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FUNCTION IN TIME SERIES
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Because the empirical characteristic function (ECF) is the Fourier transform of
the empirical distribution function, it retains all the information in the sample
but can overcome difficulties arising from the likelihood. This paper discusses
an estimation method via the ECF for strictly stationary processes. Under some
regularity conditions, the resulting estimators are shown to be consistent and as-
ymptotically normal. The method is applied to estimate the stable autoregressive
moving average (ARMA) models. For the general stable ARMA model for which
the maximum likelihood approach is not feasible, Monte Carlo evidence shows
that the ECF method is a viable estimation method for all the parameters of
interest. For the Gaussian ARMA model, a particular stable ARMA model, the
optimal weight functions and estimating equations are given. Monte Carlo stud-
ies highlight the finite sample performances of the ECF method relative to the
exact and conditional maximum likelihood methods.

1. INTRODUCTION

Maximum likelihood (ML) estimation is one of the most widely used estima-
tion methods. One reason is that the ML estimator is asymptotically efficient
under appropriate regularity conditions. To implement the ML method, how-
ever, the likelihood function must be of a tractable form and sometimes is re-
quired to be bounded in the parameter space. Unfortunately, there are many
processes in econometrics where the ML approach is difficult to implement,
both in the independent and identically distributed (i.i.d.) case and in the de-
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pendent case. In the i.i.d. case, processes sometimes have an unbounded likeli-
hood function in the parameter space. Examples include the mixture of nor-
mals and switching regression models (Titterington, Smith, and Markov,
1985). In other examples, such as the stable distributions, however, the density
functions of the processes cannot be written in a closed form in the sense that it
is not expressible in terms of known elementary functions. This problem also
arises in the dependent case. Such examples include the stable ARMA model,
the stochastic volatility (SV) model (Ghysels, Harvey, and Renault, 1996), and
the process that is compound Poisson-normal and where the Poisson intensity
is random, possibly dependent on past information in the series (Knight and
Satchell, 1998). Some of these models have found wide use in economics and
finance.

The usual response to such difficulties arising from the likelihood is to use
alternative methods. For example, one might use GMM (Hansen, 1982), quasi-
maximum likelihood (QML) (White, 1982), or simulation-based methods (Duf-
fie and Singleton, 1993). Although these methods are consistent under regular
conditions, some of them are not asymptotically efficient. Furthermore, the small
sample properties may be unsatisfactory, and some of them are computation-
ally intensive. The present paper discusses another alternative, a method that
uses the empirical characteristic function (ECF).

Initiated by Parzen (1962), the ECF has been used in many areas of in-
ference, such as testing for stationarity and normality (Epps, 1987, 1988), test-
ing for independence (Feuerverger, 1990; Hong, 1999), testing for symmetry
(Feuerverger and Mureika, 1977), and parameter estimation.! The main justi-
fication for the ECF method is that the characteristic function (CF) has a one-
to-one correspondence with the distribution function (DF) and hence the ECF
retains all the information present in the sample. Theoretically, therefore, the
inference based on the ECF should work as well as that based on the empiri-
cal DE. The theory for the ECF in the i.i.d. case is well understood (Feuer-
verger and Mureika, 1977; Csorgs, 1981). Surprisingly, however, the ECF in
the dependent case has received much less attention, and consequently there
is great scope for research.

The purpose of this paper is to discuss the ECF estimation method for sta-
tionary stochastic processes. The asymptotic properties of the ECF estimators
are established under some regular conditions. Monte Carlo simulations are per-
formed to study the finite sample properties of the ECF method for stable ARMA
models.

The paper is organized as follows. The next section briefly reviews what has
been done for the ECF method in estimation of time series models, proposes
the ECF method in a more general framework, and obtains the asymptotic prop-
erties of the ECF estimator. Section 3 discusses the estimation procedure of
stable and Gaussian ARMA models via the ECF. Section 4 compares the rela-
tive finite sample performances between the ECF method and some other meth-
ods for both models. Section 5 concludes the paper.
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2. LITERATURE REVIEW AND ASYMPTOTIC PROPERTIES
2.1. Literature Review

The basic idea for the ECF method is to minimize some distance measure be-
tween the ECF and CF. Although the literature in the i.i.d. case is extensive,
little research has been reported in the dependent case. To our knowledge, only
two papers are relevant to parameter estimation. We review them in detail.

Let {y;};2_,, be a univariate, stationary time series whose distribution de-
pends upon a vector of unknown parameters, . We wish to estimate 6 from
a finite realization {y;, y»,..., yr}. The overlapping blocks for {yi, ys,..., yr}
are defined by x; = (yj,...,¥;+,) j = 1,...,T — p. Thus each block has p obser-
vations overlapping with the adjacent blocks. The CF of each block is defined
by ¢(r;0) = E(exp(ir'x;)), where r = (r',...,r?*!)". The ECF is defined by
c,(r) = (1/n) 27, exp(ir'x;), where n = T — p. By construction the ECF is
the sample counterpart of the CF and contains the information of the data,
whereas the CF contains the information of the parameters; r is the transform
variable.

The estimation procedure is to match the ECF with CF. Feuerverger (1990)
and Knight and Satchell (1996) propose matching the ECF with CF over a grid
of finite points, and hence the procedure is called the discrete ECF (DECF)
method.? Feuerverger proves that under some regularity conditions, the result-
ing estimators can be made to have arbitrarily high asymptotic efficiency pro-
vided that p (fixed) is sufficiently large and the grid of points is sufficiently
fine and extended. However, he has not applied the procedure to estimate any
time-series model. Knight and Satchell detail the application of the DECF method
to stationary stochastic processes and give a multistep procedure. When apply-
ing the proposed procedure to estimate a Gaussian MA(1) model, they find
that the DECF method is a viable alternative but is outperformed by the ML
method.

The finding is not surprising and can be explained intuitively. Because match-
ing the ECF with CF over a grid of finite points is equivalent to matching a
finite number of moments, the DECF method is, in essence, equivalent to gen-
eralized method of moments (GMM). Thus as with GMM it is not obvious
how many and which moments to choose, the difficulties of using the DECF
method are how many and which points need to be used.

2.2. Proposed Procedure

Observing the difficulties involved in the DECF method, we propose the ECF
method, which minimizes the integral

1,(0) = f...f|cn(r) —c(r;0)|>dG(r), 2.1)
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or

1.(0)= f...]|cn(r) —c(r;0)|>g(r)dr'...r7+, 2.2)

or solves the estimating equation

J...fwo(r)(cn(r) —c(r;0))dr =0, 2.3)

where G(r), g(r), and wy(r) are the weight functions. Under suitable regularity
conditions these three procedures are equivalent. It is important to note that for
the three procedures to be equivalent wy(r) must depend on @ because the de-
rivative of ¢(r; @) is essentially involved in it. The motivation for the suggested
approach is that two distribution functions are equal if and only if their CF’s
are equal (Lukacs, 1970, p. 28). If the weight function G(r) is chosen to be a
step function, the procedure is indeed the DECF method proposed by Feuerverger
(1990) and Knight and Satchell (1996). Hence the proposed procedure includes
the DECF method as a special case. If a continuous weight function is used,
the procedure basically matches all the moments continuously. One advantage
of using a continuous weight function is that one no longer needs to choose the
transform variable, r, because it is simply integrated out. In this paper we refer
to the ECF method with a continuous weight as the continuous ECF (CECF)
method. In fact this is the procedure suggested by Paulson, Holcomb, and Leitch
(1975) in the i.i.d. case. Formally, Paulson et al. choose G(r) to be a measure
corresponding to a normal variate, i.e., g(r) = exp(—r?). The ECF with an
exponential weight is referred to as WLS of the CECF (WLS-CECF) method.
The advantages of using an exponential weight are twofold. First, it puts more
weight on the interval around the origin, consistent with the recognition that
the CF contains the most information around the origin. The second reason is
for computational convenience. With an exponential weight, the integral (2.2)
can be numerically calculated by Hermitian quadrature or Monte Carlo integra-
tion. In general, unfortunately, WLS-CECF will not result in the efficient esti-
mator because the exponential weight is not optimal. By using the Parseval
theorem, we can obtain the weight function, wg(r),

1 prl . alng()’+ |J",-'~,)"+ —1)
(E) f...fexp(—lr’xj) 4 paé AL dy;...dy.,. (2.4)

Feuerverger (1990) shows that provided p is sufficiently large the preceding
weight is optimal in the sense that based on equation (2.3) and wg(r), the re-
sulting estimator can achieve arbitrarily high efficiency. In this paper the ECF
procedure with weight (2.4) is referred to as GLS of the CECF (GLS-CECF)
method. To use the GLS-CECF method, however, the conditional score func-
tion must have an analytical expression. When this is not the case, this weight
function has to be approximated. It will be shown in Section 2.4 that for pure
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autoregressive (AR) processes, the GLS-CECF with a fixed p achieves full ef-
ficiency. This property, however, does not apply to general stationary processes.

