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a b s t r a c t

This paper proposes to model and forecast realized volatility (RV) using the fractional
Ornstein–Uhlenbeck (fO–U) process with a general Hurst parameter, H . A two-stage
method is introduced for estimating parameters in the fO–U process based on discrete-
sampled observations. In the first stage, H is estimated based on the ratio of two
second-order differences of observations from different frequencies. In the second stage,
with the estimated H , the other parameters of the model are estimated by the method
of moments. All estimators have closed-form expressions and are easy to implement.
A large sample theory of the proposed estimators is derived. Extensive simulations
show that the proposed estimators and the large-sample theory perform well in finite
samples. We apply the model and the method to the logarithmic daily RV series of
various financial assets. Our empirical findings suggest that H is much smaller than 1/2,
indicating that the RV series have rough sample paths, and that the mean reversion
parameter takes a small positive number, indicating that the RV series are stationary
but have slow mean reversion. The proposed model is compared with many alternative
models, including the fractional Brownian motion, ARFIMA, and HAR, in forecasting RV
and logarithmic RV.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

With the increasing availability of high frequency financial data, daily realized volatility (RV) is readily available.
s a result, modeling and forecasting daily RV have been extensively studied. For example, Andersen et al. (2001a,b)
rovide evidence of long-range dependence in the RV of equities and exchange rates, respectively. Andersen et al. (2003)
oint out that forecasts from a simple autoregressive fractionally integrated moving average (ARFIMA) model for the
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ogarithmic daily RV outperforms several popular daily GARCH models and more complicated high-frequency models.
ndersen and Bollerslev (1997) show how long-range dependence in volatility can arise via interactions of a large number
f heterogeneous information processes. Motivated by this heterogeneity, Corsi (2009) introduces the heterogeneous
utoregressive (HAR) model for the daily RV. Bollerslev et al. (2016) extend the HAR model by allowing the parameters
f the HAR model to vary explicitly with the measurement error in estimating the daily RV.
More recently, Gatheral et al. (2018) call for more attention to another stylized fact of RV, namely, the roughness of

he sample path. They show that the fractional Brownian motion (fBm) with the Hurst parameter H = 0.14 can generate
a rough sample path and outperform the HAR model in forecasting logarithmic RV and RV out-of-sample. Moreover,
they argue that although fBm with H < 1/2 is not a long-memory process, classical statistical procedures, such as the
log-periodogram regression, tend to find the evidence of long memory in data generated from fBm with H < 1/2.1 A
growing strand of literature now supports the findings of Gatheral et al. (2018). For example, Livieri et al. (2018) report
strong support for roughness using the implied volatility-based approximations to spot volatility. Bayer et al. (2016) obtain
strong support for roughness via the S&P 500 volatility surface and variance swaps. Bennedsen (2017) and Bennedsen et al.
(2021) document roughness in daily RVs of nearly two thousand U.S. equities.2

In the context of fBm, the roughness of a sample path is determined by the Hurst parameter, H , if H < 1/2. Let BH
t

denote an fBm that is a zero-mean Gaussian process with the covariance function

Cov
(
BH
t , B

H
s

)
=

1
2

(
|t|2H + |s|2H − |t − s|2H

)
, ∀t, s ≥ 0. (1.1)

f H = 1/2, BH
t is a standard Brownian motion (Bm, denoted by Wt ) that has independent increments. Whereas, when

̸= 1/2, the increments of BH
t are serially correlated. The serial correlations are positive when H ∈ (1/2, 1) and negative

hen H ∈ (0, 1/2). The smaller the H is, the rougher the sample path of BH
t .

Unfortunately, fBm is non-stationary, making it less ideal for modeling daily RV. To allow both stationarity and potential
oughness of a sample path, in this paper, we consider the following discrete-time model

Xi∆ = e−κ∆X(i−1)∆ +
(
1 − e−κ∆

)
µ+ εi∆ with εi∆ = σ

∫ i∆

(i−1)∆
e−κ(i∆−s)dBH

s , (1.2)

here {Xi∆}
n
i=0 is a set of observations on the logarithmic RV, ∆ denotes the sampling interval, κ ∈ R+, σ ∈ R+, and

∈ R are the unknown parameters. Here, it is assumed that we have n + 1(n = T/∆) equally spaced observations at
oints {i∆}

n
i=0 over the time interval [0, T ] with T being the time-span of the data.3 If κ = 0, e−κ∆

= 1 and Xi∆ − X(i−1)∆
is the increment of fBm, which is known as the fractional Gaussian noise. As a result, Xi∆ is a discrete sample from fBm.
However, when κ > 0, e−κ∆ < 1 and Xi∆ is stationary. In this case, κ is often referred to as the mean reversion parameter.
Together with H , it determines the autocorrelation function (ACF) of Xi∆. When H < 0.5 and κ takes a small positive value,
which are estimates that we obtained from real data, the sample path of Xi∆ is rough and the ACF decays slowly.

Model (1.2) is the exact discrete-time representation of the following continuous-time fractional Ornstein–Uhlenbeck
(fO–U) process

dXt = κ (µ− Xt) dt + σdBH
t . (1.3)

In this paper, we propose a two-stage method to estimate all unknown parameters in Model (1.3) based on the discrete-
time observations {Xi∆}

n
i=0. In the first stage, following Lang and Roueff (2001) and Barndorff-Nielsen et al. (2013), H is

estimated based on the ratio of squared summations of the second-order differences of Xi∆ obtained at two different
frequencies. In the second stage, estimators of the other parameters in Model (1.3) are constructed based on a set of
moment conditions in which the true value of H is replaced with the estimated H obtained in the first stage. Closed-form
expressions are established for all the proposed estimators, denoted by Ĥ , κ̂ , µ̂, and σ̂ .

We then develop the large-sample theory for the proposed estimators. In particular, we consider two asymptotic
schemes: (i) the in-fill scheme under which the sampling interval ∆ goes to zero with a fixed time-span T ; and (ii)
he double scheme in which ∆ → 0 and T → ∞ simultaneously. Under both schemes, the consistency and asymptotic
ormality of Ĥ and σ̂ are established for all H ∈ (0, 1) and regardless of the stationarity property of the model. In addition,
n explicit formula is derived for the asymptotic variance of Ĥ , which depends only on the value of H . This feature greatly
acilitates statistical inference about H . Under the double scheme, the consistency and the asymptotic distributions of
and µ̂ are developed. The convergence rate of µ̂ is a function of H . Both the convergence rate and the asymptotic
istribution of κ̂ depend crucially on H . Extensive simulations are designed to check the finite-sample performance of the
roposed estimators and derived asymptotic distributions.

1 Bennedsen et al. (2021) propose an alternative volatility model that can generate a rough sample path and has the long-memory property at
the same time.
2 Rough volatility models have also been applied in mathematical finance, such as in option pricing (Bayer et al., 2016; Garnier and Sølna, 2017),

portfolio choice (Fouque and Hu, 2018), and dynamic hedging (Euch and Rosenbaum, 2018). Jaisson and Rosenbaum (2016) study microstructural
foundations for the roughness.
3 When X is annualized and observed daily (weekly or monthly), then ∆ = 1/252 1/52 or 1/12 .
i∆ ( )
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We apply Model (1.3) and the proposed estimation method in empirical studies where we model and fit the logarithmic
daily RV for the S&P 500, DJIA, and NASDAQ 100. We obtain the strong evidence of H < 1/2 in all cases, reinforcing the
finding of rough volatility documented in the literature. Also found is the evidence of κ taking a small positive number,
suggesting slow mean reversion. We compare the out-of-sample performance of Model (1.3) with that of five alternative
models, including fBm, ARFIMA, and HAR, in forecasting RV and logarithmic RV.

The remainder of the paper is organized as follows. Section 2 introduces the model, discusses its relationship with
ARFIMA, and provides the forecasting formula with Model (1.3). Section 3 proposes a two-stage estimation approach.
Section 4 establishes the asymptotic properties of the proposed estimators. In Section 5, Monte Carlo experiments are
designed to check the finite-sample performance of the proposed estimators and the large-sample theory. Empirical
studies are carried out in Section 6. Section 7 concludes. All proofs are collected in Appendix A. More empirical results
can be found in the online supplement where we apply the proposed method to forecast the logarithmic RV, logarithmic
bipower variation (BV) and logarithmic realized kernel (RK) for the S&P 500, DJIA, and NASDAQ 100. Throughout the paper,
we use

p
→,

a.s.
→,

d
→, d

= to denote convergence in probability, convergence almost surely, convergence in distribution, and
equivalence in distribution, respectively.

2. Model

2.1. Preliminaries

The model with which we are concerned in this paper is given by (1.3). The stochastic differential equation in (1.3)
has a unique path-wise solution as

Xt = e−κtX0 +
(
1 − e−κt)µ+ σ

∫ t

0
e−κ(t−s)dBH

s , (2.1)

where X0 is the initial value and
∫ t
0 e−κ(t−s)dBH

s exists as a path-wise Riemann–Stieltjes integral by using partial integration
and exploiting that the exponential function is of finite variation. Moreover, the integral in (2.1) is almost surely
continuous in t (Cheridito et al., 2003). Letting t > s and u > v, we have

E
[(
BH
t − BH

s

) (
BH
u − BH

v

)]
=

1
2

(
(s − u)2H + (t − v)2H − (t − u)2H − (s − v)2H

)
, (2.2)

hich implies that
{
BH
t

}
t≥0 has stationary increments for any H ∈ (0, 1).

