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ESTIMATION OF THE STOCHASTIC VOLATILITY MODEL BY THE
EMPIRICAL CHARACTERISTIC FUNCTION METHOD
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Summary

The stochastic volatility model has no closed form for its likelihood and hence the maximum
likelihood estimation method is difficult to implement. However, it can be shown that the
model has a known characteristic function. As a consequence, the model is estimable via
the empirical characteristic function. In this paper, the characteristic function of the model
is derived and the estimation procedure is discussed. An application is considered for daily
returns of Australian/New Zealand dollar exchange rate. Model checking suggests that the
stochastic volatility model together with the empirical characteristic function estimates fit
the data well.
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1. Introduction

Modelling the volatility of financial time series has attracted a lot of attention since the
introduction of autoregressive conditional heteroscedasticity (ARCH) (Engle, 1982). A feature
of the ARCH-type model is that the conditional variance is driven by the past variables. An
alternative setup to the ARCH-type model, the stochastic volatility (SV) model, provides a
more realistic modelling of financial time series since it essentially involves two noise pro-
cesses. This added dimension makes the model more flexible (see e.g. Kim, Shephard & Chib
(1998) for the comparative advantages of the SV model over the ARCH-type models). For
further discussion of the SV model, we refer to Ghysels, Harvey & Renault (1996). Unfortu-
nately, the density function for the SV model has no closed form and hence neither does the
likelihood function, even for the simplest version of the SV model; as a consequence, direct
maximum-likelihood estimation is very difficult to implement. Therefore, other estimation
methods have been proposed for estimating SV models.
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Melino & Turnbull (1990) use the generalized method of moments (GMM) for the SV
model. Andersen & Sorensen (1996) propose a more efficient GMM. For the continuous time
SV model, a GMM approach is developed by Hansen & Scheinkman (1995). The idea is
to match a finite number of sample moments and theoretical moments. Alternatively, the
quasi maximum likelihood (QML) approach is suggested by Nelson (1988), Ruiz (1994) and
Harvey, Ruiz & Shephard (1994). The main idea is to treat non-normal disturbances as if
they are normal and then maximize the quasi-likelihood function. Often estimation methods
involve the whole family of simulation-based methods, such as the simulated maximum like-
lihood proposed by Danielsson (1994), and Markov chain Monte Carlo (MCMC) proposed
by Jacquier, Polson & Rossi (1994) and Kim et al. (1998), and the simulation method using
important sampling and antithetic variables proposed by Durbin & Koopman (2000). The SV
model has become a central model for describing financial time series and for comparing the
relative merits of estimation procedures.

Although some of above-mentioned methods are consistent under appropriate regularity
conditions, in general they are not efficient. For example, when there are only a finite number
of moment conditions, MM/GMM can miss important information contained in the realiza-
tions. The QML approach simply approximates the true information. Not surprisingly, such an
approximation could lose substantial amounts of information. Most of the simulation-based
methods are more efficient, but they have higher computational costs.

The present paper uses another approach to estimate the SV model, namely the empirical
characteristic function (ECF). The rationale for using the characteristic function (CF) is that
there is a one-to-one correspondence between the CF and the cumulative distribution function.
Consequently, the ECF should contain the same amount of information as the empirical cumu-
lative distribution function (ecdf). Furthermore, by using the CF, we can overcome difficulties
arising from ignorance of the true density function or the true likelihood function. In essence,
the ECF method we propose is akin to approximating the likelihood by the product of joint
densities of overlapping blocks, of a fixed size, in our data. In this sense it can be viewed as
an approximation to the methods which claim to analyse the full likelihood, such as MCMC,
etc. It is computationally less intensive than the simulation methods, however.

The paper is organized as follows. Section 2 introduces the simplest version of the SV
model and explains why the model is difficult to estimate. Section 3 presents a general dis-
cussion of the ECF method, with particular emphasis on ECF estimation for the SV model;
the CF of the SV model is obtained as well. In Section 4 we make a few remarks about
the ECF estimation method. Section 5 illustrates the method by applying it to daily returns
of Australian dollar–New Zealand dollar exchange rate. Section 6 concludes the paper. All
proofs are collected in the Appendix.

2. The model

The formulation of the discrete time SV model is similar to that of ARCH-type models.
That is, the conditional variance is directly modelled. However, in contrast to ARCH-type
models, the SV model allows a random component in the transition equation. Therefore, the
model can explain why large changes can follow stable periods. The simplest version of the
SV model is of the form,

xt = σtet (t = 1, 2, . . . , T ) ,

where σ 2
t is the conditional variance based on the information at the end of time t, and the

et are independent and identically distributed (iid) random disturbances which are assumed
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to have a standard normal distribution. We define

σt = exp(0.5ht )

and assume ht follows a Gaussian AR(1) process, i.e.

ht = λ+ αht−1 + vt , vt iid N(0, σ 2
v ) , (1)

where θ = (α, λ, σv) are the unknown parameters. It is well known that if |α| < 1, this
process is invertible and stationary. Heuristically, we can say that the conditional variance
depends on past conditional variance and a random component. When the effect of the past
conditional variance is strong, volatility clustering appears in the series. However, if the ran-
dom innovation is not dominated, it can bring a large change into a stable period and can
smooth large booms and crashes as well. If the random component is omitted, the transi-
tion equation is deterministic and the model exhibits time-varying but deterministic volatility.
Finally, we assume et and vt+1 are uncorrelated.

