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ABSTRACT

This paper reviews the method of model-fitting via the empirical characteristic

function. The advantage of using this procedure is that one can avoid difficulties
inherent in calculating or maximizing the likelihood function. Thus it is a
desirable estimation method when the maximum likelihood approach encounters

difficulties but the characteristic function has a tractable expression. The basic
idea of the empirical characteristic function method is to match the characteristic
function derived from the model and the empirical characteristic function

obtained from data. Ideas are illustrated by using the methodology to estimate
a diffusion model that includes a self-exciting jump component. A Monte Carlo
study shows that the finite sample performance of the proposed procedure offers

an improvement over a GMM procedure. An application using over 72 years of
DJIA daily returns reveals evidence of jump clustering.
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1. INTRODUCTION

Traditionally the maximum likelihood (ML) approach is widely favored in
economic and financial applications due to its generality and asymptotic
efficiency. In a variety of applications in economics and finance, the ML method
can be difficult. The difficulties arise when the likelihood function is not tractable
or not bounded over the parameter space or does not have a closed form
expression in the sense that it is not expressible in terms of known elementary
functions.

Although the likelihood function can be unbounded, its Fourier transform is
always bounded. Moreover, while the likelihood function is not tractable or has
no closed form solution, the Fourier transform can have a closed form expression.
Since the Fourier transform of the density function is the characteristic function
(CF), one can exploit the empirical characteristic function (ECF) to estimate the
system parameters.

A main purpose of this paper is to explain the estimation method via the ECF to
applied researchers. The paper also summarizes the models for which the ML
approach encounters difficulties but the CF has a closed form expression and hence
the ECF method can be a viable estimation method. The statistical properties of the
ECF estimators are also discussed.

Work in this area has been initiated by Parzen (1962), and can be
dichotomized according to whether we are dealing with independent, identically
distributed (iid) or dependent stationary stochastic processes. Section 2 reviews
various ECF procedures both in the iid and non-iid cases. Section 3 discusses
important assumptions for the ECF procedures that applied researchers should
be aware of, together with some asymptotic properties for the ECF estimators.
Section 4 lists some examples for which the likelihood function is not
bounded over the parameter space or does not have a closed form expression.
In Sec. 5, I illustrate the ECF procedure to estimate a self-exciting jump
diffusion process in a Monte Carlo study and in an empirical study. Section 6
concludes.

2. ECF PROCEDURES

2.1. IID Case

The ECF procedure in the iid case has been previously investigated by
Paulson et al. (1975), Heathcote (1977), Feuerverger and Mureika (1977), Bryant
and Paulson (1983), Feuerverger and McDunnough (1981b,c), Koutrouvelis
(1980), and more recently by Tran (1998) and Carrasco and Florens (2002).
The justification for the ECF method is that the CF is the Fourier–Stietjes
transform of the cumulative distribution function (CDF) and hence there is a
one-one correspondence between the CF and CDF. As a consequence, the ECF
retains all information in the sample. This observation suggests that estimation
and inference via the ECF should work as efficiently as the likelihood-based
approaches.
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Suppose the CDF of X is Fðx; hÞ which depends on a K-dimensional vector of
parameters h. The CF is defined by

cðr; hÞ ¼ E½expðir XÞ� ¼
Z

expðir xÞdFðx; hÞ;

and the ECF is the sample counterpart of the CF defined by

cnðrÞ ¼ 1

n

Xn
j¼1

expðir XjÞ ¼
Z

expðir xÞdFnðxÞ;

where i ¼ ffiffiffiffiffiffiffi�1
p

, fXjgni¼1 is an iid sequence, FnðxÞ is the empirical CDF, and r is the
transform variable. Also assume the true value of h is h0. Note that the CF is a
deterministic function of h while ECF depends on h0 only through the observations
fXjg. h is suppressed in cðr; hÞ when there is no confusion.

Since the ECF estimator can be treated as a generalized method of moment
(GMM) estimator of Hansen (1982), it is worth briefly reviewing GMM first.
Suppose one has the following l moment conditions:

EðfðXj; h0ÞÞ ¼ 0;

where f : R� RK ! Rl. Further assume that the strong law of large numbers is
invoked so that we have the following result for the sample moments:

1

n

Xn
j¼1

fðXj; hÞ�!a:s: EðfðXj; hÞÞ:

The basic idea of GMM estimation is to minimize a distance measure between the
sample moments and the population moments, that is,

min
h

1

n

Xn
j¼1

fðXj; hÞ0Wn

1

n

Xn
j¼1

fðXj; hÞ;

where Wn is a positive semidefinite weighting matrix which converges to a positive
definite matrix W0 almost surely. Under some regularity conditions, the GMM esti-
mator is consistent and asymptotically normally distributed for arbitrary weighting
matrices. When the system is just identified (K ¼ l), the GMM estimator does not
depend on the choice of Wn and basically solves the estimation equation:
ð1=nÞPn

j¼1 fðXj; hÞ ¼ 0. As a result, this is the method of moment estimation. When
the system is over identified (K < l), Hansen (1982) shows that if W0 ¼ S�1, the
GMM estimator is asymptotically efficient in the sense that the covariance matrix
of the GMM estimator is minimized, where S is the long run covariance matrix of
fðXj; h0Þ. It should be pointed out that in general GMM efficiency is different from
ML efficiency and the GMM estimator is optimal only for the given moment condi-
tions fðXj; hÞ. When moment conditions are different, GMM efficiency can vary.
Hence GMM is sub-optimal relative to ML.
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Motivated from the recognition that two distribution functions are equal if and
only if their CFs agree on �1 < r < 1 (Lukacs, 1970, p. 28), the general idea for
ECF estimation is to minimize various distance measures between the ECF and CF.

To link the ECF method to GMM, define the following function based on the
ECF,

hðr;Xj; hÞ ¼ expðir XjÞ � cðr; hÞ: ð2:1Þ

Obviously Eðhðr;Xj; h0ÞÞ ¼ 0; 8r. Consequently, a finite set of moment conditions or
a continuum of moment conditions can be constructed, depending how the trans-
form variable r is chosen.

If r is chosen to be a set of discrete points, the procedure is called the discrete
ECF method and is used by Tran (1998) to estimate the mixtures of normal distribu-
tions, following the suggestion made by Quandt and Ramsey (1978) and Schmidt
(1982).

Suppose q discrete points r1; . . . ; rq are used and define

fðXj; hÞ
¼ ðRe½hðr1;Xj; hÞ�; . . . ;Re½hðrq;Xj; hÞ�; Im½hðr1;Xj; hÞ�; . . . ; Im½hðrq;Xj; hÞ�Þ0;

where Re½�� and Im½�� are the real and imaginary parts of a complex number. By
construction EðfðXj; h0ÞÞÞ ¼ 0. This forms 2q (usually larger than l) moment
conditions. Also note that the strong law of large numbers applies here (see, for
example, Feuerverger and Mureika, 1977).

When Wn ¼ I, this discrete ECF estimator is basically the first stage GMM
estimator and can also be thought of as the nonlinear OLS regression of Vn on Vh ,
where

Vn ¼ ðRe½cnðr1Þ�; . . . ;Re½cnðrqÞ�; Im½cnðr1Þ�; . . . ; Im½cnðrqÞ�Þ0

and

Vh ¼ ðRe½cðr1; hÞ�; . . . ;Re½cðrq; hÞ�; Im½cðr1; hÞ�; . . . ; Im½cðrq; hÞ�Þ0:

Obviously, ð1=nÞPn
j¼1 fðXj; hÞ ¼ Vn � Vh.

a However, the resulting estimator
cannot attain GMM efficiency since by construction the covariance matrix of Vn is
not diagonal. Denote the covariance matrix of Vn by O and it has been shown that
(see, for example, Feuerverger and Mureika, 1977)

O ¼ ORR ORI

OIR OII

� �
;

aAlthough we separate the real and imaginary parts for ease of understanding, Carrasco and
Florens (2002) argue that this separation is not needed as most software packages allow for
operations of complex numbers. In this case, the moment conditions are fðXj; hÞ ¼
ðhðr1;Xj; hÞ; . . . ; hðrq;Xj; hÞÞ0.
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where the elements in the partitions associated with rj and rk are given by

ðORRÞjk ¼
1

2
ðRe½cðrj þ rkÞ� þ Re½cðrj � rkÞ�Þ � Re½cðrjÞ�Re½cðrkÞ�;

ðORIÞjk ¼
1

2
ðIm½cðrj þ rkÞ� � Im½cðrj � rkÞ�Þ � Re½cðrjÞ�Im½cðrkÞ�;

ðOIIÞjk ¼
1

2
ðRe½cðrj þ rkÞ� � Re½cðrj � rkÞ�Þ � Im½cðrjÞ�Im½cðrkÞ�:

Using the covariance matrix, Tran (1998) estimates h by finding the minimizer of
ðVn � VhÞ0ÔO�1ðVn � VhÞ, where ÔO is a consistent estimate of O. The procedure can be
thought of as the second stage GMM estimation or the non-linear GLS regression of
Vn on Vh and hence yields GMM efficient estimators.