When H = 1/2,
{
BH
t

}
t≥0 has independent increments and becomes a standard Bm. Whereas, when H ̸= 1/2, the

increments of
{
BH
t

}
t≥0 are serially correlated. If H ∈ (1/2, 1), the covariances of increments of BH

t are not summable,
suggesting long-range dependence of the increment process. If H ∈ (0, 1/2), the two-sided long-run variance of
increments of BH

t is zero, suggesting anti-persistence of the increment process. For all ε > 0 and T > 0, there exists
a nonnegative random variable Gε,T such that E

(⏐⏐Gε,T ⏐⏐p) < ∞ for all p ≥ 1, and
⏐⏐BH

t − BH
s

⏐⏐ ≤ Gε,T |t − s|H−ε almost

surely for all s, t ∈ [0, T ]. This fact ensures that the sample path of
{
BH
t

}
t≥0 is (locally) Hölder continuous of order H − ε,

which in turn suggests that Xt is (locally) Hölder continuous of order H − ε (Gehringer and Li, 2020). Hence, the smaller
he value of H , the rougher the sample paths of BH

t and Xt . Cheridito et al. (2003) obtain the order of the covariance
unction of fO–U when the lag goes to infinity, suggesting that the decay of the covariance of fO–U is very similar to that
f increments of BH

t .
4

With a proper initial condition, the stationarity and ergodicity of Xt are guaranteed by κ > 0 (Hu and Nualart, 2010).
hereas, if κ < 0, Xt is explosive and Xt = Op

(
e−κt

)
as t → ∞ (Belfadli et al., 2011). When κ = 0, Xt is an fBm. In this case,

Xt = σBH
t = Op

(
tH
)
as t → ∞ and hence, is nonstationary. The last equation is from the fact of E

[(
BH
t − BH

0

)2]
= t2H ,

which can be obtained straightforwardly from (2.2) by letting t = u and s = v = 0.
For the case of κ > 0, set the initial condition to be

X0 = µ+ σ

∫ 0

−∞

eκsd̃BH
s with B̃H

s =

{
BH
s for s ≥ 0

WH
|s| for s ≤ 0

,

here B̃H
s is a two-sided fBm with WH

|s| being an fBm independent of BH
s . Then, Xt in (2.1) becomes a covariance stationary

rocess with

E (Xt) = µ and Var (Xt) = σ 2κ−2HHΓ (2H) , (2.3)

4 More in-depth discussions of fBm and fO–U can be found in Samorodnitsky and Taqqu (1994), Embrechts and Maejima (2002), and Cheridito
et al. (2003).
3
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here Γ (·) denotes the gamma function. Moreover, Xt can be identically represented as

Xt = µ+ σ

∫ t

−∞

e−κ(t−s)d̃BH
s . (2.4)

Under a general initial condition X0 = Op (1), Xt is asymptotically covariance stationary. In this case, the impact of
the initial condition disappears as t → ∞ because e−κt

→ 0 as t → ∞. Hence, it is easy to get limt→∞ E (Xt) = µ and
imt→∞ Var (Xt) = σ 2κ−2HHΓ (2H).

2.2. Discrete-time model

When H = 1/2, Model (1.2) turns out to be an AR(1) model with independent Gaussian errors {εi∆} (see, for example,
ergstrom, 1990). Under the in-fill asymptotic scheme where ∆ → 0 with a fixed T , e−κ∆

= 1 − κT/n + O(n−2) → 1,
mplying that Xi∆ is a local-to-unity process (see, for example, Phillips, 1987). Under the double asymptotic scheme where

→ 0 and T → ∞, Xi∆ is a mildly stationary process for it has a root moderately deviated from unity, as studied in
ang and Yu (2016).
Whereas, when H ̸= 1/2, {εi∆} is serially dependent with the covariance

E
(
εi∆ε(i+j)∆

)
= σ 2H (2H − 1)

∫ i∆

(i−1)∆

∫ (i+j)∆

(i+j−1)∆
e−κ(2(i+j)∆−s−τ )

|s − τ |2H−2 dsdτ ,

(see, Lemma 2.1 of Cheridito et al. (2003)). Note that, as ∆ → 0,

εi∆ = σ

∫ i∆

(i−1)∆
e−κ(i∆−s)dBH

s = σ
(
BH
i∆ − BH

(i−1)∆

)
+ Op

(
∆1+H)

:= σvi∆ + Op
(
∆1+H) ,

where vi∆ = BH
i∆ − BH

(i−1)∆. Hence, the dependence structure of {εi∆} is determined by that of {vi∆}. From (1.1), it can be
proven that, for any fixed ∆, {vi∆} is stationary with the following autocovariance function

Cov
(
vi∆, v(i+j)∆

)
=

1
2
∆2H {

|j + 1|2H − 2 |j|2H + |j − 1|2H
}

= O
(
j2H−2) as j → ∞.

If H ∈ (1/2, 1), it has Cov
(
vi∆, v(i+j)∆

)
> 0 and

∑
∞

j=0 Cov
(
vi∆, v(i+j)∆

)
= +∞. In this case, both {vi∆} and {εi∆} have

ositive serial correlations and long-range dependence. In contrast, if H ∈ (0, 1/2), Cov
(
vi∆, v(i+j)∆

)
< 0 for any j ̸= 0

nd
∑

∞

j=−∞
Cov

(
vi∆, v(i+j)∆

)
= 0.5 This property implies that {vi∆} is anti-persistent when H ∈ (0, 1/2). Consequently,

{εi∆} has negative serial correlations that quickly decay to zero as the lag order increases.
The degree of persistence of {Xi∆} defined in Model (1.2) is determined jointly by the autoregressive root e−κ∆ and

H . If H = 1/2, {εi∆} is iid. In this case, the ACF of {Xi∆} at the jth lag is e−κ∆j that converges to 0 at the exponential
rate as j → ∞ and hence summable. When H ̸= 1/2, the convergence rate of the ACF of {Xi∆} is O

(
j2H−2

)
, which

is solely determined by H as j → ∞ and dominates the exponential rate e−κ∆j. Clearly, only when H ∈ (1/2, 1), can
long-range dependence be found in {Xi∆}. However, if e−κ∆ takes a value close to unity, which is ensured by κ taking a
small positive value, {Xi∆} behaves almost like the cumulative sums of {εi∆}. In this case, e−κ∆j plays an important role
n determining the ACF of {Xi∆} at small and moderate lags. As a result, even when H ∈ (0, 1/2), the ACF of {Xi∆} may
decay slowly at small and moderate lags. However, if H ∈ (1/2, 1), the positive serial dependence of {εi∆} makes the
ACF of {Xi∆} decay “too” slowly and the sample path of {Xi∆} “too” smooth. In practical applications, we do not know
ex-ante if a slowly decaying ACF at small and moderate lag is generated by a small positive κ or by a large positive κ
together with H ∈ (1/2, 1). However, if a slowly decaying ACF and the rough feature are both important in a dataset,
then a small positive κ and H ∈ (0, 1/2) are expected. One goal of our paper is to find a reasonable method to estimate H
and κ .

To better appreciate the discussion above, we simulate {Xi∆} and {εi∆} from Model (1.3) with various values of H . We
set κ = 0.2366, µ = 2.4165, σ = 0.7007, and ∆ = 1/256. Details about how to simulate data from Model (1.3) are
given in Section 5. Fig. 1 plots simulated {Xi∆} and the autocorrelation function of {Xi∆} and {εi∆}, in which the left panels
represent the model with H = 0.7 and the right panels represent the model with H = 0.1299 (which is the estimated H
from the S&P500 reported later). This figure clearly shows that {εi∆} has positive serial correlations when H = 0.7 and
negative serial correlations when H = 0.1299. More importantly, as the autoregressive root e−κ∆

= 0.9991 is very close
to unity, for both values of H , {Xi∆} has positive and slowly decaying autocorrelations. The autocorrelations decay much
more slowly when H = 0.7 than when H = 0.1299. Furthermore, the sample path of {Xi∆} is smooth when H = 0.7, but
quite rough when H = 0.1299.

5 It can be shown that
∑

∞ Cov
(
v , v

)
=
∑

−∞ Cov
(
v , v

)
= −0.5Var v .
j=1 i∆ (i+j)∆ j=−1 i∆ (i+j)∆ ( i∆)

4
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Fig. 1. Simulated sample paths of {Xi∆}, autocorrelation functions of {Xi∆} and {εi∆} from Model (1.3).

.3. Relation to ARFIMA

There are close relationships and crucial differences between the models introduced in (1.2) and (1.3) and the following
tationary ARFIMA(1, d, 0) model with d := H − 1/2 that is widely used and extensively studied in the discrete-time
iterature:

yi∆ = µ(1 − ρ) + ρy(i−1)∆ + ui∆, |ρ| < 1, (2.5)

ui∆ = (1 − L)−dei∆, ei∆ ∼ i.i.d.(0, σ 2
e ), i = 1, . . . , n,

here L is the lag operator with (1 − L)−d defined as

(1 − L)−d
=

∞∑
j=0

Γ (j + d)
Γ (d)Γ (j + 1)

Lj.

As H ∈ (0, 1), d ∈ (−1/2, 1/2). Together with the condition that |ρ| < 1, the ARFIMA model is stationary. It is well-
established in the literature that {ui∆} has long-range dependence when d ∈ (0, 1/2) but it is anti-persistent when
d ∈ (−1/2, 0) (see, for example, Giraitis et al., 2012).

Letting ρ = e−κ∆, σ 2
e =

1−e−2κ∆

2κ σ 2, and n = 1/∆ (i.e., T = 1), using the result of Davydov (1970), we have, as
∆ → 0,

δHΓ (H + 1/2)
nH y⌊ns⌋ ⇒ Xs ,∀ 0 ≤ s ≤ 1 , (2.6)

here δH =

√
2HΓ (3/2−H)

Γ (H+1/2)Γ (2−2H) , ⌊z⌋ denotes the greatest integer less than or equal to z, and {Xs} is the fO–U process (see
also Tanaka, 2013).