Some statistical properties of xt are determined by ht since xt is a simple function of
ht . For example, ht is stationary for |α| < 1, so xt is stationary as well. Furthermore, xt
is a martingale difference because et is a martingale difference. We also note that xt has
finite moments of all orders and in particular the second and fourth moments are given by
E(x2

t ) = exp
(
λ/(1−α)+σ 2

v /(2(1−α2))
)
, and E(x4

t ) = 3 exp
(
2λ/(1−α)+2σ 2

v /(1−α2)
)
.

The kurtosis of xt is therefore 3 exp
(
σ 2
v /(1 − α2)

)
, so xt exhibits more kurtosis than a

constant variance normal model. Furthermore, Harvey (1998) derives the moments of powers
of the absolute value of xt ,

E(|xt |c) = 2c/2
�( 1

2c + 1
2 )

�( 1
2 )

exp
( cλ

2(1 − α)
+ c2σ 2

v

8(1 − α2)

)
(c > −1) ,

var(|xt |c) = 2c
(
�(c + 1

2 )

�( 1
2 )

−
(�( c2 + 1

2 )

�( 1
2 )

)2
)

exp
( cλ

1 − α
+ c2σ 2

v

2(1 − α2)

)
(c > − 1

2 ) .

Since xt is a nonlinear function of an AR(1) process, however, the process is difficult to
work with. Observing that the dependence of xt is completely characterized by the depen-
dence of ht , we define yt to be the logarithm of x2

t . Then we have

yt = ln σ 2
t + ln e2

t = ht + εt (t = 1, 2, . . . , T ) , (2)

where εt = ln e2
t is the logarithm of the chi-squared random variable with 1 degree of free-

dom. Hence, the new process yt still depends on the AR(1) process ht , but in a linear form.
Since the process ht contains all the parameters of interest, yt loses no information from
the estimation point of view, the only loss of information being the sign of et which for a
symmetric distribution, uncorrelated in εt and vt , contributes nothing to volatility estimation.
This is why most of the estimation procedures in the literature are based on yt , not xt . Note
that equation (2) together with equation (1) forms a non-normal state space model. See Durbin
(2000) for more detailed discussion on the state space model.

Neither yt nor xt has a closed-form expression for the likelihood function. This property
makes the estimation based on the likelihood extremely difficult. However, from (2) we know
that yt is the convolution of an AR(1) process and an iid logarithmic χ2

1 sequence, and hence
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there is a closed-form expression for the CF of yt which we derive in the next section. Since
the CF contains the same amount of information as the distribution function, the model is fully
and uniquely parameterized by the CF. Therefore, the model is estimable via the ECF.

3. ECF estimation

Before we discuss the estimation of the SV model via the ECF, it is worthwhile to briefly
outline the ECF estimation method.

Suppose the cumulative distribution function (cdf) of X is F(x; θ) which depends on a
parameter θ . The CF is defined as

c(r, θ) = E
(

exp(irx)
) =

∫
exp(irx) dF(x, θ) ,

and the ECF is the sample counterpart of the CF, that is,

cn(r) = 1

n

n∑
j=1

exp(irxj ) =
∫

exp(irx) dFn(x) ,

where Fn(x) is the ecdf and r is the transformation variable. Therefore, the CF and ECF are
the Fourier transformations of the cdf and ecdf. Because of the uniqueness of the Fourier–
Stieltjes transform, the CF has the same information as the cdf and the ECF retains all the
information in the sample. We also note that the CF contains only the parameters and the ecf
contains only the data. The general idea for the ECF estimation method is to minimize various
measures of the distance between the ECF and the CF. For example, by choosing a grid of
values for the transformation variable, r1, . . . , rq , we can minimize the distance

q∑
j=1

|cn(rj )− c(rj , θ)|2g(rj ) ,

i.e. the distance on q discrete points. Or by choosing the transformation variable r continu-
ously, we can minimize ∫

|cn(r)− c(r, θ)|2g(r) dr ,
i.e. the distance over an interval. In both cases g is a weight function.

If the observations are an iid sequence, the marginal ecdf contains all the information in
the sample and so does the marginal ECF. There is an extensive literature on estimation using
the ECF for the iid environment, mostly by choosing the transformation variable discretely.
To estimate the mixture of normals, for example, Quandt & Ramsey (1978) use the empirical
moment generating function instead of the ECF. However, the ECF can be used in the same
way; see Tran (1998). Moreover, there are known convergence results for the empirical char-
acteristic function process

√
n(cn(r)− c(r, θ)), which have been established by Feuerverger

& Mureika (1977) and Csörgő (1981) for any iid sequence.
Estimating a strictly stationary stochastic process using the ECF is not exactly the same

as estimating an iid sequence, because the dependence must be taken into account. Since
the marginal ecdf does not capture the dependence of a dependent sequence, the marginal
ECF would suffer the same problem. Therefore we need to use the joint CF, by a procedure
involving moving blocks of data. We first define the overlapping blocks for y1, y2, . . . , yT as

zj = (yj , . . . , yj+p) (j = 1, . . . , T − p) .
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Hence each block has p periods overlapping with its adjacent blocks. The CF of each block
is basically a joint one and is defined as

c(r, θ) = E
(

exp(irTzj )
)
,

where the transformation variable r is a p + 1 dimensional vector, i.e. r = (r1, . . . , rp+1).