2.3. Asymptotic Properties

The asymptotic properties of the ECF estimator in the i.i.d. case have been
obtained by Heathcote (1977). In this section, we establish some regularity con-
ditions under which the ECF estimator is consistent and asymptotically nor-
mally distributed in the dependent case. For simplicity of notation we will only
deal with the estimators resulting from equation (2.1).> Equation (2.1) consists
of minimizing a distance function and hence is in the class of extremum esti-
mators (or M-estimators by Huber, 1981).
For any fixed p, we list the following regularity conditions.

(A1) @ € @ where the parameter space ® C RX is a compact set with 8, €
Int(®).

(A2) With probability one, I,(@) is twice continuously differentiable under
the integral sign with respect to @ over 0.

(A3) Sequence {y;} is strictly stationary and ergodic.

(A4) Let I)(8) = [...[lc(r;68,) — c(r;0)|?dG(r) and I,(8) = 0 only if
6 = 00.

(A5) K(x;0) is a measurable function of x for all @ and bounded, where

K(x:6) = f---f{(cos(r’x) —Rec(r;0)) r?Reac—o(r;O)
: dImc(r;0)
+ (sin(r'x) —Imc(r;0)) T} dG(r).

(A6) B(0y) = [...[(0c(r;6,)/00)(dc(r;0,)/00") dG(r) is nonsingular and
9%c(r;0)/0000' is uniformly bounded by a G-integrable function over @.

(A7) Let J; be a o-algebra such that {K;,J;} is an adapted stochastic se-
quence, where K; = K(x;;6). We can think of J; as being the o-algebra gener-
ated by the entire current and past history of K;. Let v; = E[Ko|K_;,K_;_y,...] —
E[Ko|K_j—1,K_j_5,...] for j = 0. Assume that E(K|J_,,) converges in mean
square to 0 as m — co and X7 E[v]v;]"* < oo

(A8) G(r) is a nondecreasing function with bounded total variation taken to
be 1.

Remark 2.1. (A1) ensures the compactness of the parameter set whereas (A2)
guarantees the continuity of 7,(@). Assumptions (A3) and (A5)—(A7) provide
sufficient conditions for a strong law of large numbers and a central limit theo-
rem. According to (A8), G(r) can be a distribution function; however, it rules
out the CECF method with a constant weight function (such as G(r) = ar for a
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fixed constant a). Assumption (A7) is the analogue to Assumption 3.5 in Hansen
(1982) and holds under suitable mixing conditions. Assumption (A4) is the iden-
tification condition. Without this assumption, the estimator can be inconsistent.
For example, for an MA(10) process, Y, = &, — ¢&,_ 9, the moving blocks with
p < 10 contain no information on ¢, and hence the ECF leads to inconsistent
estimates.* This case is ruled out by (A4), however. Identification will only be
achieved with an appropriate choice of p. In the example of the MA (10) model,
any p = 10 will ensure it.

THEOREM 2.1 Let én = arg mingegl,(0). Suppose that Assumptions
(Al)—(A4) and (A8) hold, én =25 @,. If. in addition, Assumptions (AS5)—
(A7) hold, \'n(6, — 6,) % N(0, B~'(8,) A(6,)B'(8,)), where A(8,) =
var (K (x,3;6,)) + 22;0:2 cov(K(x;;6,), K(xj;oo))-

Proof. All proofs are in the Appendix.

Remark 2.2. This theorem is the analogue, for the dependent case, of the
main theorem in Heathcote (1977). This result in general is not applicable to
the estimator based on (2.3). However, for the estimator in (2.3) we note that it
is merely a GMM estimator where

h(6,x;) = f...fwg(r)(e"”xf —c(r;0))dr

and E(h(8,x;)) = 0. The sample average, &,(0), of (8, x;) is just the estimat-
ing equation (2.3), i.e.,

1 n
80 = S 10.5) = [ [ wer) (e, ()~ c(rs0) .

With this observation, the asymptotic theory concerning this estimator is well
established; see Hansen (1982) or Hamilton (1994, Ch. 14).

Remark 2.3. Estimates of A(6,) and B(8,) are necessary to calculate the
asymptotic variance of the ECF estimator. The expression B(6,) can be con-
sistently estimated by B(8,), whereas a consistent estimate of A(6,) can be
obtained using methods suggested by Andrews (1991) and Newey and West
(1994).

2.4. Choice of Block Size

Theorem 2.1 ensures consistency and asymptotic normality for any fixed p pro-
vided the regularity conditions are satisfied. Unfortunately, it is not very clear
how p affects efficiency, and the covariance of the ECF estimator does not pro-
vide an obvious guide to the choice of p. On the other hand, however, the choice
of p can have an impact on the efficiency of the ECF estimator, as the moving
blocks with a different p may contain different amounts of information in the
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sample. In general, there is a trade-off between large p and small p. If we choose
a large p, we would expect the moving blocks to contain more information, and
hence the ECF should be more efficient. In fact, according to the inversion
theorem, we can obtain the density by inverting the CF. Provided the Fourier
inversion can be implemented efficiently, the ECF is asymptotically equivalent
to ML and hence achieves full efficiency when p is allowed to go to infinity
(e.g., p = O(T) when T — o0). Unfortunately, such inversions involve high-
dimensional integration and sometimes cannot be simplified. Therefore, the pro-
cedure could be numerically infeasible. On the other hand, a smaller p could be
chosen to make the procedure feasible; however, the moving blocks may not
retain all the important information of the series.

We will discuss how the choice of p affects efficiency in a Monte Carlo study
in the ARMA framework. Further theoretical investigation on this effect is left
for future research. We believe, however, that the choice of p in the context of
the ECF estimation is related to the choice of the block size in the moving
block bootstrap method and stationary bootstrap method. The choice of p is
also related to the dimension of the minimal sufficient statistics. A few obser-
vations on this are reported in the next section when dealing with Gaussian
ARMA models.

For the stationary AR (/) process, however, we show that p = [ is optimal for
GLS-CECF to be asymptotically efficient. A similar result for a slightly differ-
ent characterization can be found in Singleton (2001, Lemma 5.1) with [ = 1.

PROPOSITION 2.1. Assume {y;} is a stationary AR(1) process and let p = 1.
The GLS-CECF estimator defined by equation (2.3) with the weight given by
(2.4) is a conditional ML (CML) estimator and hence asymptotically efficient.

Remark 2.4. It is known that for the AR(/) process, (yj,...,y;+;) retains all
the dependence in the sample. In fact setting p > [ results in an efficiency loss
as we are conditioning on a larger set than necessary and hence ignoring
information.

3. ESTIMATION OF STABLE ARMA MODELS

There has recently been considerable interest in modeling financial time series
using the ARMA models with infinite variance (Brockwell and Davis, 1991).
In this section we detail the proposed ECF method in the estimation of the
stable ARMA model.