The weak convergence in (2.6) may lead one to believe that the fO–U model (1.3) is essentially identical to the
ARFIMA(1, d, 0) model. Unfortunately, this belief is not justified under popular estimation methods. To show the difference
between fO–U and ARFIMA(1, d, 0), we simulate data from Model (1.3) but fit the stationary ARFIMA(1, d, 0) model with
the frequency-domain (or Whittle) ML method of Whittle (1953). When simulating the data, we set κ = 15, µ = 2.8,
σ = 1, H = 0.15, T = 4, and ∆ = 1/256. This setup implies that d = H − 1/2 = −0.35 and ρ = exp(−κ∆) = 0.9414.
Table 1 reports the means and standard deviations (SD) of the Whittle ML estimates (MLE) of d and ρ over 200 replications.
The mean of d̂ is very close to 0.4, whereas the mean of ρ̂ is very close to 0. Both values are far away from the true values.
In fact, the Whittle MLE of d and ρ are very close to those obtained in the empirical studies when we fit the ARFIMA model
5
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Table 1
Mean and standard deviation (SD) of the Whittle MLE of d and ρ when fitting the
ARFIMA(1, d, 0) model to data simulated from Model (1.3). When simulating data, we
set κ = 15, µ = 2.8, σ = 1, H = 0.15, T = 4, ∆ = 1/256. This setup implies that
d = H − 1/2 = −0.35 and ρ = exp(−κ∆) = 0.9414.

Mean of d̂ SD of d̂ Mean of ρ̂ SD of ρ̂

0.3954 0.0409 0.0118 0.0529

to the daily logarithmic RV of stock indices as shown in Section 6. Although not reported, the decreasing the value of ∆
ssentially leads to no change in the mean of d̂ and the mean of ρ̂.6

.4. Out-of-sample forecast with fO–U

To forecast future Xt with the fO–U model, let Fs be the σ -algebra generated by fBm over [0, s]. According to Corollary
.1 of Fink et al. (2013), the conditional expectation and conditional variance are

E [Xt |Fs] = Xse−κ(t−s)
+ µ(1 − e−κ(t−s)) −

κµ

σ

∫ s

0
ΨH (s, t, v)dv

+
κ

σ

∫ s

0
ΨH (s, t, v)Xvdv +

1
σ

∫ s

0
ΨH (s, t, v)dXv , (2.7)

Var [Xt |Fs] =
c (v) 1[s,t] (v)

2
H,t −

ΨH (s, t, v) 1[0,s] (v)
2
H,t , (2.8)

where c (v) = e−κ(t−v), 1[s,t] (v) = 1 if v ∈ [s, t] and 0 otherwise,

ΨH (s, t, v) =
sin (π (H − 1/2))

π
v1/2−H (s − v)1/2−H

∫ t

s

zH−1/2 (z − s)H−1/2

z − v
σ e−κ(t−z)dz,

nd

f (v, t) 1[0,t](v)
2
H,t =

2πH (H − 1/2)
∫ t
0 s1−2H

(∫ t
s

rH−1/2f (r,t)1[0,t](r)
(r−s)3/2−H dr

)2
ds

Γ (2 − 2H) sin (π (H − 1/2))Γ 2 (H − 1/2)
. (2.9)

y the Gaussian property of Xt , the h-step-ahead predictor of RVt = exp(Xt ) is

R̂V t+h = exp
(
E [Xt+h|Ft ] +

1
2
Var [Xt+h|Ft ]

)
. (2.10)

When only discrete-sampled data is available, say at periods ∆, 2∆, . . . , n∆, (n + 1)∆, . . . , (n + m)∆, we need to
iscrete the expression of E [Xt |Fs] and Var [Xt+h|Ft ]. Let s = n∆ and t = (n + m)∆. Since ΨH (s, t, v) is a deterministic
unction, we can discretize E [Xt |Fs] using the Euler scheme:

E [Xt |Fs] = X−κ(t−s)
s e−κ(t−s)

+ µ(1 − e−κ(t−s)) −
κµ

σ

∫ s

0
ΨH (s, t, v)dv

+
κ

σ

∫ s

0
ΨH (s, t, v)Xvdv +

1
σ

∫ s

0
ΨH (s, t, v)dXv

≈ Xse−κ(t−s)
+ µ(1 − e−κ(t−s)) −

κµ

σ

n∑
i=1

ΨH (s, t, i∆)∆

+
κ

σ

n∑
i=1

ΨH (s, t, i∆)Xi∆∆+
1
σ

n∑
i=1

ΨH (s, t, i∆)
(
X(i+1)∆ − Xi∆

)
,

where

ΨH (s, t, v) ≈
sin (π (H − 1/2))

π
v1/2−H (n∆− v)1/2−H

×

m+n∑
j=n+1

(j∆)H−1/2 (j∆− n∆)H−1/2

j∆− v
σ∆e−κ((n+m)∆−j∆) . (2.11)

6 We have also tried to use the log-periodogram method of Geweke and Porter-Hudak (1983) to fit the ARFIMA(1, d, 0) to the simulated data
nd obtained similar results to the Whittle ML method.
6
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To discretize the expression of Var [Xt |Fs], following Fink et al. (2013), for an interval [i∆, (i + 1)∆] where i =

, . . . , n + m − 1, taking a partition i∆ = ui
0 ≤ ui

1 ≤ · · · ≤ ui
p = (i + 1)∆ with p ∈ N ,7 we have∫ t

0
s1−2H

(∫ t

s

rH−1/2c (r) 1[s,t] (r)
(r − s)3/2−H dr

)2

ds

=

n+m+l−1∑
i=0

∫ (i+1)∆

i∆
s1−2H

(∫ t

s

rH−1/2c (r) 1[s,t] (r)
(r − s)3/2−H dr

)2

ds

≈

n+m+l−1∑
i=0

[
((i + 1)∆)1−2H

− (i∆)1−2H] [p−1∑
j=1

[(
ui
j+1 − i∆

)H−
1
2 −

(
ui
j − i∆

)H−
1
2

]

×

(
1

H −
1
2

)2 (
ui
j

)H−
1
2 c
(
ui
j

)
+
(
ui
j+1

)H−
1
2 c
(
ui
j+1

)
2

]2

.

Substituting the above result into (2.9), we obtainc (r) 1[s,t] (r)
2
H,t ≈

πH (2H − 1)
∑n+m+l−1

i=0

[
((i + 1)∆)1−2H

− (i∆)1−2H]
4Γ (2 − 2H) sin (π (H − 1/2))Γ 2 (H + 1/2)

×

[p−1∑
j=1

[(
ui
j+1 − i∆

)H−
1
2 −

(
ui
j − i∆

)H−
1
2

]

×

[(
ui
j

)H−
1
2 c
(
ui
j

)
+
(
ui
j+1

)H−
1
2 c
(
ui
j+1

)]]2

. (2.12)

Similarly, we haveΨH (s, t, r) 1[0,s] (r)
2
H,t ≈

πH (2H − 1)
∑n+m+l−1

i=0

[
((i + 1)∆)1−2H

− (i∆)1−2H]
4Γ (2 − 2H) sin (π (H − 1/2))Γ 2 (H + 1/2)

×

[p−1∑
j=1

[(
ui
j+1 − i∆

)H−
1
2 −

(
ui
j − i∆

)H−
1
2

]

×

[(
ui
j

)H−
1
2 ΨH

(
s, t, ui

j

)
+
(
ui
j+1

)H−
1
2 ΨH

(
s, t, ui

j+1

)]]2

,

where the approximation of ΨH (s, t, v) is given by (2.11).8

3. A two-stage estimation approach

To estimate the parameters in (1.3) based on discrete-sampled data, it is difficult to apply the ML method to estimate all
the parameters simultaneously for the reason that the errors {εt∆} in (1.2) have a complicated dependence structure when
H ̸= 1/2. Following Phillips and Yu (2009b), we propose a two-stage estimation approach to estimate the parameters in
Model (1.3). Our method is straightforward to implement.

In the first stage, following Lang and Roueff (2001) and Barndorff-Nielsen et al. (2013), we propose to estimate the
Hurst parameter H by using the change-of-frequency (COF) estimator based on the second-order differences of Xt :

Ĥ =
1
2
log2

(∑n−4
i=1

(
X(i+4)∆ − 2X(i+2)∆ + Xi∆

)2∑n−2
i=1

(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2
)
, (3.1)

here log2 (·) is the base-2 logarithm,
{
X(i+4)∆ − 2X(i+2)∆ + Xi∆

}n−4
i=1 and

{
X(i+2)∆ − 2X(i+1)∆ + Xi∆

}n−2
i=1 are the second-

order differences of {Xi∆}
n
i=1 taken at two different frequencies.

The square summation of the second-order differences is known to be related to the smoothness parameter of a
stochastic process. Lang and Roueff (2001) consider the COF estimator for Gaussian processes with stationary increments.

7 In the empirical studies, we set p = 100.
8 To forecast future RV with fBm, using Eq. (5.2) in Gatheral et al. (2018), we have

R̂V t+h = exp
(̂
BH
t+h + 2cv2h2H) , (2.13)

where B̂H is the h-step-ahead predictor of BH , c and v2 are defined in Section 5.2 of Gatheral et al. (2018).
t+h t

7



X. Wang, W. Xiao and J. Yu Journal of Econometrics xxx (xxxx) xxx

B
(

m

N

{

i

i
t
w
d
H
σ
B
t
e
o
(
k

i
i

e
A
a

arndorff-Nielsen et al. (2013) consider the COF estimator for Brownian semi-stationary (BSS) processes when H ∈

0, 1/2) ∪ (1/2, 3/4) while Corcuera et al. (2013) consider a modified COF estimator for BSS processes that is applicable
when H ∈ (3/4, 1). All these studies develop the in-fill asymptotic distribution of the COF estimator. Moreover, Bennedsen
et al. (2019) introduce bootstrap procedures to improve the finite-sample performance of the COF-based hypothesis
testing.

