Econometrics Journal (2000), volume 3, pp. 198-215.

BUGS for a Bayesian analysis of stochastic volatility models

RENATE MEYERT, JUN YU*

TDepartment of Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand
E-mail: meyer@stat.auckland.ac.nz
tDepartment of Economics, University of Auckland, Private Bag 92019, Auckland, New Zealand
E-mail: j.yu@auckland.ac.nz

Received: April 2000

Summary This paper reviews the general Bayesian approach to parameter estimation in
stochastic volatility models with posterior computations performed by Gibbs sampling. The
main purpose is to illustrate the ease with which the Bayesian stochastic volatility model can
now be studied routinely via BUGS (Bayesian inference using Gibbs sampling), a recently
developed, user-friendly, and freely available software package. Itis an ideal software tool for
the exploratory phase of model building as any modifications of a model including changes of
priors and sampling error distributions are readily realized with only minor changes of the code.
However, due to the single move Gibbs sampler, convergence can be slow. BUGS automates
the calculation of the full conditional posterior distributions using a model representation by
directed acyclic graphs. Itcontains an expert system for choosing an effective sampling method
for each full conditional. Furthermore, software for convergence diagnostics and statistical
summaries is available for the BUGS output. The BUGS implementation of a stochastic
volatility model is illustrated using a time series of daily Pound/Dollar exchange rates.

Keywords: Stochastic volatility, Gibbs sampler, BUGS, Heavy-tailed distributions, Non-
Gaussian nonlinear time series models, Leverage effect.

1. INTRODUCTION

The stochastic volatility (SV) model introduced by Tauchen and Pitts (1983) and Taylor (1982) is
used to describe financial time series. It offers an alternative to the ARCH-type models of Engle
(1982) and Bollerslev (1986) for the well-documented time-varying volatility exhibited in many
financial time series. The SV model provides a more realistic and flexible modelling of financial
time series than the ARCH-type models, since it essentially involves two noise processes, one for
the observations, and one for the latent volatilities. The so-called observation errors account for
the variability due to measurement and sampling errors whereas the process errors assess variation
in the underlying volatility dynamics (see, for example, Taylor (1994), Ghysels et al. (1996), and
Shephard (1996) for the comparative advantages of the SV model over the ARCH-type models).

Unfortunately, classical parameter estimation for SV models is difficult due to the intractable
form of the likelihood function. Recently, a variety of frequentist estimation methods have been
proposed for the SV model, including generalized method of moments (Melino and Turnbull
(1990), Sorensen (2000)), quasi-maximum likelihood (Harvey et al., 1994), efficient method of
moments (Gallant et al., 1997), simulated maximum likelihood (Danielsson (1994), Sandmann

© Royal Economic Society 2000. Published by Blackwell Publishers Ltd, 108 Cowley Road, Oxford OX4 1JF, UK and 350 Main Street,
Malden, MA, 02148, USA.

BUGS for SV models 199

and Koopman (1998)), and approximate maximum likelihood (Fridman and Harris, 1998). A
Bayesian analysis of the SV model is complicated due to multidimensional integration problems
involved in posterior calculations. These difficulties with posterior computations have been
overcome, though, with the development of Markov chain Monte Carlo (MCMC) techniques
(Gilks et al., 1996) over the last two decades and the ready availability of computing power.
MCMC procedures for the SV model have been suggested by Jacquier et al. (1994), Shephard
and Pitt (1997), and Kim et al. (1998).

Among all of these methods, MCMC ranks as one of the best estimation tools. See, for
example, Andersen et al. (1999) for a comparison of various methods in Monte Carlo studies.
However, MCMC procedures are ‘computationally demanding and much harder to implement,
using non-conventional software that is not widely available among researchers and practitioners
in the field’ (Fridman and Harris, 1998, p. 285).

The purpose of this paper is to illustrate the ease of implementation of a Bayesian analysis of
SV models using BUGS (Bayesian analysis using Gibbs sampling), a recently developed software
package (Spiegelhalter et al., 1996), as well as the major drawbacks of fitting SV models
with BUGS. BUGS is available free of charge from http://www.mrc-bsu.cam.ac.uk/bugs/
welcome.shtml for the operating systems UNIX, LINUX, and WINDOWS, among others. It
comes with complete documentation and two example volumes. BUGS is not a package specially
designed for time series analysis like SsfPack (Koopman et al., 1999) but rather an all-purpose
Bayesian software that does sampling-based posterior computations for a variety of statistical
models such as random effects, generalized linear, proportional hazards, latent variable, and
frailty models (Gilks et al., 1994). We will show that state-space models (Harvey, 1989, Ch. 2),
in particular the SV model, is amenable to a Bayesian analysis via BUGS. The SV model is simple
to implement in BUGS and does not require the programmer to know the precise formulae for any
prior density or likelihood. Its main strength lies in the ease with which any changes in the model,
such as different autoregressive structures or polynomial state transitions, the choice of different
prior distributions for the parameters, and the change from Gaussian to heavy-tailed observation
error distributions, are accomplished. This is in contrast to tailored implementations of stochastic
volatility models in low-level programming languages such as C, where any such change necessi-
tates major reprogramming usually followed by even more time-consuming debugging. Its major
weakness is the extremely slow convergence and inefficiency in terms of simulation due to the
single move Gibbs sampling algorithm. Due to high posterior correlations between successive
states of the SV model, mixing is generally very slow in single update MCMC algorithms (Kim
et al., 1998). Since a SV model contains at least one state per observation, a time series of up
to 5000 data points is probably the current limit that BUGS can handle. However, in terms of
exploring new models, BUGS is helpful as it is quite general, but more specific code may be
needed for more detailed and efficient applications.

