
Forecasting volatility in the New Zealand

stock market

JUN YU

Department of Economics, University of Auckland, Private Bag 92019, Auckland, New
Zealand.

This study evaluates the performance of nine alternative models for predicting stock
price volatility using daily New Zealand data. The competing models contain both
simple models such as the random walk and smoothing models and complex models
such as ARCH-type models and a stochastic volatility model. Four diVerent meas-
ures are used to evaluate the forecasting accuracy. The main results are the follow-
ing: (1) the stochastic volatility model provides the best performance among all the
candidates; (2) ARCH-type models can perform well or badly depending on the form
chosen: the performance of the GARCH(3,2) model, the best model within the
ARCH family, is sensitive to the choice of assessment measures; and (3) the
regression and exponentially weighted moving average models do not perform
well according to any assessment measure, in contrast to the results found in various
markets.

I . INTRODUCTION

Volatility in ®nancial markets has attracted growing atten-
tion by academics, policy makers and practitioners during
the past two decades. First, volatility receives a great deal
of concern from policy makers and ®nancial market parti-
cipants because it can be used as a measurement of risk.
Second, greater volatility in the stock, bond and foreign

exchange markets raises important public policy issues
about the stability of ®nancial markets and the impact of
volatility on the economy. For example, Garner (1990)
®nds that the stock market crash in 1987 reduced consumer
spending in the USA. Maskus (1990) ®nds that the volati-
lity in foreign exchange markets has an impact on trade.
Third, from a theoretical perspective, volatility plays a cen-
tral role in the pricing of derivative securities. According to
the Black±Scholes formula, for instance, the pricing of an

European call option is a function of volatility. Therefore,
option markets can be regarded as a place where people
trade volatility. Finally, for the purpose of forecasting
return series, forecast con®dence intervals may be time-
varying, so that more accurate intervals can be obtained
by modelling volatility of returns.

There is a large literature on forecasting volatility. Many
econometric models have been used. However, no single
model is superior. Using US stock data, for example,
Akgiray (1989) , Pagan and Schwert (1989) and Brooks
(1998) ®nds the GARCH models outperform most

competitors. Brailsford and FaV (1996) (hereafter BF)
®nd that the GARCH models are slightly superior to
most simple models for forecasting Australian monthly
stock index volatility. Using data sets from Japanese and
Singaporean markets respectively, however, Tse (1991) and
Tse and Tung (1992) ®nd that the exponentially weighted
moving average models provide more accurate forecasts
than the GARCH model. Dimson and Marsh (1990) ®nd
in the UK equity market more parsimonious models such
as the smoothing and simple regression models perform

better than less parsimonious models, although the
GARCH models are not among the set of competing mod-
els considered.1

The purpose of this study is to compare the performance
of nine models for predicting volatility in the New Zealand
stock market. The paper contributes to this literature in
three aspects. First, a data set from a country not pre-
viously considered in the literature is used. Although
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1 Knight and Satchell (1998) give more details on volatility forecasting in ®nancial markets.



New Zealand does not have a big and liquid stock market,
New Zealand economy is one of the least regulated econo-
mies and the New Zealand stock market is one of the freest
share markets in the world. Liberalization of New Zealand
®nancial markets makes them unparalleled internationally.
On the other hand, however, little work has been reported
speci®c to New Zealand’s ®nancial markets including the
New Zealand stock market. Second, a stochastic volatility
(SV) model into the competing candidates is included.
Unlike the ARCH-type model which has only one error
term, the SV model involves two noise processes and
hence is supposed to describe ®nancial time series better
than the ARCH-type model. However, no apparent com-
parison of its performance of volatility forecasts has yet
been made for any ®nancial time series. Third, in addition
to the assessment measures used in the literature such as
the RMSE and MAE, another two measures, the Theil-U
statistic and the LINEX loss function, are employed to
evaluate the forecast accuracy.2 U-statistic is a desirable
measure to evaluate a forecasting method since it is invar-
iant to any linear transformation (see Armstrong and
Fildes, 1996). The LINEX loss function is asymmetric
and hence can evaluate positive errors more (or less) than
negative errors (see ChristoVersen and Diebold, 1997).

The paper is organized as follows. In Section II, the
unique features of the New Zealand stock market are
reviewed and the data set is described. Section III outlines
the nine competing models used in this paper for volatility
forecasts. Then the measures used to assess the perform-
ance of the candidate models are presented in Section IV.
Section V describes the empirical results and Section VI
concludes.

