterministic partitions of [0,1]
and h1,m = supi |ti,m − ti−1,m | is the grid size. A common assumption adopted
in the literature is that the partition involves a simple grid of equispaced points
{ti,m = i

m : i = 0, ...,m}, in which case h1,m = 1
m and h�,m = �

m .
An important nonparametric estimate of I V is the empirical quadratic variation

of X (t), defined by

m

∑
i=1

[
X∗

i,m − X∗
i−1,m

]2 := RV (m)(X∗).

As explained before, the quantity is called RV and this nonparametric estimate has
received a great deal of attention in the continuous time literature in recent years.
Pioneering work includes Andersen and Bollerslev (1998), Andersen, Bollerslev,
Diebold, and Labys (2001), and Barndorff-Nielsen and Shephard (2002).

While the deterministic partitions and the equispaced partitions greatly facili-
tate the development of asymptotic theory of RV, in the real ultrahigh frequency
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data, such assumptions may be too strong. In particular, the phenomenon of flat
pricing is very common in stock market trading, leading to stochastic durations of
trade intervals. Phillips and Yu (2009c) generalized the standard asymptotic the-
ory of RV to the cases where flat trading is present, with and without microstruc-
ture noise.

Phillips and Yu (2009c) considered two mechanisms to generate flat trading.
First, the flat trading is determined by a simple Bernoulli process, i.e.,

Xi,m =
{

X∗
i,m if ξi = 1

Xi−1,m if ξi = 0
, (49)

where Xi,m is the observed price, ξi is a Bernoulli sequence independent of X∗
with E(ξi = 1) = π, X0,m = X∗

0,m = Op (1), and

d X∗(t) = σ(t)dW (t). (50)

Phillips and Yu (2009c) showed that, as m → ∞
√

m
[

RV (m)(X)− I V
]

d→ M N

(
0,

4−2π

π

∫ 1

0
σ 4(t)dt

)
, (51)

where M N signifies mixed normal.
Second, the flat trading is determined by an autoregressive conditional duration

(ACD) process, i.e., as m → ∞,

E
(

Dm,[ms]|Fτ[ms]−1

)→p μD (s) , E
(

D2
m,[ms]|Fτ[ms]−1

)
→p ω2

D (s) , (52)

where Dm, j measures the duration between observations (in units of the inter-
val m−1) and may be (partly) dependent on past prices. Phillips and Yu (2009c)
showed that, as m → ∞
√

m

{
Jm

∑
j=1

[X∗ (τj
)− X∗ (τj−1

)
]2 −

∫ 1

0
σ 2(t)dt

}

⇒ M N

(
0,2
∫ 1

0
σ 4(t)

ω2
D (t)

μD (t)
dt

)
. (53)

Model (49) assumes that when there is a price change, the efficient price is ob-
served with an error. This assumption may be too strong in very high frequencies.
A more realistic model is

Xi,m =
{

X∗
i,m +ui,m if ξi = 1

Xi−1,m if ξi = 0
, (54)

so that when prices do change a noise component ui,m perturbs the observed price.
It is assumed that uτj is i id with zero mean, variance σ 2

u and finite fourth moment.

Let [̂p∗] be the two-stage estimator of Zhang, Mykland, and Aı̈t-Sahalia (2005).
Under certain conditions, Phillips and Yu (2009c) show that as m → ∞
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m1/6
{

[̂p∗]−
∫ 1

0
σ 2(t)dt

}
⇒
{

8

c2 σ 4
u + cη2

}1/2

N (0,1) , (55)

where

η2 =
4
{∫ 1

0 (1− s)2 μD (1− s)ds
}

∫ 1
0 μD (s)ds

∫ 1

0
σ 4 (t)dt, (56)

K = cm2/3, and K is the number of nonoverlapping grids.

4. FINITE SAMPLE ISSUES

In the continuous time finance literature, it has frequently been argued that ML
should be the method to use for parameter estimation and statistical inference.
The statistical justification is that ML estimates have good asymptotic properties
and well developed asymptotic theory. Moreover, sample sizes in typical financial
data applications are large, leading to a common belief that these good asymptotic
properties hold true in finite samples.

However, recently it has been forcefully argued by Peter Phillips (see Phillips
and Yu, 2005a and 2009d) that the finite sample performance of the ML estimator
can be very poor from both statistical and economic perspectives. For example,
ML estimates of parameters in some continuous time models may be badly biased
even when the sample size is very large and the sampling interval is very small.
This is especially the case in the commonly occurring situation of drift parameter
estimation in models where the process is nearly a unit root process. Financial
variables, such as interest rates and volatility, typically have a root near unity,
indicating an important shortcoming of ML from a practical viewpoint.