This paper is organized as follows: in Section 2 we introduce a stochastic volatility model
using a well-studied dataset. Section 3 puts the SV model into the framework of nonlinear state-
space methodology and describes the Bayesian approach to parameter estimation using Gibbs
sampling. This model is then represented as a DAG in the fourth section. Its implementation
in BUGS is illustrated in Section 5 and a timing comparison is made to an implementation of
the same model in SVPack, a freeware dynamic link library for the Ox programming language
(Doornik, 1996) discussed by Kim ef al. (1998). Section 6 demonstrates that any modification of
the model becomes a simple task in BUGS and is implemented rapidly. In particular, we consider
a SV model that includes a leverage effect. We highlight the strength of the BUGS approach as
well as its current limitations in the Discussion.

© Royal Economic Society 2000

200 Renate Meyer and Jun Yu

2. THE STOCHASTIC VOLATILITY MODEL

For illustrative and comparative purposes, we use a dataset that has been previously analysed
by Harvey et al. (1994) and more recently by Shephard and Pitt (1997) and Kim et al. (1998)
using Gibbs sampling and by Durbin and Koopman (2000) using a maximum likelihood (ML) as
well as a Bayesian approach via importance sampling. The data consist of a time series of daily
Pound/Dollar exchange rates {x;} from 01/10/81 to 28/6/85. The series of interest are the daily
mean-corrected returns, {y; }, given by the transformation y; = log x; —log x;_1 — % Yo (logx;—
logx;—1),t = 1,...,n. The SV model used for analysing these data can be written in the form
of a nonlinear state-space model (Harvey, 1989). A state-space model specifies the conditional
distributions of the observations given unknown states, here the underlying latent volatilities, 6;,
in the observation equations:

1 jid.
yt|9t=exp<§9t)ut, Mtlf‘fi N, D), t=1,...,n. (D

The unknown states are assumed to follow a Markovian transition over time (therefore the state-
space models are often referred to as ‘hidden Markov models’) given by the state equations:
2 iid. 2

0O —1, 0, @, 77 =+ P01 — 1) + vy, v~ N(O, 77, r=1,....n, (2
with 89 ~ N(u, 2). The state 6, determines the amount of volatility on day ¢ and the value of
¢, —1 < ¢ < 1, measures the autocorrelation present in the logged squared data. Thus ¢ can
be interpreted as the persistence in the volatility, the constant scaling factor 8 = exp(u/2) as the
modal volatility, and t as the volatility of log-volatilities (cf. Kim ez al. (1998)).

A full Bayesian model consists of the joint prior distribution of all unobservables, here the
three parameters, i, ¢, 72, and the unknown states, 0o, 01, . .., 0y, and the joint distribution of the
observables, here the daily returns yi, ..., y,. Bayesian inference is then based on the posterior
distribution of the unobservables given the data. In the following, we will denote the probability
density function of a random variable 8 by p(6). By successive conditioning, the joint prior
density is

n
PG d, 7%, 00,61, ... 62) = p(i, ¢, T p@ol, T [[@i -1, 1, 6, 7). ()
t=1

We assume prior independence of the parameters /1, ¢, and 72, and use the same priors as in Kim
et al. (1998). We employ a slightly informative prior for u, u ~ N(0, 10). We set ¢ = 2¢™* — 1
and specify a Beta(a, B) prior for ¢* with @« = 20 and 8 = 1.5 which gives a prior mean for ¢ of
0.86. A conjugate inverse-gamma prior is chosen for 72, i.e. 7> ~ I1G (2.5, 0.025) which gives
a prior mean of 0.0167 and prior standard deviation of 0.0236. p(6;|6;—1, i, ¢, 7:2) is defined
through the state equations (2). The likelihood p(y1, ..., yulu, ¢, 2, 6o, . .., 0,) is specified by
the observation equations (1) and the conditional independence assumption:

n
POL - valit 6. T 00, - 0) = [| pOr160).)
t=1

Then, by Bayes’ theorem, the joint posterior distribution of the unobservables given the data is

© Royal Economic Society 2000

BUGS for SV models 201
__/ |

T

Figure 1. Representation of the stochastic volatility model as a directed acyclic graph (DAG).

for(tIN1:n)

proportional to the prior times the likelihood, i.e.

P, ¢, 72,60, -, 6l 1, -, ya) 0 p)p(@) p(H) pBolie, T [| P06 -1, 11, ¢, T°) x

t=1

[1rGul00. (5)
t=1

3. SV MODEL REPRESENTATION AS DAG

A graphical representation of the full Bayesian SV model not only helps to focus on the essential
model structure but can be used in the WinBUGS version to implement the model. For any
day ¢, let us represent all unobservables, i, ¢, 1:2, 0, and observables, y;, as ellipses. A way to
express the conditional independence assumptions is by drawing solid arrows between nodes (see
Figure 1). Open arrows go to deterministic nodes, which are logical functions of other nodes.
The conditional mean of 6,, thmean([t], is an example of a deterministic node as it is a function
of the nodes p, ¢, and 6;_;.

This renders a model representation as a directed acyclic graph (DAG) as all edges in the
graph are directed and there are no cycles because of the conditional independence assumptions.
Let V denote the set of all nodes in the graph. Direct predecessors of a node v € V are called
‘parents’, direct offspring the ‘children’. The solid arrows indicate that given its parent nodes,
each node v is independent of all other nodes except descendants of v. For instance, if on day ¢
we know the volatility on day 7 — 1 and the values of the parameters y, ¢, and 72, then our belief
about the volatility, 6;, on day ¢ is independent of the volatilities on previous days from 1 to t — 2
and the data of all other days except the current return y;.

It is then easy to construct the joint probability distribution of all stochastic nodes using the
graphical description of the conditional independence assumptions:

p(V) =[] plvlparents(v)). (©6)

veV

© Royal Economic Society 2000

202 Renate Meyer and Jun Yu

For our specific SV model, (6) is the graph-theoretical version of the right-hand side of (5). In
this way, the DAG (Figure 1) assists in constructing the full Bayesian model. For further reading
on conditional independence graphs and graphical chain models the interested reader is referred
to Wermuth and Lauritzen (1990).