Just like how GMM depends on the choice of moment conditions, the above
ECF procedure hinges on the choice of a grid of discrete points. To select the optimal
discrete points, two choices have to be made: how many discrete points (i.e., q) and
which discrete points should be used. These correspond, respectively, to how many
and which moment conditions should be used for GMM. For a given q, Schmidt
(1982) suggests selecting the grid that minimizes the determinant of the asymptotic
covariance matrix and has found it is best to select all the points close together.
Feuerverger and McDunnough (1981c) show that the asymptotic matrix can be
made arbitrarily close to the Cramér–Rao lower bound (i.e., ML efficiency) provided
that q is sufficiently large and the grid is sufficiently fine and extended. They further
suggest that the grid should be chosen to be equally spaced, i.e., rj ¼ tj for
j ¼ 1; . . . ; q. This suggestion will ease the computational burden but whether or
not the ML efficiency is warranted is still an open question. Furthermore, as noted
by Carrasco and Florens (2002), when the grid is too fine, the covariance matrix ÔO
becomes singular and hence the ECF estimator can not be computed. The same
problem is also identified in Madan and Seneta (1990) in the context of the variance
gamma distribution.

When r is chosen continuously, one can minimize

Z 1

�1
jcnðrÞ � cðr; hÞj2gðrÞdr; ð2:2Þ

with gðrÞ being a continuous weighting function. Or equivalently one can minimize

Z 1

�1
jcnðrÞ � cðr; hÞj2 dGðrÞ;

or solve the following estimation equation

Z 1

�1
wðrÞðcnðrÞ � cðr; hÞÞdr ¼ 0; ð2:3Þ

where GðrÞ and wðrÞ are weighting functions.
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Since gðrÞ is a continuous function, the procedure (2.2) basically matches the
ECF and CF continuously over an interval and hence can be viewed as a special class
of GMM on a continuum of moment conditions given by Carrasco and Florens
(2000). To see this, consider the objective function of the GMM procedure based
on a continuum of moment conditions defined in Carrasco and Florens (2000),

ZZ
hnðr; hÞgnðr; sÞhnðs; hÞdrds; ð2:4Þ

where �hh is the conjugate of h. If we choose gnðr; sÞ ¼ gðrÞIðr � sÞ;hnðr; hÞ ¼
ð1=nÞPhðr;Xj; hÞ, (2.4) is equivalent to (2.2).

The above continuous ECF procedure has been used in Press (1972), Paulson
et al. (1975), Thorton and Paulson (1977), and more recently in Carrasco and
Florens (2002). The advantage of using a continuum of moment conditions is that
in theory with a judiciously chosen weighting function it results in full ML efficiency
(Carrasco and Florens, 2002). While an arbitrary continuous function with bounded
total variation for gðrÞ can guarantee consistency, in practice an exponential weight-
ing function is often used. Although the exponential weight has the numerical advan-
tage associated with quadratures, in general, the resulting ECF estimator from the
exponential weight, say expð�r2Þ, is less efficient than the ML estimator.

To see this, suppose the random sample X1; . . . ;Xn is from Nðm; s2Þ, where s2 is
known, and we want to estimate m. It is easy to show that

Z 1

�1
jcnðrÞ � cðrÞj2 expð�r2Þdr ¼

Z 1

�1

1

n

Xn
j¼1

eirXj � eirm�
s2r2
2

�����
�����
2

e�r2 dr

¼ p1=2

n2

Xn
i¼1

Xn
j¼1

e�
1
4ðXi�XjÞ2 þ p

1þ s2

� �1=2

� 2

n

� �
p

1þ s2=2

� �1=2Xn
j¼1

exp

�
� ðXj � mÞ2

4þ 2s2

�
:

The first order condition gives the following estimating equation

Xn
j¼1

ðXj � mÞ exp �ðXj � mÞ2
4þ 2s2

 !
¼ 0:

The asymptotic relative efficiency of the ECF estimator of m is

1þ 2s2 þ 3
4 s

4

1þ 2s2 þ s4

� �3=2

;

and is generally less than 1. When s2 ¼ 1, for instance, the asymptotic relative
efficiency is about 95%; as s2 tends to 0 it tends to 100% but as s2 tends to1 it tends
to about 65%.
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The optimal weight obtained by Feuerverger and McDunnough (1981b) using
the Parsaval identity is given by

w�ðrÞ ¼ 1

2p

� �Z
expð�ir xÞ @log fhðxÞ

@h
dx: ð2:5Þ

The weight is optimal in the sense that the resulting estimator from Eq. (2.3) attains
ML efficiency. Obviously when the likelihood function has no closed form
expression, the optimal weight is unknown.

Based on the results obtained in Carrasco and Florens (2000), Carrasco and
Florens (2002) provide a solution to this dilemma which also avoids the singularity
problem discussed in the discrete case. According to Carrasco and Florens (2002), a
covariance operator associated with a continuum of moments (i.e., hðr;Xj; hÞ),
perturbed by a regularization parameter an, is used in the second stage estimation.
The perturbation guarantees that the inverse of the covariance operator always
exists. Denoting this covariance operator by O, Carrasco and Florens (2002) obtain
the expression for the kernel of O (called g�ðr; sÞ)

g�ðr; sÞ ¼ cðr � sÞ � cðrÞcð�sÞ:

The asymptotic variance of the resulting estimator is shown to reach the Cramér–
Rao lower bound when nan ! 1 and an ! 0. The intuitions for this ML efficiency
are as follows. First, relative to the optimal scheme of the ECF approach based on a
grid of discrete points, more moment conditions and hence more information are
used here. As a result, the estimator should be more efficient. Second, relative to
the non-optimal continuous ECF approach which uses the full continuum but a
sub-optimal weight, it provides an optimal GMM scheme by using the information
in the covariance.

2.2. Non-iid Stationary Case

Estimation of a strictly stationary stochastic process using the ECF is not exactly
the same as that of an iid sequence, because the dependence must be taken into
account. Like the marginal empirical CDF, the marginal ECF may not identify all
the parameters in the case of dependent data or may result in a loss in efficiency.
Consequently, approaches based on the joint CF and conditional CF have been used
in the literature.

2.2.1. Joint ECF

The approach via the joint CF is used in Feuerverger (1990), Knight and
Satchell (1996), Yu (1998), Knight and Yu (2002), Carrasco et al. (2002), and Jiang
and Knight (2002). The procedures involve moving blocks of data. Denote the
moving blocks for X1;X2; . . . ;XT as Zj ¼ ðXj; . . . ;XjþpÞ0; j ¼ 1; . . . ;T � p: Thus
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each block has pþ 1 observations and p overlapping periods with its adjacent
blocks. The characteristic function of each block is defined as

cðr; hÞ ¼ Eðexpðir0ZjÞÞ;

where r ¼ ðr1; . . . ; rpþ1Þ0 and hence the transform variable is of pþ 1 dimensions.
The joint ECF is defined as

cnðrÞ ¼ 1

n

Xn
j¼1

expðir0ZjÞ;

where n ¼ T � p.
To estimate the parameter via the joint ECF one can minimize a distance

measure between the joint CF and joint ECF,Z
� � �
Z

jcðr; hÞ � cnðrÞj2gðrÞdr; ð2:6Þ

or Z
� � �
Z

jcðr; hÞ � cnðrÞj2 dGðrÞ; ð2:7Þ

or solve the following estimating equationZ
� � �
Z

ðcðr; hÞ � cnðrÞÞwðrÞdr ¼ 0; ð2:8Þ

where gðrÞ, GðrÞ and wðrÞ are weighting functions. Under suitable conditions
Eqs. (2.6)–(2.8) are equivalent.