In the context of Vasicek model with a known long-run mean, Yu (2012)
showed that the bias of ML estimate of κ is upward and approximated by 2/T .
The author further derived analytical expressions to approximate the bias, and ar-
gued that, depending on the initial condition, a nonlinear term in the bias formula
may be particularly important when the mean reversion parameter is close to zero.
In the context of Vasicek model and CIR model with an unknown long-run mean,
Tang and Chen (2009) showed that the bias of ML estimate of κ is approximated
by 4/T . If the true value of κ = 0.1 and T = 10 (10 years data), the percentage
bias in the ML estimate of κ , implied by these two results, is 200% and 400%,
respectively.

Both Yu (2012) and Tang and Chen (2009) are motivated from Phillips and
Yu (2005a) where the authors intuitively explained why the ML estimator of κ is
severely biased upward. Denote the autoregressive coefficient by φ = exp(−κh).
Note that φ ≈ 1 − κh by the first-order approximation. Hence, the bias in κ̂ is
approximately the bias in φ̂ multiplied by 1/h. It is well known that in the con-
text of the AR(1) model with an intercept only, to a first-order approximation, the
bias φ̂ is − 1+3φ

n . Since T = nh, the bias in κ is approximately 1+3φ
T . This is an

upward bias, which is mainly determined by the data span, not the sample size.
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Phillips and Yu (2005a,b) performed extensive Monte Carlo experiments to con-
firm the substantial percentage bias in the context of Vasicek and CIR models. For
example, if κ = 0.1, n = 600, and h = 1/52 (i.e., more than 10 years weekly data
are used), ML estimates κ with 391% bias.

This finite sample problem turns out to be of great importance in the practi-
cal use of econometric estimates in asset pricing. Phillips and Yu (2005a, 2009d)
took seriously the economic implications of this problem. It has been shown that
there is nonlinear dependence of the pricing functional on the parameter estimates,
which may well exacerbate bias and make good bias correction more subtle.
In particular, even if the parameter estimates are all unbiased, the plug-in esti-
mate of the asset price is biased due to the nonlinearity. For example, if κ = 0.1,
n = 600, and h = 1/52 (i.e., more than 10 years weekly data are used), ML es-
timates a one-year near-the-money European option written on a 3-year discount
bond with 61% bias. The bias is conceivably even larger when the option is deeper
out-of-the-money and the nonlinearity becomes more pronounced; see Phillips
and Yu (2009d). It is important to emphasize that the finite sample problems are
not unique to ML and they are applicable to most standard estimation methods,
such as GMM, nonlinear least squares, and quasi-ML.

In this section, we describe two approaches to improve the finite sample per-
formances of ML that Peter Phillips proposed. The first of these is based on
Quenouille’s (1956) jackknife that is a general and computationally inexpensive
method of bias reduction. The second approach is simulation-based. It involves
the indirect inference estimation idea of Smith (1993) and Gouriéroux, Monfort,
and Renault (1993). The two methods were used in Phillips and Yu (2005a) and
Phillips and Yu (2009d), respectively. While both the jackknife and indirect infer-
ence methods have been widely used to reduce the bias in parameter estimates, the
novelty in Phillips and Yu (2005a, 2009d) is that they applied the bias correction
methods to asset prices directly.

4.1. Jackknife Estimation

Under quite general conditions, one can show that for standard consistent esti-
mates such as ML estimates, there exists some constant a1 such that

E(θ̂n) = θ + a1

n
+ O

(
1

n2

)
. (57)

According to (57), the bias decreases with the sample size. Quenouille (1956)
proposed the jackknife as a solution to finite sample bias problems in paramet-
ric estimation contexts such as discrete time autoregressions. To fix ideas, let n
be the number of observations in the whole sample and decompose the sample
into m consecutive subsamples, each with � observations, so that n = m × �. The
jackknife estimator of θ utilizes the subsample estimates of θ to assist in the bias
reduction process, giving the jackknife estimator

θ̂jack = m

m −1
θ̂n − ∑m

i=1 θ̂li

m2 −m
, (58)
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where θ̂n and θ̂li are the estimates of θ obtained by application of a given method
like ML to the whole sample and the i th subsample, respectively. It is easy to
show that the bias in the jackknife estimate θ̂jack is of order O(n−2) rather than
O(n−1).

Phillips and Yu (2005a) proposed to use the jackknife method to the quantity
of interest directly. For example, if one wishes to estimate a bond option price,
c(θ), instead of using c(θ̂), one can use

ĉjack = m

m −1
ĉn − ∑m

i=1 ĉli

m2 −m
. (59)

It turns out the direct application of the jackknife to the quantity of interest yields
more desirable finite sample performances. This is not surprising, because the
nonlinearity in the pricing relation is taken into account in (59).