3.1. Stable ARMA Models

The model under consideration is an invertible ARMA (/, m) model of the form

Y=p Yyt - FpY T —digy— b, 3.1)
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where g, ~ i.i.d. S,(o, B, ) and a(€ (0,2]), B(€ [—1,1]), o, and w are, re-
spectively, index, skewness, scale, and location parameters of the error term
distribution. Let (L) =1 —p,L — -+ — p, L' and ®(L) =1 — ;L — -+ —
¢, L™. Assume that W(L) and ®(L) are different from zero for |L| = 1 and
have no common roots. Unless specified we assume o = 1 and u = 0 even
though the techniques presented subsequently have broader applicability. Let @
be the parameters of interest, which include not only the AR and MA coeffi-
cients but also the parameters in the distribution of ¢,.

We now summarize the relevant facts associated with the stable distribu-
tion and refer the reader to Samorodnitsky and Tagqu (1994) for a detailed
statistical description. The stable distribution is usually characterized by the
CF given by

Ta
exp{i,ut—o-ItI“[l —iB sign(t)tan<7>]} ifa#1
c(t) = 3.2)

exp {i,ut - a’|t“[1 +iB % sign(t)ln(|t|)]} ifa=1

It can be skewed to the left or right, depending on the sign of B, and is sym-
metric when 8 = 0. If @ = 2, it is a normal distribution. If & < 2, it has fatter
tails than the normal distribution and the pth absolute moment does not exist
for any p > «, and in particular the variance is infinite. If 1 < a < 2, the
density function has no closed form, and it has to be calculated numerically
by Fourier inverting (3.2). When « > 1, the mean exists and equals . Unless
B = 0, the mean is different from the median.

As a result of the fact that the stable distribution does not always have a
closed form, ML estimation is often very difficult (for a detailed discussion,
see Calder and Davis, 1998). However, under suitable regularity conditions,
the estimators do have good asymptotic properties.

Estimation of the stable ARMA model via alternative methods such as QML
and GMM also presents difficulties. For example, QML is infeasible because
the variance of the error term may be infinite. For GMM care must be taken
when choosing moment conditions because the stable distribution does not have
a finite absolute moment of order higher than «.

3.2. Estimation of Stable ARMA Models

There has been a large body of literature dealing with the estimation problem
in the stable ARMA model (see Davis, Knight, and Liu, 1992; Mikosch, Kliip-
pelberg, and Adler, 1995; Davis, 1996; Embrechts, Kliippelberg, and Mikosch,
1997; Adler, Feldman, and Taqqu, 1998). Four estimation methods have re-
ceived attention in this literature and are briefly reviewed here. These are least
squares (LS), least absolute deviations (LAD), conditional maximum likeli-
hood (CML), and the Whittle method.
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The first three estimators are all M-estimators and can be treated jointly. An
M-estimator 6,, of 8 is defined by min, >/, m(g,(0)), where m(x) = x2 for
LS, m(x) = |x| for LAD, m(x) = —logf(x) with f(x) being the density of &,
for CML, and the sequence {&,(8)}/_, can be calculated from the realization
{y,}_, using an iterative formula such as (3.6), which follows, with some ini-
tial assumptions. For detailed discussion of these three methods see Davis et al.
(1992) with regard to the stable AR model and Davis (1996) and Calder and
Davis (1998) with regard to the stable ARMA model. Calder and Davis discuss
the CML estimation of the symmetric stable ARMA models.

The Whittle method was studied in Kliippelberg and Mikosch (1993, 1994),
Mikosch et al. (1995), and Embrechts et al. (1997) to estimate the stable ARMA
model. It is based on the frequency domain and defined by arg ming(27/T) X
(I7(w;)/g(w;30)), where I7(A) is the periodogram and g(A;@) the power trans-
fer function, both defined in Embrechts et al.

It has been shown that the rates of convergence are n'/¢ for LAD/ML and
(n/Inn)"« for LS/Whittle (Calder and Davis, 1998). Both of these rates com-
pare favorably to the rate for the ECF, n'/2. On the other hand, however, LS,
LAD, and the Whittle method only estimate the AR and MA coefficients. Al-
though CML estimates the parameters in the innovation, it is numerically more
difficult to estimate asymmetric models. For inference purposes, however, es-
timation of the innovation parameters is required. An advantage of the ECF
method is that, as a consistent procedure, it estimates all of the parameters
simultaneously.

To use the ECF method, we have to ensure that the joint CF of the stable
ARMA model has a closed form. In the proposition that follows we provide the
two-dimensional joint CF of the stable ARMA(1,1) model given by ¥, = p¥,_| +
g, — ¢e,_| where g, ~ S,(1, 3,0). Higher dimensional joint CF can be obtained
in a similar fashion, as can the joint CF of other stable ARMA models.

PROPOSITION 3.1. The two-dimensional joint CF of the stable ARMA(1,1)
model is

c(ry,r;0)

|r +pra|*lp — ¢>I“}

:eXP{_|”2|a_|r1+(P_¢)”2|a_ 1—|p|

e
X exp{iﬁtan 7[|r2|asign(r2) + i+ (p—P)r|®

X sign(r; + (p = ¢)ry)
+ |r) + pry|* sign(r, +.pr2)|p — $I" sign(p - ¢)}} )
1 —sign(p)|p|®

Because the conditional score of the stable ARMA model has no closed form,
the GLS-CECF procedure is not feasible. Instead we can use the WLS-CECF
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procedure with an exponential weight function, exp(—ar'r), where a is a pos-
itive constant. Such a weight function is used for numerical tractability. If
p + 1 and hence the dimension of the integral (2.2) is small (e.g., p = 4), the
integral can be calculated numerically by Hermitian quadrature (e.g., Press, Teu-
kolsky, Vetterling, and Flannery, 1992, p. 144). If p + 1 is large (e.g., p = 5)
the integral can be calculated numerically by lattice methods (e.g., Sloan and
Joe, 1994) or Monte Carlo integration (e.g., Press et al., 1992), but it is com-
putationally more expensive.

3.3. Gaussian ARMA Models

If &, ~ i.i.d. N(0,0?), a special case of the stable distribution, equation (3.1)
represents a Gaussian ARMA model and hence is a special case of the stable
ARMA model. In contrast to the general stable ARMA model, the Gaussian
ARMA model has a closed form expression for the likelihood function. De-

note the covariance matrix of y = (yy,..., y7)’ by o 2Q. The log-likelihood func-
tion is

T 1 T 5 |
1(8) = —Elog(ZTr)—zlogIQI—Elog(r —ﬁyﬂ y. (3.4)

For AR and MA (1) models, the exact inverse of () has an analytical expres-
sion, and hence it is straightforward to maximize (3.4) numerically. In contrast
to AR and MA (1) models, however, other ARMA models have no closed form
for the inverse of ) (see Whittle, 1983). Inverting this 7 X T matrix is numer-
ically intensive for a large value of 7. To overcome the difficulties involved in
the inversion, the state space representation and the Kalman filter can be used
to evaluate the exact likelihood. Alternatively, the conditional likelihood func-
tion is often maximized in practice.

It is common to obtain the conditional likelihood function conditional on
both y and &. One option is to set the initial y and & equal to their expected
values. For example, for the Gaussian ARMA (1,1) model, the conditional log-
likelihood can be obtained by

&

20%

M~

T T
1ng(yT"~-’y1|y0 = 0780 = 0) = _E 10g(27T) - 5 10g0'2 - (3°5)

t

where {g,}’_, can be calculated from {y,}'_, by the following iterative
formula:

& =Y, —py1t de, . (3.6)

The resulting estimator is referred to as the CMLEIL. Another option is pro-
posed by Box and Jenkins (1976, p. 221), which is to condition the likelihood
on the first / realizations of the sample and set the innovations to 0 with itera-
tion (3.6) started on r = [ + 1. The resulting estimator is referred to as the
CMLE2.
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We can also estimate the Gaussian ARMA model using the proposed ECF
method. The CF of the Gaussian ARMA model is exp(—(o?/2)r'Qr). In this
paper two ECF methods are actually used to estimate the Gaussian ARMA
model. One is the WLS-CECF method with g(r) = exp(—ar'r), where a is a
positive constant. With the exponential weight for the Gaussian ARMA model,
one can show that

2 " 1
]n(g) o — — 77-(p+1)/2|A|—1/2 2 exp<_ZngA—1xj> + 77_(p+1)/2|B|—1/2’
n =

where A = (0%/2)Q + al and B = 0>Q + al with I an identity matrix. This
means that 7,(@) can be expressed as known elementary functions and one can
avoid numerical integration when calculating (2.2) for the Gaussian model.
Hence, numerical optimizations on (2.2) can be done efficiently and accurately.
Note however, that whereas ) needs inverting, it is now of dimension p + 1,
considerably less than T as in ML.