4. BAYESIAN INFERENCE USING BUGS

Let V,, denote the subset of unobservable nodes, and V, the subset of observable nodes. Once
p(V) has been obtained from (6), a general technical difficulty encountered in any application of
Bayesian inference is calculating the high-dimensional integral necessary to find the normalization
constant in the posterior distribution of the unobservables given the data:

p(Vu, Vo) _ pV)
(Vo) fP(Vua Vo)dVy'

In our specific example this would require an (N + 4)-dimensional integration as we have to inte-
grate over the unobservables ., ¢, 72, 6o, - . ., B,. Calculating the marginal posterior distribution
of any variable would require a subsequent (N + 3)-dimensional integration. High-dimensional
integration problems can be solved via Markov chain Monte Carlo as reviewed in Gilks et al.
(1996). The Gibbs sampler, a special MCMC algorithm, generates a sample from the posterior (7)
by iteratively sampling from each of the univariate full conditional posterior distributions. These
univariate full conditional posterior distributions p(v|V\v), for v € V,, can be easily constructed
from the joint posterior distribution p(V) in (6) by picking out those terms that depend on v:

p@IV\D) o plolparents)) [plwlparents(w)). ®)

vEparents(w)

p(VulVo) =

)

This is facilitated by the graphical representation (Figure 1), as the full conditional posterior
distribution of any node v depends only on its parents, children, and co-parents. For instance, if
v = 6, then the full conditional posterior distribution of 6;, p(6;| i, ¢, 2,00, ...,0,_1, Or+1, O,
Y15 ..., YN), 1S proportional to

PONO 1, ., T X pOr1110r, 1, ¢, T2 X p(:16)).

Here, the dependence of the deterministic nodes thmean(t] and yisigmalt] as logical functions of
0:—1, i, @, and 6;, respectively, has been resolved. In this way, BUGS exploits the representation
of the model as a DAG for constructing these full conditional posterior distributions for all
unobservable nodes. Once this is accomplished, it uses certain sophisticated sampling methods
to sample from these univariate densities. BUGS contains a small expert system for choosing
the best sampling method. The first choice is to identify conjugacy, where the full conditional
reduces analytically to a well-known distribution, and to sample accordingly. If the density is
not conjugate but turns out to be log-concave, it employs the adaptive rejection sampling (ARS)
algorithm (Gilks and Wild, (1992)). If the density is not log-concave, BUGS uses a Metropolis—
Hastings (MH) step. The MH algorithms differ across the various BUGS versions and platforms.
The current UNIX version 0.6 uses the Griddy Gibbs sampler as developed by Ritter and Tanner
(1992). More efficient MH implementations currently under development include slice sampling
(Neal, 1997) for variables with a restricted range, and adaptive techniques (Gilks et al., 1998) for
variables with unrestricted range. A first version has been released under WinBUGS, the BUGS
version for the WINDOWSO95 operating system.

© Royal Economic Society 2000

BUGS for SV models 203

5. MODEL IMPLEMENTATION IN BUGS

For a typical BUGS run using the UNIX version 0.6, four different files have to be specified:

(i) The data are entered in a file with extension .dat, here called returns.dat.
(i1) Initial values for all unobservables needed to start the Gibbs sampler are in a .in file, here
swv.in.
(iii) The file that contains the model descriptions has the .bug extension, here sv.bug.
(iv) The commands for running BUGS that control the number of sampled values, which pa-
rameters to monitor and so on, go into the sv.cmd file. In WinBUGS, these commands are
options in various menus.

These four files are listed in the Appendix.

The data file can be either in rectangular format like returns.dat or in SPLUS format as in
returns_S.dat.

The format of the initial value file follows that of the data file, here for instance sv.in in SPLUS
format. If initial values for parameters are not given in the initial value file, then values will be
generated by forward sampling from the prior distributions specified in the model.

The DAG representation of our model not only serves BUGS-internal purposes but can assist
us in specifying our model in the BUGS language. The file containing the model specification,
sv.bug, consists of two sections: the declarations and the model description. The declaration part
specifies the name of the model, which nodes are constants (rectangles) and which are stochastic
(ellipses), and gives the name of the files containing the data and initial values. The model
description forms a declarative representation of the fully Bayesian model. It is enclosed in curly
brackets {...}. This is a translation of the graphical model into BUGS syntax. Each statement
consists of a relation of two kinds:

~ which means ‘is distributed as’ and substitutes the solid arrows,
< — which means ‘is to be replaced by’ and substitutes the open arrows.

Quantities on the left of a ~ are stochastic, those on the left of < — are deterministic. In general,
each quantity should appear once and only once on the left-hand side of a statement. The order
of the expressions within a pair of braces is irrelevant.

As mentioned before, WinBUGS has an option Doodle that allows the user to specify the
model graphically by drawing a DAG. It uses a hyper-diagram approach to add extra information
to the graph to give a complete model specification. DoodleBUGS then writes the corresponding
model in BUGS syntax to a file.

Note that BUGS uses a non-standard parametrization of distributions in terms of the precision
(1/variance) instead of the variance. For example, a normal distribution denoted by dnorm(v, v?)
has density function f(x|v, ¥?) = \/%_ne_%("_”)z‘pz. This is the reason for specifying the node
itau2. BUGS does not permit an expression to be used as a parameter of a distribution, and hence
we need the deterministic nodes thmean([t] and yisigma2][t].

Finally, the file sv.cmd compiles the BUGS commands in Sv.bug, generates an initial 10 000
iterations (the so-called ‘burn-in’ period), monitors every specified parameter for the next 100 000
iterations, stores every 20th value, and calculates summary statistics of the sampled values for
each specified parameter, based on a final chain length of 5000. To make results comparable to
those in Kim et al. (1998), we chose to monitor the nodes ¢, 7, and 8. Our preference is to submit
these commands as a batch job by using the command

© Royal Economic Society 2000

204 Renate Meyer and Jun Yu

backbugs "sv.cmd"

with session output automatically directed to the bugs.log file. Alternatively, BUGS can be run
interactively by using the command bugs.