The jackknife has several nice properties. The first advantage is analytical sim-
plicity. Unlike many other bias reduction methods, the jackknife does not rely on
the explicit form of bias formula. Hence, it is applicable in a broad range of model
specifications and is particularly useful when it is difficult or impossible to derive
the explicit form of bias formula. A second advantage is that the jackknife is com-
putationally much cheaper to implement. In fact, this method is not much more
time consuming than the initial estimation itself. A drawback with the jackknife
is that it cannot completely remove the bias, as it is only designed to decrease
the order of magnitude of the bias. However, Phillips and Yu (2005a, b) showed
that with a careful choice of subsampling, the jackknife can substantially reduce
the bias with only a marginal increase in variance, leading to a reduction in mean
squared error. Chambers (2010) and Chambers and Kyriacou (2010) obtained the
asymptotic distributions of the jackknife estimator in the context of stationary and
unit room autoregressive models. The asymptotic variance can be obtained from
the asymptotic distributions and compared to that of the ML estimator.

Phillips and Yu (2005a, b) also compared the price implications of three dif-
ferent biases, namely, the specification bias, the discretization bias, and the finite
sample estimation bias, in the context of affine models. It was found that the fi-
nite sample estimation bias was the most important and the discretization bias the
least harmful in the near unit root models used in finance. This finding is very
surprisingly and extremely important, as the discretization bias and the specifica-
tion analysis have received much more attention in the continuous time financial
econometrics literature. In the context of diffusions with the linear drift function,
Wang, Phillips, and Yu (2011) compared analytically the magnitude of the esti-
mation bias relative to that of the discretization bias induced by several popular
discretization methods. The dominance of the estimation bias is established under
rather weak conditions.

4.2. Indirect Inference Estimation

The indirect inference (II) procedure is a simulation-based estimation procedure
and can be understood as a generalization of the simulated method of moments
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approach of Duffie and Singleton (1993). It was first introduced by Smith (1993)
and the term was coined by Gouriéroux, Monfort, and Renault (1993). It is also
closely related to the method proposed by Gallant and Tauchen (1996). This
method was originally proposed to deal with situations where the moments or
the likelihood function of the true model are difficult to deal with (and hence tra-
ditional methods such as GMM and ML are difficult to implement), but the true
model is amenable to data simulation. Because most continuous time models are
easy to simulate but present difficulties in the analytic derivation of moment func-
tions and likelihood, the II procedure has some convenient advantages in working
with continuous time models in finance.

A carefully designed II estimator can also have good small sample proper-
ties of parameter estimates, as shown by MacKinnon and Smith (1998), Monfort
(1996), Gouriéroux, Renault, and Touzi (2000) in the time series context, and by
Gouriéroux, Phillips, and Yu (2010) in the panel context. The reason as to why II
can remove the bias goes as follows. Whenever a bias occurs in an estimate and
from whatever source, this bias will also be present in the same estimate obtained
from data, which are of the same structure of the original data, simulated from
the model for the same reasons. Hence, the bias can be calculated via simulations.
The method, therefore, offers some interesting opportunities for bias correction
and the improvement of finite sample properties in continuous time parameter
estimation, as shown in Phillips and Yu (2009a).

To fix the idea of II for parameter estimation, consider the OU process. Suppose
we need to estimate the parameter κ in:

d X (t) = κ(μ− X (t))dt +σ(X (t))dW (t),

from observations {Xh, · · · , Xnh}. An initial estimator of κ can be obtained, for
example, by applying the Euler scheme to {Xh, · · · , Xnh} (call it κ̂n). Such an esti-
mator is involved with the discretization bias (due to the use of the Euler scheme)
and also with a finite sample estimation bias (due to the poor finite sample prop-
erty of ML in the near-unit-root situation).

Given a parameter choice κ , we apply the Euler scheme with a much smaller
step size than h (say δ = h/10), which leads to

X̃ k
t+δ = κ(μ− X̃ k

t )h + X̃ k
t +σ(X̃ k

t )
√

δεt+δ,

where

t = 0,δ, · · · ,h(= 10δ)︸ ︷︷ ︸,h + δ, · · · ,2h(= 20δ)︸ ︷︷ ︸,2h + δ, · · · ,nh.

This sequence may be regarded as a nearly exact simulation from the continuous
time OU model for small δ. We then choose every (h/δ)th observation to form the
sequence of {X̃ k

ih}n
i=1, which can be regarded as data simulated directly from the

OU model with the (observationally relevant) step size h.3

Let {X̃ k
h, · · · , X̃ k

nh} be data simulated from the true model, where k = 1, · · · , K
with K being the number of simulated paths. It should be emphasized that it is
important to ensure that the number of simulated observations and the sampling
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interval are equal to the number of observations and the sampling interval in the
observed sequence, respectively, for the purpose of the bias calibration. Another
estimator of κ can be obtained by applying the Euler scheme to {X̃ k

h, · · · , X̃ k
nh}

(call it κ̃k
n ). Such an estimator and hence the expected value of them across simu-

lated paths is naturally dependent on the given parameter choice κ .
The central idea in II estimation is to match the parameter obtained from the ac-

tual data with that obtained from the simulated data. In particular, the II estimator
of κ solves