II . THE NEW ZEALAND STOCK MARKET
AND NZSE40

The New Zealand stock market is one of the least regulated
market. In Asia, the stock exchanges are primarily arms of
government, controlled by government appointees. In the
United States, the government acts as an overall market
regulator of competitive exchanges. Australia has devel-
oped a closely monitored infrastructure with well-de®ned
linkages between the market and outside regulators. Since
1984 New Zealand has conducted a programme to dereg-
ulate the economy including its ®nancial markets. The
reform has established minimal government intervention,
under which the NZSE has developed a self-regulatory
model that is unparalleled internationally. For example,
New Zealand does not impose statutory controls on the
Stock Exchange’s listing rules, in contrast to most other

countries. Also, in the NZSE regulation and oversight of
the market rely on contractual principles and New
Zealand’s take over code, organized by the Exchange and
largely self-regulated. Moreover, diVerent from many other
markets, insider trading in the NZSE is a civil, not a crim-
inal oVence.

Several indices are available for New Zealand. The data
set we use is the NZSE40 capital index, which cover 40
largest and most liquid stocks listed and quoted on the
New Zealand Stock Market Exchange (NZSE), weighted
by the market capitalization without dividends reinvested.
The sample consists of 4741 daily returns over the period
from 1 January 1980 to 31 December 1998. Returns are
de®ned as the natural logarithm of price relatives; that is,
rt ˆ log Xt=Xt¡1; where Xt is the daily capital index.

The data set is used to forecast monthly stock market
volatility using various models. In the literature there are a
number of ways to obtain monthly volatility series. The
®rst one is proposed by Merton (1980) and Perry (1982)
who calculate the volatility in a month simply as the sum of
squared daily returns in that month, that is:

¼2
T ˆ

XNT

tˆ1

r2
t …1†

where rt is the daily return on day t and NT is the number
of trading days in month T . Akgiray (1989), however, uses
a diVerent formula

¼2
T ˆ

XNT

tˆ1

…rt ¡ ·rrt†2

µ
1 ‡ 0:1

XNT ¡1¡j

jˆ1

¿j

¶
…2†

where ·rrt is the mean and ¿ is the ®rst-lag autocorrelation.
Of note is that Equations 1 and 2 share the same spirit; that
is, the squared daily return is used as the proxy of the daily
volatility. Ding et al. (1993) advocate the third way to
measure the volatility series where the absolute values of
daily stock returns is used. Another possibility is to use the
diVerence between the highest and lowest daily prices
(Parkinson, 1980). Although the last method provides a
more e� cient volatility estimator in terms of approximat-
ing the diVusion term in a small sample, it is subject to
more biases (for example, due to the closure of the stock
exchange overnight; see Garman and Klass, 1980). The
third method is interesting since it generates a series
which may have diVerent long memory properties and
consequently have a bearing on forecastability. However,
it is used less frequently since the long memory models
receive little attention in the literature of volatility forecast-
ing. The second method typically provides very similar
results to the ®rst method. Hence, we only present the
results based on Equation 1.
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2 Although the Theil-U statistic is a standard measure used to evaluate a forecasting method in macroeconomics, it is used much less
frequently in the literature of volatility forecasting.



In total we have 228 monthly volatilities. Figure 1 plots

the series. From this graph, two particularly volatile peri-

ods can be easily identi®ed. The ®rst one corresponds to the

1987 crash while the second one occurred on October 1997,

the period of the Asian ®nancial crisis. Table 1 shows the
mean, median, maximum, kurtosis and part of the ®rst

seven autocorrelations of the entire sample. The sample

maximum is 0.052157 which happened in October 1987.

The sample kurtosis is 77.94 and suggests that the uncon-

ditional distribution of volatility is not a normal distri-

bution. While higher order autocorrelations are in

general diminishing the ®rst autocorrelation is low but
not negligible. This is the evidence of volatility clustering

and suggests that the volatility is predictable. To test for

possible unit roots the augmented Dickey-Fuller (ADF)

statistic is calculated and the results are also presented in

Table 1. The ADF statistic for the entire sample is ¡5:06,

which is smaller than ¡2:57, the critical value at a 10%

signi®cance level. Hence, the hypothesis that the monthly

volatility in the NZSE40 index over the period from 1980
to 1998 has a unit root has to be rejected. Due to the two

obvious outliers in the entire sample concern is needed

about the role of these two possible breaks. In Table 1

the results of the unit root test for three sub-samples are

further presented where the entire sample is split by the two

crashes. The ADF statistics are ¡3:32, ¡9:63 and ¡11:00

respectively. Hence, no sub-sample involves a unit root.
Furthermore, an October eVect can be identi®ed in the

series. This is not surprising since both crashes occurred

in October. However, there is no signi®cant January sea-
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Fig. 1. Monthly volatility of NZSE40 from 1980 to 1998

Table 1. Summary statistics of the series and test for nonstationarity

Summary statistics of the entire sample
Mean Median Maximum Kurtosis »1 »2 »3 »4

0.002341 0.001417 0.052157 77.94 0.281 0.072 0.060 0.089

ADF test for unit root

Entire sample Sample before 1987 Sample for 1987±1997 Sample after 1997

¡5:06 ¡3:32 ¡9:63 ¡11:00

Note: The entire sample is for the monthly volatility of the NZSE40 index over the period from 1980 through 1998. »i denotes the
autocorrelation coe� cient of order j. The augmented Dickey-Fuller test statistic is computed as ½̂½ ˆ ̂ =ase…̂ † in the model
¢Xt ˆ ¬ ‡  Xt¡1 ‡

Pp
jˆ1 ®j¢Xt¡j ‡ "t, where Xt represents the monthly volatility of the NZSE40 index (see, e.g., Hamilton, 1994).