BUGS generates five files after completion:

(1) The file bugs.log contains the BUGS code (sv.bug) that was used, any error messages, the
running time, and the requested summary statistics of the marginal posterior distribution
of each parameter. The posterior summaries from this file are listed in the Appendix.

(2) The file bugs.out contains two columns. The first column gives the iteration number, the
second column the corresponding sampled value.

(3) The file bugs.ind tells you which line of the bugs.out file corresponds to which monitored
variable. Here, lines 1 to 5000 of bugs.out are samples from variable phi, lines 5001 to
10000 from variable tau and lines 10001 to 15000 from variable beta.

(4) The file bugs1.out contains the results of the stats command in a rectangular format suit-
able for reading into statistical packages for producing graphs, tables, etc. The 10 columns
contain the summary statistics: mean, SD, observed lower percentile being reported (de-
fault 2.5%), observed lower percentile, observed upper percentile being reported, observed
upper percentile (default 97.5%), median, number of iterations, start iteration, and finish
iteration.

(5) The file bugsi.ind contains the node names for the variables listed, and the corresponding
row number in the bugs1.out file.

A menu-driven collection of SPLUS functions, CODA (Best et al., 1995), is available for
analysing the output obtained by BUGS. Besides trace plots and convergence diagnostics based
on Cowles and Carlin (1996), CODA calculates statistical summaries of the posterior distributions
and kernel density estimates. A version of CODA that runs under the public domain software R
can be downloaded from http://www-fis.iarc.fr/codaversion. Kernel estimates of the
posterior densities of the parameters ¢, 7, and 8 are shown in Figure 2. These compare with
those given in Figure 2 of Kim et al. (1998) and Figure 2 of Shephard and Pitt (1997). Table 1
compares the posterior means, time series standard errors (MC SE), integrated autocorrelation
times (IACT), and posterior standard deviations of the parameters ¢, t, and B to the estimates
obtained using the SVPack implementation of Kim et al. (1998). The results from SVPack are
based on 100000 iterations after a burn-in of 10000, and the same priors, and starting values.
The estimates are reasonably close to the ones quoted in Table 1 of Kim et al. (1998) based on
1000 000 iterations.

Extensive convergence diagnostics for this chain were calculated using the CODA software of
Best et al. (1995). All parameters passed the Heidelberger and Welch stationarity and halfwidth
tests. Geweke’s Z-scores for ¢, t, and S are very reasonable (0.226, —0.125, and —1.72,
respectively) but the Raftery and Lewis convergence diagnostics (estimating the 2.5th percentile
up to an accuracy of 0.02 with probability 0.9) suggest a larger sample size. This is reflected
in high posterior autocorrelations as already noted by Kim et al. (1998) and Shephard and Pitt
(1997). Note that Kim er al. (1998) based their results on a chain of length 1000000 after a
burn-in period of 50 000.

The integrated autocorrelation time, IACT (cf. Sokal (1996)), which is also referred to as
‘inefficiency factor’ by Kim et al. (1998) was calculated using the same window-based estimate
with the Parzen kernel with the same bandwidths as given in Kim ez al. (1998) for comparative
purposes. As the estimate of the posterior mean of a parameter x is the average of N correlated

© Royal Economic Society 2000

BUGS for SV models 205

Trace of beta Kernel density for beta
(5000 values per trace) (5000 values)
o
ﬁ (]
Q —
e
<) o
10000 12000 14000 0.5 1 1.5 2
iteration beta
Trace of phi Kernel density for phi
(5000 values per trace) (5000 values)
= & &
& o
o o
10000 12000 14000 0.9 0.95 1
iteration phi
Trace of tau Kernel density for tau
< (5000 values per trace) (5000 values)
S =
- =
CS
3 A
8 o g
- =
10000 12000 14000 0.1 0.2 0.3
iteration tau

Figure 2. Trace and kernel density estimates of the marginal posterior distribution of model parameters.

Table 1. Comparison of Bayesian estimates obtained from the state-space model using BUGS with Bayesian
estimates using SVPack as in Kim et al. (1998).

BUGS SVPack
Mean MC SE IACT SD Mean MC SE IACT SD
¢ 0.9797 0.0004434 150.2 0.01144 0.9774 0.0003338 101.5 0.01048
T 0.1562 0.001845 336.1 0.03184 0.1604 0.001346 200.4 0.03007
B 0.7209 0.003537 87.2 0.1198 0.6481 0.0006755 4.54 0.1002
Time (s) 6171 220

samples from a Markov chain, its variance is a factor of IACT larger than the variance of the
sample mean based on the same number of independent samples, i.e.

_ var(x)
var(xyc) = [ACT - N

Hence, IACT is the number of correlated samples with the same variance-reducing power as
one independent sample. A reasonable estimate of the MC standard error can be obtained by
multiplying the estimated standard deviation of x by the square root of the estimate of IACT
and dividing by the square root of the sample size (here, N = 100000). The interested reader
should note the paper by Geyer (1992) who develops improved window estimates for IACT by
calculating the ‘optimal” bandwidth using specific properties of the autocovariances of a Markov

© Royal Economic Society 2000

206 Renate Meyer and Jun Yu

chain. CODA automatically calculates the Monte Carlo standard error by batch means as well
as by Geweke’s (1992) method, often referred to as ‘numerical standard error’ or ‘time series
standard error’ which is based on estimating the spectral density.