As in the iid environment, the ECF estimator is a special case of GMM where
the moment conditions are expðir0ZjÞ � cðr; hÞ; 8r 2 Rpþ1. Since the transform vari-
able r is a vector, the moment conditions include both marginal and joint moments.

The discrete ECF procedure is advocated in Feuerverger (1990), Knight and
Satchell (1996, 1997) and further discussed in Yu (1998). It corresponds to minimiz-
ing Eq. (2.6) with gðrÞ being a function which takes a finite number of non-zero
values. Compared to the iid case, the situation is more complicated since a set of
pþ 1 dimensional vectors must be selected. Feuerverger (1990) argues that under
some regularity conditions, if p is sufficiently large and the discrete vectors are suffi-
ciently fine and extended, the resulting estimators can be made arbitrarily close to the
Cramér–Rao lower bound. The result is of theoretical interest but offers no guidance
as to the practical choice of an optimal set of vectors.

Defining Vn and Vh in the same way as in the iid case but based on the moving
blocks, Knight and Satchell (1997) suggest a multi-step procedure on the implemen-
tation of the discrete ECF method which is basically an optimal GMM scheme. The
main idea is as follows. Firstly, choose p and q and an arbitrary set of vectors,
ðr1; . . . ; rqÞ. Secondly, choose h to minimize ðVn � VhÞ0ðVn � VhÞ to obtain a consis-
tent estimate for O, say ÔO. Thirdly, choose elements in ðr1; . . . ; rqÞ to minimize some
measure of the asymptotic covariance matrix of the nonlinear GLS estimator.
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Fourthly, based on the resulting ðr1; . . . ; rqÞ from Step 3, we repeat Step 1 to

obtain another consistent estimate for O, say
^̂OÔOO. Finally, choose h to minimize

ðVn � V Þ0 ^̂OÔOO�1ðVn � VÞ. The minimizer is the desirable estimator and should be
efficient in the GMM sense. Knight and Satchell (1996) give the expression of the
covariance matrix O of Vn for stationary processes and subsequently implement
the procedure for a Gaussian MA(1) model with p ¼ 2; q ¼ 5 but ignore Step 3.

To improve the GMM efficiency, Yu (1998) implements the above procedure
without missing any step. Apart from the well-known difficulties associated with
the choice of p and q, Yu (1998) also identifies several numerical difficulties. In par-
ticular, in Step 3 it is not clear how many elements in ðr1; . . . ; rqÞ should be chosen.
That is, should one choose the entire set of vectors or should one choose a set of
elements in the vectors with some pre-specified restrictions, such as even spacing?
Clearly the choice of the entire set of vectors would generally gain in asymptotic
efficiency but would also increase the computational burden for numerical optimiza-
tion in Step 3.b Moreover, in Step 4 the estimated covariance matrix O often becomes
singular when too many elements are chosen in Step 3. It seems that this singularity
problem would be worse as p or q or both increase.

Alternatively one can match the joint CF and joint ECF continuously. In this
continuous ECF procedure the weighting function is a continuous function and hence
the transform variable is integrated out. As in the iid case, this procedure can be
treated as GMM based on a continuum of moment conditions. Yu (1998) and Knight
and Yu (2002) consider two continuous procedures. When an unequal weight is
used, the procedure is referred to as the WLS-ECF method. The procedure is referred
to as the GLS-ECF method when the weighting function in (2.8), wðrÞ, is given by

w�ðrÞ¼
Z

� � �
Z

expð�ir0ZjÞ@ log fðXjþpjXj; . . . ;Xjþp�1Þ
@h

dXj � � �dXjþp; ð2:9Þ

where fðXjþp jXj; . . . ;Xjþp�1Þ is the conditional score function. This weight is
optimal in the sense that the asymptotic variance of the GLS-ECF estimator can
be made arbitrarily close to the Cramér–Rao lower bound when p is large enough.
Knight and Yu (2002) derive the expressions for w�ðrÞ for the Gaussian ARMA
models in which the conditional score is known, and show that in finite samples
the GLS-ECF estimator has reasonably good efficiency in comparison with ML.
However, this quantity is not calculable if the conditional score is unknown. In a
recent study in progress Jiang and Knight (2003) suggest approximating the optimal
weight using the Edgeworth expansion to approximate the conditional score in (2.9)
for Markov processes. As an alternative, Carrasco et al. (2002) propose to use an
optimal GMM scheme based on a continuum of moment conditions. It is interesting
to compare the performances of these two alternative approaches.

It is very important to recognize that when using the joint ECF, an additional
choice needs to be made, which is that of the overlapping size of the moving

bFor example, when p ¼ 2; q ¼ 5, the optimization problem in Step 3 is of 15 dimensions if the

entire set of vectors is chosen.
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blocks, p. The choice of p in the context of the ECF estimation is closely related to
the well-known difficult choice of the block size in the moving block bootstrap
method of Künsch (1989), as well as to the choice of bandwidth in the nonparametric
setting. See Politis and White (2004) for an overview of block bootstrap methods and
the block size selection problem, and Härdle and Linton (1994) for an overview of
the bandwidth selection problem in the nonparametric setting. As a result, one
should expect that the ECF estimator can be sensitive to p, similar to the case in
the block bootstrap and nonparametric methods.

Ideally an optimal p is selected to minimize the mean square error (MSE) of the
ECF estimator. However, the form of the MSE expansion for the ECF estimator has
not yet been developed. Knight and Yu (2002, Remark 3.7) point out that the choice
of p is related to the dimension of the minimal sufficient statistics. In particular, for a
Markov process of order 1, the overlapping moving blocks with block size of 2 form
a set of sufficient statistics and hence p ¼ 1 is enough. This result is identical to that
reached in Bühlmann (1994) in the context of the moving block bootstrap for the
AR(1) model. For non-Markov processes, however, since any statistics of dimension
less than the sample size is not sufficient (see Arato, 1961), the blocks with a larger p
(as long as p ! 1 as n ! 1 but p ¼ oðnÞ) will always improve asymptotic effi-
ciency. It seems reasonable to believe that when a non-Markov process can be well
approximated by a Markov process of order l, p ¼ l should work well. Furthermore,
while for a general non-Markov process a larger p can increase asymptotic efficiency,
it will lead to a higher computational inefficiency and hence in practice there is
always a trade-off between a large p and a small p.

2.2.2. Empirical Conditional CF

For ease of exposition, I first restrict my attention to Markov processes in this
section. The conditional CF (CCF) for a Markov process fXtg is defined by

cXt
ðr; hÞ ¼ E½expðir Xtþ1Þ jXt; . . . ;X1� ¼ E½expðir Xtþ1Þ jXt�; ð2:10Þ

where the second equality follows the Markov property. Note that the transform
variable is a scalar in the CCF, in contrast to that in the joint CF.

As in the case of the unconditional CF, the estimation based on the empirical
CCF (ECCF) can be motivated from GMM which is based on a set of moment con-
ditions but is conditional this time:

Eðexpðir Xtþ1Þ � cXt
ðr; h0Þ jXtÞ ¼ 0; 8r:

This implies that for any weighting function, wð�; �Þ (often termed instruments in the
GMM literature), we have

Eðexpðir Xtþ1Þ � cXt
ðr; h0ÞÞ ¼ 0; 8r; ð2:11Þ

E

Z
ðexpðir Xtþ1Þ � cXt

ðr; h0ÞÞwðXt; rÞdr
� �

¼ 0; ð2:12Þ
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and

Eððexpðir Xtþ1Þ � cXt
ðr; h0ÞÞwðXt; sÞÞ ¼ 0; 8r; s: ð2:13Þ

Obviously (2.13) implies (2.12) which, in turn, implies (2.11). As a result, resulting
estimators based on (2.11) should be generally less efficient than those based on
(2.12) and (2.13).

Using (2.11) to form moment conditions, Chacko and Viceira (2003) consider an
optimal GMM scheme which is basically a discrete ECF procedure based on the
CCF with a set of integer values assigned to the transform variable. A drawback
of their procedure lies in the obvious loss in efficiency.

Singleton (2001) makes use of (2.12) to construct the ECF procedure which
solves the estimation equation:

1

T � 1

Z XT�1

t¼1

ðexpðir Xtþ1Þ � cXt
ðr; hÞÞwðXt; rÞ ¼ 0; ð2:14Þ

where wðXt; rÞ is a set of K functions. He further shows that if wðXt; rÞ is chosen as

w�ðXt; rÞ ¼ 1

2p

� �Z
expð�ir Xtþ1Þ @log fhðXtþ1 jXtÞ

@h
dXtþ1 ; ð2:15Þ

the resulting estimator reaches the ML efficiency although the actual implementation
is infeasible when the conditional score cannot be computed.