κ̂n = 1

K

K

∑
h=1

κ̃k
n (κ) or κ̂n = ρ̂0.5(κ̃

k
n (κ)), (60)

where ρ̂τ is the τ th sample quantile. In the case where K tends to infinity, the II
estimator solves

κ̂n = E
(
κ̃k

n (κ)
)

or κ̂n = ρ0.5

(
κ̃k

n (κ)
)

(61)

where E
(
κ̃k

n (κ)
)

is called the mean binding function or the mean bias function,
and ρ0.5

(
κ̃k

n (κ)
)

is the median binding function or the median bias function, i.e.,

bn(κ) = E(κ̃k
n (κ)), or bN (κ) = ρ0.5(κ̃

k
n (κ)).

It is a finite sample functional relating the bias to κ. In the case where bn is
invertible, the indirect inference estimator is given by:4

κ̂ I I
n = b−1

n (κ̂n). (62)

When a median binding function is used, the estimator is the median unbiased es-
timator of Andrews (1993). Typically, the binding functions cannot be computed
analytically in either case. That is why II needs to calculate the binding functions
via simulations. While the mean is often used in the literature for the binding
function, the median has certain advantages over the mean. First, the median is
more robust to outliers than the mean. Second, it is easier to obtain the unbiased
property via the median. In particular, while the linearity of bn(κ) gives rise to the
mean-unbiasedness in κ̂ I I

n , only monotonicity is needed for bn(κ) to ensure the
median-unbiasedness (Phillips and Yu, 2009d).

There are several advantages in the II procedure relative to the jackknife proce-
dure. First, indirect inference is more effective in removing the bias in parameter
estimates. Phillips and Yu (2009a) provided evidence to support this superiority
of indirect inference. Second, the bias reduction may be achieved often without
an increase in variance. In extreme cases of root near unity, the variance of II can
be even smaller than that of ML (Phillips and Yu, 2009a). To see this, note that
equation (62) implies:

V ar
(
κ̂ I I

n

)
=
(

∂bn

∂κ

)−1

V ar
(
κ̂M L

n

)(∂bn

∂κ ′

)−1

.

When ∂bn/∂κ > 1, the II has a smaller variance than ML.
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A disadvantage in the II procedure is the high computational cost. It is expected
that with the continuing explosive growth in computing power, such a drawback
will become less of a concern. Nevertheless, to reduce the computational cost,
one can choose a fine grid of discrete points of κ and obtain the binding function
on the grid. Then standard interpolation and extrapolation methods can be used to
approximate the binding functions at any point.

As pointed out earlier, since prices of contingent-claims are always nonlin-
ear transformations of the system parameters, the insertion of even unbiased
estimators into the pricing formulae will not assure unbiased estimation of a
contingent-claim price. The stronger the nonlinearity, the larger the bias. As a
result, plugging-in the indirect inference estimates into the pricing formulae may
still yield an estimate of the price with unsatisfactory finite sample performances.
This feature was illustrated in the context of various continuous time models and
contingent claims in Phillips and Yu (2009d). To improve the finite sample prop-
erties of the contingent price estimate, Phillips and Yu (2009d) generalized the II
procedure so that it is applied to the quantity of interest directly.

To fix the idea, suppose θ is the scalar parameter in the continuous time model
on which the price of a contingent claim, P(θ), is based. Denote by θ̂ M L

n the
MLE of θ that is obtained from the actual data, and write P̂ M L

n = P(θ̂ M L
n )

be the ML estimate of P . P̂ M L
n involves finite sample estimation bias due

to the nonlinearity of the pricing function P in θ , or the use of the biased
estimate θ̂ M L

n , or both these effects. The II approach involves the following
steps:

1. Given a value for the contingent-claim price p, compute P−1(p) (call it
θ(p)), where P−1(·) is the inverse of the pricing function P(θ).

2. Let S̃k(p) = {S̃k
1 , S̃k

2 , · · · , S̃k
T

}
be data simulated from the time series model

(26) given θ(p), where k = 1, . . . , K with K being the number of simulated
paths. As argued above, we choose the number of observations in S̃k(p) to
be the same as the number of actual observations in S for the express purpose
of finite sample bias calibration.

3. Obtain φ̃M L ,k
n (p), the MLE of θ , from the kth simulated path, and calculate

P̃ M L ,k
n (p) = P

(
φ̃M L ,k

n (p)
)
.

4. Choose p so that the average behavior of P̃ M L ,k
n (p) is matched with P̂ M L

n
to produce a new bias corrected estimate.