The computing time to generate 100 iterations is 6.1 seconds using the LINUX version of
BUGS on a Pentium IIT PC. True, this compares dismally with 0.2 seconds per 100 iterations
for the SVPack implementation on the same computer. One should keep in mind, however, that
the SVPack implementation used optimized C++ code that was dynamically linked to the Ox
programming package. The all-purpose package BUGS is not meant to be a serious competitor to a
specially tailored package for one particular model. Whereas BUGS uses a ‘black-box’ simulation
technique (ARS) to sample from a full conditional density, the SVPack implementation makes
use of bounds for each full conditional density that results in efficient rejection sampling but
requires a mathematical analysis of the full conditionals under consideration, as detailed in Kim
et al. (1998). BUGS main strength, however, lies in its flexibility that allows the practitioner to
experiment with different scenarios.

6. FLEXIBLE MODELLING

Any implementation of the Gibbs sampler requires the specification of each of the full conditional
posterior densities and of a simulation technique to sample from them. Any change in the model
such as a different prior distribution or different sampling distribution necessarily entails changes
in those full conditional densities. As BUGS alleviates the tedious task of calculating the full
conditionals and as it also chooses an effective method to sample from them, one can experiment
with different types of models without worrying about major reprogramming. Modifications of
the model are straightforward to implement by changing just one or two lines in the code. To
illustrate this major strength and flexibility of the BUGS software, we consider the following
variations of the basic model implemented in the previous chapter:

e a sensitivity analysis, i.e. a change from the informative prior distributions for the model
parameters u, ¢, and 72 to non-informative priors to check how sensitive the results are to
prior specifications,

e fitting more complex models with additional parameters,

e using heavy-tailed distributions instead of Gaussians for the observation errors,

e and fitting a leverage effect model.

The model with non-informative priors will be referred to as Model 2. Changing the prior dis-
tributions of the three model parameters comes down to changing three lines of code. BUGS only
allows use of proper prior distributions but the non-informative distribution for a scale parameter
like 72, p(t?) o 1/72, is improper. Therefore, in BUGS one would use a gamma(0.001,0.001)
prior for the inverse of 72 which is practically equivalent to p(t?) o r% A vague Normal distri-
bution with mean 0 and some low precision like 0.001 is used to substitute the non-informative
distribution for a location parameter. The necessary changes in the BUGS code are:

mu ~ dnorm(0,0.001);
phistar ~ dunif(0,1);
itau2 ~ dgamma(0.001,0.001);

We observed only minor changes in the posterior distributions of the parameters. This indicates
that the statistical inference for these data is insensitive to misspecification of priors. Moreover,

© Royal Economic Society 2000

BUGS for SV models 207

using flat priors implies equality of posterior mode and MLE and Bayesian estimates based on
the posterior mode should therefore be very close to the ML estimates obtained by Durbin and
Koopman (2000). Note that the IACT and MC standard errors quoted in Table 2 are calculated
by Geweke’s method.

We fitted a model with one additional parameter using the same priors for the common
parameters i, ¢, and T2 as for the model in the previous section, now referred to as Model 1. An
AR(2) structure for the state transitions is specified in

Model 3:

1 iid.
yt|9t=exp 591‘ Uz, us =~ N(O, 1), t = 1,...,1’1,

i.i.d.
001, 1, b, U, T2 = 4+ POt —) + Y (Or2 —) + v, v < NO, T, t=1,...,n

The implementation of Model 3 in BUGS, for instance, requires only adding ¥ and ¢* to the
parameter list, adding corresponding initial values in the vol.in file, changing the state equation
to:

thmean[t] <- mu + phi*(theta[t-1]-mu) + psi*(thetal[t-2]-mu);
and adding a prior for v :

psi <-2*psistar-1;
psistar ~ dbeta(20,1.5);

In a further extension of Model 3, we consider a central Student #-distribution with unspecified
degrees of freedom, k, for the observation errors. Observation and state equations for Model 4
are specified by:

Model 4:

1 jid.
)’z|9t,k=exp<§91>uz, Mtl’l" Ik, t=1,...,n,

i.i.d.
0601, 1, o Y T =4 PG —) + YO —)+ v, v N NQO, T, t=1,...,n
This is coded in BUGS as:

y[t] ~ dt(0,yisigma2[t] ,k);
k ~ dchisq(8)I(2,50);

We have to restrict the ranges of those nodes with non-logconcave full conditional distributions
(such as k above) by specifying lower and upper bounds using the I(lower,upper) function for
BUGS to be able to use the Metropolis—Hastings updating step.

The posterior means, MC standard errors, inefficiency factors, and standard deviations of the
parameters for Models 1-4 and the total computing time needed for 100 000 iterations after a
burn-in of 10 000 are given in Table 2. The integrated autocorrelation times for the parameters in
the AR(2) model are considerably higher than in the basic Models 1 and 2 and the computation
time increased. The Metropolis—Hastings updating slows down the Gibbs sampler for Model 4.
Interestingly, the parameter ¥ is estimated to be positive and quite large with its upper interval
bigger than zero and the posterior mean of k in Model 4 suggests that the observation errors are
indeed non-Gaussian.

© Royal Economic Society 2000

208 Renate Meyer and Jun Yu

Table 2. Comparison of Bayesian estimates obtained using BUGS for parameter estimation in Models 1-4.