The joint ECF is defined as

cn(r) = 1

n

n∑
j=1

exp(irTzj ) , where n = T − p .

As a sequence of overlapping moving blocks, not surprisingly, zj is dependent. Un-
der standard regularity conditions, cn(r) converges almost surely to c(r, θ) for any r (see
Feuerverger, 1990). Based on this result, Feuerverger (1990) and Knight & Satchell (1997)
propose matching the joint CF with the joint ECF over a grid of discrete points. In practice,
however, it is not entirely clear how to choose these discrete points and how many one should
use. Rather than choosing the transformation variable discretely, we follow Knight & Yu
(2002) and match the joint CF with the joint ECF over an interval. That is

min
θ∈�

∫
· · ·

∫
|c(r, θ)− cn(r)|2g(r) dr1 · · · drp+1 , (3)

or solve ∫
· · ·

∫ (
c(r, θ)− cn(r)

)
w(r) dr1 · · · drp+1 = 0 , (4)

where both g(r) and w(r) are continuous weight functions. Under some regularity condi-
tions on the weight functions, these two methods are equivalent and hence we consider only
the procedure based on (3). Our calculations are with respect to the unconditional (steady-
state) joint CF of zj , but they could be done with respect to the conditional CF instead — an
approach that has recently been suggested by Singleton (2001) and Chacko & Viceira (2001)
for estimating diffusion processes.

In this paper, the procedure based on (3) is referred to as the continuous ECF method. In
this method the transformation variable is simply integrated out. Also, the actual implementa-
tion requires the specification of a weight function. When the weight is chosen to be optimal,
the procedure can lead to an estimator which achieves the Cramér–Rao lower bound. For
example, Feuerverger (1990) shows that the ECF estimator is asymptotically efficient when
the weight function in (4), w(r), is given by

w(r) =
∫

· · ·
∫

exp(−irTz)
∂

∂θ
ln f (yj+p | yj , . . . , yj+p−1) dyj · · · dyj+p ,

where f is the conditional probability density function (pdf) of the data. However, w(r) is
not calculable if the pdf is unknown, as is the case here for the SV model.

Under standard regularity conditions, Knight & Yu (2002) establish the strong consis-
tency and asymptotic normality for the ECF estimators with a general weight function. In this
paper we chose the weight to be an exponential function, exp(−r ′r).

The model we are going to estimate via the ECF is the one defined by (2) and (1) since
we can derive the closed form expression of the CF. In order to use the ECF method we need
to find the expression of the joint CF. Proposition 3.1 gives the CF for the logarithm of the χ2

1
distribution; then the joint CF for yt , . . . , yt+k−1 is obtained in Proposition 3.2.
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Proposition 3.1. If εt
d= ln χ2

1 then the CF of εt is

c(r) = �( 1
2 + ir)

�( 1
2 )

2ir .

Proposition 3.2. Suppose {yt }Tt=1 is defined by (2). The joint CF of yt , . . . , yt+k−1 is

c(r1, . . . , rk, θ) = exp

(
iλ

1 − α

k∑
j=1

rj − σ 2
v

2(1 − α2)

( k∑
j=1

r2
j + 2α

k∑
$=1

k∑
j=$+1

αj−$−1r$rj

))

×
∏k
j=1 �(

1
2 + irj )

�( 1
2 )
k

2i%
k
j=1rj ,

where k − 1 = p is the size of the moving blocks.

Using the joint CF we can obtain the joint cumulant generating function and conse-
quently the autocorrelation function. The autocorrelation function of {yt }Tt=1 is given in
Proposition 3.3.

Proposition 3.3. Suppose {yt }Tt=1 is defined by (2); its autocorrelation is

ρk = αk
σ 2
v /(1 − α2)

σ 2
v /(1 − α2)+ c

(k = 1, 2, . . .), where c = �′′( 1
2 )

�( 1
2 )

−
(�′( 1

2 )

�( 1
2 )

)2 ≈ 0.4948 .

The yt process defined by (2) is the sum of an AR(1) and white noise. It is well known
that the result is a non-normal ARMA(1,1) model. This is confirmed by the expression of ρk .

To use the ECF method to estimate the SV model (2) and (1), we choose p = 1 (i.e.
k = 2) at first. When p = 1 we have

c(r1, r2, θ)

= exp
(
iλ
r1 + r2

1 − α
− σ 2

v

2(1 − α2)
(r2

1 + 2αr1r2 + r2
2 )

)�( 1
2 + ir1)�(

1
2 + ir2)

�( 1
2 )

2
2ir1+ir2 , (5)

and cn(r1, r2) = 1

n

n∑
j=1

exp(ir1yj + ir2yj+1) .