To overcome this problem, Singleton suggests approximating the integral in
(2.14) with the sum over a finite number of discrete points. In particular, he proposes
to fix the interval ½�qt; qt�, divide it into 2qþ 1 equally spaced sub-intervals of width
t, and then solve

1

T � 1

XT�1

t¼1

t
Xq
j¼�q

wðXt; jtÞðexpðijtXtþ1Þ � cXtðjt; hÞÞ ¼ 0: ð2:16Þ

This discrete ECF procedure results in a consistent estimator, albeit generally
inefficient both in the GMM sense and in the ML sense, for any q � 1 and w. To
improve efficiency, Singleton (2001) chooses wðXt; jtÞ to be the optimal instruments
given in Hansen (1985), and argues that when q ! 1; t ! 0, this optimal discrete
ECF procedure can be made arbitrarily close to the Cramér–Rao lower bound.
Unfortunately, as Carrasco et al. (2002) point out, when q ! 1; t ! 0, the covar-
iance matrix used for obtaining the optimal instruments tends to be singular.

By using (2.13) Carrasco et al. (2002) construct an optimal GMM scheme based
on a continuum of moment conditions with wðXt; sÞ set to be expðis XtÞ, and show
that the resulting estimator can achieve the ML efficiency. ML efficiency is ensured
by the fact that a full continuum of moments and the corresponding covariance
operator are used. The singularity problem is overcome by attaching a regularization
parameter to the covariance operator, as in Carrasco and Florens (2002).
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All the estimation procedures discussed above apply to non-Markov processes
but the condition has to be made on the whole history of Xtþ1 (i.e., the CCF of
Xtþ1 is CX1;...;Xt

ðr; h)). Moreover, these procedures apply more generally to multivari-
ate processes, including those involved with state variables. As long as all the state
variables are observed, the ECCF method is used in the same way. However, when
a state variable is not observable, the CCF of Xtþ1 cannot be calculated and hence
the ECCF methods are not directly applicable unless the latent state variable can
be integrated out from the joint CCF of observables and unobservables. Such an
example is the stochastic volatility model where Xt ¼ ðYt; s2t Þ0. In this case the return
process Yt, but not the volatility process s2t is observed. As a result, Singleton (2001)
discusses how the ECCF method can be used in combination with simulations
whereas Chacko and Viceira (2003) explain how to integrate out volatility from
the joint CCF of ðYt; s2t Þ.

3. IMPORTANT ASSUMPTIONS AND
ASYMPTOTIC PROPERTIES

3.1. Important Assumptions

In this subsection, I discuss assumptions under which asymptotic properties of
the ECF estimators are derived. As non-iid processes include iid processes as special
cases, I restrict my attention to the non-iid case in this section. It was shown that the
discrete ECF procedure is the special case of the GMM procedure of Hansen (1982)
while the continuous ECF procedure is the special case of the GMM procedure of
Carrasco and Florens (2000). Not surprisingly, the assumptions adopted are closely
related to those used in Hansen (1982) and Carrasco and Florens (2000). In particu-
lar, to develop the asymptotic properties of the ECCF estimator, Singleton (2001)
makes use of the same set of assumptions as in Hansen (1982). Observing that the
continuous ECF estimator is a class of extremum estimators, Knight and Yu
(2002) impose a set of assumptions to ensure sufficient conditions of an extremum
estimator listed by Newey and McFadden (1994, p. 2121). There are three common
assumptions in Hansen (1982) and Knight and Yu (2002) which are important to
applied researchers. We review them in detail.

Stationarity. Xt is assumed to be strictly stationary. A time series Xt is said to
be strictly stationary if the joint distribution of fXt; . . . ;Xtþtg is identical to that of
fXtþs; . . . ;Xtþsþtg for any t; s; t. This rules out unit root processes, deterministic
trend models, and unconditional heteroskedasticity. The stationarity assumption,
however, does not rule out the possibility of conditional heteroskedasticity.

Weak Dependence. Xt is assumed to follow a form of weak dependence. The
weak dependence holds true under suitable mixing (for example, a-mixing and b-
mixing) conditions. For processes which do not have this form of weak dependence,
such as long memory processes, we do not know if the ECF method is applicable.

Identification. This puts restrictions on the model and is related to the GMM
identification restriction that fðXj; hÞ0W0fðXj; hÞ has the unique minimizer at h0.
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In the ECF context, this is equivalent to requiring h0 to be the unique minimizer of
(2.6) or the estimation equation (such as (2.12) or (2.8)) to have a unique solution
at h0. In the context of the joint CF, the restriction necessitates a careful choice of
p. For example, for an MA(10) process, Xt ¼ et�fet�10;et � iidNð0;s2Þ, the moving
blocks with p < 10 (say p ¼ 0) cannot identify all the parameters. To see this we have

Eðexpðir XjÞ � cðr; hÞÞ ¼ exp � r2s20ð1þ f2
0Þ

2

 !
� exp � r2s2ð1þ f2Þ

2

 !
:

Hence only s2ð1þ f2Þ is identified.

3.2. Asymptotic Properties

The asymptotic properties of the ECF estimator in the iid case is established in
Heathcote (1977). Since the ECCF estimator proposed by Singleton (2001) is treated
as a GMM estimator, the asymptotic properties are the same as those of the GMM
estimator. The asymptotic properties of the estimator based on the joint CF are
established in Knight and Yu (2002). In all cases, the resulting ECF estimator is
strongly consistent and asymptotically normally distributed. More interestingly,
the convergence rate for the ECF estimator is

ffiffiffi
n

p
. This is true for the processes with

stable noise. This result is remarkably different from the ML estimator, the least
absolute deviation (LAD) estimator, and the least square (LS) estimator where the
rates of convergence are n1=a for LAD=ML and ðn=log nÞ1=a for LS with a being
the index parameter in the stable distribution (see, for example, Calder and Davis,
1998 and references therein).

4. EXAMPLES

There are many models used in economics and finance for which the likelihood
function is not bounded over the parameter space or has no closed form expression,
while the CF and CCF have a closed form solution and hence the estimation method
via the ECF or ECCF can be used. In this section we list some of these models which
are used widely in practice.

4.1. Mixtures of Normal Distributions

Titterington et al. (1985, Chapter 2) list many applications of mixtures of normal
distributions. Mixtures of k normal distributions are defined by a random variable X
such that

X � Nðmi; s2i Þ with probability li; i ¼ 1; . . . ; k;

where
Pk

i¼1 li ¼ 1, and ðli; mi; s2i Þi¼1;...;k are ð3k� 1Þ unknown parameters. The like-
lihood is unbounded when one of the above distributions is imputed to have a mean
exactly equal to one of the observations with the corresponding variance going to
zero. Consequently, a global maximum fails to exist.
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The CF of X is

cðrÞ ¼ l1 exp im1r �
1

2
s21r

2

� �
þ � � � þ lk exp imkr �

1

2
s2kr

2

� �
:

Since the CF of the mixtures of normal distributions has a closed form expres-
sion and is uniformly bounded, an estimation method suggested in the literature is
via the ECF. References include Bryant and Paulson (1983) and Tran (1998) and
the references contained.

4.2. Switching/ Dis-equilibrium Models

Mixtures of normal distributions often appear in economics, in switching
regressions introduced by Quandt (1958), in dis-equilibrium models introduced by
Goldfeld and Quandt (1973), and in regime switching models introduced by
Hamilton (1989, 1990). Not surprisingly, estimation of these models has the same
problems as for the mixtures of normal distributions and hence the ECF method
is a viable estimation method.

4.3. Variance Gamma Distribution

The variance gamma (VG) distribution is proposed by Madan and Seneta (1990)
to model share market returns. The VG distribution assumes that the conditional
variance is distributed as a gamma variate. Formally, X jV � Nð0;Vs2Þ and
V � Gðc; gÞ, where G is the Gamma distribution. The density is given by

fðxÞ ¼
Z 1

0

expð�x2=ð2vs2ÞÞcgvg�1 expð�cvÞ
s
ffiffiffiffiffiffiffiffi
2pv

p
GðgÞ dv:

To calculate this density, one has to evaluate the above integral numerically. On the
other hand, the CF of the VG distribution is given by

cðrÞ ¼ ½1þ s2gr2=ð2c2Þ��c2=g;

and hence is very easy to calculate.