The value of p is chosen by AIC. The 10% critical value is ¡2:57. The 5% critical value is ¡2:86. The justi®cation for using the Dickey-
Fuller table when the residuals are heteroscedastic and possibly serially dependent is provided by Phillips (1987).



sonal as in the US market or July and August seasonals as
in the Australian market (see Brown et al., 1983).

After obtaining the monthly volatility series, the fore-
casting horizon has to be chosen. In this study 1-month
ahead forecasts are chosen. Furthermore, a period has to
be chosen for estimating parameters and a period for pre-
dicting volatility. The ®rst 15 years of data are used to ®t
the models. Thus the ®rst month for which an out-of-
sample forecast is obtained is January 1994. As the sample
is rolled over, the models are re-estimated and sequential 1-
month ahead forecasts are made. Hence, in total 48
monthly volatilities are forecasted. With this setup, the
candidate models are required to predict volatility in a
period when volatility was very large using the sample
with an extremely volatile period.3

II I . COMPETING MODELS

This section summarizes all nine candidate models used in
the paper.

Random walk

The random walk model is the simplest possible model and
is de®ned as ¼̂¼2

T‡1 ˆ ¼2
T , T ˆ 180; . . . ; 227. Hence it

assumes that the best forecast of next month’s volatility
is this month’s volatility.

Historical average

If the conditional expectation of volatility is assumed to be
constant, the optimal forecast of future volatility would be
the historical average; that is, ¼̂¼2

T‡1 ˆ 1=T
PT

tˆ1 ¼2
t ,

T ˆ 180; . . . ; 227. This is the model used most often in
the past to predict volatility. However, more recent evi-
dence suggests that the conditional expectation of volatility
is time-varying (Bollerslev et al., 1992) and hence chal-
lenges the validity of the historical average model.

Moving average

According to the historical average model, all past obser-
vations receive equal weight. In the moving average model,
however, more recent observations receive more weight. In
the paper, two moving average models are used: a ®ve-year

and a ten-year moving average. The ®ve-year model is
de®ned as ¼̂¼2

T‡1 ˆ 1=60
P60

jˆ1 ¼2
T‡1¡j, T ˆ 180; . . . ; 227:

Simple regression

This is a one-step ahead forecast based on the simple linear
regression of the volatility at period T ‡ 1 on the volatility
at period T . The expression is given by

¼̂¼2
T‡1 ˆ  1 ‡  2¼2

T ; T ˆ 180; . . . ; 227 …3†

There are two methods to obtain parameter estimates. In
the ®rst method, when the new data arrive, the sample size
®xed at 180 is kept and hence the least recent data are
discarded. In the second method, however, all the available
observations available are used and thus the sample size
gets larger and larger as new data become available. The
results from these two methods are found to be very close
to each other. Consequently, only the results for the ®xed
sample size are reported.

Exponential smoothing

Exponential smoothing is a simple method of adaptive
forecasting. Unlike forecasts from regression models
which use ®xed coe� cients, forecasts from exponential
smoothing methods adjust based upon past forecast errors.
Single exponential smoothing forecast is given by
¼̂¼2

T‡1 ˆ …1 ¡ ¬†¼̂¼2
T ‡ ¬¼2

T ; where 0 < ¬ < 1 is the damping
(or smoothing) factor. By repeated substitution, the recur-
sion can be rewritten as ¼̂¼2

T‡1 ˆ ¬
PT

tˆ1…1 ¡ ¬†t¼2
T‡1¡t,

T ˆ 180; . . . ; 227. This shows why this method is called
exponential smoothing ± the forecast of ¼2

T‡1 is a weighted
average of the past values of ¼2

T‡1¡t, where the weights
decline exponentially with time. The value of ¬ is chosen
to produce the best ®t by minimizing the sum of the
squared in-sample forecast errors. Dimson and Marsh
(1990) and BF select the optimal ¬ annually. In this
study the optimal ¬ in every month was chosen so as to
provide better forecasts.