Gaussian processes with stationary increments and BSS processes include many interesting processes, including the
fO–U model with κ > 0, as special cases (see, Corollary 4.3 and Remark 4.4 in Barndorff-Nielsen and Basse-O’Connor
(2011)). However, the fO–U model with κ < 0 is not a special case of the Gaussian processes with stationary increments
and BSS processes. While focusing our attention on the simple fO–U model, we extend the COF estimator to the explosive
fO–U model in which κ < 0 and develop both the in-fill asymptotic and the double asymptotic distributions for all
H ∈ (0, 1).

Besides the COF estimator, many other estimators for H have been proposed and studied in the literature. Comprehen-
sive surveys of these estimators can be found in Gneiting et al. (2012), and Bardet (2018). While the COF estimator may
not be statistically efficient, we consider it for the following reasons. First, it is easy to implement and performs well in
finite samples. Second, we can develop its asymptotic distribution for all values of H and κ . Third, its asymptotic variance
has an analytical expression, which depends only on H . Hence, statistical inference of H can be made without knowing
the values of the other parameters in the model.

In the second stage, assuming Model (1.3) is stationary, we estimate the other parameters, σ , µ, κ using the following
ethod-of-moments estimators:

σ̂ =

√∑n−2
i=1

(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2
n
(
4 − 22Ĥ

)
∆2Ĥ

, (3.2)

µ̂ =
1
n

n∑
i=1

Xi∆, (3.3)

κ̂ =

(
n
∑n

i=1 X
2
i∆ −

(∑n
i=1 Xi∆

)2
n2σ̂ 2ĤΓ

(
2Ĥ
) )−1/(2Ĥ)

. (3.4)

ote that σ̂ depends on Ĥ obtained in the first stage and κ̂ depends on both σ̂ and Ĥ .
The estimators in the second stage are based on a set of moment conditions. When ∆ is small, X(i+2)∆ − 2X(i+1)∆ +

Xi∆ = σ
(
BH
(i+2)∆ − 2BH

(i+1)∆ + BH
i∆

)
+ Op

(
∆1+H

)
. It is well studied in the literature that, when ∆ = 1, the process{

BH
i+2 − 2BH

i+1 + BH
i

}n
i=1 is stationary and ergodic with mean zero and variance 4 − 22H for any H ∈ (0, 1). Using the

self-similarity property of BH
t , we have

Var
(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)
= σ 2 (4 − 22H)∆2H

+ o
(
∆2H) ,

which justifies the estimator of σ 2 given in (3.2). The estimators µ̂ and κ̂ come from the expressions of the unconditional
mean and variance of Xi∆ given in (2.3).

Our estimators µ̂ and κ̂ can be regarded as the discrete-time version of the ergodic-type estimators of κ and µ of Xiao
and Yu (2019a,b). However, since Xiao and Yu (2019a,b) assume that σ 2 and H are known and a continuous record of
Xt} is observed, we have to modify their estimators by (i) replacing σ and H with σ̂ and Ĥ; (ii) replacing the Riemann
ntegral with the Riemann sum.

There is somewhat related but separate literature that focuses on estimating κ in the fO–U process. Almost all studies
n this literature assume that H is known. When σ and H are known and a continuous record of Xt is available over the
ime interval [0, T ], Kleptsyna and Le Breton (2002) and Tanaka et al. (2020) obtain expressions for the exact MLE of κ
hich involve stochastic integrals. Replacing these stochastic integrals by corresponding Riemann sums calculated from
iscrete-time observations {Xi∆}, Tudor and Viens (2007) introduce an approximate MLE of κ with discrete-sampled data.
owever, the approximate MLE is challenging to implement, and its limiting distribution is unknown. Moreover, when
and H are unknown, how to obtain an approximate MLE from discrete-sampled data remains as an unsolved problem.
ishwal (2011) proposes a minimum contrast (MC) estimator of κ . Hu and Nualart (2010) and Hu et al. (2019) develop
he least-squares (LS) estimator of κ and the ergodic type estimator of κ . Tanaka (2013, 2015) and Xiao and Yu (2019a,b)
xtend these estimators from the stationary case with κ > 0 to the non-stationary case with κ ≤ 0. When discrete-time
bservations of {Xt} are available, the MC, LS, and ergodic type estimators have been studied by Ludeña (2004), Es-Sebaiy
2013) and Hu et al. (2019), respectively. A critical difference from these studies is that our study does not assume H is
nown when estimating κ .
For practical applications, it is important to assume that H is unknown when estimating other parameters. Moreover, it

s important to estimate parameters based on a discrete record of data. It is because we estimate H and other parameters
n the model based on a discrete record of data, we can examine the performance of fO–U model in empirical studies.

The asymptotic distribution of LS estimator of κ has been derived in the O–U model (H is assumed to be 1/2). For
xample, assuming κ > 0, Tang and Chen (2009) obtain the long-span and double asymptotic distributions of MLE of κ .
ssuming κ < 0, Wang and Yu (2016) obtain the double asymptotic distribution of the LS estimator of κ . We extend the

symptotics of κ from the O–U model to the fO–U model.

8
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. Asymptotic theory

The large-sample theory of Ĥ and σ̂ defined in (3.1) and (3.2) is developed in Section 4.1. We first show that Ĥ and σ̂
re consistent as long as T∆ → 0 and n = T/∆ → ∞, a condition that is satisfied under either (i) the in-fill asymptotic
cheme where ∆ → 0 with a fixed T9; or (ii) the double asymptotic scheme where ∆ → 0 and T → ∞ simultaneously
ith T diverging at a lower rate than that of 1/∆.10 In Section 4.2, we show that T → ∞ is a necessary condition for the
onsistency of µ̂ and κ̂ defined in (3.3) and (3.4) and report the double asymptotic theory of µ̂ and κ̂ .

.1. Asymptotic theory of Ĥ and σ̂

heorem 4.1. Let Ĥ and σ̂ be the estimators defined by (3.1) and (3.2) for Model (1.3). For all H ∈ (0, 1), when T∆ → 0
and n = T/∆ → ∞, it has

(a) Ĥ
p

→ H and

√
n
(
Ĥ − H

) d
→ N

(
0,
Σ11 +Σ22 − 2Σ12

(2 log 2)2

)
. (4.1)

b) σ̂
p

→ σ and
√
n

log (1/∆)
(σ̂ − σ)

d
→ N

(
0,
Σ11 +Σ22 − 2Σ12

(2 log 2)2
σ 2
)
, (4.2)

here

Σ11 = 2 + 22−4H
∞∑
j=1

(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)2
, (4.3)

Σ12 = 21−2H

⎛⎝4(ρ1 + 1)2 + 2
∞∑
j=0

(
ρj+2 + 2ρj+1 + ρj

)2⎞⎠ , (4.4)

Σ22 = 2 + 4
∞∑
j=1

ρ2
j , (4.5)

with

ρj =
1

2
(
4 − 22H

) (− |j + 2|2H + 4 |j + 1|2H − 6 |j|2H + 4 |j − 1|2H − |j − 2|2H
)
. (4.6)

emark 4.1. The asymptotics of Ĥ and σ̂ apply to all H ∈ (0, 1). Moreover, they apply to all κ , including κ > 0, κ = 0,
and κ < 0.

Remark 4.2. It can be proved that ρj = O
(
j2H−4

)
as j → ∞. Hence, for any H ∈ (0, 1), the sequence

{
ρj
}∞

j=1 is square
summable, ensuring that the infinite sums in Σ11, Σ12, and Σ22 are all finite. Using the mean value theorem for integrals
repeatedly, we have, as j → ∞,

2
(
4 − 22H) ρj

=2H
{
− (j + 1 + λ1)

2H−1
+ 3 (j + λ2)

2H−1
− 3 (j − 1 + λ3)

2H−1
+ (j − 2 + λ4)

2H−1}
=O

(
j2H−4) ,

where {λs}
6
s=1 are real numbers in the interval (0, 3).

Remark 4.3. Fig. 2 plots the values of the asymptotic variance of
√
n
(
Ĥ − H

)
for H ∈ (0, 1). It shows that the asymptotic

variance of
√
n
(
Ĥ − H

)
is a decreasing function in H over the interval H ∈ (0, 1).

9 The relevance and superiority of the in-fill asymptotic theory relative to the long-span asymptotic theory have been well documented in
econometrics, even when the available frequency is daily, weekly or monthly; see, Yu (2014) and Zhou and Yu (2015), Jiang et al. (2018, 2021) for
further details.
10 The consistency of Ĥ only requires ∆ → 0. In other words, even when T diverges faster than 1/∆, violating the condition T∆ → 0, Ĥ is still
consistent as long as ∆ → 0.
9
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Fig. 2. Asymptotic variance of
√
n
(
Ĥ − H

)
as a function of H ∈ (0, 1).

Remark 4.4. It is worth mentioning that the asymptotic variance of Ĥ only depends on H while the asymptotic variance
of σ̂ only depends on H and σ . This feature greatly facilitates statistical inference about H and σ because H and σ can be
consistently estimated when T is fixed but κ and µ cannot. If an alternative estimator of H is used, as long as the rate of
convergence remains to be

√
n,

√
n (σ̂ − σ) /(σ log (∆)) should have the same limiting distribution.

When H = 1/2, Model (1.3) becomes the O–U model which enjoys the Markov property. Whereas, if H ̸= 1/2, Model
(1.3) does not have the Markov property anymore. To facilitate the test of the hypothesis H = 1/2, Corollary 4.2 gives
the value of the asymptotic variance of

√
n
(
Ĥ − 1/2

)
. Putting H = 1/2 into the formulae given in Theorem 4.1, we get

that ρ0 = 1, ρ1 = −1/2, ρj = 0 for j ≥ 2, Σ11 = 7/2, Σ12 = 3/2, and Σ22 = 3, and then Corollary 4.2 is obtained directly
and reported below.