Model 1 Model 2
Mean MC SE IACT SD Mean MC SE IACT SD
) 0.9797 0.000402 124.3 0.01144 0.9760 0.000551 144.4 0.01450
T 0.1562 0.001490 219.5 0.03184 0.1750 0.001880 219.8 0.04010
B 0.7209 0.003180 70.5 0.1198 0.7080 0.002990 61.1 0.12100
Time (s) 6171 6477
Model 3 Model 4
Mean MC SE IACT SD Mean MC SE IACT SD
¢ 0.539 0.01020 300.7 0.186 0.588 0.0106 339.2 0.182
¥ 0.441 0.01010 298.1 0.185 0.398 0.0106 343.0 0.181
T 0.200 0.00222 213.9 0.048 0.159 0.00189 254.0 0.0375
B 0.759 0.00342 52.7 0.149 0.729 0.00365 68.0 0.140
k 13.3 0.230 368.3 3.79
Time (s) 9387 26115

The basic SV model does not address the so-called leverage effect that relates the changes in
volatility to the sign and magnitude of price changes in an asymmetric way (see e.g. Black (1976),
Glosten et al. (1993), and Harvey and Shephard (1996)), modelled by introducing correlation
between the error distributions of the returns and the log-volatilities, u; and v, 1, respectively.
A negative correlation would infer that a negative return is likely to be associated with a positive
variance shock vy41. The leverage model is particularly important for stock returns, but the
leverage effect is expected to be much lower for exchange rates (Harvey and Shephard, 1996).
In the following, we demonstrate Bayesian parameter estimation in a leverage model via MCMC
with BUGS using the same time series as above.

Compared to Model 1, the leverage Model 5 has one additional parameter, the correlation p:

Model 5:
1
y,|9t,p=exp 59; Uy, t = 1,...,71,

OstlOr, i, b, T2 o=+ 9O —) +tv, t=1,...,n—1

()= 40)- 7))

This implies a bivariate Normal distribution for y;|6;, p and 6,1116;, i, ¢, T2, p. By writing this
bivariate Normal density as the product of the density of 6;,1|6;, i, ¢, T2 and the conditional
density of y;|6,41, 6;, i, ¢, T2, p, it is easily seen that Model 5 can alternatively be specified by

Or4116r, 11, @, T2 ~ N{p + ¢ (6 — 1), 7%},

YilOri1, 61, 1, 9, T, p ~ N[g exp (6 /2){6i+1 — 1 — ¢ (6 —)}, exp (B1)(1 — pz)}-

with

© Royal Economic Society 2000

BUGS for SV models 209

Table 3. Bayesian estimates of parameters in the leverage effect Model 5 using BUGS.

Model 5
Mean MC SE IACT SD
] 0.988 0.000227 60.1 0.00926
T 0.197 0.0000428 17.5 0.00323
B 1.05 0.00712 69.5 0.270
P —-0.214 0.00128 40.0 0.0640
Time (s) 18667

These two conditional distributions specify the state and observation equations in the leverage
model. They are easily coded in BUGS:

theta0 ~ dnorm(mu,itau2);
thetamean[1] <- mu + phix(thetalO-mu);
thetal[1l] ~ dnorm(thetamean[1],itau2)I(-5,5);

for (t in 2:n) {
thetamean[t] <- mu + phix*(thetal[t-1]-mu);
theta[t] ~ dnorm(thetamean[t],itau2)I(-4,4);
}

for (¢t in 1:(n-1)) {
Ymean[t] <- rho/tau*exp(0.5*theta[t])*(thetal[t+1]-mu
- phix(thetal[t]-mu)); Yisigma2[t] <- 1/(exp(thetalt])*(1-rho*rho));
Y[t] ~ dnorm(Ymean[t],Yisigma2[t]);
}

Ymean [n] <- mu-phi*(theta[n]-mu) ;
Yisigma2[n] <- 1/(exp(thetalnl]));
Y[n] ~ dnorm(Ymean[n],Yisigma2[n]);

We need the indicator function to give 6, a finite support since its full conditional distribution
is no longer log-concave and a MH updating step is needed. This slows the program down
tremendously as there are close to 1000 of these variables. However, the mixing is not affected.
On the contrary, the integrated autocorrelation times are smaller than for the basic SV model.
The posterior correlation between the parameters are lower than in the basic SV model without
leverage effect. A reduction in posterior correlation and thereby better mixing in the Gibbs
sampling is a phenomenon that is quite often observed after suitable reparametrization (Gilks and
Roberts, 1996). The parameter estimates for the leverage model based on 100 000 iterations after
a burn-in of 10000 are given in Table 3. The posterior correlations between parameters in the
basic SV Model 1 are contrasted to those in the leverage effect Model 5 in Table 4. The chain
passed all CODA convergence diagnostics. The trace plots and kernel density estimates of the
parameters are given in Figure 3.

© Royal Economic Society 2000

210

Trace of beta

Renate Meyer and Jun Yu

Kernel density for beta

(5000 values per trace) (5000 values)
@
g« B
Z | M-
< (=
10000 12000 14000 1 2
iteration beta
Trace of phi Kernel density for phi
(5000 values per trace) (5000 values)
% E
R 5
3
= =
< 10000 12000 14000 094 096 098 1
iteration phi
Trace of rho Kernel density for rho
o (5000 values per trace) (5000 values)
2 N
<
2 °
v 10000 12000 14000 -0.4 -0.2 0
iteration rho
Trace of tau Kernel density for tau
“ 5000 values per trace (5000 values)
2]
= 2
=
5 °
S 10000 12000 14000 0.17 0.18 0.19 0.2
iteration tau

Figure 3. Trace and kernel density estimates of the marginal posterior distribution of leverage model

parameters.

Table 4. Posterior correlations of parameters in SV Model 1 and leverage effect Model 5.

Model 1 Model 5
¢ T B ¢ T B o
¢ 1 1
T —0.695 1 —0.0640 1
B 0.506 —0.282 1 0.7070 —0.0239 1
—0.3390 0.0506 —0.2230 1

With a posterior mean of —0.215 and 95% posterior credibility interval for p of [—0.341,
—0.097], the Bayesian estimate of the correlation between the observation errors of the returns
and the subsequent log-volatilites indicates the presence of a significant leverage effect in this
time series of exchange rates. However, the leverage effect is not as strong as the ones observed
in time series of stock returns (Harvey and Shephard, 1996).