Using Reω and Imω to denote the real and imaginary parts of ω, we have

Re cn(r1, r2) = 1

n

n∑
j=1

cos(r1yj + r2yj+1) and Im cn(r1, r2) = 1

n

n∑
j=1

sin(r1yj + r2yj+1) .

Therefore, the procedure is to choose (α̂, σ̂v, λ̂) to minimize

∫∫ ((
Re c(r1, r2)−Re cn(r1, r2)

)2 +(
Im c(r1, r2)−Im cn(r1, r2)

)2
)

exp(−r2
1 −r2

2 ) dr1 dr2 ,

(6)
where c(r1, r2) = c(r1, r2, θ) is given by (5).
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It is straightforward to check that the appropriate regularity conditions hold for the ap-
plication of standard asymptotic theory. The resulting estimators are consistent and asymp-
totically normal with the asymptotic covariance matrix of the estimators given by

1

n
B(θ)−1A(θ)B(θ)−1 ,

where B(θ) =
∫

· · ·
∫ (∂Re c(r, θ)

∂θ

∂Re c(r, θ)

∂θT
+ ∂Im c(r, θ)

∂θ

∂Im c(r, θ)

∂θT

)
g(r) dr .

The appendix gives the expression for A(θ) and a proof of the above result.
The actual implementation of the ECF method essentially requires minimizing (6), and

thus involves double integrals. We numerically evaluate the multiple integral (6), and then
numerically minimize (6) with respect to θ . The numerical solutions are the desired estimators.

We use a 39-points Gauss–Hermitian algorithm to approximate the two-dimensional in-
tegrations in (6) and the conjugate direction algorithm proposed by Powell (1964) to find
the minimum of the objective function. As starting point in the optimization we chose the
quasi-maximum likelihood estimates proposed by Ruiz (1994). All computations have been
done in double precision.

4. Further discussion on the ECF method

The ECF estimator is dependent on the pre-specified weight function and the block size.
In theory the ECF retains all the information in the sample and hence one should expect that the
inference based on the ECF should work as well as that based on the likelihood function, but
in practice, efficient estimation via the ECF requires a closed form solution of the conditional
score. When the conditional score does not have a closed form expression, the optimal ECF
method is not feasible. In Section 3 we proposed an exponential function as the weight, for
two reasons. First, it enables us to use a particular quadrature method and hence is numerically
convenient. Second, it puts more weight on the points around the origin, consistent with the
recognition that the CF contains the most information around the origin. It is important to
point out that with the exponential weight the ECF estimator is asymptotically inefficient.
The finite sample behaviour of the ECF estimator with various exponential weights has been
examined in detail in the SV context and the ARMA context by Yu (1998) and Knight & Yu
(2002) respectively.

As to the block size, note that the blocks always contain no less information as p in-
creases and thus the resulting estimators are supposed to be asymptotically more efficient.
The relative efficiency is not clear in finite samples since a larger p also reduces the effective
sample size (i.e. the total number of blocks). Moreover, calculations associated with larger
p are numerically more intensive. Therefore, in practice there are always two trade-offs: the
block size versus the sample size and the asymptotic efficiency versus the computational effi-
ciency. In the framework of linear ARMA models, Knight &Yu (2002) show that the choice of
p is related to the dimension of the minimal sufficient statistics. For pure AR($) processes,
for instance, the overlapping moving blocks with p = $ form a set of sufficient statistics
and hence it is good enough to set p = $. For a general ARMA process, however, since any
statistics of dimension less than the sample size are not sufficient, the blocks with a larger p
always improve asymptotic efficiency. Knight & Yu (2002) further suggest that p should be
chosen such that the ARMA process can be well approximated by an AR(p) process.
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As we showed in Section 3, the SV model can be represented by a non-normal ARMA(1,1)
model. Consequently, it is not clear what the optimal block size should be. Since yt follows
an ARMA(1,1) model, the partial correlogram of yt can be used to choose a reasonable p.
For example, if the partial correlogram cuts off after lag $, p can be set at $− 1.

The basic SV model discussed in Section 2 is too simplistic for many financial series.
Many more flexible SV models have been proposed in the literature. One way to generalize the
basic SV model is to assume that disturbances vt and/or et have a fatter tailed distribution. In
recent literature, however, evidence has been found to favour the log-normal specification of
the volatility process. Using high frequency data, Andersen et al. (2001) find that the marginal
distribution of the realized volatility can be well approximated by a log-normal distribution.

Another way to make the basic SV model more flexible is to allow a long-range depen-
dence in volatilities (see e.g. Harvey, 1998; Breidt, Crato & De Lima, 1998). Unfortunately,
this specification invalidates one of the key assumptions imposed by Knight & Yu (2002) to
ensure the strong law of large numbers and the central limit theorem. In particular, the strong
mixing condition does not hold for the long memory specification.