The procedure can be generalized to cases where θ is a K−dimensional vector
and where θ is obtained from cross-sectional data; see Phillips and Yu (2009d)
for detailed discussion. Phillips and Yu (2009d) performed extensive Monte Carlo
studies, showing that II works well, not only relative to ML but also relative to
the jackknife procedure. Another simulation-based procedure for bias correction
is the bootstrap method considered in Tang and Chen (2009). The performance of
the bootstrap method is found to be dominated by II.
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5. SOME NEW RESULTS

In econometrics, asymptotic theory always relies on the fiction of a sample with
an infinity of observations. As shown earlier, there are three ways to do asymp-
totics in continuous time models, long-span (T → ∞), in-fill (h → 0), and double,
all leading to a sample with infinite observations.

In this section, we will compare the performance of these three alternative
asymptotic distributions in the context of the OU process with a known long-run
mean:

d X (t) = −κ X (t)dt +dW (t), (63)

where κ , the mean reversion parameter, is the parameter of the interest and is
assumed to be positive.

Data, namely, {X0h, X1h, · · · , Xnh} with nh = T , are simulated from the exact
discrete time model:

Xt = exp(−κh)Xt−1 + εt

and κ is estimated by:

κ̂ = −
ln

{
∑n

t=1 Xt Xt−1

∑n
t=1 X2

t−1

}
h

, (64)

which is the ML estimate.
Since κ > 0, when T → ∞ and h is fixed, the standard, long-span, asymptotic

theory implies that

√
n(κ̂ −κ)

d→ N

(
0,

exp(2κh)−1

h2

)
. (65)

Hence,

κ̂
a∼ N

(
κ,

exp(2κh)−1

hT

)
. (66)

The asymptotic normality is not surprising as the process is stationary, ergodic,
and asymptotically independent. Taking h to the limit of 0 in (66), we obtain the
double asymptotic distribution:

κ̂
a∼ N

(
κ,

2κ

T

)
. (67)

If h → 0 and T is fixed, the continuous record is observable and the in-fill
log-likelihood function is given by:∫ T

0
−κ X (t)d X (t)−

∫ T

0

1

2
κ2 X (t)2dt. (68)
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From Phillips (1987b), the finite sample distribution of the ML estimator based
on (68) is known. Hence, it is natural to use this distribution to approximate the
distribution of κ̂ , namely,

κ̂
a∼ κ −

∫ T
0 X (t)dW (t)∫ T

0 X (t)2dt
. (69)

Obviously, this in-fill limiting distribution is asymmetric and nonnormal. This
compares interestingly with the two limiting distribution in (66) and (67).

To facilitate computation of the distribution in (69), we first prove a lemma.
This result can be found in Lánska (1979) and the proof is given in the Appendix.

LEMMA. Assume X (t) follows the SDE:

d X (t) = μ(t, X (t),θ)dt +dW (t). (70)

Then the log-likelihood of {X (t)}T
t=0 is given by:

F(T, X (T ),θ)−
∫ T

0

{
f (t, X (t),θ)+ 1

2
μ2(t, X (t),θ)

}
dt, (71)

where

F(t, X (t),θ) =
∫ X (t)

0
μ(t, y,θ)dy,

and

f (t, X (t),θ) = ∂ F(t, X (t),θ)

∂t
+ 1

2

∂μ(t, X (t),θ)

∂x
.

Applying Lemma to the model given in (63), we have:

F(t, X (t),κ) =
∫ X (t)

0
−κydy = −1

2
κ X2(t) and f (t, X (t),κ) = −κ.

Hence, the log-likelihood can be rewritten as:

−1

2
κ X (T )2 −

∫ T

0

[
−1

2
κ + 1

2
κ2 X (t)2

]
dt. (72)

The finite sample distribution of the ML estimator that maximizes (72) is

−X (T )2 + T

2
∫ T

0 X (t)2dt
. (73)

This is the in-fill asymptotic distribution of κ̂ defined in (64). Compared with
the asymptotic distribution (69), (73) only needs to calculate a Riemann integral.
Furthermore, (73) compares interestingly with the unit root limit distribution

W (1)2 −1

2
∫ 1

0 W (t)2dt

obtained in Phillips (1987a).
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To compare the performance of the three limiting distributions, (66), (67), and
(73), in the context of financial time series, we simulate data from the OU model
with various values for κ , h, and T . The actual finite sample distribution is ob-
tained from 50,000 replications of the estimates of κ̂ given by (64). The true values
of κ are set at 0.1,1,10. The value of 0.1 is empirically realistic for interest rate
data while the value of 1 is empirically realistic for volatility. These two values
suggest a slow speed of mean reversion. While κ = 10 is not empirically very re-
alistic for financial time series, we include it here for the purpose of comparison.
The true values of h are set at 1/12 and 1/250, corresponding to monthly and daily
frequencies, respectively. It is rare in the continuous time finance literature that
one uses data at a frequency lower than monthly. At the same time, it is more and
more common to acquire data at a frequency lower than daily in empirical work.
So h = 1/12 is an upper bound in empirical financial studies. The true values of
T are set at 2, 10, 50. A 50-year time series span is perhaps close to the maximum
in empirical work.