4.4. Stable Distribution

The stable distribution was first proposed by Mandelbrot (1963) and Fama
(1965) to model stock returns. It is usually characterized by the CF given by

cðrÞ ¼ expfimr � sjrja½1� ibsignðrÞ tanðpa=2Þ�g if a 6¼ 1

expfimr � sjrja½1þ ibð2=pÞsignðrÞ logðjrjÞ�g if a ¼ 1

(
: ð4:17Þ
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The stable distribution with the above CF is said to follow Saðs; b; mÞ, where a, b, s,
and m are, respectively, index, skewness, scale, and location parameters. Analytic
forms for the density in terms of elementary functions are known for three cases,
a ¼ 1=2; 1; 2. For any other value of a, the density function has to be calculated
numerically by Fourier inverting (4.17).

A widely used method for estimating a stable distribution is based on the ECF.
References include Press (1972), Paulson et al. (1975), Arad (1980), Koutrouvelis
(1980, 1981), Feuerverger and McDunnough (1981a), Brockwell and Brown (1981),
Paulson and Delehanty (1985) and Kogon and Williams (1998).

4.5. Stable ARMA Process

The stable ARMA model has been used to model financial time series, including
returns in stock markets, commodity markets and foreign exchange markets; see
Mittnik et al. (1998). The ARMA(l;m) model is of the form

Yt ¼ cþ r1Yt�1 þ � � � þ rlYt�1�l þ et � f1et�1 � � � � � fmet�1�m;

where et � iid Saðs; b; mÞ.
Although the ML estimation for the stable ARMA model is notoriously diffi-

cult, since the CF of the error term has a closed form expression, it can be shown
that the joint CF of the stable ARMA model has a closed form expression. For
example, a two dimensional joint CF of the stable ARMA(1, 1) model, Yt ¼ rYt�1

þ et � fet�1 where et � Sað1; b; 0Þ, is given by

cðr1; r2;hÞ ¼ exp �jr2ja � jr1 þ ðr�fÞr2ja � jr1 þ rr2jajr�fja
1� jrja

� �

� exp

�
ib tan

pa
2

h
jr2jasignðr2Þ þ jr1 þ ðr�fÞr2jasignðr1 þ ðr�fÞr2Þ:

þ jr1 þ rr2jasignðr1 þ rr2Þjr�fjasignðr�fÞ
1� signðrÞjrja

i�
:

Based on the above expression of the joint CF, Knight and Yu (2002) estimate
various stable ARMA models.

4.6. Discrete Time Stochastic Volatility Model

The discrete time stochastic volatility (SV) model has been used to model stock
returns, interest rates, exchange rates; see Ghysels et al. (1996) and references therein.
The basic SV model is of the form,

Xt ¼ stet ¼ expð0:5htÞet; et � iidNð0; 1Þ; t ¼ 1; 2; . . . ;T ;

ht ¼ lþ aht�1 þ vt; vt � iidNð0; s2Þ;

where covðet; vtþ1Þ ¼ 0.

Empirical Characteristic Function Estimation 107



ORDER                        REPRINTS

Since Xt is a non-linear function of the latent AR(1) process, ht, it is difficult to
work with. Defining Yt to be the logarithm of X2

t , we have

Yt ¼ log s2t þ log e2t ¼ ht þ Et; t ¼ 1; 2; . . . ;T ;

where Et is the logarithm of the w21 random variable. Hence, Yt depends on the latent
process ht in a linear form.

It is known that the SV model offers a powerful alternative to more widely used
ARCH-type models (Kim et al., 1998). Unfortunately, neither Yt nor Xt has a closed
form expression for the likelihood function. This property makes the likelihood-
based estimation extremely difficult to implement since it requires that the latent
process be integrated out of the joint density for the observed and latent processes.
As the convolution of an AR(1) process and an iid log w21 sequence, Yt has a closed
form expression of the joint CF. Hence the ECF method is a viable alternative. The
joint CF of Yt; Ytþ1; . . . ; Ytþk�1 is first derived in Yu (1998) and given by

cðr1; . . . ; rk; hÞ ¼ exp

"
il

1� a

Xk
j¼1

rj � s2

2ð1� a2Þ

 Xk
j¼1

r2j þ 2a
Xk
l¼1

Xk
j¼lþ1

aj�l�1rlrj

!#

�
Yk

j¼1

Gð12þ irjÞ
Gkð12Þ

2i
Xk
j¼1

rj;

where Gð�Þ is the Gamma function.
A special case of the above SV model is the subordinated stochastic process

proposed in Clark (1973) where a is set to be 0. Furthermore, it can be shown that
more general SV models can also have a closed form joint CF and hence the ECF
procedures are applicable. For example, for the SV model with the leverage effect
defined by

Yt ¼ log s2t þ log e2t ; et � iidNð0; 1Þ; t ¼ 1; . . . ;T

log s2t ¼ lþ a log s2t�1 þ vt; vt � iidNð0; s2Þ

where covðet; vtþ1Þ ¼ rs2, the joint CF of Yt; Ytþ1; . . . ; Ytþk�1 is given by Knight et al.
(2002)

cðr1; . . . ;rk;hÞ¼ exp
il

1�a

Xk
j¼1

rj

" #
exp � s2

2ð1�a2Þ
Xk
j¼1

rjak�j

 !2
2
4

3
5

� exp �s2 1�r2
	 

2

Xk
l¼2

Xk
j¼l

aj�lrkþ1�j

 !2
2
4

3
5Qk

j¼1G
1
2þ irj
	 


Gk 1
2

	 
 2
i
Pk
j¼1

rj

�
Yk
j¼2

1F1 rjþ1

2
;
1

2
;�s2r2

2

Xj�1

l¼1

rjaj�1�l

 !2
0
@

1
A;

where 1F1 is the hypergeometric function.
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4.7. Affine Jump Diffusion Models

Affine jump diffusion models have been used extensively to describe the
dynamics of asset prices in finance. A general affine model is taken from Duffie
et al. (2000) and is of the form

dYt ¼ mðYtÞdtþ sðYtÞdBt þ dZt;

where Bt is a standard Brownian motion, and Zt is a pure jump process with intensity
flðYtÞg and jump size n. The process is affine if

mðyÞ ¼ K0 þ K1y;

sðyÞs0ðyÞ ¼ ðH0Þij þ ðH1Þijy;
lðyÞ ¼ l0 þ l1y:

Duffie et al. (2000) derive the CCF of Ytþ1 conditional on Yt which is given by

cYtðr; Ytþ1Þ ¼ E½expðirYtþ1ÞjYt� ¼ expðCð1Þ þDð1Þ0YtÞ;

where Dð�Þ and Cð�Þ satisfy the following complex-valued Ricatti equations:

@DðtÞ
@t

¼ K0
1DðtÞ þ 1

2
DðtÞ0H1DðtÞ þ l1ðgðDðtÞÞ � 1Þ;

@CðtÞ
@t

¼ K0
0DðtÞ þ 1

2
DðtÞ0H0DðtÞ þ l0ðgðDðtÞÞ � 1Þ;

with boundary conditions: Dð0Þ ¼ ir;Cð0Þ ¼ 0, gð�Þ being the moment generating
function of n . With certain specifications of the coefficient functions ðK;H;LÞ
and g, explicit solutions of Dð�Þ and Cð�Þ can be found. Two papers which have
estimated the above model via the ECCF are Singleton (2001) and Chacko and
Viceira (2003).

Jiang and Knight (2002) derive the joint CF of a particular class of affine jump
diffusion models, where some of the state variables are unobserved. It includes as a
special case the following continuous time square-root SV model

dYt ¼ mdtþ h
1=2
t dB1t;

dht ¼ bða� htÞdtþ sh1=2
t dB2t; ð4:18Þ

dB1tdB2t ¼ rdt:

Suppose Yt is observed at equi-spaced intervals on the model defined by (4.18) with
initial condition Y0 ¼ y0. The joint CF of ðY1; . . . ; Ypþ1Þ is given by,

cðr1; . . . ; rpþ1; Y1; . . . ; Ypþ1jy0Þ ¼ exp
Xpþ1

k¼1

C 1; r�k
	 
 !

exp D 1; r�1
	 
0

y0

� �
; ð4:19Þ
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where r�pþ1 ¼ rpþ1 and r�k ¼ rk � iDð1; r�kþ1Þ, with k ¼ 1; . . . ;p. If the CF of Y0 is
fðr; y0Þ, then the unconditional joint CF of ðY1; . . . ; Ypþ1Þ is given by,

cðr1; . . . ; rpþ1; Y1; . . . ; Ypþ1Þ ¼ exp
Xpþ1

k¼1

C 1; r�k
	 
 !

f D 1; r�1
	 


; y0
	 


:

Based on the joint CF, Jiang and Knight (2002) estimate the continuous time SV
model by applying the continuous ECF procedure proposed in Yu (1998) and
Knight and Yu (2002).