Exponentially-weighted moving average (EMA)

If the exponential smoothing and moving average models
are combined, one has the EMA model.4 According
to the EMA model, the forecast is obtained by

¼̂¼2
T‡1 ˆ …1 ¡ ¬†¼̂¼2

T ‡ ¬1=L
PL

jˆ1 ¼2
T‡1¡j, T ˆ 180; . . . ; 227.
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3 By examining the volatility series of Dow Jones composite over the period from 1978±1988, Brooks (1998) claims that the 1987 crash
was an exception and has not been repeated at such magnitude since. Consequently, he ®nds the performances of the competing models
to be quite diVerent for the sample with the 1987 crash and the sample without. In this paper, however, the 1987 crash is not excluded
since the 1997 crash can be regarded, more or less, as a recurring event of the 1987 crash. In the manner it is hoped to examine whether
the competing models can predict.
4 In the recent literature the exponentially-weighted moving average model has been referred to as EWMA (see e.g., BF, Brooks (1998)
and Tse (1991)) while the exponential smoothing model is often referred to as EWMA in the classical literature and among practitioners.
To avoid the possible confusion, the exponentially-weighted moving average model is named EMA in this paper.



In this study, the author chose L ˆ 60, 120 which corre-
spond to the ®ve-year and ten-year moving average re-
spectively.5 The value of ¬ is chosen to produce the best
®t by minimizing the sum of the squared in-sample forecast
errors. BF select the optimal ¬ annually. In this study the
optimal ¬ is updated in every month, again so as to provide
better forecasts.

ARCH

The ARCH(q) model is proposed by Engle (1982) and
de®ned by

rt ˆ · ‡ ¼t"t

¼2
t ˆ ¶ ‡ ¬1…rt¡1 ¡ ·†2 ‡ ¢ ¢ ¢ ‡ ¬q…rt¡q ¡ ·†2

(
…4†

where "t ¹ iidN…0; 1†. Hence the volatility ¼2
t‡1 can be

represented by

E……rt‡1 ¡ ·†2jIt† ˆ ¼2
t‡1

ˆ ¶ ‡ ¬1…rt ¡ ·†2 ‡ ¢ ¢ ¢ ‡ ¬q…rt‡1¡q ¡ ·†2

…5†

where It is the information set at the end of period t. This is
an AR(q) model in terms of …rt ¡ ·†2. Therefore, the opti-
mal one-day ahead forecast of period t ‡ 1 volatility can be
obtained based on the returns on the most recent q days. In
general, an h-day ahead step forecast can be formed as
follows:

¼̂¼2
t‡h ˆ ¶ ‡ ¬1…brrt‡h¡1 ¡ ·†2 ‡ ¢ ¢ ¢ ‡ ¬q…brrt‡1¡q ¡ ·†2 …6†

where r̂rt‡h¡j ˆ rt‡h¡j if 1 µ h µ j and …r̂rt‡h¡j ¡ ·†2 ˆ ¼̂¼2
t‡h¡j

if h > j. The selection of q is an important empirical ques-
tion. In this study q was chosen using the BIC criterion. As
in the regression model, the sample size ®xed for the
ARCH model was kept. For NZSE40 BIC picks up an
ARCH(9) speci®cation. After obtaining the daily volatility
forecasts across all trading days in each month,
monthly volatility forecasts can be calculated using the
expression

¼̂¼2
T‡1 ˆ

XNT‡1

tˆ1

¼̂¼2
t ; T ˆ 180; . . . ; 227 …7†

GARCH

For the ARCH(q) model, in most empirical studies, q has
to be large. This motivates Bollerslev (1986) to use the
GARCH(p; q) speci®cation which is de®ned as

rt ˆ · ‡ ¼t"t

¼2
t ˆ ¶ ‡

Pq
jˆ1 ¬j…rt¡j ¡ ·†2 ‡

Pp
jˆ1  j¼

2
t¡j

(

…8†

De®ne st ˆ rt ¡ ·, m ˆ maxfp; qg, ¬i ˆ 0 for i > q and

 i ˆ 0 for i > p. Following Baillie and Bollerslev (1992),
the optimal h-day ahead forecast of the volatility can be
calculated by iterating on

¼̂¼2
t‡h ˆ ¶ ‡

Xm

iˆ1

…¬i ‡  i†¼̂¼2
t‡h¡i ¡  hŵwt ¡ ¢ ¢ ¢ ¡  mŵwt‡h¡m;

for h ˆ 1; . . . ; p

ˆ ¶ ‡
Xm

iˆ1

…¬i ‡  i†¼̂¼2
t‡h¡i; for h ˆ p ‡ 1; . . . ;

¼̂¼2
½ ˆ s2

½ ; for 0 < ½ µ t;

¼̂¼2
½ ˆ s2

½ ˆ T¡1
XT

iˆ1

s2
i ; for ½ µ 0;

ŵw½ ˆ s2
½ ¡ E…s2

½ jI½¡1†; for 0 < ½ µ t;

ŵw½ ˆ 0; for ½ µ 0

With the daily volatility forecasts across all trading days in
each month, monthly volatility forecasts can be calculated
using Equation 7.

Again, the selection of p and q is an important empirical
question. As in the ARCH model, BIC is used to choose p
and q. The GARCH(1,1) model has been found to be
adequate in many applications and hence is used as a
candidate model. However, for NZSE40 we found a
GARCH(3,2) speci®cation is preferred to the
GARCH(1,1) model. Consequently, we also assess the
prediction performance of the GARCH(3,2) model.