Tables 1-3 report the 0.5%, 1%, 5%, 10%, 90%, 95%, 99%, and 99.5% quan-
tiles of the four distributions, for κ = 0.1,1,10, respectively. A few results emerge

TABLE 1. Performance of three asymptotic distributions, (66), (67) and (73),
when κ = 0.1. This table reports the 0.5%, 1%, 5%, 10%, 90%, 95%, 99%, and
99.5% quantiles of the exact distribution, the in-fill asymptotic distribution, the
double asymptotic distribution, and the long-span asymptotic distribution. The
true distribution is obtained via simulations based on 50,000 replications

h and T Methods 0.5% 1% 5% 10% 90% 95% 99% 99.5%

h = 1/12 exact −0.8447 −0.7042 −0.3563 −0.2155 1.7071 2.6012 5.1676 6.5470
T = 2 in-fill −0.8518 −0.7200 −0.4355 −0.3330 1.1327 1.9147 4.0532 5.0527

double −0.7145 −0.6357 −0.4201 −0.3053 0.5053 0.6201 0.8357 0.9145
long-span −0.7355 −0.6546 −0.4336 −0.3157 0.5157 0.6336 0.8546 0.9355

h = 1/12 exact −0.1427 −0.1099 −0.0329 0.0027 0.5885 0.7869 1.3212 1.5574
T = 10 in-fill −0.1513 −0.1211 −0.0511 −0.0218 0.4831 0.6724 1.1543 1.3987

double −0.2643 −0.2290 −0.1326 −0.0812 0.2812 0.3326 0.4290 0.4643
long-span −0.2673 −0.2318 −0.1346 −0.0828 0.2828 0.3346 0.4318 0.4673

h = 1/12 exact 0.0145 0.0214 0.0401 0.0521 0.2470 0.2987 0.4150 0.4700
T = 50 in-fill 0.0116 0.0181 0.0353 0.0461 0.2296 0.2806 0.3917 0.4453

double −0.0629 −0.0471 −0.0040 0.0189 0.1811 0.2040 0.2471 0.2629
long-span −0.0637 −0.0479 −0.0046 0.0185 0.1815 0.2046 0.2479 0.2637

h = 1/250 exact −0.7886 −0.6447 −0.3264 −0.1962 1.6350 2.4563 4.7549 5.8324
T = 2 in-fill −0.8691 −0.7188 −0.4333 −0.3329 1.1297 1.9050 4.0505 5.1093

double −0.7145 −0.6357 −0.4201 −0.3053 0.5053 0.6201 0.8357 0.9145
long-span −0.7155 −0.6365 −0.4208 −0.3057 0.5057 0.6208 0.8365 0.9155

Table continues on overleaf
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TABLE 1. continued

h and T Methods 0.5% 1% 5% 10% 90% 95% 99% 99.5%

h = 1/250 exact −0.1345 −0.1064 −0.0313 0.0022 0.5793 0.7792 1.2916 1.5214
T = 10 in-fill −0.1533 −0.1224 −0.0524 −0.0222 0.4829 0.6715 1.1653 1.4047

double −0.2643 −0.2290 −0.1326 −0.0812 0.2812 0.3326 0.4290 0.4643
long-span −0.2644 −0.2291 −0.1327 −0.0813 0.2813 0.3327 0.4291 0.4644

h = 1/250 exact 0.0131 0.0204 0.0398 0.0514 0.2447 0.2987 0.4141 0.4656
T = 50 in-fill 0.0101 0.0164 0.0348 0.0457 0.2281 0.2804 0.3952 0.4432

double −0.0629 −0.0471 −0.0040 0.0189 0.1811 0.2040 0.2471 0.2629
long-span −0.0629 −0.0472 −0.0041 0.0189 0.1811 0.2041 0.2472 0.2629

TABLE 2. Performance of three asymptotic distributions, (66), (67), and (73),
when κ = 1. This table reports the 0.5%, 1%, 5%, 10%, 90%, 95%, 99%, and
99.5% quantiles of the exact distribution, the in-fill asymptotic distribution, the
double asymptotic distribution, and the long-span asymptotic distribution. The
true distribution is obtained via simulations based on 50,000 replications

h and T Methods 0.5% 1% 5% 10% 90% 95% 99% 99.5%

h = 1/12 exact −0.6044 −0.4450 0.0507 0.2873 4.2440 5.6903 9.3293 11.1353
T = 2 in-fill −0.4827 −0.3312 0.0295 0.2044 3.4411 4.5685 7.4923 8.3460

double −1.5758 −1.3263 −0.6449 −0.2816 2.2816 2.6449 3.3263 3.5758
long-span −1.7448 −1.4789 −0.7527 −0.3656 2.3656 2.7527 3.4789 3.7448