The other ECF method used is GLS-CECF based on equations (2.3) and (2.4).
In Theorem 3.1 and Corollary 3.1 we give the analytical expressions of the
weight functions and estimating equations of the GLS-CECF method for the
Gaussian ARMA model. In the subsequent remarks we comment on the choice
of p for AR models and general ARMA models.

THEOREM 3.1. Let {y,,...,yr} be a finite realization of the Gaussian
ARMA (I,m) model with parameter vector 8 = (o%p) = (o2 p1,...,

P11, s b)) such that
xj = (yj""’yj+p), NN(O,U'ZQ)

Then

(yj+p|yj,-~-,yj+p—1) ~ N(fl(p)yj + .- +fp(P))’j+p—1v0'28(P)), 3.7)

with

1 1 1
10gf(yj+p|)’j,~~,yj+p—1) = _E log 27 — 5 10g0’2 - E log g(p)

1
- Xx!Ax,,
20%g(p)

where (fl(P),n-,fp(P)) =0, Q;/ = f,, say, and g(p) =0 — 0,07/ Qy,
with the Q;’s the obvious partitions of Q. Letting f' = (—f,,1) we have A = ff".
Further, letting B, = 0A/dpy, k = 1,...,1 + m we can readily show that whereas
A is of rank 1, By is always of rank 2. Also, because both A and By are symmet-
ric they are diagonable, i.e., A = MD,M',D, = diag(A,0,...,0) and B, =
H,D.H},D, = diag(AL,2,0,...,0), where A, AL, and A3 are the eigenvalues
with M and Hj the orthogonal matrices formed from the eigenvectors. Then,
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the weight functions wg(r) corresponding to o and the elements in p are
given by

wia(r) = by s(r')...8(r7t) — 20_+g(p))\3”(s1)3(s2)...8(sp“)
3.8)
wi(r) = __gk(p) S(r')...6(rPt) — M A8 (s1)8(s%)...8(sPTh)
P 2g(p) 20%g*(p)
b (AL )B(R) . 5GP + K1) (12 .51,
20%g(p)
3.9)
where (s',...,s?*Y)Y = M'r,(t},....t"™"Y = Hr, g.(p) = dg(p)/ops, and

8(+) is the Dirac delta function with 8" (-) its second derivative.’

Remark 3.1. Although the weight function wg(r) for the general stable
ARMA model has no closed form, it does for the Gaussian model whenever
g(p) has an explicit representation. In this case it involves the generalized func-
tions. The use of the generalized functions in econometrics is not novel. For
example, Phillips (1991) utilizes them as tools to derive the asymptotic theory
for the LAD estimator.

COROLLARY 3.1. Using the weight functions in Theorem 3.1 along with
equation (2.3), we generate the following estimating equations for the Gauss-
ian ARMA (I, m) model:

= E x;Ax;, (3.10)
ng( p) j=

> x/B.x; = 0, Vk, (3.11)
j=1

where x; = (yj,...,yj+p) andn =T — p.

Remark 3.2. According to Corollary 3.1, the GLS-CECF estimates are easy
to compute, if not trivial. This is in contrast to the MLE of the Gaussian ARMA
model and the ECF estimate of the stable ARMA model. Not surprisingly, GLS-
CECF with a reasonably large p is not too computationally intensive for the
Gaussian ARMA model.

Remark 3.3. From (3.10) and (3.11) we note that for a fixed sample size T,
the estimators will change as p changes and consequently the choice of the
optimal p is important. For AR(l) processes the optimal p is clearly p = I,
because we want the conditioning set (yj,...,yﬁp,l) to be the same as in the
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model. Choosing p > [ will be inefficient as it conditions on a larger set than
necessary and thus ignores information.

Remark 3.4. Because A = ff' and B, = dA/0p, = df/pif' + f(9f/pr) we can
rewrite the estimating equation as

1 n
;f’(ijx,f)f—crzg(p) =0, (3.12)
j=1

" 9
f < > xjx;> T 0, Vk. (3.13)
j=1 9Py

Remark 3.5. As a result of the form of Q for AR(/) models and the fact that
I =Qy Q7! we have that for these models, setting p = [ will result in the first
p — L elements of f; being zero. Thus only by setting p = [ will this vector have
no zeros, and in this situation the ECF-GLS estimator will exactly equal the
CML estimator. Information is clearly lost when p is set greater than /.

Remark 3.6. For general ARMA models, the vector f, will have no zero ele-
ments irrespective of the size of p. Thus by increasing p for MA and ARMA
models we always use more information and hence improve efficiency.

Remark 3.7. From the alternative form of the estimating equations given in
Remark 3.4 we note that the distinct elements in the matrix ZjT;{’ x;x; will
form the basis for our estimators. In the AR(7) case with p = [, these distinct
elements form a set of sufficient statistics. Indeed, they are the same set as
appears in the conditional likelihood function. In general ARMA(l, m) pro-
cesses we have, unlike the AR case, that the likelihood cannot be written as the
product of conditional distributions all having a conditioning set of the same
length. However, if we do approximate the likelihood by such a product we
again find that the associated set of sufficient statistics is, for any fixed p, the
distinct elements in the matrix ZJ-T; ’x ;X/. As we increase p, this set increases.
However, because general ARMA processes do not possess a sufficient set of
statistics of dimension less than the sample size (see Arato, 1961), using a larger
p will always improve efficiency. As noted earlier however, a larger p although
increasing asymptotic efficiency will decrease computational efficiency, and
hence in practice there is always this trade-off.

4. SIMULATIONS

We now report the results of simulations comparing the estimators of the pre-
vious section for both the stable and Gaussian ARMA models. All of the sim-
ulations involve one of the following three ARMA models:
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Y, =pY, , +e, @.1)
Y, =¢ — d)stfl’ 4.2)
Y, =pY_,te—de_,. 4.3)

Among the various ECF methods discussed in Section 2, the DECF is not
considered in the simulations for two reasons. First, it is not clear how to make
the grid points sufficiently fine and extended, especially in the dependent and
multiparameter case. Second, a Monte Carlo study in Yu (1998) shows that for
a Gaussian MA (1) model, the CECF method performs better than the DECF
method when various restrictions are imposed on the location of the grid points.

4.1. Stable ARMA Models

In this section the Monte Carlo studies are designed to compare WLS-CECF
with LS and the Whittle method for the three asymmetric stable ARMA mod-
els. A program for quickly and accurately evaluating the symmetric stable den-
sity is provided in McCulloch (1998). Nolan (1997) gives a program that can
accurately, albeit slowly, evaluate the asymmetric stable density via the inte-
gral representation of the Fourier inversion. The program, which has been im-
proved from various aspects including speed, is now available and described in
Nolan (1999).° It gives a fast, precomputed spline approximation to stable den-
sities for & = 0.4. Unfortunately, the program has a few limitations from our
perspective, and its precision has not been extensively studied. Consequently,
it is not used nor the CML estimator examined for the asymmetric stable ARMA
models. In all of the following experiments, {¢,} is an i.i.d. sequence of asym-
metric stable random variables with o = 1, u = 0. The parameters to be esti-
mated are «, 3, and we simulate 1,000 observations for each of the 1,000
replications. For WLS-CECF a is set to be 1.” The numerical integration is
conducted using 39-point Hermitian quadrature, and the numerical optimiza-
tion is carried out using Powell’s conjugate direction algorithm (Powell, 1964).