7. DISCUSSION

There is only a very moderate learning curve to ascend before one can write a first BUGS

© Royal Economic Society 2000

BUGS for SV models 211

program. However, anyone who is comfortable with model formulae and has an intuitive grasp of
fundamental statistical concepts should be capable of understanding, using, and modifying BUGS
code that has already been written for a particular SV model. For a Bayesian analysis, the required
statistical knowledge includes familiarity with the Bayesian paradigm and an appreciation for the
numerically intensive methods used for posterior computations.

We noted a strong dependency of the mixing behaviour of the chains on the specification
of bounds for each parameter with non-logconcave full conditional posterior. The tighter those
bounds the faster the convergence due to the Griddy Gibbs sampler used in the implementation of
the MH step that is necessary to sample from non-logconcave full conditional posteriors, as e.g.
from the full conditional of k. As demonstrated by Carter and Kohn (1994) and Shephard and Pitt
(1997), a multi-move sampler, i.e. a Gibbs sampler that updates the whole state vector at once
instead of one state at a time, can be more efficient. However, the multi-move and block samplers
are more difficult to implement, requiring specialized code in a low-level programming language
such as C++ (Shephard and Pitt, 1997). Writing and debugging might take anything from several
days to a few weeks. A subsequent modification of the program, perhaps an extension of the
model, choice of different priors, or an application to a different dataset, might well take several
hours. The gain in efficiency is therefore largely outweighed by the ease of implementation in
BUGS and the feasibility of running large chains, nowadays, on fast computers. The possibility
of implementing multi-move or block samplers in BUGS still needs to be investigated.

As typical for the ‘standard’ SV models, with Gaussian errors and linear state transition, the
full conditional distributions of all states 6, 61, . . . , 6, are lognormal and therefore sampling from
these full conditionals can be very fast using adaptive rejection sampling. However, including a
leverage effect or any nonlinearity in the state equations such as a polynomial for instance, i.e.
0 = o+ h16,—1 + ¢26l271, will result in non-logconcave full conditionals for all states, thereby
requiring ‘Metropolis—Hastings-within-Gibbs’ sampling. This makes the Gibbs sampler almost
prohibitively slow for typical financial time series of about 1000 time points. With more efficient
MH algorithms such as those based on slice sampling and adaptive techniques that are currently
being developed and implemented (Lunn et al., 2000), this might only be a transient curb and
overcome with future enhancements of the BUGS software.

ACKNOWLEDGEMENTS

This work was supported by the Royal Society of New Zealand Marsden Fund and the University
of Auckland Research Committee. Furthermore, we would like to thank Neil Shephard for very
helpful comments that led to significant improvements over first drafts of this paper.

REFERENCES

Andersen, T., H. Chung, and B. Sorensen (1999). Efficient method of moments estimation of a stochastic
volatility model: A Monte Carlo study. Journal of Econometrics 91, 61-87.

Best, N. G., M. K. Cowles, and S. K. Vines (1995). CODA Manual Version 0.30. New York: MRC Bio-
statistics Unit.

Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Asso-
ciation, Business and Economic Statistics Section 177-81.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics
31,307-27.

© Royal Economic Society 2000

212 Renate Meyer and Jun Yu

Carter C. K. and R. Kohn (1994). On Gibbs sampling for state space models. Biometrika 81, 541-53.

Cowles, M. K. and B. P. Carlin (1996). Markov chain Monte Carlo convergence diagnostics: a comparative
review. Journal of the American Statistical Association 91, 883-905.

Danielsson, J. (1994). Stochastic volatility in asset prices: estimation with simulated maximum likelihood.
Journal of Econometrics 64, 375-400.

Doornik, J. A. (1996). Ox: Object Oriented Matrix Programming, 1.10. London: Chapman & Hall.

Durbin, J. and S. J. Koopman (2000). Time series analysis of non-Gaussian observations based on state space
models from both classical and Bayesian perspectives (with discussion). Journal of the Royal Statistical
Society Series B 62, 3-56.

Engle, R. FE. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United
Kingdom inflation. Econometrica 50, 987-1007.

Fridman, M. and L. Harris (1998). A maximum likelihood approach for non-Gaussian stochastic volatility
models. Journal of Business and Economic Statistics 16, 284-91.

Gallant, A. R., D. Hsie, and G. Tauchen (1997). Estimation of stochastic volatility models with diagnostics.
Journal of Econometrics 81, 159-92.

Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to the calculation of posterior
moments. In Bernardo, J. M., Berger, J. O., Dawid, A. P., and Smith, A. E. M. (eds), Bayesian Statistics
4, pp. 169-93. Oxford: Oxford University Press.

Geyer, C. J. (1992). Practical Markov Chain Monte Carlo. Statistical Science 7, 473-83.

Ghysels, E., A. C. Harvey, and E. Renault (1996). Stochastic volatility. In Rao, C. R. and Maddala, G. S.
(eds), Statistical Models in Finance, pp. 119-91. Amsterdam: North-Holland.

Gilks, A., G. O. Robert, and S. K. Sahu (1998). Adaptive Markov Chain Monte Carlo through regeneration.
Journal of the American Statistical Association 93, 1045-54.

Gilks, W.R., S. Richardson, and D. J. Spiegelhalter (1996). Markov Chain Monte Carlo in Practice. London:
Chapman & Hall.

Gilks, W. R. and G. O. Roberts (1996). Strategies for improving MCMC. In Gilks, W. R., Richardson, S.,
and Spiegelhalter, D. J. (eds), Markov Chain Monte Carlo in Practice, pp. 89—-114. London: Chapman
& Hall.

Gilks, W. R., A. Thomas, and D. J. Spiegelhalter (1994). A language and program for complex Bayesian
modelling. The Statistician 43, 169-78.

Gilks, W. R. and P. Wild (1992). Adaptive rejection sampling for Gibbs sampling. Applied Statistics 41,
337-48.

Glosten, L., R. Jagannathan, and D. Runkle (1993). On the relation between the expected value and the
volatility of the nominal excess return on stocks. Journal of Finance 48, 1779-801.