Corollary 4.2. When H = 1/2, we have, as T∆ → 0 and n = T/∆ → ∞,
√
n
(
Ĥ − 1/2

) d
→ N

(
0,

7
8 (log 2)2

)
.

4.2. Asymptotic theory of µ̂ and κ̂

To develop the asymptotic theory of µ̂ and κ̂ defined in (3.3) and (3.4), we need the double asymptotic scheme where
→ ∞ and ∆ → 0. We may also need a condition to govern the relative divergence/convergence rates of T and ∆.

heorem 4.3. Let µ̂ be the estimator of µ defined in (3.3) for Model (1.3) with κ > 0. For all H ∈ (0, 1), when T → ∞ and
→ 0, we have µ̂

p
→ µ. If, in addition, T 1−H∆H

→ 0, then

T 1−H (µ̂− µ)
d

→ N
(
0, σ 2/κ2) . (4.7)

heorem 4.4. Let κ̂ be the estimator of κ defined in (3.4) for Model (1.3) with κ > 0. For all H ∈ (0, 1), when T → ∞ and
∆ → 0, we have κ̂

p
→ κ . If, in addition,

a) for H ∈ (0, 3/4),
√
T∆H

→ 0, then
√
T (̂κ − κ)

d
→ N (0, κφH) , (4.8)

ith

φH =

⎧⎨⎩
1

4H2

[
(4H − 1)+

2Γ (2−4H)Γ (4H)
Γ (2H)Γ (1−2H)

]
if H ∈ (0, 1

2 )

4H−1
4H2

[
1 +

Γ (3−4H)Γ (4H−1)
Γ (2−2H)Γ (2H)

]
if H ∈ [

1
2 ,

3
4 )

;

(b) for H = 3/4,
√
T∆H/log (T ) → 0, then

√
T

log(T )
(̂κ − κ)

d
→ N

(
0,

16κ
9π

)
;

c) for H ∈ (3/4, 1), T 2−2H∆H
→ 0, then

T 2−2H (̂κ − κ)
d

→
−κ2H−1

R,

HΓ (2H + 1)

10
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Fig. 3. Plot of φH as a function of H .

where R is the Rosenblatt random variable whose characteristic function is given by

c(s) = exp

(
1
2

∞∑
k=2

(
2
√

−1sψ(H)
)k ak

k

)
,

with ψ(H) =
√
H(H − 1/2) and

ak =

∫ 1

0

∫ 1

0
· · ·

∫ 1

0
|x1 − x2|H−1

· · · |xk−1 − xk|H−1
|xk − x1|H−1 dx1 · · · dxk.

Remark 4.5. If an alternative estimator of H is used, as long as the rate of convergence remains to be
√
n and the

ondition that governs the relative divergence/convergence rates of T and ∆ is imposed, we expect that Theorems 4.3
nd 4.4 continue to hold.

emark 4.6. Note that φH in Part (a) of Theorem 4.4 is continuous at H = 1/2. Using the formula Γ (z + 1) = zΓ (z),
φH for H ∈ (0, 1/2) can be rewritten as

φH =
1

4H2

[
(4H − 1)+

Γ (3 − 4H)Γ (4H)
Γ (2H)Γ (2 − 2H)

]
.

Hence, when H → 1/2 from the left side of 1/2, we have

lim
H↗1/2

φH =

[
1 +

Γ (1)Γ (2)
Γ (1)Γ (1)

]
= 2.

If H = 1/2, φH = 2. Hence, φH is continuous at H = 1/2.

Remark 4.7. When H = 1/2 and is known, the double asymptotic distribution of the MLE of κ is known to be N (0, 2κ);
see, for example, Tang and Chen (2009). Since φH = 2 when H = 1/2, our method-of-moments estimator κ̂ has the same
limiting distribution as the MLE in this case. Therefore, κ̂ is asymptotically efficient when H = 1/2.

Remark 4.8. Fig. 3 plots φH as a function of H that reaches the minimum at H = 1/2. Over the interval (0, 1/2], φH
is decreasing in H . Whereas, over the interval [1/2, 3/4), φH monotonically increases to +∞ as H → 3/4. This feature
suggests that the convergence rate of κ̂ − κ should be lower than 1/

√
T when H = 3/4. Part (b) of Theorem 4.4 shows

that the convergence rate of κ̂ − κ is log (T ) /
√
T when H = 3/4.

. Monte Carlo studies

This section checks the finite-sample performance of the proposed estimators and the developed asymptotic theory
ith data simulated from Model (1.3), various values of H , σ , µ and κ , and different combinations of the sampling

requency ∆ and the time span T . The data simulation and parameter estimation steps are summarized as follows:

i) Set values for parameters H , µ, κ , σ , in Model (1.3).

ii) Choose the values of ∆ and T , and hence, the number of observations for parameter estimation n = T/∆.
11
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iii) For any given ∆, choose the value of M > 1 to get a finer grid

{0,∆/M, 2∆/M, . . . ,∆; (M + 1)∆/M, (M + 2)∆/M, . . . , 2∆; . . . , n∆} .

Then, generate a series of fractional Gaussian noise
{
BH
jγ − BH

(j−1)γ

}nM
j=1

by using fast Fourier transformation at the

finer grid γ := ∆/M .11

(iv) The Euler approximation of Model (1.3) over the interval ((j − 1) γ , jγ ) takes the form of

Xjγ = X(j−1)γ + κ
(
µ− X(j−1)γ

)
γ + σ

(
BH
jγ − BH

(j−1)γ

)
. (5.1)

Starting from any pre-determined initial value X0, the time series
{
Xjγ
}nM
j=1 is generated recursively based on Eq. (5.1)

with the simulated fractional Gaussian noise series
{
BH
jγ − BH

(j−1)γ

}nM
j=1

obtained in Step 3. A subset of
{
Xjγ
}nM
j=1 is

{Xi∆}
n
i=0, which gives the simulated sample path of the process Xt with the target sampling interval ∆.12

(v) Using the simulated data {Xi∆}
n
i=0, estimate H , µ, κ , and σ based on the estimators defined in (3.1), (3.2), (3.3), and

(3.4), respectively.

(vi) Replicate the above procedure 10,000 times.

In the first experiment, we investigate the finite-sample properties of Ĥ defined by (3.1) under various combinations
of the sampling frequency ∆ and the time span T . We let the true value of H vary from 0.1 to 0.9, and set κ = 0.2366,
µ = 2.4165, and σ = 0.7007, which are the estimated values when Model (1.3) is fitted to the logarithmic daily RV of
S&P 500 index. Simulation results are reported in Table 2, including the mean and SD. For comparison, we also report, in
parentheses, the SD implied by the asymptotic theory given by (4.1).

Table 2 reveals several features. First, for all combinations of ∆, T , and H , the estimator Ĥ always has a very small
bias and a small SD. This suggests that H can be accurately estimated by Ĥ . Second, the bias and the SD become smaller
when the sampling interval ∆ decreases, or the time span T increases. This finding supports the asymptotic theory of
H given by (4.1). Third, the finite-sample SD is very close to the asymptotic counterpart, suggesting that the asymptotic
distribution derived in Theorem 4.1 provides excellent approximations to finite-sample distribution. Since our interest in
this paper is to model logarithmic daily RV, ∆ = 1/256 is more relevant.

In the second experiment, we set κ = 0.2366, µ = 2.4165, σ = 0.7007, T = 16, ∆ = 1/256, and let H vary from
0.1 to 0.7. Table 3 reports the estimation results of each parameter (H , σ , µ, and κ) and reveals several features. First,
σ and µ can always be accurately estimated with negligible biases and small SDs. When the value of H increases from
0.1 to 0.7, the SD of σ̂ decreases, as predicted by the asymptotic theory given by (4.2) and by Fig. 2, which shows that
the asymptotic variance of σ̂ is a decreasing function of H .13 Furthermore, as H increases, the SD of µ̂ increases. This
observation is also supported by the asymptotic theory given in (4.7), which shows that the convergence rate of µ̂ is
T 1−H , hence larger values of H worsen the precision of µ̂. Second, the parameter κ can be estimated with less precision.
The SDs are comparatively large, and the bias in κ̂ are noticeable. Also, the finite-sample SDs are very different from the
asymptotic SDs. The difficulties in estimating κ have been well studied for continuous-time models driven by standard
Brownian motion; see, Phillips and Yu (2005, 2009a) and Wang et al. (2011). Tang and Chen (2009) and Yu (2012) derive

11 Details of the use of fast Fourier transformation to generate a series of fractional Gaussian noise can be found in Paxson (1997). Other methods
for simulating fBm can be seen in a survey paper by Coeurjolly (2000).
12 For any target sampling interval ∆, a representation of Model (1.3) over the interval ((i − 1)∆, i∆) is

Xi∆ = X(i−1)∆ + κµ∆− κ

∫ i∆

(i−1)∆
Xtdt + σ

(
BH
i∆ − BH

(i−1)∆

)
. (5.2)

If we let γ = ∆ (i.e. M = 1), Eq. (5.1) for simulating the data becomes

Xi∆ = X(i−1)∆ + κµ∆− κX(i−1)∆∆+ σ
(
BH
i∆ − BH

(i−1)∆

)
,

which is the same as Eq. (5.2) but with the integral
∫ i∆
(i−1)∆ Xtdt replaced by X(i−1)∆∆. If we choose an M > 1, by dividing the interval ((i − 1)∆, i∆)

nto M equally-spaced subintervals as ∪
iM
j=(i−1)M+1 ((j − 1) γ , jγ ] and simulating data based on Eq. (5.1), then the simulated data are

Xi∆ = X(i−1)∆ + κµ∆− κ

iM∑
j=(i−1)M+1

X(j−1)γ γ + σ
(
BH
i∆ − BH

(i−1)∆

)
,

which is the same as Eq. (5.2) but with the integral replaced by the corresponding Riemann sum, i.e.,
∫ i∆
(i−1)∆ Xtdt ≈

∑iM
j=(i−1)M+1 X(j−1)γ γ . Clearly,

he larger M is, the smaller the approximation error generated by using Riemann sums. When ∆ is small, the approximation error can be ignored
ven when M is a relatively small number. Our idea is the same as the in-fill technique used in Elerian et al. (2001).
13 While the asymptotic variance of σ̂ does not strictly monotonically decrease in H , when we increase the number of replications to 100,000,

he strict monotonicity is found.