To simulate the stable ARMA models, an S-PLUS program rstab is used for
generating stable random variables. It relies on the method proposed by Cham-
bers, Mallow, and Stuck (1976). For LS/LAD to be consistent, the error term
must have a zero mean/median. Because there is no analytical expression for
the median of the asymmetric stable distribution, in the simulations LAD is not
considered although it has a more rapid rate of convergence.

In the first experiment a stable AR(1) model with p = 0.6, @ = 1.6,
B = —0.5 is considered. For this AR(1) process, we choose p = 1 for WLS-
CECF and compare it with LS and the Whittle method in Table 1. In terms of
mean square errors (MSE), the relative efficiency of WLS-CECEF to LS and the
Whittle method is 40%, 69%, respectively, for p. The inefficiency of WLS-
CECEF is due to the nonoptimal weight function adopted.



EMPIRICAL CHARACTERISTIC FUNCTION ESTIMATION 705

TABLE 1. Monte Carlo study comparing ECF, LS, and Whittle

of stable AR(1)
p =06 a=16 B=-05
ECF LS Whittle ECF ECF
MEAN 5953 .6002 .5990 1.600 —.5145
MED 5959 .5997 5991 1.600 —.5100
VAR .00123 .00049 .00085 .00297 .0282
MSE .00125 .00049 .00085 .00297 .0284

In the second experiment a stable AR(1) model with p = 0.6, a = 1.2,
B = 0.8 is considered. Compared with the first experiment, this experiment has
an innovation whose distribution has fatter tails and is more skewed. Conse-
quently, this experiment is designed to examine the relative performances of
WLS-CECF when the innovation is further away from normality. The results
are presented in Table 2. Noticeably WLS-CECF provides superior estimates
of p. For example, the relative efficiency of WLS-CECF to LS and the Whittle
method is 153%, 135%, respectively, for p. Furthermore, the mean of WLS-
CECEF estimates is closer to the true p. Also of note from a comparison of Table 1
with Table 2 is that a further departure from normality for the innovation makes
the performances of LS and the Whittle method worse. Surprisingly, however,
WLS-CECF works even better for all three parameters when the innovation in
the AR(1) model has fatter tails and is more skewed.

In the third experiment a stable MA(1) model with ¢ = 0.6, @ = 1.6,
B = —0.5 is considered. We choose p = 1,2,3 for WLS-CECF and compare it
with LS and the Whittle method in Table 3. The relative efficiency of WLS-
CECF to LS and the Whittle method is 25%, 32%, respectively for p when
p = 1. It improves with the value of p. However, the gain fromp =2top =3

TABLE 2. Monte Carlo study comparing ECF, LS, and Whittle

of stable AR(1)
p =06 a=12 =08
ECF LS Whittle ECF ECF
MEAN 5972 .6160 .6116 1.197 7861
MED .6041 .6033 .6028 1.198 7925
VAR .00099 .00128 .00121 .00035 .0063

MSE .00100 .00153 .00135 .00036 .0065
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TABLE 3. Monte Carlo Study comparing ECF, LS, and Whittle of stable MA (1)

=06

a=1.6 =-05
ECF ECF ECF ECF ECF ECF ECF ECF ECF
p=1 p=2 p=3 LS Whittle p=1 p= p= p=1 p=2 p=3
MEAN .5983 .5976 .5992 5978 .5966 1.603 1.605 1.605 —.520 —.522 —.524
MED 5983 5974 .6015 .6002 .6000 1.600 1.601 1.610 —.510 —.519 —.521
VAR .0048 .0040 .0039 .0011 .0015 .0029 .0027 .0027 .023 .020 .020
MSE .0048 .0040 .0039 .0012 .0015 .0029 .0028 .0028 .024 .021 021
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TABLE 4. Monte Carlo study comparing ECF, LS, and Whittle of stable

ARMA(1,1)
p=0.6 a=1.6
ECF ECF ECF ECF ECF ECF
p= p=2 p=3 LS Whittle p= p=2 p=3
MEAN 5948 .5946 .5949 .6006 .5996 1.600 1.603 1.601
MED 5965 5941 .5940 .5999 .5997 1.598 1.597 1.599
VAR .00132 .00132 .00133 .00062 .00096 .0072 .0044 .0043
MSE .00135 .00135 .00136 .00062 .00096 .0072 .0044 .0043
¢ =—-0.6 B=-05
ECF ECF ECF ECF ECF ECF
p=1 p=2 p=3 LS Whittle p= p=2 p=3
MEAN  —.5988 —.5967 —.5973 —.5971 —.5946 —.5234 —.5241 —.5229
MED —.5967 —.5930 —.5959 —.5984 —5976 —.5064 —.5122  —.5117
VAR 0113 .0095 .0091 .0015 .0035 .0373 .0313 .0310
MSE 0113 .0096 .0092 .0015 .0036 .0379 .0319 .0316

is marginal. This suggests that, to achieve much higher efficiency by the ECF
method, an alternative weight rather than a large value of p is needed.

In the fourth experiment a stable ARMA (1,1) model with p = 0.6, ¢ = —0.6,
a = 1.6,B8 = —0.5 is considered. We choose p = 1,2,3 for WLS-CECF and
compare it with LS and the Whittle method in Table 4. The relative efficiency
of WLS-CECF to LS and the Whittle method is 46%, 71%, respectively for p,
and 13%, 32%, respectively, for ¢ when p = 1. This suggests that the MA
coefficient is less accurately estimated than the AR coefficient for the ECF
method. When p increases to 2 the relative efficiency improves for the MA
coefficient but not for the AR coefficient. This is not surprising because p = 1
is known to be large enough for an AR(1) model. A further improvement on
the relative efficiency is also found on the MA coefficient when p = 3, but the
gain is rather smaller. As in the MA (1) model, an alternative weight rather than
a large value of p may be needed to achieve much higher efficiency by the
ECF method.

The data generating processes constructed earlier make the ML procedure
infeasible because the likelihood function has no closed form. Although sev-
eral estimation procedures have been used to estimate the stable ARMA mod-
els and they are found to be superior to the ECF method when estimating the
ARMA coefficients in the MA(1) and ARMA(1,1) models, they cannot esti-
mate the parameters in the innovation. In terms of efficiency of the AR coeffi-
cients in the AR(1) model, the ECF estimators can be worse or better than the
LS and Whittle estimators depending on the parameter values considered. The
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Monte Carlo study also indicates that in finite samples the ECF with a small
value of p provides viable estimates of all the parameters, including those in
the innovation, at least in the three stable ARMA models considered.

4.2. Gaussian ARMA Models

In this section Monte Carlo studies are designed to compare the ECF with ML
for the Gaussian AR (1) and MA (1) models and with ML and CML for the Gauss-
ian ARMA(1,1) model. Although it is known that the MLE can be calculated in
these models, it is useful and informative to investigate relative performances
of the ECF method. In each of the following experiments, {&,} is an i.i.d. se-
quence of normal variables, and we simulate 100 observations for each of the
1,000 replications. For the WLS-CECF method a is set to be 1.

In the fifth experiment a Gaussian AR(1) model with p = 0.6, 02 = 1.0 is
considered. We choose p = 1,2 for both WLS-CECF and GLS-CECF. We com-
pare these two ECF methods with ML in Table 5. Not surprisingly, WLS-
CECF is less efficient than GLS-CECF and ML. For example, the relative
efficiency of WLS-CECF(p = 1) to GLS-CECF(p = 1) and ML is 40% for p
and 53% for o 2. Interestingly, GLS-CECF(p = 1) and ML provide almost iden-
tical results in the finite sample. This finding illustrates our theoretical result
that p = 1 is large enough for an AR(1) process. Although it appears there is
almost no efficiency loss we know that with a p = 2 we are conditioning on the
first two observations. In a sample of size 100, ignoring the first one or two
observations will give similar results.