A third way to generalize the basic SV model is to allow the so-called leverage effect
where shocks and negative shocks change the debt–equity ratio of a firm in different directions
and so, at a different scale, change the riskiness of the firm. In the SV context, the model with
the leverage effect is defined by

xt = σtet where εt iid N(0, 1) , yt = ln x2
t , (7)

ln σ 2
t = λ+ α ln σ 2

t−1 + vt where vt iid N(0, σ 2
v ) and cov(et , vt+1) = ρσ 2

v . (8)

If ρ < 0, the model has a leverage effect.
It can be shown that for the above SV model, the CF has a closed form expression and

hence is estimable via the ECF. The joint CF of yt , . . . , yt+k−1 is given in Proposition 4.1.

Proposition 4.1. Suppose {yt }Tt=1 is defined by (7) and (8). The CF of yt , . . . , yt+k−1 is

c(r1, . . . , rk; θ) = exp

(
iλ

1 − α

k∑
j=1

rj

)
exp

(
− σ 2

v α
2

2(1 − α2)

( k∑
j=1

rjα
k−j

)2)

× exp

(
− σ 2

v (1 − ρ2)

2

k∑
m=1

( k∑
j=1

rjα
j

)2)∏k
j=1 �(

1
2 + irj )

�k( 1
2 )

2
i
∑k

j=1
rj

×
k∏
j=1

1F1

(
irj + 1

2 ,
1
2 ; −σ

2
v ρ

2

2

( k∑
j=1

rjα
k−j

)2)
,

where 1F1 denotes the confluent hypergeometric function.

All the discrete SV models discussed above can be regarded as the discrete time approx-
imation to pure diffusion processes with stochastic volatility. A related model specification
is to mix diffusion with jumps. A special case of the jump-diffusion processes is the affine
jump-diffusion introduced by Duffie, Pan & Singleton (2000). For the affine jump-diffusion,
they show that the CF has a closed form expression. Consequently, Singleton (2001) and Jiang
& Knight (2002) estimate the affine jump-diffusion via the ECF method.
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Figure 1. Daily returns of the exchange rate

Since the ECF method is a frequency approach, the parameters of interest exclude the
unobserved state variables which are the unobserved volatilities in the SV model. Although
the ECF method cannot directly estimate these unobserved volatilities, their interpretation is
of interest. To estimate the unobserved volatilities, one can take advantage of the state space
representation of the model and make use of any filtering technique for non-Gaussian state
space models (such as Frühwirth-Schnatter, 1994).

5. Application

The data we use are the daily returns of Australian dollar–New Zealand dollar exchange
rate covering the period from 1 January 1993 to 31 December 1997. Suppose rt is the exchange
rate at time t. The mean-corrected returns are computed as

xt = 100
(
(ln rt − ln rt−1)−

1

T
(ln rT − ln r0)

)
.

The sample size is T = 1304. Figure 1 plots the series. Table 1 presents summary statistics
of xt , |xt |, and x2

t . There is a high level of excess kurtosis in xt , which suggests that the
marginal distribution of xt is not normal. The autocorrelation function (ACF) of xt suggests
the series is a martingale difference sequence while both x2

t and |xt | show a high degree of
persistence as given by the ACFs. This is evidence of volatility clustering. The argument
is further reinforced by the Ljung–Box statistic which indicates that there is not much serial
correlation in xt but significant serial correlation in both x2

t and |xt |.
The basic SV model defined in Section 2 is fitted to the dataset and the empirical results

with p = 1 are reported in Table 2. It can be seen that all three parameters are significant.
Compared to daily returns of many other financial time series (see e.g. Jacquier et al., 1994),
the stochastic exchange rate volatility is less persistent. That is, the stochastic exchange rate
volatility reverts more quickly to its long-term mean as evidenced by a relatively small α
estimate.

Larger values of p are also used for the ECF method. In Table 3, we report the ECF
estimates for p = 2, 3, 4, 5 where we fit the SV model to the same dataset. This table shows
that the empirical results remain almost unchanged for different values of p and are very close
to those for p = 1. This exercise indicates that a small value of p can work well for the ECF
method, at least for this problem.
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Table 1

Summary statistics of the exchange rates

xt |xt | x2
t

Mean 0 0.3738 0.2684
Standard deviation 0.5183 0.3588 0.5373
Kurtosis 4.997 7.167 65.70
Minimum –2.991 0.0034 0.00001
Median –0.004 0.2686 0.072
Maximum 2.066 2.991 8.946
ACF(1) –0.0071 0.0553 0.0943
ACF(2) –0.0611 0.0939 0.1420
ACF(3) –0.0444 0.0587 0.0380
ACF(4) –0.0011 0.0716 0.1292
ACF(5) 0.0113 0.0496 0.0681
ACF(10) –0.0421 0.0510 0.0246
ACF(20) –0.0222 0.0612 0.0715
ACF(30) –0.0008 0.0088 0.0171
Q(10) 12.12 (0.277) 57.22 (0) 73.96 (0)
Q(20) 24.88 (0.206) 86.72 (0) 98.22 (0)
Q(30) 31.86 (0.374) 113.59 (0) 106.34 (0)

Note: ACF(k) denotes the value of the autocorrelation functions of
order k. Q(k) denotes the Ljung–Box test statistic of order k with
P -values in parentheses.

Table 2

Empirical results for the exchange rates

α σv λ

Estimate 0.8247 0.3894 –0.2760
Standard error 0.0756 0.0988 0.100

Note: We choose p = 1 for the ECF method.