5. ECF ESTIMATION FOR A SELF-EXCITING JUMP
DIFFUSION MODEL

To illustrate the ECF procedure I now consider a self-exciting jump diffusion
model which is first proposed by Knight and Satchell (1998). A small scale Monte
Carlo study and an empirical study are performed.

5.1. The Model

It is common in the financial literature to assume that the price of an asset at
time t, PðtÞ, follows a geometric Brownian motion (BM)

dPðtÞ ¼ gPðtÞdtþ sPðtÞdBðtÞ;

where BðtÞ is a standard BM, g is the instantaneous return and s2 is the instanta-
neous variance. By including the jump component, Merton (1976) assumes that
the price follows the mixed Brownian–Poisson process

dPðtÞ ¼ gPðtÞdtþ sPðtÞdBðtÞ þ PðtÞðexpðQÞ � 1ÞdNðtÞ; ð5:20Þ

where BðtÞ is a standard Brownian motion; NðtÞ is Poisson process with intensity
parameter l; BðtÞ and NðtÞ are assumed to be independent; Q is an independent
normal variable with mean mQ and variance s2Q. Using Ito’s lemma, we solve the
stochastic differential Eq. (5.20) for the log return XðtÞð¼ logðPðtÞ=Pðt� 1ÞÞ,

XðtÞ ¼ g� s2

2

� �
þ sðBðtÞ � Bðt� 1ÞÞ þ

XDNðtÞ

n¼1

QðnÞ

¼ mþ sðBðtÞ � Bðt� 1ÞÞ þ
XDNðtÞ

n¼1

QðnÞ; ð5:21Þ

where QðnÞ ¼Pn

i¼1 Qi if n � 1, and m ¼ g� s2=2. Hence, the behavior of XðtÞ
depends not only on the continuous diffusion part mþ sðBðtÞ � Bðt� 1ÞÞ, but also
a dis-continuous jump part

PDNðtÞ
n¼1 QðnÞ.

Knight and Satchell (1998) extend the Merton model by assuming that the
Poisson process NðtÞ has a stochastic intensity function lðtÞ which is self-exciting
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as follows:

lðtÞ ¼ bs2 þ flðt� 1Þ þ an2ðt� 1Þ; ð5:22Þ
where nðtÞ is Nð0; 1Þ conditional on NðtÞ, and IðtÞ is information up to the close of
the market on day t. In Appendix A, we show that Eq. (5.22) is equivalent to

lðtÞ ¼ bVarðXðt� 1ÞjIðt� 2ÞÞ þ an2ðt� 1Þ: ð5:23Þ
and

VarðXðtÞjIðt� 1ÞÞ ¼ s2 þ fVarðXðt� 1ÞjIðt� 2ÞÞ þ aðm2Q þ s2QÞn2ðt� 1Þ;
ð5:24Þ

where f ¼ bðm2Q þ s2QÞ:
According to the specification, the jump component’s arrival time is endogen-

ously determined, reflecting past volatility in the data and deviations from economic
fundamentals. It offers a more general specification than models with a constant
jump intensity (Jorion, 1988; Merton, 1976). It can be regarded as an alternative
way to model the time varying jump intensity via exogenous variables (Bekaert
and Gray, 1998; Das, 1999). A similar jump specification is incorporated in models
proposed by Chan and Maheu (2002) and Maheu and McCurdy (2004) where the
jump intensive is assumed to follow a Gaussian autoregressive structure.c As noted
in Maheu and McCurdy (2004), such models allow jumps to cluster. This feature is
termed ‘‘jump clustering’’ which is analogous to ‘‘volatility clustering’’ in the
GARCH and SV literature. In Eq. (5.22) jump clustering is captured by parameter f.

Obviously, the model defined by (5.21) and (5.22) can be regarded as the discrete
version of bivariate diffusion process for ðXt; ltÞ0 with one of the state variables, lt,
latent. Unfortunately, the likelihood function has no closed form and hence the ML
method is infeasible. We show in the theorem below, however, that the joint CF has a
closed form expression and thereby facilitates the use of theGMMandECFprocedures.

Theorem 5.1. If a random process fXðtÞgTt¼1 is a self-exciting Poisson jump diffu-
sion model which is defined by Eqs. (5.21) and (5.23), then the joint CF of
XðtÞ; . . . ;Xðt� kÞ is,

cðr1; . . . ; rkþ1; hÞ ¼ exp im
Xkþ1

j¼1

rj � 1

2
s2
Xkþ1

j¼1

r2j

 !
exp

bs2

1� f

Xkþ1

j¼1

GðrjÞ
( )

�
Y1
l¼0

1� 2afl
Xkþ1

j¼1

fkþ1�j
GðrjÞ

( )�1=2

�
Ykþ1

j¼2

1� 2a
Xj
l¼1

fj�l
GðrlÞ

( )�1=2

; ð5:25Þ

cMaheu and McCurdy (2004, Sec. 4) give several interesting examples in which one should

expect that jumps tend to be followed by jumps.
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where f ¼ bðm2Q þ s2QÞ; GðrÞ ¼ expðirmQ � ðr2s2Q=2ÞÞ � 1, and h ¼ ðm; s2; a; b;
mQ; s

2
QÞ0 are the parameters of interest.

Proof. See Appendix A. &

It is well known that the joint CF can be used, as well, to derive closed form
expressions for marginal and joint moments of the model, by evaluating derivatives
of the joint CF at zero. In particular, the unconditional moments can be derived
from the marginal CF while the joint moments can be derived from the joint
CF. For example, covðXðtÞ;Xðt� sÞÞ ¼ 2m2Qa

2fs=ð1� f2Þ. Hence, XðtÞ and Xðt� sÞ
are uncorrelated when mQ ¼ 0. However, XðtÞ and Xðt� 1Þ are not independent
since cðr1; r2; hÞ 6¼ cðr1; hÞcðr2; hÞ. Appendix B presents the analytic expressions
for some moments of the model, including four unconditional moments and three
autocovariances. These moment conditions form the basis of the GMM procedure.

As for the ECF method, we use the continuous ECF procedure based on the
joint CF. The ECCF procedure is not used here since the state variables lt is not
observable. To use the ECF method, we have to choose a value for p. It is easy to
see that the model does not have a Markov property, and hence a larger p works
better than a smaller p in terms of asymptotic efficiency. In the Monte Carlo study
we only choose p ¼ 1 to ease the computational burden while in the empirical study
we choose several values for p to examine the effect of p on the estimates. Note that
with p ¼ 1

cðr1; r2; hÞ ¼ exp
bs2

1� f
ðGðr1Þ þGðr2ÞÞ þ imðr1 þ r2Þ � 1

2
s2ðr21 þ r22Þ

� �

�
Y1
l¼0

1� 2aflðfGðr1Þ þGðr2ÞÞ
 ��1=2ð1� 2aGðr1ÞÞ�

1
2; ð5:26Þ

and

cnðr1; r2Þ ¼ 1

n

Xn
j¼1

expðir1xj þ ir2xjþ1Þ: ð5:27Þ

Although the optimal ECF procedure proposed in a recent study by Carrasco et al.
(2002) should lead to an estimator with ML efficiency, in this paper I use the
sub-optimal WLS-ECF method with an exponential weighting function. As a result,
the procedure is to choose ðm̂m; ŝs2; âa; b̂b; m̂mQ; ŝs2QÞ to minimize

ZZ
jcðr1; r2; hÞ � cnðr1; r2Þj2 expð�r21 � r22Þdr1dr2; ð5:28Þ

where cðr1; c2; hÞ and cnðr1; r2Þ are given by (5.26) and (5.27).
The implementation of the ECF method essentially requires minimizing

(5.28), which involves double integrals. Unfortunately, no analytic solutions for
either the double integrals or the optimization are available. Consequently, we
will numerically evaluate the multiple integral (5.28), followed by numerical
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minimization of (5.28) with respect to h. The numerical solutions are the desired
estimators.