In the sixth experiment a Gaussian MA (1) model with ¢ = 0.6, 02 = 1.0 is
considered. We use the GLS-CECF method with various p values and also the
ML method to estimate the model. The existence of a closed form expression
for the weight function wg(r) and estimating equations allows us to choose
large values of p without involving too much extra computation. The results
are presented in Table 6. As we expect, as p gets larger and larger, efficiency of
the GLS-CECF estimator gets closer and closer to that of the MLE. Note the

TABLE 5. Monte Carlo Study comparing ECF and ML of Gaussian AR(1)

p=0.6 o2=1.0

WLS GLS WLS GLS WLS GLS  WLS GLS
p=1 p=1 p=2 p=2 ML p=1 p=1 p=2 p=2 ML

MEAN 5835 .5907 .5832 .5905 .5906 .9965 .9924 9961 .9921  .9923
MED .6004 5957  .6001  .6007 .5982 9916 .9850 9912 9848  .9838
VAR .014 .006 .015 .006 .006 .038 .020 .039 .020 .020
MSE .015 .006 .016 .006 .006 .038 .020 .039 .020 .020
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TABLE 6. Monte Carlo study comparing GLS-CECF and ML of Gaussian MA(1)

¢ =0.6 0?=1.0
ECF ECF ECF ECF ECF ECF ECF ECF ECF ECF
p=2 p=3 p=4 p=>5 p==6 ML p=2 p=3 p=4 p=>5 p=26 ML
MEAN .6269 .6133 .6061 .6037 .6024 .6032 967 981 .988 991 991 992
MED .5960 .6011 .5992 .6004 .6009 .6026 957 974 981 984 987 984
VAR .026 .015 .010 .009 .007 .007 .026 .022 .021 .021 .021 .020
MSE .027 .015 .010 .009 .007 .007 .027 .022 .021 .021 .021 .020
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TABLE 7. Monte Carlo study comparing ECF, CML, and ML of Gaussian
ARMA(1,1)

p=20.6 oc2=1.0

ECF  ECF ECF  ECF
p=2 p=3 CMLI CML2 ML p=2 p=3 CMLI CML2 ML

MEAN 5972 .6000 .5895  .6002 .6002 .9899 1.003 1.018  .9980  .992

MED 5973 .6000 5909  .6011  .6004 9813 9911 1.01 9898  .9828
VAR .0038 .0031 .0030 .0023 .0023 .023 .023 023 .021 .020
MSE .0038 .0031 .0032 .0023 .0023 .023 .023 023 .021 .020

fact that the GLS-CECF method with a small p can work quite well in finite
samples. For example, there is a small efficiency gain for the GLS-CECF method
with p = 4. This is not surprising because the MA coefficient is reasonably
small and hence an AR(4) model will provide a good approximation to the
MA(1) model.

In the seventh experiment a Gaussian ARMA(1,1) model with —¢p = p =
0.6, > = 1.0 is considered. Because T is not terribly large, the exact MLE
is obtained via maximization of (3.4). However, the inverse of Q for the
ARMA(1,1) model has no closed form even for —¢ = p, and we numerically
invert Q. The two CML methods discussed previously are also used to estimate
the model. Table 7 tabulates the results where we choose p = 2,3 for GLS-
CECEF. The relative efficiency of GLS-CECF with p = 2 to the two CML meth-
ods and the ML method is 84%, 61%, 61%, respectively, for p, and 100%, 91%,
87%, respectively for 2. When p = 3 the relative efficiency becomes 103%,
74%, 74%, respectively, for p, and 100%, 91%, 87%, respectively for o 2.

In the eighth experiment a Gaussian ARMA(1,1) model with —¢ = p = 0.9,
o2 = 1.0 is considered. The simulated sequence is more persistent compared
with the sequence in the last experiment. Not surprisingly the difference be-
tween the exact likelihood and conditional likelihood is larger, and hence esti-
mation via CML will be less accurate in finite samples. Table 8 presents the
results. Noticeably, there is a trade-off between GLS-CECF with p = 3 and
CML2. To be more specific, the mean of GLS-CECF estimates with p = 3 is
closer to the true parameter value for both p and o2, whereas CML2 is rela-
tively more efficient. The relative efficiency of GLS-CECF with p = 2,3 to
CML2 is 65%, 71% for p and 93%, 96% for o 2. Furthermore, compared with
Table 7, the relative efficiency of the ECF over CML2 gets larger. Another
point that emerges is that GLS-CECF is superior to CMLI1. For example, GLS-
CECF with p = 2,3 has smaller bias, and the relative efficiency to CMLI is
215%, 233% for p and 2186%, 2267% for o >.

The findings can be explained as follows. On the one hand, some initial con-
ditions must be assumed to obtain the CMLEI. If the initial assumption is cho-
sen inappropriately, it is carried over into all the following stages by the recursive
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TABLE 8. Monte Carlo study comparing ECF, CML, and ML of Gaussian
ARMA(1,1)

p=09 oc?=10

ECF ECF ECF  ECF
p=2 p=3 CMLI CML2 ML p=2 p=3 CMLI CML2 ML

MEAN .8846 .8881 .8512  .8861 .8969 1.003 1.002 1.483  1.030 .9928
MED 8904 .8949 8601  .8890 .8999  .9911 9884  1.297  1.025 .9836
VAR .0023 .0023 .0032 .0015 .0010  .028 .027 378 025 .020
MSE .0026 .0024 .0056 .0017 .0010  .028 .027 .612 .026  .020

formula such as (3.6). In large samples the effect of such an error will diminish
for the stationary models, and thus the CMLE]1 is asymptotically equivalent to
the MLE. However, the effect may not be negligible in a small sample.

The data generating processes constructed previously favor the exact ML pro-
cedure because the likelihood function has a closed form expression. It is not
surprising that ML performs well. Although we do not expect the ECF method
to outperform ML, the limited Monte Carlo study shows that the ECF method
can work reasonably well. The good performance of the ECF method has been
confirmed at least for the three ARMA models considered and can be achieved
with small values of p.8

The advantage of using the GLS-CECF method over the exact ML method is
that the ECF method does not invert the covariance matrix and hence is numer-
ically less intensive. Using FORTRAN code on an alpha-digital Unix system,
e.g., it takes about 1 minute to do GLS-CECF with p = 3 in the last experi-
ment, whereas it takes about 4 minutes to do ML with o? concentrated out.
One expects that such a numerical advantage will increase with the sample size.

It can be seen that both consistency and efficiency of the ECF estimator de-
pend on p, the overlapping size of the moving blocks. Once p is chosen to
ensure identification, the ECF estimator is consistent. The impact of the choice
of p on efficiency is more complicated. For pure AR(/) processes, the optimal
p is . For a general ARMA process, unfortunately, there is no optimal p. In this
case, the choice of p depends on how well the ARMA process can be approxi-
mated by an AR(p) process.

5. CONCLUSION

This paper proposes a new econometric methodology for the estimation of sta-
tionary processes via the ECF. Under regularity conditions, the ECF estimator
is shown to be consistent and asymptotically normally distributed. Monte Carlo
simulations are used to examine the relative performances of the ECF method.
For the stable ARMA model for which the ML method is not applicable, we
find that in finite samples the ECF is a viable method for the three models
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considered. For the Gaussian ARMA model for which the ML method is readily
available, we derive the optimal weight functions and estimating equations for
the ECF method. We find that in finite samples the ECF method can have rea-
sonably good efficiency in comparison with the exact and conditional ML meth-
ods for the three models considered.

NOTE

1. The references for parameter estimation include Feuerverger (1990), Heathcote (1977), Knight
and Satchell (1996, 1997), Schmidt (1982), and references therein.

2. Knight and Satchell (1997) develop the cumulant generating function estimation method al-
though they do detail, also, the DECF approach to dependent data.