Table 3

Empirical results of ECF estimates with different values of p

α σv λ

p = 2 0.8089 (0.07471) 0.4047 (0.1026) –0.3021 (0.12345)
p = 3 0.8062 (0.08173) 0.4064 (0.1102) –0.3063 (0.1307)
p = 4 0.8051 (0.07847) 0.4094 (0.1046) –0.3076 (0.1302)
p = 5 0.8118 (0.07449) 0.4022 (0.1001) –0.2962 (0.1236)

Note: Asymptotic standard errors are presented in parentheses.

Table 4 presents the unconditional model moments of xt (namely, the variance and the
kurtosis of xt , and the expected value and the variance of |xt |) calculated by inserting the ECF
estimates with different values of p into the theoretical expressions and the same moments
from data. Also presented are the asymptotic standard errors of point estimates of these mo-
ments, using the delta method. Table 5 and Figures 2–3 further compare the autocorrelation
of the squared returns and the absolute returns with the implied theoretical autocorrelation
of x2

t and |xt | with the same estimates. The analytical expressions of both unconditional
model moments and the ACFs of x2

t and |xt | are given in Ghysels et al. (1996). Tables 4–5
and Figures 2–3 show that the ECF estimates provide all the four unconditional moments very
close to their data counterparts. In terms of the ACFs, the ECF estimates capture the dynamic
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Table 4

Comparison between unconditional data moments and unconditional model moments

Data p = 1 p = 2 p = 3 p = 4 p = 5

var(xt ) 0.2686 0.2625 0.2608 0.2606 0.2618 0.2627
(0.2279) (0.2113) (0.2257) (0.2155) (0.2129)

kurt(xt ) 4.9966 4.8194 4.8182 4.8098 4.8308 4.8212
(2.2952) (2.2407) (2.2810) (2.2781) (2.2165)

E(|xt |) 0.3738 0.3853 0.3840 0.3840 0.3846 0.3854
(0.1682) (0.1557) (0.1666) (0.1584) (0.1564)

var(|xt |) 0.1287 0.0954 0.0948 0.0947 0.0951 0.0955
(0.0828) (0.0768) (0.0820) (0.0783) (0.0774)

Note: Asymptotic standard errors are presented in parentheses.

Table 5

Comparison between conditional data moments and conditional model moments

Data p = 1 p = 2 p = 3 p = 4 p = 5

ρ1(|xt |) 0.055 0.104 0.101 0.101 0.101 0.102
ρ2(|xt |) 0.094 0.085 0.081 0.081 0.081 0.082
ρ3(|xt |) 0.059 0.069 0.065 0.064 0.065 0.066
ρ4(|xt |) 0.072 0.057 0.053 0.052 0.052 0.053
ρ5(|xt |) 0.050 0.047 0.042 0.041 0.041 0.043
ρ1(|xt |2) 0.094 0.071 0.076 0.069 0.069 0.070
ρ2(|xt |2) 0.142 0.056 0.064 0.054 0.053 0.054
ρ3(|xt |2) 0.038 0.045 0.054 0.042 0.042 0.043
ρ4(|xt |2) 0.129 0.036 0.046 0.033 0.033 0.034
ρ5(|xt |2) 0.068 0.029 0.040 0.026 0.026 0.027

0 5 10 15 20 25 30

0.
0

0.
05

0.
10

DATA
ECF(p=1)
ECF(p=2)
ECF(p=3)
ECF(p=4)
ECF(p=5)

Figure 2. ACF of x2

properties in the data reasonably well although the sample autocorrelation is more persistent.
Moreover, from Tables 4–5 and Figures 2–3 we note that the unconditional moments from
the ECF estimates with different values of p remain almost the same and the ACFs converge
quickly as p gets larger. This exercise serves to illustrate that the SV model is a reasonable
model specification for the data and the ECF technique is a viable estimation method.
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Figure 3. ACF of |x|

6. Conclusion

This paper proposes a method for estimating SV model via the ECF. Although the likeli-
hood method does not have a closed form for this model, we show that the CF can be derived
analytically and hence the ECF method can be used to estimate the system parameters. The
basic idea of the ECF method is to match the theoretical CF derived from the model to the ECF
calculated from the sampling observations. The approach yields consistent and asymptotically
normal estimates of the parameters. An empirical application to the Australian dollar–New
Zealand dollar exchange rate shows the capabilities of the ECF method.

Appendix

Proof of Proposition 3.1. If X
d= γ (r, α), then E(Xk) = �(r + k)/�(r)αk, provided that

Re(r + k) > 0. Now we have εt
d= lnU with U

d= χ2
1 = γ ( 1

2 ,
1
2 ), so

c(r) = E
(

exp(irεt )
) = E(Uir ) = �( 1

2 + ir)2ir

�( 1
2 )

.