12
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able 2
inite sample properties of Ĥ . Values reported in parentheses correspond to the asymptotic theory in (4.1). We set M = 8, and fix κ = 0.2366,
= 2.4165, and σ = 0.7007.
Value of H 0.1 0.2 0.3 0.5 0.7 0.8 0.9

Panel A: T = 4

∆ =
1

256

Mean 0.0984 0.1983 0.2982 0.4982 0.6981 0.7981 0.8981

SD 0.0470 0.0460 0.0449 0.0423 0.0392 0.0375 0.0357
(0.0474) (0.0461) (0.0449) (0.0421) (0.0390) (0.0374) (0.0356)

∆ =
1

512

Mean 0.0995 0.1995 0.2994 0.4993 0.6992 0.7991 0.8991

SD 0.0334 0.0326 0.0319 0.0301 0.0280 0.0269 0.0256
(0.0335) (0.0326) (0.0317) (0.0298) (0.0276) (0.0264) (0.0252)

Panel B: T = 16

∆ =
1

256

Mean 0.0995 0.1995 0.2994 0.4994 0.6993 0.7993 0.8993

SD 0.0239 0.0232 0.0225 0.0211 0.0196 0.0187 0.0179
(0.0237) (0.0230) (0.0224) (0.0210) (0.0195) (0.0187) (0.0178)

∆ =
1

512

Mean 0.0998 0.1998 0.2998 0.4998 0.6998 0.7998 0.8998

SD 0.0166 0.0161 0.0157 0.0147 0.0137 0.0131 0.0125
(0.0167) (0.0163) (0.0158) (0.0149) (0.0138) (0.0132) (0.0126)

Table 3
Finite sample properties of the estimates of the parameters (H, σ , µ, κ) with various values of H , T = 16 and ∆ = 1/256. Values reported in
parentheses are the asymptotic SDs implied by (4.1) for Ĥ , (4.2) for σ̂ , (4.7) for µ̂, and (4.8) for κ̂ .

H σ µ κ :::: H σ µ κ

True value 0.1000 0.7007 2.4165 0.2366 0.3000 0.7007 2.4165 0.2366

Mean 0.0995 0.7046 2.4305 0.5847 0.2994 0.7040 2.4266 0.4975

SD 0.0239 0.0926 0.2315 0.8977 0.0225 0.0900 0.3813 0.4089
(0.0237) (0.0921) (0.2442) (0.2288) (0.0224) (0.0872) (0.4252) (0.1865)

True value 0.5000 0.7007 2.4165 0.2366 0.7000 0.7007 2.4165 0.2366

Mean 0.4994 0.7037 2.4242 0.5395 0.6993 0.7040 2.4229 0.6120

SD 0.0211 0.0890 0.6284 0.3455 0.0196 0.0925 1.0390 0.3467
(0.0210) (0.0819) (0.7403) (0.1719) (0.0195) (0.0759) (1.2890) (0.2398)

analytical expressions to approximate the bias in the LS of κ when H = 1/2. Our simulation results show that the bias in
estimating κ continues to exist for continuous-time models driven by fBm and depends not only on κ but also on H in a
onlinear fashion. This finding is supported by the asymptotic theory given in Theorem 4.4, which shows that both the
onvergence rate and the asymptotic variance of κ̂ depend crucially on H .
In the third experiment, we fix H to 0.1299 (which is the estimated H for the S&P500 reported later) and allow the

ther parameters (σ , µ, and κ) to take various values to determine how a change in one parameter affects the estimates
f the other parameters. Panel A of Table 4 reports the simulation results when κ = 0.2366, µ = 2.4165, and σ varies
rom 0.3 to 2. The simulation results confirm the developed asymptotic theory that an increase in σ should not affect
stimation of H and κ , but it should increase the variance of σ̂ and µ̂.
Panel B of Table 4 reports the simulation results when κ = 0.2366, σ = 0.7007, and µ varies from 1 to 4. As predicted

by the asymptotic theory, the estimation results of H , σ , and κ and the SD of µ̂ all remain the same when the value of µ
changes.

Panel C of Table 4 reports the simulation results when µ = 2.4165, σ = 0.7007, and κ varies from 0.1 to 12.5. It shows
that the estimation results for H and σ are insensitive to the change in κ , whereas when the value of κ increases, the
SD of µ̂ decreases and the SD of κ̂ increases. Again, these findings are consistent with the suggestions of the developed
asymptotic theory.

6. Empirical studies

This section reports empirical studies where we assume the logarithmic daily RV of equities follows Model (1.2)
and hence, under the in-fill scheme, Model (1.3). We apply the proposed model, the estimation method, and the new
asymptotic theory to each logarithmic daily RV series and test the hypothesis of H = 0.5. We also compare the out-of-
sample performance of Model (1.3) relative to five competing models, namely the random walk (RW), AR(1), HAR of Corsi
(2009), ARFIMA(1, d, 0), and fBm in forecasting RV. When forecasting future RV, we replace the underlying parameters
in each candidate model with their estimates. Then, we evaluate the forecasting performance of the competing models
13
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stimates of (H, σ , µ,κ) when H = 0.1299, T = 16, ∆ = 1/256, and (σ , µ,κ) take various values. Values reported in parentheses are the asymptotic

SDs implied by (4.1) for Ĥ , (4.2) for σ̂ , (4.7) for µ̂, and (4.8) for κ̂ .
H σ µ κ :::: H σ µ κ

Panel A: σ varies

True value 0.1299 0.3000 2.4165 0.2366 0.1299 0.5000 2.4165 0.2366
Mean 0.1294 0.3016 2.4302 0.5292 0.1294 0.5027 2.4300 0.5312

SD 0.0237 0.0394 0.1068 0.7056 0.0237 0.0657 0.1780 0.7062
(0.0235) (0.0391) (0.1136) (0.2199) (0.0235) (0.0652) (0.1893) (0.2199)

True value 0.1299 1.0000 2.4165 0.2366 0.1299 2.0000 2.4165 0.2366
Mean 0.1294 1.0055 2.4293 0.5319 0.1294 2.0110 2.4281 0.5321

SD 0.0237 0.1315 0.3561 0.7061 0.0237 0.2631 0.7123 0.7059
(0.0235) (0.1304) (0.3786) (0.2199) (0.0235) (0.2609) (0.7573) (0.2199)

Panel B: µ varies

True value 0.1299 0.7007 1.0000 0.2366 0.1299 0.7007 2.0000 0.2366
Mean 0.1294 0.7045 1.0049 0.5321 0.1294 0.7045 2.0108 0.5318

SD 0.0237 0.0922 0.2495 0.7060 0.0237 0.0922 0.2495 0.7062
(0.0235) (0.0914) (0.2653) (0.2199) (0.0235) (0.0914) (0.2653) (0.2199)

True value 0.1299 0.7007 3.0000 0.2366 0.1299 0.7007 4.0000 0.2366
Mean 0.1294 0.7045 3.0166 0.5314 0.1294 0.7045 4.0225 0.5307

SD 0.0237 0.0922 0.2495 0.7062 0.0237 0.0922 0.2495 0.7061
(0.0235) (0.0914) (0.2653) (0.2199) (0.0235) (0.0914) (0.2653) (0.2199)

Panel C: κ varies

True value 0.1299 0.7007 2.4165 0.1000 0.1299 0.7007 2.4165 0.5000
Mean 0.1294 0.7045 2.6585 0.4307 0.1294 0.7046 2.4160 0.7737

SD 0.0237 0.0921 0.4840 0.6292 0.0237 0.0922 0.1236 0.8866
(0.0235) (0.0914) (0.6278) (0.1430) (0.0235) (0.0914) (0.1255) (0.3198)

True value 0.1299 0.7007 2.4165 2.5000 0.1299 0.7007 2.4165 12.5000
Mean 0.1294 0.7048 2.4163 2.8762 0.1289 0.7044 2.4164 12.7455

SD 0.0237 0.0922 0.0253 2.2122 0.0237 0.0922 0.0058 6.2194
(0.0235) (0.0914) (0.0251) (0.7151) (0.0235) (0.0914) (0.0050) (1.5990)

Table 5
Empirical results for log(100

√
RV × 252) of S&P 500, DJIA, and NASDAQ 100.

Name H σ µ κ Tn

S&P 500 .1299 .7007 2.4165 .2366 3.3027(.0876, .1722) (.6953, .7061) (1.9869, 2.8460) (.2122, .2609)

DJIA .0829 .5770 2.4296 .0154 3.1366(.0399, .1258) (.5726, .5815) (−2.2950, 7.1542) (.0087, .0220)

NASDAQ 100 .2269 1.0482 2.5166 2.9182 2.4605(.1858, .2678) (1.0403, 1.0559) (2.4468, 2.5862) (2.8411, 2.9952)

based on the root mean squared error (RMSE), the Mincer–Zarnowitz-R2 (MZ-R2) of Mincer and Zarnowitz (1969).14 We
lso check the statistical significance of the forecasts from these competing models using the Diebold–Mariano (DM) test
f Diebold and Mariano (1995), and the model confidence set (MCS) of Hansen et al. (2011). When comparing the nested
odels, we use the Clark and West (CW) test of Clark and West (2007). In the online supplement, we apply our method

o the logarithmic daily bipower variation (BV) and the logarithmic daily realized kernel (RK) for the equities. We show
hat the empirical results reported in the main text continue to hold.