3. See Remark 2.2 concerning the asymptotic distribution associated with 2.3 and 2.4.

4. We thank one of the referees for providing this example.

5. 0IF f f:f f(x)8(x)dx = f(0) for any integrable function f(x), 8(-) is called the Dirac delta
function; if fj::f(x)ﬁ(”)(x) dx = (—1)"f"(0), 8"(-) is the nth derivative of Dirac delta function.
See Gel’Fan (1964) for more discussion about §(-).

6. We thank one of the referees for bringing to our attention the papers by Nolan (1997, 1999).

7. Although a is set arbitrarily to be 1, one can minimize the variance of estimates with respect
to a to obtain more efficient estimates.

8. A small block size is also found to be adequate in the moving block bootstrap method for the
AR (1) model and MA (1) model by Kiinsch (1989).
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APPENDIX

Proof of Theorem 2.1. Obviously, the ECF estimator is in the class of extremum
estimators. Hence, one can prove consistency and asymptotic normality of the ECF es-
timator by checking a set of sufficient conditions of an extremum estimator. In this pa-
per, to prove consistency we will check the conditions listed by Newey and McFadden
(1994, p. 2121) or Amemiya (1985, pp. 106-107), namely, compactness, continuity, uni-
form convergence, and identifiability.

Compactness of ® and continuity of 7,(@) are ensured by (Al) and (A2), respec-
tively. To check uniform convergence of 7,(8), note that (A3) leads to, according to
Theorems 3.5.3 and 3.5.8 of Stout (1974), stationarity and ergodicity of {exp(ir'x;)}.
By a strong law of large numbers, c,(r) > ¢(r;8,). Hence, supgee|c,(r) — c(r;68)|
-5 0. Note that ¢,,(r), c(r;8) and their conjugates are all trigonometric functions; hence

10100 = | [ [0 = ctr0 et ~ o) racr

= ‘ f f{(cn(r) —c(r;00))(C,(r) + &(r;6y) — 2¢(r;0))}dG(r)

S4J...flcn(r)—c(r;oo)\dG(r)

so that supgee|,(6) — I(8)| > 0 and hence uniform convergence holds for I,,(6).
Assumption (A4) ensures that I,(8) (= 0) attains the unique minimum at 6, and hence
the identification condition holds. Consequently, strong consistency of the ECF estima-
tor applies.
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To prove asymptotic normality, we will also check the conditions listed by Newey
and McFadden (1994, p. 2143) or Amemiya (1985, p. 111). Specifically, two conditions
will be verified, namely, (a) \nal, (6,)/90 converges to a normal variate in distribution;
(b) V6, *5 6,, 0%1,(60,)/0000" > H(8,), and H(8,) is nonsingular.

Consider the first-order condition of problem (2.1) and by (A2), we have

1,(8)/36 —2f f{[Recm Recuo)]‘“‘“_(”’)

dImc(r;0)
+ [Imc,(r) — Imc(r;0)] T} dG(r)

——Zf J{[cos(rx)—Rec(r 0)]M

n ;=1

) dImc(r;0)
+ [sin(r'x;) —Imc(r;0)] T} dG(r)

—-= 2 K(x;;0). (A1)

n;=1

Therefore d1,(6)/96 is the sample mean of a random sequence {K(x;;8)} multiplied by
a constant, —2. Note that {K(x;;6)} is identical but not independently distributed be-
cause {x;} is dependent. Also note that {K(x;;0)} preserves stationarity and ergodicity
of {y;} by (A5), according to Theorems 3.5.3 and 3.5.8 of Stout (1974). Among other
things, (A7) enables us to apply a central limit theorem for stationary, ergodic processes
provided by Gordin (1969) and Hall and Heyde (1980, p. 129). Formally, we have

n'291,(6,)/90 <> N(0,4A(8,)), (A.2)
where
1 n n
A(6) = lim —E( > K(xi;B)K(xk;0)> (A.3)
n—oo n j=1k=1 ’

i cov(cos(r'x;),cos(s'x;))

) f J dRec(r;0) aRec(s 9)
= lim |...
n—oo 70 06

8Re c(r;0) 0Imc(s;0) 2
00 00’ n

S | =
.HM

é é cov(cos(r'x;),sin(s'x,))

j=1k=

6Imc(r 6) 0Imc(s;0) 1 "
00 00’

cov(sm r'x;),sin(s xk))}

[}
-
~

nj

X dG(r)dG(s).
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Defining W, (r,s) = E[exp(ir'x; + is'x;+1)], we can then rewrite the double summation
covariances as

n

i > cov(cos(r 'x;),cos(s'x,))

S | =

= %(Re c(r+s)+Rec(r—s)) —Rec(r)Rec(s)

n—1

+ . > (n— k)(Re ¥, (r,s) + Re ¥, (r,—s) + Re ¥, (s,r) + Re ¥, (s, —r)),
k=1

n n

% > cov(cos(r'x;),sin(s'x;))
J=1k=1

j=1

= %(Im c(r—=s)+Imc(r—s)) —Rec(r)Rec(s)

n—1
+ > > (n—k)(ImW,(r,s) — Im W (r,—s) + Im ¥, (s,7) + Im W, (s, —r)),
n =1

n

2": > cov(sin(r'x;),sin(s’x;))
j=lk=1

S | =

= %(Re c(r+s)+Rec(r—=s))—Imc(r)Imc(s)

n—1

+ Z 2 (n — k)(Re ¥ (r,—s) — Re W (r,s) + Re ¥, (s,—r) — Re ¥, (s,r)),

k=1

where ¢(r) = ¢(r;0). Thus, condition (a) is confirmed.
In view of (A2), V@ € N(6,),

9°1,(0) _ZJ J{&Rec(r;o) dRec(r;0) N dImc(r;0) 0Ilmc(r;0)
— 5

608’ 6 a0’ a6 a6’
. 3%>Rec(r;0)
—[Rec,(r) —Rec(r;0)] T 2090"
i Cme(ro “m_“")} 5
[Imc,(r) — Imc(r;0)] 9090’ (r)
= o[ [ HEDEED i)
2 .
+ 2[...—[{[Recn(r) —Rec(r;6)] %
9%Imc(r;0)

+[Imc,(r) — Imc(r;0)] } dG(r). (A4)

0000’
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Because 6, > @,, for large enough n, we have

9%, (0 dc(r;0,) ac(r 0,,)
000" f f dG(r)
+ 2[...]{[Recn(r) —Rec(r;0,)] %
+[1 -1 ;0 M}m A.5
[Imc,(r) —Imc(r;6,)] 090" (r). (A.5)

By (A2) and (A6) the first integral in equation (A.5) converges a.s. to B(6,). We have
shown earlier that ¢, (r) — c(r;68,) —> 0. This implies Re c,(r) — Re c(r;8y) = 0
and Ime,(r) — Imc(r;0y) =% 0. Furthermore, Rec(r;6,) — Rec(r;6,) <> 0
and Imc(r;0,) — Imc(r;0y) = 0 follow from 6, %> 6,. Hence Rec,(r) —
Rec(r;0) % 0 and Imc,(r) — Imc(r;0) 2> 0. Together with (A6) and bounded-
ness of both the empirical and theoretical characteristic functions, we then have 921,(8,)/
9000’ > —2B(8,). By (A6), therefore, condition (b) is verified. Conditions (a) and
(b) together imply
n'2(6, — 8) 5 N(0, B~ (8,)A(8,)B ™" (8)). (A.6)
|

Proof of Proposition 2.1. Let z; = (yj,..., y;+;-1) and note that

f...Jw;‘(r)c(r;O)dr
= JJ ﬁ{ff %ﬁjﬂlz}.)exp(—ir’xj)c(r;o)dxj} dr
= ff Glogfng+||z_i){(2717)l f...fexp(—ir’xj)C(r;O)dr}dx