Proof of Proposition 3.2. Since yt is a convolution of a Gaussian AR(1) process and an iid
sequence with χ2

1 distribution, we have

c(r1, . . . , rk, θ)

= E
(

exp(ir1yt + ir2yt+1 + · · · + irkyt+k−1)
)

= E
(

exp(ir1ht + ir1εt + ir2ht+1 + ir2εt+1 + · · · + irkht+k−1 + irkεt+k−1)
)

= E
(

exp(ir1ht + ir2ht+1 + · · · + irkht+k−1)
) k∏
j=1

E
(

exp(irj εt+j−1)
)

= E

(
exp

(
iht

k∑
j=1

αj−1rj + iλ

k∑
j=2

1 − αj−1

1 − α
rj +

k∑
$=2

νt+$−1

k∑
j=$

rjα
j−$

))

×
k∏
j=1

E
(

exp(irj εt+j−1)
)
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= exp

(
i
λ

1 − α

k∑
j=1

αj−1rj + iλ

k∑
j=2

1 − αj−1

1 − α
rj − 1

2

( k∑
j=1

αj−1rj

)2 σ 2
v

1 − α2

− 1
2

k∑
$=2

( k∑
j=$

αj−$rj

)2

σ 2
v

)∏k
j=1 �(

1
2 + irj )

�( 1
2 )
k

2i%
k
j=1rj

= exp

(
iλ

1 − α

k∑
j=1

rj − σ 2
v

2(1 − α2)

( k∑
j=1

r2
j + 2α

k∑
$=1

k∑
j=$+1

αj−$−1r$rj

))

×
∏k
j=1 �(

1
2 + irj )

�( 1
2 )
k

2i%
k
j=1rj .

Proof of Proposition 3.3. Defined as the logarithm of the CF, the cumulant function is of the
form

φ(r1, . . . , rk) = ln
(
c(r1, . . . , rk, θ)

)

= iλ

1 − α

k∑
j=1

rj − σ 2
v

2(1 − α2)

( k∑
j=1

r2
j + 2α

k∑
$=1

k∑
j=$+1

αj−$−1r$rj

)

+
k∑
j=1

ln
(
�( 1

2 + irj )
) + i ln 2

k∑
j=1

rj .

Therefore, we have

var(yt ) = ∂2φ

∂r2
1

∣∣∣
r1=0

= σ 2
v

1 − α2 + c ,

where c = �′′( 1
2 )/�(

1
2 )− (�′( 1

2 )/�(
1
2 ))

2; and

cov(yt , yt+k) = ∂2φ

∂r1∂rk

∣∣∣
r1=0,rk=0

= αkσ 2
v

1 − α2 (k = 1, 2, . . .) .

Hence the autocorrelation functions are

ρk = αk
σ 2
v /(1 − α2)(

σ 2
v /(1 − α2)

) + c
(k = 1, 2, . . .) .

The covariance matrix of the ECF estimator

We present details of how we calculate the asymptotic covariance matrix of the ECF
estimator. Let our ECF estimator be given by θ̂ where

θ̂ = arg min/(θ) ,

and

/(θ) =
∫

· · ·
∫ ((

Re cn(r)− Re c(r, θ)
)2 + (

Im cn(r)− Im c(r, θ)
)2

)
g(r) dr .
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Now since

Re cn(r) = 1

n

n∑
j=1

cos rTzj and Im cn(r) = 1

n

∑
sin rTzj ,

we have
∂/(θ)

∂θ
= −2

n

n∑
j=1

δj (θ) ,

where δj (θ) =
∫

· · ·
∫ (

∂cR(r, θ)
(

cos rTzj − Re c(r, θ)
)

+ ∂cI (r, θ)
(

sin rTzj − Im c(r, θ)
))
g(r) dr ,

where ∂cR(r, θ) = ∂Re c(r, θ)

∂θ
, ∂cI (r, θ) = ∂Im c(r, θ)

∂θ
.

Consequently

√
n
∂/(θ)

∂θ

d→ N
(
0, 4A(θ)

)
, where A(θ) = lim

n→∞ E

(
1

n

∑
j

∑
k

δj (θ)δk(θ)

)

and is given by:

A(θ) = lim
n→∞

1

n

∫
· · ·

∫ (
∂cR(r, θ)∂c

T
R(s, θ)

∑
j

∑
k

cov(cos rTzj , cos sTzk)

+ ∂cR(r, θ)∂c
T
I (s, θ)

∑
j

∑
k

cov(cos rTzj , sin sTzk)

+ ∂cI (r, θ)∂c
T
R(s, θ)

∑
j

∑
k

cov(sin rTzj , cos sTzk)

+ ∂cI (r, θ)∂c
T
I (s, θ)

∑
j

∑
k

cov(sin rTzj , sin sTzk)

)
g(r)g(s) dr ds .

The double summation covariance expressions are readily found and are given in Knight &
Satchell (1997 Lemma p .176):

∑
j

∑
k

cov(cos rTzj , cos sTzk) = n2 cov
(
Re cn(r),Re cn(r)

) = n2(4RR)r,s ;

and similarly for the other double sums. Thus

A(θ) = lim
n→∞ n

∫
· · ·

∫ (
∂cR(r, θ)∂c

T
R(s, θ)(4RR)r,s

+ 2∂cR(r, θ)∂c
T
I (s, θ)(4RI )r,s + ∂cI (r, θ)∂c

T
I (s, θ)(4II )r,s

)
g(r)g(s) dr ds .
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Furthermore,

E
(∂2/(θ)

∂θ∂θT

)
= −2

n

n∑
j=1

E
(∂δj (θ)
∂θ

)

= 2

n

n∑
j=1

∫
· · ·

∫ (
∂cR(r, θ)∂c

T
R(r, θ)+ ∂cI (r, θ)∂c

T
I (r, θ)

)
g(r) dr

= −2
∫

· · ·
∫ (

∂cR(r, θ)∂c
T
R(r, θ)+ ∂cI (r, θ)∂c

T
I (r, θ)

)
g(r) dr

= −2B(θ) .