We first fit Model (1.3) to three logarithmic daily RV series for the S&P 500, DJIA, and NASDAQ 100. The three RV series
re obtained from the Oxford-Man realized library and based on 5-minute returns.15 The sample period is from January
, 2000 to December 31, 2019. Fig. 4 plots three time series of log

(
100

√
RV × 252

)
which is the logarithmic annualized

V.
Table 5 reports the estimation results for the fO–U model, including the point estimates and the 95% confidence

ntervals (CIs) for all four parameters, and the CUSUM statistic Tn. The CIs are obtained from our asymptotic theory with
he asymptotic variances obtained by the plug-in method. In all cases, the estimated H is much less than 0.5, ranging

14 As in Andersen et al. (2003), we project the actual RV data on a constant and each of the competing forecasted series. The MZ-R2 is the
coefficient of determination of the projection that captures the correlation between the actual and forecast series, and hence, is often used to
compare the performance of competing forecasts.
15 The data are obtained from https://realized.oxford-man.ox.ac.uk/.
14
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Fig. 4. Time series plots of log(100
√
RV × 252) for the three equity series.

Fig. 5. Rolling-window estimates of H for log(100
√
RV × 252). The smoothed version is a simple moving average filter using 100 values on both

sides.

between 0.0829 for DJIA to 0.2269 for NASDAQ 100. The 95% CIs suggest that we have strong evidence against H ≥ 1/2.
In all cases, the estimated κ is positive but very close to zero, but the 95% confidence intervals of κ exclude zero. Hence,
each RV series is better modeled by fO–U with H < 1/2 than by fO–U with H > 1/2, fBm and O–U.

To test if there are structural breaks in H , we employ the CUSUM test, Tn, of Bibinger (2020) that converges to the
Kolmogorov–Smirnov limit law for any H ∈ (0, 1). The CUSUM test Tn rejects the hypothesis of a constant H .16 To show
the degree of instability in Ĥ , following Bennedsen et al. (2021), we estimate H based on rolling windows, each of which
has 504 observations. Fig. 5 plots the rolling-window estimates of H , a smoothed version of the estimates, and the median
value of the estimates. Although Ĥ varies over time, their values always lie in the interval [0.1, 0.25]. The results are
qualitatively the same for different window sizes or for expanding windows.

We now compare performance of fO–U, fBm, ARFIMA, HAR, AR(1), and RW in forecasting RV. To evaluate the out-of-
sample forecasting performance, we split the sample period into two periods. The first period is between January 3, 2000
and December 31, 2018 and the second period is between January 2, 2019 and December 31, 2019. On each day in the
second period, h-day-ahead (with h = 1, . . . , 10) forecasts of RV are obtained from six competing models, each of which
is estimated using data from January 3, 2000 to the day before.

16 The critical value at the 5% level is 1.3581/
√
n. When n = 5071, it is 0.0192.
15
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he ratio of RMSE of different models and that of HAR for h-day-ahead-forecast of RV.
h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

RW 1.0231 1.0733 1.1629 1.1940 1.2526 1.2745 1.2986 1.2782 1.2742 1.2956
AR(1) 1.0103 1.0331 1.0724 1.0362 1.0663 1.0521 1.0472 1.0000 1.0274 1.0803
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ARFIMA 0.9000 0.9125 0.9367 0.9232 0.9317 0.9279 0.9312 0.9098 0.9068 0.9197
fBm 0.8974 0.9078 0.9299 0.9147 0.9213 0.9158 0.9175 0.8947 0.8885 0.9015
fO–U 0.8897 0.9054 0.9276 0.9126 0.9151 0.9118 0.9096 0.8891 0.8848 0.8960
Panel B: DJIA

RW 1.0379 1.1272 1.2902 1.3729 1.4416 1.4356 1.4978 1.4470 1.4283 1.4177
AR(1) 1.0352 1.0050 1.1000 1.0855 1.1005 1.0378 1.1143 1.0064 1.0594 1.1024
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ARFIMA 0.9106 0.9077 0.9585 0.9549 0.9673 0.9422 0.9753 0.9364 0.9385 0.9458
fBm 0.9024 0.9002 0.9488 0.9454 0.9579 0.9333 0.9619 0.9280 0.9283 0.9317
fO–U 0.8970 0.8953 0.9439 0.9430 0.9533 0.9289 0.9596 0.9237 0.9242 0.9297
Panel C: NASDAQ 100

RW 1.0360 1.0843 1.1704 1.2293 1.2878 1.3250 1.3912 1.3625 1.3511 1.3717
AR(1) 1.0000 1.0752 1.1256 1.1157 1.1237 1.1083 1.1381 1.0438 1.0725 1.1151
HAR 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
ARFIMA 0.9041 0.9339 0.9574 0.9541 0.9616 0.9563 0.9833 0.9462 0.9485 0.9679
fBm 0.8993 0.9248 0.9507 0.9476 0.9531 0.9479 0.9749 0.9382 0.9313 0.9434
fO–U 0.8897 0.9157 0.9350 0.9323 0.9382 0.9333 0.9582 0.9223 0.9218 0.9358

Table 7
MZ-R2 for h-day-ahead-forecast of RV in different models.
h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

RW 0.3569 0.2732 0.2020 0.1382 0.1095 0.0795 0.0595 0.0332 0.0184 0.0137
AR(1) 0.3935 0.2990 0.2038 0.1570 0.1125 0.0822 0.0603 0.0411 0.0255 0.0153
HAR 0.3941 0.3002 0.2077 0.1593 0.1145 0.0829 0.0633 0.0421 0.0255 0.0162
ARFIMA 0.4444 0.3310 0.2218 0.1634 0.1152 0.0898 0.0687 0.0495 0.0312 0.0184
fBm 0.4447 0.3311 0.2227 0.1685 0.1157 0.0926 0.0805 0.0816 0.0414 0.0198
fO–U 0.4520 0.3353 0.2274 0.1709 0.1237 0.0965 0.0851 0.0869 0.0477 0.0208
Panel B: DJIA

RW 0.2908 0.1991 0.1674 0.1493 0.1292 0.0846 0.0824 0.0465 0.0251 0.0140
AR(1) 0.3307 0.2805 0.1708 0.1565 0.1325 0.1105 0.0848 0.0674 0.0369 0.0161
HAR 0.3317 0.2817 0.1756 0.1617 0.1353 0.1115 0.0878 0.0679 0.0380 0.0168
ARFIMA 0.3722 0.2837 0.1916 0.1662 0.1362 0.1184 0.0926 0.0742 0.0419 0.0185
fBm 0.3770 0.2838 0.1951 0.1689 0.1377 0.1380 0.0945 0.1206 0.0514 0.0210
fO–U 0.3847 0.2908 0.2019 0.1760 0.1430 0.1471 0.0954 0.1344 0.0683 0.0325
Panel C: NASDAQ 100

RW 0.2218 0.1660 0.1509 0.1223 0.0950 0.0848 0.0697 0.0469 0.0196 0.0123
AR(1) 0.2828 0.1888 0.1383 0.1246 0.0979 0.0894 0.0717 0.0599 0.0272 0.0141
HAR 0.2834 0.1898 0.1399 0.1255 0.1048 0.0928 0.0759 0.0746 0.0338 0.0147
ARFIMA 0.3236 0.2221 0.1720 0.1443 0.1110 0.0929 0.0820 0.0856 0.0423 0.0165
fBm 0.3268 0.2281 0.1794 0.1549 0.1224 0.1055 0.0871 0.1030 0.0460 0.0215
fO–U 0.3363 0.2405 0.1945 0.1703 0.1357 0.1183 0.0936 0.1085 0.0517 0.0217

Tables 6–7 report the RMSE and the MZ-R2 of six competing models for h-day-ahead-forecast of RV with h =

1, 2, . . . , 10 with the best result highlighted in boldface for each h. For RMSE, we report the ratio of RMSE of each
candidate model and that of HAR. Most importantly, regardless of the RV series and forecasting horizon, fO–U always
performs the best, followed by fBm and then by ARFIMA. ARFIMA model always outperforms the RW, AR(1), HAR models
in both criteria and by a wide margin. This result confirms the finding of Andersen et al. (2003) that the ARFIMA model
can generate accurate volatility forecasts.

To test if forecasts from fO–U are statistically significantly different from those of competing models, Table 8 reports the
DM test based on the squared forecast errors and the p-value (in parenthesis) with the benchmark being fO–U (boldface
means statistically significant at the 10% level). To save space, we only report the results for HAR, ARFIMA and fBm in
Table 8. In terms of DM, fO–U is always statistically different from HAR, ARFIMA and fBm at the 10% level, regardless of
the RV series and forecasting horizon.