h = 1/12 exact 0.3105 0.3589 0.5059 0.6029 1.9321 2.2628 3.0417 3.4019
T = 10 in-fill 0.3190 0.3589 0.4949 0.5863 1.8033 2.1118 2.7756 3.0594

double −0.1519 −0.0404 0.2644 0.4269 1.5731 1.7356 2.0404 2.1519
long-span −0.2067 −0.0898 0.2294 0.3996 1.6004 1.7706 2.0898 2.2067

h = 1/12 exact 0.5999 0.6324 0.7277 0.7826 1.3311 1.4394 1.6541 1.7341
T = 50 in-fill 0.6058 0.6394 0.7309 0.7844 1.3052 1.4040 1.6063 1.6902

double 0.4848 0.5347 0.6710 0.7437 1.2563 1.3290 1.4653 1.5152
long-span 0.4622 0.5142 0.6565 0.7324 1.2676 1.3435 1.4858 1.5378

h = 1/250 exact −0.4481 −0.2763 0.1281 0.3356 3.8512 4.9482 7.7366 9.0473
T = 2 in-fill −0.5183 −0.3584 0.0232 0.2018 3.3855 4.3957 7.1799 8.3709

double −1.5758 −1.3263 −0.6449 −0.2816 2.2816 2.6449 3.3263 3.5758
long-span −1.5836 −1.3333 −0.6498 −0.285 2.2854 2.6498 3.3333 3.5836

h = 1/250 exact 0.3441 0.3880 0.5297 0.6217 1.8825 2.1808 2.8451 3.1350
T = 10 in-fill 0.3255 0.3674 0.5002 0.5874 1.8062 2.0977 2.7630 3.0470

double −0.1519 −0.0404 0.2644 0.4269 1.5731 1.7356 2.0404 2.1519
long-span −0.1545 −0.0427 0.2628 0.4256 1.5744 1.7372 2.0427 2.1545

h = 1/250 exact 0.6229 0.6494 0.7365 0.7915 1.3129 1.4098 1.6178 1.7071
T = 50 in-fill 0.6173 0.6447 0.7291 0.7833 1.3010 1.3971 1.6027 1.6873

double 0.4848 0.5347 0.6710 0.7437 1.2563 1.3290 1.4653 1.5152
long-span 0.4838 0.5338 0.6704 0.7432 1.2568 1.3296 1.4662 1.5162
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TABLE 3. Performance of three asymptotic distributions, (66), (67), and (73),
when κ = 10. This table reports the 0.5%, 1%, 5%, 10%, 90%, 95%, 99%, and
99.5% quantiles of the exact distribution, the in-fill asymptotic distribution, the
double asymptotic distribution, and the long-span asymptotic distribution. The
true distribution is obtained via simulations based on 50,000 replications

h and T Methods 0.5% 1% 5% 10% 90% 95% 99% 99.5%

h = 1/12 exact 5.7633 6.0789 7.0056 7.5923 13.6800 15.0377 18.1743 19.5199
T = 10 in-fill 7.0171 7.2564 7.9545 8.3715 12.0206 12.6204 13.9213 14.3905

double 6.3572 6.7100 7.6738 8.1876 11.8124 12.3262 13.2900 13.6428
long-span 4.1281 4.6968 6.2503 7.0785 12.9215 13.7497 15.3032 15.8719

h = 1/12 exact 7.7717 7.9616 8.4936 8.7995 11.4508 11.9073 12.7915 13.1478
T = 50 in-fill 8.5167 8.6440 9.0163 9.2234 10.8662 11.1287 11.6198 11.8075

double 8.3709 8.5287 8.9597 9.1895 10.8105 11.0403 11.4713 11.6291
long-span 7.3828 7.6363 8.3287 8.6979 11.3021 11.6713 12.3637 12.6172

h = 1/250 exact 4.6178 4.9565 6.1693 6.9406 15.6703 17.5964 21.7356 23.4049
T = 2 in-fill 4.5770 4.9339 6.0794 6.8284 15.1978 17.0108 20.9087 22.3676

double 1.8545 2.6434 4.7985 5.9474 14.0526 15.2015 17.3566 18.1455
long-span 1.6805 2.4863 4.6874 5.8608 14.1392 15.3126 17.5137 18.3195

h = 1/250 exact 6.9876 7.2632 7.9743 8.3950 12.1621 12.8098 14.1273 14.6391
T = 10 in-fill 7.0017 7.2722 7.9799 8.3712 12.0663 12.6887 13.9985 14.5156

double 6.3572 6.7100 7.6738 8.1876 11.8124 12.3262 13.2900 13.6428
long-span 6.2824 6.6425 7.6260 8.1504 11.8496 12.3740 13.3575 13.7176