Thus standard asymptotic theory results in
√
n (θ̂ − θ)

d→ N
(
0,B(θ)−1A(θ)B−1(θ)−1) .

Proof of Proposition 4.1. By assumption[
et
vt

]
d= N2

([
0
0

]
,

[
1 ρσv
ρσv σ 2

v

])

and hence vt | et ∼ N(ρσvet , σ
2
v (1 − ρ2)). Without loss of generality, we derive only the CF

of the SV model with the leverage effect when k = 2; that is, c(r1, r2):

c(r1, r2) = E
(

exp(ir1yt + ir2yt−1)
)

= E
(

exp(ir1ht + ir1 ln e2
t + ir2ht−1 + ir2 ln e2

t−1)
)
.

Since r1ht = r1λ+ r1αht−1 + r1vt , we have

c(r1, r2) = E
(

exp(ir1λ) exp
(
i(r1α + r2)ht−1 + ir1vt

)
exp(ir1 ln e2

t + ir2 ln e2
t−1)

)
.

With

ht−1 = λ

1 − α
+

∞∑
j=0

αjvt−1−j = λ

1 − α
+

∞∑
j=1

αjvt−1−j + vt−1 ,

c(r1, r2) = E

(
exp

(
ir1λ+ i(r1α + r2)

λ

1 − α
+ i(r1α + r2)

∞∑
j=1

αjvt−1−j

+ i(r1α + r2)vt−1 + ir1vt + ir1 ln e2
t + ir2 ln e2

t−1

))

= exp
(
i(r1 + r2)

λ

1 − α

) ∞∏
j=1

exp
(

− σ 2
v

2
α2j (r1α + r2)

2
)

= E
(

exp
(
i(r1α + r2)vt−1 + ir2 ln e2

t−1

))
E

(
exp(ir1vt + ir1 ln e2

t )
)
. (A.1)

We derive an expression for E(exp(iqvt + ic ln e2
t )), as (A.1) involves a product of two

expressions of this form. So,

E
(

exp(iqvt + ic ln e2
t )

) = E
(

exp(ic ln e2
t )E

(
exp(iqvt ) | et

))

= E
(

exp(ic ln e2
t ) exp(iqσvρet ) exp

( − 1
2σ

2
v (1 − ρ)2 q2))

= E
(
e2ic
t exp(ibet )

)
exp

( − 1
2σ

2
v (1 − ρ)2 q2) , where b = qσvρ.
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Let et = S
√
U where U

d= χ2
1 and S = ±1 with probability 1

2 independent of U. Thus

E
(
e2ic
t exp(ibet )

) = E(UiceibS
√
U )

= E
(
Uic 1

2 (e
ib

√
U + e−ib

√
U )

)

= E

(
Uic

∞∑
k=0

(ib
√
U )2k

(2k)!

)

= E

( ∞∑
k=0

(ib)2k

(2k)!
Uk+ic

)

=
∞∑
k=0

(ib)2k

(2k)!

�(k + ic + 1
2 )

�( 1
2 )(

1
2 )
k+ic

= 2ic√
π

∞∑
k=0

(−2b2)k

22kk!( 1
2 )k

�(k + ic + 1
2 ) ,

where (x)k = x(x + 1) · · · (x + k − 1). Noting that �(k + ic + 1
2 ) = (ic + 1

2 )k�(ic + 1
2 ),

we obtain

E
(
e2ic
t exp(ibet )

) = 2ic�(ic + 1
2 )√

π 1F1(ic + 1
2 ,

1
2 ; − 1

2b
2) ,

where 1F1 denotes the confluence hypergeometric function. It follows that

E
(

exp(iqvt + ic ln e2
t )

)

= 2ic�(ic + 1
2 )√

π
exp

( − 1
2σ

2
v (1 − ρ)2 q2)

1F1

(
ic + 1

2 ,
1
2 ; − 1

2q
2σ 2
v ρ

2) .
Using this expression in (A.1) we obtain

c(r1, r2; θ) = exp
( iλ

1 − α
(r1 + r2)

)
exp

(
− σ 2

v α
2

2(1 − α2)
(r1α + r2)

2
)

× exp
(

− σ 2
v (1 − ρ2)

2
(r1α + r2)

2
)�( 1

2 + ir1)�(
1
2 + ir2)

�( 1
2 )

2
2i(r1+r2)

× 1F1

(
ir1 + 1

2 ,
1
2 ; − 1

2 r
2
1σ

2
v ρ

2
)

1F1

(
ir2 + 1

2 ,
1
2 ; − 1

2 (r1α + r2)
2σ 2
v ρ

2) .
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