Harvey, A. (1989). Forecasting, Structural Time Series Models and the Kalman Filter. New York: Cambridge
University Press.

Harvey, A. C., E. Ruiz, and N. Shephard (1994). Multivariate stochastic variance models. Review of Economic
Studies 61, 247-64.

Harvey, A. C. and N. Shephard (1996). The estimation of an asymmetric stochastic volatility model for asset
returns. Journal of Business and Economic Statistics 14, 429-34.

Jacquier, E., N. G. Polson, and P. E. Rossi (1994). Bayesian analysis of stochastic volatility models. Journal
of Business and Economic Statistics 12, 371-89.

Kim S., N. Shephard, and S. Chib (1998). Stochastic volatility: likelihood inference and comparison with
ARCH models. Review of Economic Studies 65, 361-93.

Koopman, S. J., N. Shephard, and J. A. Doornik (1999). Statistical algorithms for models in state space
using SsfPack 2.2. Econometrics Journal 2, 107-60.

Lunn, D. J., A. Thomas, N. G. Best, and D. J. Spiegelhalter (2000). WinBUGS—A Bayesian modelling
framework: concepts, structure, and extensibility. Statistics and Computing 10, 325-37.

Melino, A. and S. M. Turnbull (1990). Pricing foreign currency options with stochastic volatility. Journal
of Econometrics 45, 239-65.

Neal R. M. (1997). Markov chain Monte Carlo methods based on ‘slicing’ the density function. Technical
Report No. 9722. Department of Statistics, University of Toronto.

© Royal Economic Society 2000

BUGS for SV models 213

Ritter, C., and M. A. Tanner (1992). Facilitating the Gibbs sampler: the Gibbs stopper and the griddy-Gibbs
sampler. Journal of the Royal Statistical Society, Series B 59,291-317.

Sandmann, G. and S. J. Koopman (1998). Estimation of stochastic volatility models via Monte Carlo
maximum likelihood. Journal of Econometrics 87, 271-301

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In Cox, D. R., Hinkley, D. V.,
and Barndorff-Nielson, O. E. (eds), Time Series Models in Econometrics, Finance and Other Fields,
pp. 1-67. London: Chapman & Hall.

Shephard, N. and M. K. Pitt (1997). Likelihood analysis of non-Gaussian measurement time series.
Biometrika 84, 653-67.

Sokal, A. D. (1996). Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms.
Lectures at the Cargese Summer School on ‘Functional Integration: Basics and Applications’.

Sorensen, M. (2000). Prediction based estimating equations. Econometrics 3, Forthcoming.

Spiegelhalter, D. J., A. Thomas, N. G. Best, and W. R. Gilks (1996). BUGS 0.5, Bayesian Inference Using
Gibbs Sampling. Manual (Version ii). Cambridge, UK: MRC Biostatistics Unit.

Tauchen, G. and M. Pitts (1983). The price variability-volume relationship on speculative markets. Econo-
metrica 51, 485-505.

Taylor, S. J (1982). Financial returns modelled by the product of two stochastic processes—a study of the
daily sugar prices 1961-75. In Anderson, O. D. (ed.), Time Series Analysis: Theory and Practice, 1,
pp. 203-26. Amsterdam: North-Holland.

Taylor, S. J (1994). Modelling stochastic volatility. Mathematical Finance 4, 183-204.

Wermuth, N. and S. L. Lauritzen (1990). On substantive research hypothesis, conditional independence
graphs and graphical chain models (with discussion). Journal of the Royal Statistical Society Series B
38, 21-72.

APPENDIX

returns.dat

-0.320221363079782
1.46071929942995
-0.408629619810947
1.06096027386685
1.71288920763163
0.404314365893326
-0.905699012715806
-1.01657225575983

2.22371628398118

returns_S.dat

list(y = c(-0.320221363079782, 1.46071929942995,..., 2.22371628398118))

sv.in

© Royal Economic Society 2000

214 Renate Meyer and Jun Yu

0.975
0
50

sv.cmd

compile("sv.bug")
update (10000)
monitor (phi,20)
monitor (tau,20)
monitor (beta,20)
update (100000)
stats(phi)
stats(tau)
stats(beta)

q()

sv.bug:

model volatility;
const n=945;

var y[n], yisigma2[n], thetaO, thetal[n], thmean[n],
mu, beta, phi, phistar, tau, itau2;

data y in "returns.dat";
inits phistar, mu, itau2 in "sv.in";

{
likelihood: joint distribution of ys

for (t in 1:n) { yisigma2[t] <- 1/exp(thetalt]);
y[t] ~ dnorm(0,yisigma2[t]);
}

prior distributions

mu ~ dnorm(0,0.1);
phistar ~ dbeta(20,1.5);
itau2 ~ dgamma(2.5,0.025);
beta <- exp(mu/2);

phi <- 2xphistar-1;

tau <- sqrt(l/itau2);

theta0 ~ dnorm(mu,itau2);
thmean[1] <- mu + phi*(thetaO-mu);
thetal[l] ~ dnorm(thmean[1],itau2);
for (t in 2:n) { thmean[t] <- mu + phi*(thetal[t-1]-mu);
theta[t] ~ dnorm(thmean[t],itau2);
}

© Royal Economic Society 2000

BUGS for SV models 215

bugs.log
Bugs>stats(phi)
mean sd 2.5% : 97.5% CI median sample
9.797E-1 1.144E-2 9.524E-1 9.963E-1 9.815E-1 5000
Bugs>stats (tau)
mean sd 2.5% : 97.5% CI median sample
1.562E-1 3.184E-2 1.011E-1 2.282E-1 1.537E-1 5000
Bugs>stats(beta)
mean sd 2.5% : 97.5% CI median sample
7.209E-1 1.198E-1 5.596E-1 1.018E+0 6.955E-1 5000

© Royal Economic Society 2000