SV model

The SV model used in this study is de®ned by

rt ˆ ¼t"t ˆ exp…0:5ht†"t

ht ˆ ¶ ‡ ¬ht¡1 ‡ vt

»
…15†

where "t ¹ iidN…0; 1†, vt ¹ iidN…0; ¼2
v†, and corr…"t; vt† ˆ 0.

Like the ARCH-type models, the SV model also models
conditional mean and conditional variance by two diVerent
equations. As an alternative setup to the ARCH-type
models, however, the SV model is supposed to describe
®nancial time series better than the ARCH-type models,
since it essentially involves two noise processes ("t and
vt). This added dimension makes the model more ¯exible
(for further discussion, see Ghysels et al., 1996).
Unfortunately, the density function for the SV model has
no closed form and hence neither does the likelihood func-
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tion. This is true even for the simplest version of the SV

model such as the one de®ned by Equation 9. It is a conse-

quence of this that direct maximum-likelihood estimation
is infeasible. Probably due to this reason, despite its intui-

tive appeal, the SV model has received little attention in the

literature on forecasting volatility.

Recently several methods have been proposed to esti-

mate the SV model. Such methods include quasi-maximum

likelihood (QML) proposed by Ruiz (1994), simulated

maximum likelihood (SML) by Danielsson (1994), GMM
by Andersen and Sorensen (1996), Markov Chain Monte

Carlo (MCMC) by Jacquier et al. (1994), and the empirical

characteristic function (ECF) method by Knight et al.

(1998). Some of these methods, such as QML and

MCMC, not only obtain the estimates of the model, but
also produce forecasts of volatility as by-products. MCMC

provides the exact optimal predictors of volatility, how-
ever, it is computationally more di� cult to implement.

The QML method approximates a logarithmic chi-square

process by a Gaussian process and hence uses the quasi-

likelihood to approximate the full likelihood. Despite its

ine� ciency, the QML method is consistent and very easy
to implement numerically. In this study, QML is used to

estimate parameters in the SV model and obtain h-day

ahead volatility forecasts. The algorithm employs a

Kalman ®lter and the formulas are given in the

Appendix. As in the ARCH-type model, with the daily

volatility forecasts across all trading days in each month,

monthly volatility forecasts can be calculated using
Equation 7.

IV. EVALUATION MEASURES

Four measures are used to evaluate the forecast accuracy,

namely, the root mean square error (RMSE), the mean

absolute error (MAE), the Theil-U statistic and the

LINEX loss function. They are de®ned by

RMSE ˆ

�������������������������������
1

I

XI

iˆ1

…¼̂¼2
i ¡ ¼2

i †2

vuut …10†

MAE ˆ 1

I

XI

iˆ1

j¼̂¼2
i ¡ ¼2

i j …11†

Theil-U ˆ

XI

iˆ1

…¼̂¼2
i ¡ ¼2

i †2

XI

iˆ1

…¼2
i¡1 ¡ ¼2

i †2

…12†

LINEX ˆ
1

I

XI

iˆ1

‰exp…¡a…¼̂¼2
i ¡ ¼2

i †† ‡ a…¼̂¼2
i ¡ ¼2

i † ¡ 1Š …13†

where a in the LINEX loss function is a given parameter.
The RMSE and MAE are two of the most popular meas-

ures to test the forecasting power of a model. Despite their
mathematical simplicity, however, both of them are not
invariant to scale transformations . Also, they are sym-

metric, a property which is not very realistic and inconcei-
vable under some circumstances (see BF).

In the Theil-U statistic, the error of prediction is stan-
dardized by the error from the random walk forecast. For
the random walk model, which can be treated as the bench-

mark model, the Theil-U statistic equals 1. Of course, the
random walk is not necessarily a naive competitor, par-
ticularly for many economic and ®nancial variables, so

that the value of the Theil-U statistic close to 1 is not
necessarily an indication of bad forecasting performance.

Several authors, such as Armstrong and Fildes (1995), have
advocated using U-statistic and close relatives to evaluate

the accuracy of various forecasting methods. One advan-
tage of using U-statistic is that it is invariant to scalar
transformation. The Theil-U statistic is symmetric, how-

ever.
In the LINEX loss function, positive errors are weighed

diVerently from the negative errors. If a > 0, for example,

the LINEX loss function is approximately linear for

¼̂¼2
t ¡ ¼2

t > 0 (`over-predictions’) and exponential for

¼̂¼2
t ¡ ¼2

t < 0 (`under-predictions’) . Thus, negative errors
receive more weight than positive errors. In the context
of volatility forecasts, this implies that an under-prediction

of volatility needs to be taken into consideration more
seriously. Similarly, negative errors receive less weight
than positive errors when a < 0. BF argue an under-

estimate of the call option price, which corresponds an
under-prediction of stock price volatility, is more likely

to be of greater concern to a seller than a buyer and the
reverse should be true of the over-predictions.
ChristoVersen and Diebold (1997) provide the analytical

expression for the optimal LINEX prediction under
assumption that the process is conditional normal. Using

a series of annual volatilities in the UK stock market,
Hwang et al. (1999) show that the LINEX forecasts out-
perform the conventional forecasts with an appropriate