D10 f(3y0.1]2,)
= [ [ R iy a,

dlog f(yj1lz;)
= ff{f # pdf(y;.lz;) dy;s ¢ pdf(z;) dz; = 0. (A7)
Also note that with p = [ equation (2.4) implies (via the inverse Fourier transform)
Alog f (Y 1lyjseees Vivi1)
! 8; ! = f...fw;(r)exp(ir’xj)dr. (A.8)

Using (A.7) and (A.8) we can rewrite the left-hand side of equation (2.3) by

f fws(r)c (r)dr—f fwo(") 26'”"d i M

n ;= 00
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This equation is just the first derivative of CML for an AR(/) process. Therefore, the
ECF estimator has the same asymptotic efficiency as the CMLE and hence MLE. B

Proof of Proposition 3.1. Because the ARMA model given by (4.3) is invertible, we
can rewrite itby y, =&, + (p — d)e,.1 + p(p — d)e,» + p>(p — P)e,1 + - . Asa
consequence,
c(ry,c,;0)

= exp(iryy,—y +iry,)

=explire, +i(r;+r(p—d)e, . +i(p—d)(r, +rp)e,

+ip(p—P)(ritrpe_s+ip>(p—¢)(r,+rple 4+ -}

= exp {—\r2|”‘ <1 — iB sign(r,)tan ?)}

X expy—|r +r(p— ¢)|a<1 — i sign(r; + r,(p — ¢))tan %)}

T
X expy—|ry +rpl*lp—0* (1 — iBsign(r; + ryp)sign(p — 6)tan 7)}

. e’
X expy—|r +rapl[pl*lp —0]* (1 —iBsign(p(r; + r,p)(p — 0))tan 7)}

X ...

|”1 +"2P|“|P_9‘ﬂ}

:eXP{*"’2|a*|”1+”2(P*¢)|a* 1— [p|*

X exp{iﬁtan ?[r,k’sign(rz) +r + ra(p — @) sign(r; + r(p — @)

. |r|+rzp|“sign(r|+r2p)p9|“sign(p0)}} -
1 = sign(p)|p|* )
Proof of Theorem 3.1. Because 10g f(Yj+p|¥js---» Vj+p—1) = —3log2m — jlogo? —

tlogg(p) — %a’zg(p)xj’ Ax;, differentiating this function with respect to the param-
eters, we have

alOg.f(yjﬂb’jw--aYj+p—1) _ 1 N 1 x/Ax,,
do? 202 20%(p)
810gf(yj+1|}’j’-~ayj‘+p—1) _ g(p) g(p) 1

’ ’

X Ax; — Xx!B.x;.
Py 2¢(p)  20%g%(p) " 20%(p) TN
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Substituting into (2.4)

1
w:;z(r)=< > f fexp( zrx)[ 302 2a_g(p)xAx]dxj

by
= by 28(;’ )...o6(r7 )+20'4g(p)<277>

X f...fexp(fir’xj)x,-’ijdxj.

719

Now A = MD,M’ thus transforming x; — z; = M'x;, i.e., z; = (2;1,...,2j p+1) and

zj1 = M{x; with M, being the first column of M, the integral now becomes

A
W f...jexp(—ir’sz)Zﬁ] dz;
A ro ! 2
= W ... | exp(—is'z;)z}, dz;

pt1 1 »
— _f —is Z/]z ldzjl 1:[ _fe—ts zj,kdzj’k

= —A8"(s")8(s?)...8(sP1),

where s = M'r. Hence,

wha(r) = = 1)...5(rp+1)—20_4—g(p)5”(s1)5(s2)...5(sp+1). (A9)
Similarly, for p, we have
gk(p) 8(p)
wp (r) = ( ) f fex( zrx)[ x!Ax
b 25(p)  207g7(p)
|
" 202g(p)
gi(p) gi(p)
=—=—=58(r")..6(r"")— —=——2A8"(s")8(s?)...8(sP™)
2g(p) 20°g%(p)
1 1 - ,
_ rg(p) W ... | exp(—ir'x;)x; B,x; dx;.
Now By = H; D, H; thus transforming x; — z; = H{x;, i.e, z; = (2j1,...,2j,p+1)’, We

have z;; = Hy,x;,z;, = Hy»X;, and the integral becomes
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1
@ f...fexp(fir’szj)()\}(z_fl + Az}, dz;

Ak syl ;
a1 .
=5 Jeegdn | - fe‘”sz«'dzj’,
=2

2 T

A%( r 1 s pHl 1
Y feiltkz"'" dzji 5~ feiltkz""zzjz,z dz; ,:1_[3 2m feXp(fit’iz-"”) ;i
= M8 (tHS () ... (10T = A28 (18" (12) .87,

where ¢, = H;r for k = 1,...,1 + m. Thus

* — _M 1 p+ly Lp) ” 1 p+l1
w, (r) = 2¢(p) S(rh)...8(rP*h) 202g2(p)6 (s1)8(s?)...8(sP™)
+ 5 (ALt (2) .. 8l + A3 (1) 8" (12)...8(t ). |
20%g(p)

Proof of Corollary 3.1. With ¢,(r) = (1/n)2]_, exp(ir'x;) and c(r;0) =
exp(—(0¥/2)r'Qr) we substitute w'>(r) into (2.3), resulting in

f...fw;z(r)(c,,(r) —c(r;0))dr

1 1 ptly ; ” 1 2 p+l1
=J...f[—ﬁﬁ(r )...o(rP*h) 2072(p) A8 (s')6(s?%)...8(s )]
X (c,(r) —c(r;0))dr

1
by (c,(0) — c(0;0)) — 205(p)

X f...J8”(5‘)8(s2)...6(s”“)(c,,(r) —c(r;0)) dr.
Now transforming r — s = M'r, i.e., r = Ms we have

Af...fﬁ”(s')B(SZ)...S(S"“)(C,I(r) —c(r;0))dr
= Af...J8”(s')6(s2)...5(s”“)

12 o?
X —Eexp(is’M'xj)*exp *TS'M/QMS ds
mj=1

)\f&”(s‘)(%

1 n 1 n
—/\<— > (Mix;)* — on{QM1> = —<— DA/ M M x; — o2t (QM, M| A))

nj=1 nj=1

n 0_2
> exp(is'M{x;) — exp (? (s")* MM, )) ds'

j=1

1 n
—<— > x]Ax; — o-ztr(QA)>.
. .

Jj=1
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Now, noting that A = ff’ with f = (—f,’,1) and partitioning Q in the same way, we have
£ = 0,97/, and thus

tr(QA) = (_f;;’l)ﬂ(_f;;'fl)’ =0y — Oy Ql_ll 0, =¢(p),

and thus

1 1
f...fw:‘;z(r)(cn(r) —c(r;0))dr = —( Ex Ax; — o g(p)>
20%g(p)

Similarly, substituting w; (r) into (2.3),
f...fw;k(r)(c,l(r) —c(r;0))dr

__&(p) _ @ (1& .
- 2g( )( ,(0) L(OO))+2 257( )< ExAx Ug(p))

1 1 o?
o | A ] 8" () 2 exp(itg Hiyx;) — exp| —— (4} )*H{, QHy, | | !
20%g(p) n ;= 2

1 2
+ /\ffﬁ”(f,f)(; > exp(itZ Hj,x;) — exp (7_ (# )szzﬂHu)) dt/<2:|

b
20%g(p)
= m< 2 x/Byx; — o'ztr(BkQ)>.

Now because B, = dA/dp, = (—(3f,/9p),0) (=f,,1) + (=f,,1)'(—(9f,/9p,)’,0) we
have

tr(B, Q) = 2(=£,,DQ(=(9f,/9p)’,0)" = 0, V&,

1
[ 2 (/\Ax Hleklx + /\ X szHézxj) - Uz()‘}cHlil‘QHkl + /\iHll2QHk2):|

ie.,

E x/Byx; =0, Vk. u

f_”fw;(r)(cn(r) —c(r;0))dr = e g(p) "