h = 1/250 exact 8.5022 8.6453 9.0254 9.2301 10.8840 11.1439 11.6297 11.8125
T = 50 in-fill 8.5152 8.6540 9.0270 9.2267 10.8525 11.1079 11.5879 11.7759

double 8.3709 8.5287 8.9597 9.1895 10.8105 11.0403 11.4713 11.6291
long-span 8.3377 8.4987 8.9385 9.1730 10.8270 11.0615 11.5013 11.6623

from the tables. First and more importantly, the in-fill asymptotics almost always
performs significantly better than long-span and double asymptotics, regardless
of the value for κ , h, and T .5 It is remarkable that the superiority even holds true
when h = 1/12 and T = 50 for κ = 0.1 of 1. This is the worst case scenario
where the long-span asymptotics is favored over the in-fill asymptotics. Second,
the larger is T , the better long-span asymptotics. Third, the smaller is h, the better
in-fill asymptotics. Fourth, the larger is κ , the better the three asymptotic distribu-
tions. Fifth, the long-span asymptotic distribution seems to perform better in the
left tail than in the right tail. However, both the exact and the in-fill asymptotic
distributions are heavily skewed. That partly explains why the in-fill asymptotics
outperforms the long-span and double asymptotics. Figures 1-2 plot the four den-
sities when κ = 0.1, h = 1/12, and T = 2 and 10. The plot reinforces the results
found in the tables.
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FIGURE 2. Four densities of κ̂ when κ = 0.1, h = 1/12 and T = 2.

FIGURE 3. Four densities of κ̂ when κ = 0.1, h = 1/12 and T = 10.

6. CONCLUSIONS

The theoretical development of econometric analysis of continuous time models
has come a long way over recent decades. This paper has outlined some main
developments in the methodology that Peter Phillips both initiated and undertook
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to develop in the last 40 years. It is clear that while his contributions are mostly
focused on theoretical aspects, his impact extends far beyond theory. Without any
doubt, he will continue to make more insightful contributions in this important
area, given the current level of his energy and devotion to this area of research.

NOTES

1. To simplify the notations, we write A(θ), B(θ), P(θ), and 
(θ) by A, B, P, and 
, respectively.
2. In the multivariate case, κ > 0 means that the eigenvalues of κ are all positive.
3. If the transition density of Xt+h |Xt for the continuous time model is analytically available, exact

simulation can be directly obtained. In this case, the Euler scheme at a finer grid is not necessary.
4. While the invertibility of bn and bN is not likely to be a strong assumption, as argued in Andrews

(1993), the condition is difficult to verify in many interesting models.
5. The only exception is when κ = 10,h = 1/12 (hence, the model is very far away from the unit

root), and T is large.
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APPENDIX

Proofs of Lemma. From the definition of F(t, X (t),θ), we have:

∂ F(t, X (t),θ)

∂x
= μ(t, X (t),θ) and

∂2 F(t, X (t),θ)

∂x2 = ∂μ(t, X (t),θ)

∂x
.

Applying Ito’s lemma to F(t, X (t),θ), we get:

d F(t, X (t),θ) =
(

∂ F

∂t
+μ(t, X (t),θ)

∂ F

∂x
+ 1

2

∂2 F

∂x2

)
dt + ∂ F

∂x
dW (t)

=
(

∂ F

∂t
+ μ2(t, X (t),θ)

2
+ 1

2

∂μ

∂x

)
dt +μ(t, X (t),θ)dW (t)

+ μ2(t, X (t),θ)

2
dt.

Hence,

F(T, X (T ),θ) =
∫ T

0

(
∂ F

∂t
+ μ2(t, X (t),θ)

2
+ 1

2

∂μ

∂x

)
dt +

∫ T

0
μ(t, X (t),θ)dW (t)

+
∫ T

0

μ2(t, X (t),θ)

2
dt.

By the Girsanov theorem, the log-likelihood of {X (t)}T
t=0 is:

�(θ) =
∫ T

0
μ(t, X (t),θ)d X (t)−

∫ T

0

1

2
μ2(t, X (t),θ)dt

=
∫ T

0
μ(t, X (t),θ)(d X (t)−μ(t, X (t),θ)dt)+

∫ T

0

1

2
μ2(t, X (t),θ)dt
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=
∫ T

0
μ(t, X (t),θ)dW (t)+

∫ T

0

1

2
μ2(t, X (t),θ)dt

= F(T, X (T ),θ)− F(T, X (T ),θ)+
∫ T

0
μ(t, X (t),θ)dW (t)

+
∫ T

0

1

2
μ2(t, X (t),θ)dt

= F(T, X (T ),θ)−
∫ T

0

(
∂ F

∂t
+ μ2(t, X (t),θ)

2
+ 1

2

∂μ

∂x

)
dt,

where the last equality is obtained from the expression of F(T, X (T ),θ). This proves the
lemma.

n