LINEX parameter, a. In this paper, four values for a are
used, namely, 20, 10, ¡10 and ¡20. Obviously,
a ˆ ¡10; ¡20 penalize over- predictions more heavily

while a ˆ 10; 20 penalize under-predictions more heavily.
BF also adopt asymmetric loss functions to evaluate fore-

casting performance. An important reason why the LINEX
function is more popular in the literature is it provides the
analytical solution for the optimal prediction under con-

ditional normality, while the same argument cannot be
applied to the loss functions used by BF.
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V. RESULTS

The main results of the paper are presented in Tables 2 and
3. In Table 2 the value and ranking of all nine competing

models under the RMSE, MAE and Theil-U are reported
while Table 3 presents the value and ranking under the four
LINEX loss functions.

From the examination of Table 2 it is noted that the
RMSE statistic indicates that the SV model provides the
most accurate forecasts while the GARCH(3,2) model
ranks seconds. Despite its simplicity, the random walk
model could sometimes oVer very good forecasts within
the univariate family. For example, Stock and Watson
(1998) ®nd that for the US macroeconomic series the ran-
dom walk model performs the best among many candidate

models. However, the random walk model is not a very
good method to forecast volatility of the NZSE40 index
according to the RMSE. It ranks eleventh and is 26:9%
less accurate than the SV model. This ®nding is consistent
with that the ®ndings from some other stock markets (see,
for example, Brooks (1998) for the US market and BF for
the Australian market). Another salient feature of the
results is that the marginal diVerence in the RMSE between
the ®rst and tenth position is very small (3:3%).

The MAE statistic favours the exponential smoothing
model while the SV model is now second best. The EMA
model does not perform very well although Tse (1991) and
Tse and Tung (1992) show that the EMA model is superior
in Japanese and Singaporean markets respectively under
the RMSE and MAE. For example, the EMA(10) ranks
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Table 2. Forecasting performance of competing models under symmetric loss

RMSE MAE Theil-U

Value Rank Value Rank Value Rank

Random walk 0.0059588 11 0.0018413 6 1.000 11
Hist. average 0.0043990 3 0.0019505 7 0.5450 3
MA(5) 0.0044382 5 0.0016957 3 0.5547 5
MA(10) 0.0044926 8 0.0023627 11 0.5684 8
Regression 0.0045047 10 0.0018014 5 0.5715 10
EMA(5) 0.0044382 6 0.0016957 4 0.5547 6
EMA(10) 0.0044926 9 0.0023627 12 0.5684 9
Exp. smooth 0.0044475 7 0.0014108 1 0.5571 7
ARCH 0.0062680 12 0.0023521 10 1.1065 12
GARCH(1,1) 0.0044088 4 0.0020836 9 0.5474 4
GARCH(3,2) 0.0043870 2 0.0020676 8 0.5420 2
SV 0.0043576 1 0.0014481 2 0.5348 1

Note: This table lists the value and the ranking of the nine competing models under three measures. The RMSE is de®ned by Equation
10; the MAE is de®ned by Equation 11; the Theil-U statistic is de®ned by Equation 12.

Table 3. Forecasting performance of competing models under asymmetric loss

LINEX LINEX LINEX LINEX
a ˆ 20 a ˆ 10 a ˆ ¡10 a ˆ ¡20

Value Rank Value Rank Value Rank Value Rank

Random walk 7.500179 11 1.812296 11 1.762778 11 7.095735 11
Hist. average 4.628158 4 1.055301 3 0.891530 3 3.301720 2
MA(5) 4.766143 7 1.080396 5 0.902394 6 3.323553 5
MA(10) 4.743673 5 1.091101 8 0.938119 9 3.505071 9
Regression 4.830648 10 1.103775 10 0.937853 8 3.486059 8
EMA(5) 4.766157 8 1.080399 6 0.902397 7 3.323568 6
EMA(10) 4.743676 6 1.091102 9 0.938119 10 3.505074 10
Exp. smooth 4.829692 9 1.089807 7 0.902277 5 3.309108 3
ARCH 7.915040 12 1.957517 12 1.999728 12 8.260344 12
GARCH(1,1) 4.616085 3 1.056266 4 0.898714 4 3.340270 7
GARCH(3,2) 4.565881 1 1.045357 2 0.890249 2 3.310029 4
SV 4.607941 2 1.043129 1 0.868484 1 3.192824 1

Note: This table lists the value and the ranking of the nine competing models under the four LINEX loss functions where the LINEX loss
function is de®ned by Equation 13 £ 1000.



the last and is 40:3% and 38:7% less accurate than the
exponential smoothing and SV models respectively.
Unlike the RMSE, the MAE ranks the GARCH models
rather poorly. In particular, the GARCH(3,2) model,
which has been ranked second by the RMSE, is now
ranked eighth. It is 31:8% and 30:0% less accurate than
the exponential smoothing and SV models respectively.