A 96-point Hermite quadrature is used to approximate the two dimensional
integral in (5.28). Since there is no analytic expression for the derivatives of the
objective functions, the Powell’s conjugate direction algorithm (Powell, 1964)
is used to find the global minimum. All computations are done in double
precision.

By using the procedure, we examine the performance of the ECF method in the
estimation of the self-exciting jump diffusion model in a Monte Carlo study. We also
fit the model to a real data set.

5.2. Monte Carlo Experiments

The Monte Carlo study is designed to check the viability of the ECF method
in comparison with a GMM procedure. For simplicity, in the model defined by
Eqs. (5.21) and (5.23), we let m ¼ mQ ¼ s ¼ 0; a ¼ 1 and assume them to be known
quantities. Therefore, the model can be represented by

XðtÞ ¼
XDNðtÞ

n¼1

QðnÞ; ð5:29Þ

where QðnÞjDNðtÞ � i:i:d:Nð0; s2QÞ;DNðtÞ � PðlðtÞÞ, and

lðtÞ ¼ flðt� 1Þ þ n2ðt� 1Þ: ð5:30Þ

I choose parameters s2Q ¼ 1 and b ¼ 0:5, which imply f ¼ 0:5. The number of
observations is set at T ¼ 2000 and the number of replications is 1000.

I propose two estimators. One is the GMM estimator based on ad hoc moment
conditions, the other is the ECF estimator. The details of the GMM procedure are
given by Hansen (1982) in a more general framework. In this specific situation, I
arbitrarily choose seven moment conditions that are listed in Appendix B. The only
guide used to select these moments is to avoid high order moments due to the erratic
finite-sample behavior caused by the presence of fat-tails in the distribution of the
returns, pointed out by Andersen and Sorensen (1996). For the ECF, I used the
GMM estimates as the starting point.

Table 1 shows the mean, median, minimum, maximum, MSE and root mean
square error (RMSE) for both sets of estimates, and serves to illustrate that the
ECF method outperforms the GMM procedure. For example, the ECF estimates
have smaller biases than the GMM estimates. Moreover, theMSE’s of the GMM esti-
mates are larger than those of the ECF estimates, suggesting the ECF method is more
efficient than the GMM procedure. Of course, the GMM procedure adopted here
may not be ideal since it is based on a set of ad hoc moments conditions. If one keeps
adding moments and adopts the optimal scheme of Hansen (1982), asymptotic effi-
ciency should improve (Liu, 1997). If the increased moment conditions are based
on power functions of a random variable, the ML asymptotic efficiency can be
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achieved (Gallant and Tauchen, 1999). However, the ECF procedure used here is also
sub-optimal. In the context of the scalar diffusion, Carrasco et al. (2002) find
that their optimal ECF procedure outperforms the efficient method of moment of
Gallant and Tauchen (1996) where a judiciously chosen set of moment conditions
is used.

5.3. An Empirical Application

The data used in the empirical study consists of more than 72 years (19, 302
observations) of daily geometric returns (defined as 100ðlogPtþ1 � logPtÞ) for the
Dow Jones Industrial Average (DJIA) index covering the period from October 2,
1928 to June 12, 2001. The series is plotted in Fig. 1.

In this empirical study, we fit the model defined by (5.21) and (5.23) to the data
using the continuous ECF procedure with p ¼ 1; 2; 3. The parameters of interest are
h ¼ ðm; s2; a; b; mQ; s2QÞ0. The parameter estimates and corresponding asymptotic
standard errors are presented in Table 2.

A few results emerge from the table. First and probably most importantly,
the autoregressive coefficient f in Eq. (5.22) is estimated to be 0.9512, 0.9340,
0.9426, for p ¼ 1; 2; 3. Using the delta method, we can obtain the asymptotic
standard error of f̂f, which is 0.2041, 0.1765, 0.1822 for p ¼ 1; 2; 3. Obviously f
is statistically significant in all the three cases. The result suggests overwhelming
evidence of jump clustering, consistent with the empirical findings recently docu-
mented in Chan and Maheu (2002) and Maheu and McCurdy (2004). Second, the
ECF estimates of mQ; s

2
Q are highly significant and indicate that jumps are present

in the sample path of DJIA returns over the period from 1928 to 2001. This
result is consistent with the findings by Ball and Torous (1985) and Chib et al.
(2002) in the sample paths of daily stock returns. Moreover, the estimate of mQ
is significantly less than 0, suggesting that on average jumps lead to a negative
return in the stock market. Third, the estimates clearly depend on but are not
highly sensitive to the overlapping block size p. It is apparent that the parameters

Table 1. Monte Carlo study to compare ECF with GMM for the self-exciting jump diffusion

model.

b ¼ 0:5 s2Q ¼ 1:0

ECF GMM ECF GMM

Mean 0.5087 0.5132 0.9803 0.9630
Med 0.5067 0.5176 0.9757 0.9675
Min 0.3395 0.0965 0.6331 0.4116
Max 0.6492 0.847 1.340 1.643

Mse 0.00287 0.00485 0.0195 0.0394
RMSE 0.0536 0.0696 0.1396 0.1980

Note: The reported statistics are based on 1000 simulated replications each with sample size

equal to 2000.
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associated with the jump component are relatively less stable than those in the
diffusion component.

6. CONCLUSION

In this paper, the estimation method via the ECF has been described and
illustrated. The estimation method requires no tractable form or property of
the likelihood function. It is accomplished by matching the CF with ECF. We
illustrate the ECF procedure by estimating a self-exciting jump diffusion model.

Table 2. Estimation of the self-exciting jump diffusion model via ECF using DJIA data.

Method m s2 a b mQ s2Q

ECF 0.0712 0.1687 0.3065 0.6053 �0.4341 1.3830
(p ¼ 1) (0.0091) (0.0009) (0.0315) (0.0954) (0.0814) (0.1789)

ECF 0.0710 0.1685 0.3117 0.6142 �0.4122 1.3507

(p ¼ 2) (0.0090) (0.0009) (0.0303) (0.0842) (0.0758) (0.1655)

ECF 0.0711 0.1686 0.2986 0.5979 �0.4278 1.3994
(p ¼ 3) (0.0089) (0.0009) (0.0290) (0.0801) (0.0736) (0.1549)

Note: The numbers in brackets are standard errors.

Figure 1. Daily observations of the Dow Jones industrial average index returns from October
2, 1928 to June 12, 2001.
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Simulations demonstrate that the ECF method works well in comparison with an
ad hoc GMM approach. An empirical application to DJIA index returns shows
some interesting results, including evidence of jump clustering.

APPENDIX A

Proof of Theorem 5.1.

We start the proof by showing that Eqs. (5.22)–(5.24) are equivalent. From the
definition of Iðt� 1Þ, we get

VarðXðtÞjIðt� 1ÞÞ ¼ Varðmþ sðBðtÞ � Bðt� 1ÞÞ þ
XDNðtÞ

n¼1

QðnÞjlðtÞÞ

¼ s2 þ lðtÞðm2Q þ s2QÞ: ðA:1Þ

Substituting out lðtÞ in Eq. (5.23), we then get

VarðXðtÞjIðt� 1ÞÞ ¼ s2 þ aðm2Q þ s2QÞnðt� 1Þ2

þ bðm2Q þ s2QÞVarðXðt� 1ÞjIðt� 2ÞÞ: ðA:2Þ

Furthermore, by substituting out VarðXðt� 1ÞjIðt� 2ÞÞ in Eq. (5.23), we get

lðtÞ ¼ bs2 þ bðm2Q þ s2QÞlðt� 1Þ þ an2ðt� 1Þ; ðA:3Þ

which is Eq. (5.22). Since the intensity represents how fast new information arrives,
Eq. (A.3) means that the speed of the arrival of new information on day t depends on
how frequent new information has arrived on day t� 1, as well as a random com-
ponent. By applying backward induction to Eq. (A.3), we get

lðtÞ ¼ bs2

1� f
ð1� ft�1Þ þ ft�1lð1Þ þ a

Xt�2

j¼0

fjn2ðt� j � 1Þ:

If jfj < 1, as t ! 1,

lðtÞ ¼ bs2

1� f
þ
X1
j¼1

fjn2ðt� j � 1Þ:

Consequently, the characteristic function of lðtÞ is

CðrÞ ¼ Eðexpðir lðtÞÞÞ ¼ E exp
�
is
	 bs2

1� f
þ
X1
j¼1

fjn2ðt� j � 1Þ
�
( )

¼ exp ir
bs2

1� f

� �Y1
j¼0

ð1� 2iafjÞ�1
2:
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Considering

XDNðt�lÞ

n¼1

QðnÞjDNðt� lÞ � NðmQDNðt� lÞ; s2QDNðt� lÞÞ;

we get

E
Ykþ1

l¼1

exp irl

XDNðt�lÞ

n¼1

QðnÞ
 !( )

¼ E E E
Ykþ1

l¼1

exp irl

XDNðt�lÞ

n¼1

QðnÞ
 !�����DNðt� lÞ; Iðt� kÞ

" #( )( )

¼ E E
Ykþ1

l¼1

expðimQrlDNðt� lÞ � r2l
2
s2QDNðt� lÞÞjIðt� kÞ

" #( )

¼ E
Ykþ1

l¼1

exp lðt� lÞðexp
�
imQrl �

r2l
2
s2Þ � 1

�� �( )

¼ E

(Ykþ1

l¼1

exp

��
bs2

1� f
ð1� fk�lÞ þ fk�llðt� kÞ

þ a
�
n2ðt� j � 1Þ þ � � � þ fk�l�1n2ðt� kÞÞ

��
exp imQrl �

r2l
2
s2

� �
� 1

��)

¼ exp
Xkþ1

l¼1

bs2

1� f
ð1� fk�lÞ exp

�
imQrl �

r2l
2
s2
�
� 1

� �" #

� E exp lðt� kÞ
Xkþ1

l¼1

fkþ1�l exp

�
imQrl �

r2l
2
s2

� �
� 1

�� �" #( )

� E
Ykþ1

l¼1

exp

�
aðn2ðt� j � 1Þ þ � � � þ fk�l�1n2ðt� kÞÞ

(

� exp imQrl �
r2l
2
s2

� �
� 1

� ���

¼ exp
Xkþ1

l¼1

bs2

1� f
ð1� fk�lÞ exp

�
imQrl �

r2l
2
s2
�
� 1

� �" #

� exp
bs2

1� f

Xkþ1

l¼1

fkþ1�l exp

�
imQrl �

r2l
2
s2
�
� 1

� �� �( )

�
Y1
j¼0

1� 2afj
Xkþ1

l¼1

fkþ1�l

�
exp

�
imQrl �

r2l
2
s2
�
� 1

�� �( )

� E exp
Xkþ1

j¼2

�
a
Xj
l¼1

fj�l

�
exp

�
imQrl �

r2l
2
s2
�
� 1

��" #( )
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which equals

exp
Xkþ1

l¼1

bs2

1� f
ð1� fk�lÞGðrlÞ

" #
exp

bs2

1� f

Xkþ1

l¼1

fkþ1�l
GðrlÞ

� �( )

�
Y1
l¼0

1� 2a1f
l
Xkþ1

j¼1

fkþ1�j
GðrjÞ

( )�1=2Ykþ1

j¼2

1� 2a
Xj
l¼1

fj�l
GðrlÞ

( )�1=2

¼ exp
bs2

1� f

Xkþ1

j¼1

GðrjÞ
( )Y1

l¼0

1� 2afl
Xkþ1

j¼1

fkþ1�j
GðrjÞ

( )�1=2

�
Ykþ1

j¼2

1� 2a
Xj
l¼1

fj�l
GðrlÞ

( )�1=2

:

Thus, the characteristic function of XðtÞ; . . . ;Xðt� kÞ is

cðr1; . . . ; rkþ1;hÞ
¼ E expðir1XðtÞ þ � � � þ irkþ1Xðt� kÞÞf g

¼ E exp

 
ir1

 
mþ sBð1Þ þ

XDNðt�lÞ

n¼1

QðnÞ
!(

þ� � � þ irkþ1

 
mþ sBð1Þ þ

XDNðt�lÞ

n¼1

QðnÞ
!!)

¼ E exp

 
im
Xkþ1

l¼1

rl

!
expðisðr1Bð1Þ þ � � � þ rkþ1Bð1ÞÞ exp

 Xkþ1

l¼1

irl

XDNðt�lÞ

n¼1

QðnÞ
!( )

¼ exp

 
im
Xkþ1

j¼1

rj � 1

2
s2
Xkþ1

j¼1

r2j

!
E
Ykþ1

l¼1

exp

 
irl

XDNðt�lÞ

n¼1

QðnÞ
!( )

¼ exp

 
im
Xkþ1

j¼1

rj � 1

2
s2
Xkþ1

j¼1

r2j

!
exp

bs2

1�f

Xkþ1

j¼1

GðrjÞ
( )

�
Y1
l¼0

1� 2afl
Xkþ1

j¼1

fkþ1�j
GðrjÞ

( )�1=2Ykþ1

j¼2

1� 2a
Xj
l¼1

fj�l
GðrlÞ

( )�1=2

: ðA:4Þ

APPENDIX B

Analytic Expressions for Moments of the Self-Exciting
Jump Diffusion Model

The model is defined by Eqs. (5.21) and (5.23). The joint cumulant generating
function is obtained by applying the logarithmic operator to the joint characteristic
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function (5.26). The coefficients on the Taylor series expansion of the joint cumulant
generating function are the cumulants of the model (Kendall and Stuart, 1958, p. 83),
that is

log cðr1; r2; hÞ ¼
X1
j;k¼1

kjk
ðir1Þj
j!

ðir2Þk
k!

:

Hence we have

k1 ¼ bs2 þ a
1� f

mQ þ m

k2 ¼ bs2 þ a
1� f

ðm2Q þ s2QÞ þ s2 þ 2a2m2Q
1� f2

k3 ¼ bs2 þ a
1� f

ðm3Q þ 3mQs
2
QÞ þ

8a3m3Q
1� f3

þ a2ðm2Q þ s2QÞmQ
1� f2

k4 ¼ bs2 þ a
1� f

ðm4Q þ 6m2Qs
2
Q þ 3s4QÞ þ

a2

1� f2
ð14m4Q þ 36m2Qs

2
Q þ 6s4QÞ

þ a3

1� f3
ð48m4Q þ 48m2Qs

2
QÞ þ

48a4m4Q
1� f4

k11 ¼
2a2m2Qf

1� f2

k12 ¼
2a2mQfðm2Q þ s2QÞ

1� f2
þ 2a3m3Qf

1� f3

k22 ¼
8a3m2Qfðm2Q þ s2QÞ

1� f3
þ 2a2fðm2Q þ s2QÞ2

1� f2
þ 16a3m2Qf

2ðm2Q þ s2QÞ
1� f3

þ 48a4f2m4Q
1� f4

:

The analytic expressions of corresponding moments can be then calculated using
the relationship given by Kendall and Stuart (1958),

m1 ¼ k1
m2 ¼ k2
m3 ¼ k3

m4 ¼ k4 þ 3m22
m11 ¼ k11
m12 ¼ k12

m22 ¼ k22 þ m22 þ 2m211;

where m1 ¼
R1
�1 xdFðxÞ;mj ¼

R1
�1ðx�m1ÞjdFðxÞ;8j> 1; and mjk ¼

R1
�1
R1
�1ðXt � m1Þj

ðXtþ1 � m1ÞkdFðXt;Xtþ1Þ.
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Künsch, H. (1989). The jackknife and the bootstrap for general stationary observa-
tions. Ann. Statist. 17:1217–1241.

Liu, J. (1997). Generalized method of moments estimation of affine diffusion
processes. Working Paper, Graduate School of Business: Stanford University.

Lukacs, E. (1970). Characteristic Functions. New York: Griffin.
Madan, D. B., Seneta, E. (1990). The variance gamma (V.G.) model from share

market returns. J. Business 63:511–524.
Maheu, J., McCurdy, T. (2004). News arrival, jump dynamics and volatility

components for individual stock returns. J. Finance 59:755–793.
Mandelbrot, B. (1963). The variations of certain speculative prices. J. Business

36:394–419.
Merton, R. (1976). Option pricing when underlying stock returns are discontinuous.

J. Financial Economics 3:125–144.
Mittnik, S., Rachev, S. T., Paolella, M. S. (1998). Stable paretian modeling

in finance: Some empirical and theoretical aspects. In: Adler, R. J.,
FeldmanR. E., Taqqu, M. S., eds. A Practical Guide to Heavy Tails.
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