Under the Theil-U statistic, only one model performs
worse than the random walk model. This model is the
ARCH model and it is evidenced by the Theil-U statistic
of 1:1065 which is larger than 1. All the other models have
the Theil-U statistic less than 1. The best performer is again
the SV model, followed by the GARCH(3,2) model.

The common feature of the above three error statistics is
that they assume the underlying loss function is symmetric.
In Table 3, the same models are evaluated under asym-
metric loss functions, where four LINEX loss functions
are used (a ˆ 20, 10, ¡10 and ¡20).

LINEX with a ˆ 20 identi®es the GARCH(3,2) model as
the best performer while the ARCH model and the random
walk model provides the worst forecasts. The SV model
ranks a close second. Also note that some models which
had reasonably good performance according to symmetric
loss functions, perform poorly according to the asymmetric
loss functions. For example, the exponential smoothing
model which was ranked ®rst by the MAE, is now ranked
ninth according to LINEX with a ˆ 20. It is 5:5% and
4:6% less accurate than the GARCH(3,2) model and the
SV model respectively.

When a smaller positive number, 10, is assigned to a in
the LINEX function, LINEX picks up the SV model as the
most accurate model while the GARCH(3,2) model now
ranks second. The results suggest that the GARCH(3,2)
model tends to over-predict the volatility. The reason
relates to the fact that when a is a smaller positive number,
although the under-predictions are still penalized more
heavily than the over-predictions, the penalty attached to
the under-predictions is smaller.

As mentioned in the previous section, when a is a nega-
tive number, the over-predictions are penalized more heav-
ily than the under-predictions. LINEX with a ˆ ¡10 ranks
the SV model ®rst. Together with the ®ndings from the
positive values of a, the SV model can be viewed as the
most `unbiased’ forecast model. This argument is rein-
forced by LINEX with a ˆ ¡20. According to this statistic,
the SV model ranks ®rst once again while the GARCH(3,2)
model now ranks fourth. Furthermore, the marginal diVer-
ences between the SV model and most competing models
increase as a decreases. For example, the SV model is
0:2%, 2:4% and 3:3% more accurate than the closest com-
petitor when a ˆ 10; ¡10; ¡20 respectively. Moreover, the
SV model is 0:2%, 2:4% and 3:5% more accurate than the
GARCH(3,2) model when a ˆ 10; ¡10; ¡20 respectively.

In summary, although the SV model has been estimated
ine� ciently it is the best model overall. It ranks ®rst by the

RMSE, Theil-U statistic and three LINEX functions and
second by the MAE and the other LINEX function. The
performance of the SV model is robust under both sym-
metric and asymmetric loss functions. Furthermore, the
performance of the ARCH-type models is quite variable.
In general, the GARCH(3,2) model provides more accurate
forecasts than both the GARCH(1,1) and ARCH models.
Being a less parsimonious model, the ARCH model is the
least accurate model overall. The performance of the
GARCH model, the favourite model in BF, Pagan and
Schwert (1990), Akgiray (1989), and Franses and van
Dijk (1996), is sensitive to the choice of error statistic.
For instance, the GARCH(3,2) model ranks second, ®rst,
second and second under the RMSE and LINEX with
a ˆ 20; 10 and ¡10 respectively, but ranks eighth and
fourth under the MAE and LINEX with a ˆ ¡20. The
rankings of the GARCH(3,2) model under the four
LINEX functions suggest that the GARCH(3,2) model
tends to over-predict the actual volatilities. A seller of a
call option who shows a great deal of concern with
under-prediction, would favour the GARCH(3,2) model.
However, the GARCH(3,2) model is dominated by the
SV model in all other cases. Moreover, both EMA models
do not perform well under any statistic, although Tse
(1991) and Tse and Tung (1992) show that the EMA mod-
els are superior in Japanese and Singaporean markets re-
spectively according to the RMSE and MAE. Finally, no
statistic identi®es the simple regression model as a good
candidate and it ranks tenth, ®fth, tenth, tenth, tenth,
eighth and eighth under the RMSE, MAE, Theil-U, and
four LINEX functions respectively. This ®nding is in con-
trast to the Australian results reached by BF and the UK
results reached by Dimson and Marsh (1990), where the
regression model is found superior under the RMSE.

VI. CONCLUSION

This paper examined nine univariate models for forecasting
stock market volatility of the NZSE40 index. One of the
important models considered here is the SV model. Despite
its intuitive appeal, the SV model has received no attention
in this literature. After comparing the forecasting perform-
ance of all nine models, it was found that the SV model is
superior according to the RMSE, Theil-U and three asym-
metric loss functions.

To use the asymmetric loss function, the selection of an
appropriate LINEX parameter a is an important empirical
question. Unfortunately, apparently nothing has been
reported about the choice of a sensible range of a. An
empirical study in this regard would be interesting.

All the models examined in this paper belong to the
univariate time series family. In more recent literature,
some multivariate models have been considered to forecast
volatility. For example, Brooks (1998) uses the lagged mar-
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ket trading volume to forecast volatility. However, he ®nds
that the added information cannot improve the out-of-
sample forecasting performance. Whether or not there
are some other variables that are useful to forecast volati-
lity, such as in¯ation rates or numbers of listed companies,
is another interesting question to answer.

How the size and the liquidity of a market can aVect the
quality of volatility forecasts, it is believed, is also an inter-
esting and yet open question. One would think the smaller
the size of the market the harder the forecast. An inter-
national comparison would be interesting in this regard.
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APPENDIX

The SV model given by Equation 9 can be represented by a
linearized version without losing any information,
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yt ˆ ln…r2
t † ˆ ht ‡ ln…"2

t † ˆ ¡1:27 ‡ ht ‡ ·t

ht ˆ ¶ ‡ ¬ht¡1 ‡ vt

(
…A:1†

with E…·t† ˆ 0, Var…·t† ˆ º2=2. If we approximate the dis-

tribution of ·t by a normal distribution with mean 0 and

variance º2=2, the linearized SV model can be represented

by a State-Space model. We follow the standard notations

of Hamilton (1994).

yt ˆ A0xt ‡ H 0¹t ‡ wt

¹t‡1 ˆ F¹t ‡ vt‡1

»
…A:2†

with A0 ˆ ¡1:27 ‡ …¶=1 ¡ ¬†, xt ˆ 1, H 0 ˆ 1,

¹t ˆ ht ¡ …¶=1 ¡ ¬†, F ˆ ¬, Q ˆ ¼2
v , R ˆ º2=2. Based on

the State-Space representation, the Kalman ®lter can be

applied as,

. Initialization:

¹̂¹1j0 ˆ 0

§1j0 ˆ ¼2
v=…1 ¡ ¬2†

(
…A:3†

. Sequential updating:

¹̂¹tjt ˆ ¹̂¹tjt¡1 ‡ §tjt¡1…§tjt¡1 ‡ º2=2†¡1

£ yt ‡ 1:27 ¡ ¶

1 ¡ ¬
¡ ¹̂¹tjt¡1

³ ´

§tjt ˆ §tjt¡1 ¡ §tjt¡1…§tjt¡1 ‡ º2=2†¡1§tjt¡1

8
>>>><

>>>>:

…A:4†

. In-sample sequential prediction:

¹̂¹t‡1jt ˆ ¬¹̂¹tjt¡1 ‡ ¬ 1 ‡ º2

2§tjt¡1

Á !¡1

£ yt ‡ 1:27 ¡ ¶

1 ¡ ¬
¡ ¹̂¹tjt¡1

³ ´

§t‡1jt ˆ ¬2§tjt ‡ ¼2
v

8
>>>>>>><

>>>>>>>:

…A:5†

ŷyt‡1jt ˆ ¡1:27 ‡ ¶

1 ¡ ¬
‡ ¹̂¹t‡1jt

E‰…yt‡1 ¡ ŷyt‡1jt†…yt‡1 ¡ ŷyt‡1jt†0Š ˆ §t‡1jt ‡ º2=2

8
<

:

…A:6†

. Out-of-sample forecasting:

¹̂¹T‡hjT ˆ ¬hÊE…¹T jIT † ˆ ¬h¹̂¹T jT

ŷyT‡hjT ˆ ¡1:27 ‡ ¶

1 ¡ ¬
‡ ¬h¹̂¹T jT

8
<

: …A:7†

. Smoothing:

¹̂¹tjT ˆ ¹̂¹tjt ‡ Jt‰¹̂¹t‡1jT ¡ ¹̂¹t‡1jtŠ
§t‡1jT ˆ §tjt ‡ Jt…¡§t‡1jT ‡ §t‡1jt†J 0

t

Jt ˆ §tjt¬§¡1
t‡1jt

8
>><

>>:
…A:8†

with t ˆ T ¡ 1; T ¡ 2; . . . ; 1:

The quasi-likelihood is computed by

ln L…¬; ¶; ¼2
v† ˆ ¡

1

2

X
log…§tjt¡1 ‡ º2=2†

¡ 1

2

X yt ‡ 1:27 ¡ ¶

1 ¡ ¬
¡ ¹̂¹tjt¡1

³ ´2

§tjt¡1 ‡ º2=2

The h-day ahead forecast is computed by Equation A.7
with the QML estimates plugged in.
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