To find out which models contain the best model in the set of competing models, we implement the MCS of Hansen

et al. (2011). The MCS determines which models can be considered to be statistically superior, and at what level of

16
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M statistic with fO–U being the benchmark model.
h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

HAR −3.7063 −3.3613 −3.0482 −3.3732 −5.7227 −3.5121 −5.3147 −4.2277 −5.2174 −4.3701
(0.0001) (0.0003) (0.0011) (0.0003) (0.0000) (0.0002) (0.0000) (0.0000) (0.0000) (0.0000)

ARFIMA −2.8461 −2.9371 −2.3965 −2.5667 −3.2590 −3.1858 −3.1162 −4.0784 −4.2191 −4.3414
(0.0022) (0.0016) (0.0082) (0.0051) (0.0005) (0.0007) (0.0009) (0.0000) (0.0000) (0.0000)

fBm −2.5026 −1.7870 −1.9006 −1.5298 −3.1347 −2.7829 −2.6281 −2.3105 −3.0311 −4.0768
(0.0061) (0.0369) (0.0286) (0.0630) (0.0008) (0.0026) (0.0042) (0.0104) (0.0012) (0.0000)

Panel B: DJIA

HAR −3.5431 −4.2664 −3.5632 −3.1413 −3.5105 −3.5138 −3.1507 −3.6108 −3.3440 −3.5700
(0.0001) (0.0000) (0.0001) (0.0008) (0.0002) (0.0002) (0.0008) (0.0001) (0.0004) (0.0001)

ARFIMA −3.2895 −3.6539 −2.9467 −2.7869 −2.5570 −3.2736 −2.7536 −2.9251 −3.1646 −3.4715
(0.0005) (0.0001) (0.0016) (0.0026) (0.0052) (0.0005) (0.0029) (0.0017) (0.0007) (0.0002)

fBm −1.8430 −2.3946 −1.8642 −2.3838 −1.9719 −2.1959 −1.7686 −1.5442 −2.6065 −2.6816
(0.0326) (0.0083) (0.0311) (0.0085) (0.0243) (0.0140) (0.0384) (0.0612) (0.0045) (0.0036)

Panel C: NASDAQ 100

HAR −3.5700 −4.5170 −4.3910 −3.3634 −3.4575 −3.6766 −3.3347 −3.1904 −3.1106 −4.0507
(0.0001) (0.0000) (0.0000) (0.0003) (0.0002) (0.0001) (0.0004) (0.0007) (0.0009) (0.0000)

ARFIMA −3.4715 −3.3687 −3.7547 −3.1701 −3.4524 −3.1080 −3.2860 −2.7206 −2.9136 −3.4443
(0.0002) (0.0003) (0.0000) (0.0007) (0.0002) (0.0009) (0.0005) (0.0032) (0.0017) (0.0002)

fBm −2.6816 −3.3310 −1.9921 −2.4964 −2.4277 −2.9629 −1.5113 −2.3930 −2.6990 −1.7309
(0.0036) (0.0004) (0.0231) (0.0062) (0.0075) (0.0015) (0.0653) (0.0083) (0.0034) (0.0417)

Table 9
p-values of MSC to compare forecasts of RV from six competing models.
h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

RW 0.0005 0.0030 0.0050 0.0060 0.0015 0.0025 0.0005 0.0015 0.0020 0.0010
AR(1) 0.0015 0.0075 0.0085 0.0195 0.0025 0.0030 0.0015 0.0020 0.0025 0.0015
HAR 0.0065 0.0120 0.0185 0.0245 0.0030 0.0180 0.0035 0.0075 0.0030 0.0022
ARFIMA 0.0085 0.1105 0.0320 0.0470 0.1060 0.0654 0.0895 0.0325 0.0212 0.0050
fBm 0.1030 0.1835 0.2325 0.3450 0.1550 0.3245 0.1015 0.1320 0.1022 0.1125
fO–U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Panel B: DJIA

RW 0.0000 0.0000 0.0000 0.0020 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000
AR(1) 0.0000 0.0000 0.0005 0.0005 0.0025 0.0000 0.0000 0.0005 0.0001 0.0003
HAR 0.0000 0.0010 0.0025 0.0014 0.0095 0.0015 0.0005 0.0005 0.0025 0.0085
ARFIMA 0.0765 0.0060 0.0030 0.0217 0.0239 0.0130 0.0270 0.0235 0.0225 0.0225
fBm 0.1205 0.1175 0.0523 0.1535 0.1870 0.1105 0.2105 0.1980 0.1245 0.1185
fO–U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Panel C: NASDAQ 100

RW 0.0020 0.0000 0.0000 0.0020 0.0010 0.0005 0.0000 0.0000 0.0000 0.0000
AR(1) 0.0035 0.0005 0.0005 0.0010 0.0060 0.0025 0.0010 0.0005 0.0025 0.0005
HAR 0.0060 0.0025 0.0010 0.0120 0.0085 0.0045 0.0065 0.0240 0.0030 0.0025
ARFIMA 0.0070 0.0035 0.0090 0.0125 0.1458 0.0070 0.0295 0.0045 0.0195 0.0275
fBm 0.1470 0.1245 0.1465 0.2170 0.2260 0.1730 0.1530 0.1515 0.1495 0.1585
fO–U 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

significance. Table 9 reports the p-value of the semi-quadratic statistic obtained from 2000 bootstrap iterations with
a block length of 12. Values in boldface denote that the model belongs to the confidence set of the best models. HAR,
AR(1), and RW are always rejected regardless of the RV series and forecasting horizon. In all but two cases, ARFIMA is
also rejected. In one case, fBm is rejected. Most importantly, in no case, fO–U is rejected.

There are nested models in the set of competing models. For example, fO–U nests fBm, AR(1) and RW. To compare
the forecasting performance across nested models, we calculate MSFE-adjusted statistics and p-values of the CW test of
Clark and West (2007) that account for estimation errors. Table 10 reports the CW test and the p-value (in parenthesis)
with the encompassing model being fO–U (boldface means statistically significant at the 10% level). According to CW, the
performance of fO–U is always statistically significantly better than RW, AR(1), and fBm, regardless of the RV series and
forecasting horizon.
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W test with fO–U being the encompassing model.
h 1 2 3 4 5 6 7 8 9 10

Panel A: S&P 500

RW 5.8431 8.2638 11.1017 12.3055 13.3093 13.7838 14.3113 14.5086 14.6219 14.7257
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

AR(1) 4.9955 5.1822 4.9254 4.8855 6.0645 5.1925 5.7541 5.0158 6.2011 6.7644
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

fBm 2.6120 1.5814 1.6575 1.3153 4.6266 2.6107 4.5480 4.1035 5.1021 4.3290
(0.0045) (0.0569) (0.0487) (0.0942) (0.0000) (0.0045) (0.0000) (0.0000) (0.0000) (0.0000)

Panel B: DJIA

RW 6.5436 10.7224 13.3905 14.6893 15.5466 15.9252 16.3186 16.4104 16.1193 15.8740
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

AR(1) 5.0058 8.7172 7.3277 7.6079 7.5306 6.8555 8.3416 8.1724 9.3732 9.1739
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

fBm 1.9344 4.8768 4.8277 3.0862 4.5777 3.2953 3.0694 2.9148 3.0860 2.6142
(0.0265) (0.0000) (0.0000) (0.0000) (0.0010) (0.0005) (0.0011) (0.0018) (0.0010) (0.0045)

Panel C: NASDAQ 100

RW 5.1952 7.5749 10.1456 11.8752 13.2111 14.0357 14.7021 15.0329 14.8542 14.7266
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

AR(1) 4.4821 5.5555 5.1159 4.5121 4.6783 5.0579 4.6578 4.9708 4.8524 5.5991
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.0000)

fBm 3.2709 3.8405 4.1662 3.6594 3.8851 3.5977 3.7466 3.0263 3.1796 2.2354
(0.0005) (0.0001) (0.0000) (0.0001) (0.0001) (0.0002) (0.0001) (0.0012) (0.0007) (0.0127)

7. Conclusions

Over the past two decades, the consensus is that the volatility of financial assets displays long-range dependence. More
ecently, a new feature named rough volatility has been documented. In our continuous-time fO–U model, the ACF of RV
s jointly determined by H and κ at small and moderate lags but solely determined by H when the lag goes to infinity.
Moreover, the smoothness in RV is determined by H . When H < 1/2, the sample path of fO–U is rough. Although the
fO–U model with H < 1/2 and κ taking a small positive value does not lead long-range dependence asymptotically, it
can generate an ACF that decays slowly at small and moderate lags due to the near unit root feature in the discretized
model.

Our study contributes to the literature by developing an estimation method for all parameters in the fO–U model based
on discrete-sampled observations when the parameter space for H is (0, 1). In the first stage, H is estimated based on the
ratio of two second-order differences of observations at two frequencies and hence, determined by the smoothness of
the sample path. In the second stage, the other parameters are estimated by the method of moments. All estimators have
closed-form expressions and are easy to obtain. We also develop the asymptotic distributions for the proposed estimators
that facilitate statistical inference.

Simulations suggest that our two-stage estimators perform well in finite samples. The method is applied to the
logarithmic RV of three equity indices. Empirical studies show that the logarithmic RV is better modeled by fO–U with
H < 1/2 and a small positive mean-reversion parameter κ . We compare the out-of-sample performance of fO–U with
those of fBm, ARFIMA, RW, AR(1) and HAR in forecasting RV. All statistics considered suggest that fO–U outperforms the
other models for the forecasting horizons considered, and hence, raise the benchmark for volatility forecast. In the online
appendix, the method is applied to the logarithmic BP and RK of the three equity indices. All the empirical results continue
to hold.

There are several ways to extend our study. First, the estimation method proposed in the present paper is by no
means efficient. How to conduct the full-likelihood-based inference for the fO–U model from discrete-time observations
{Xt∆}

n
t=1 and how well the model performs in forecasting RV are among interesting questions. We plan to pursue this line

of research in future work.
Second, our model is not the only one in the literature that disentangles the short-term from the long-term behavior.

Gneiting and Schlather (2004) propose a general Cauchy process that allows for both types of behavior. Bennedsen et al.
(2021) show how the Cauchy process can decouple the short-term and long-term behavior of volatility. Unlike fO–U,
the Cauchy processes are not self-similar nor BSS. Hence, conceptually they are more complicated than the fO–U model.
Another example is the non-Gaussian O–U model with infinite activity jumps. It would be interesting to examine the
forecasting performance of fO–U relative to these alternative specifications.

Third, perhaps a better model for logarithmic RV is fO–U with jumps. It is important to develop an estimation method
of H and other parameters and establish asymptotic theory for the fO–U model with jumps.
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emma A.1. Let BH
t = BH (t) be an fBm with the Hurst parameter H ∈ (0, 1) and t ∈ [0,∞).

(a) Define yi = BH (i + 2) − 2BH (i + 1) + BH (i) for i = 0, 1, 2, . . .. The process {yi} is a Gaussian stationary process with
E (yi) = 0 and Var (yi) = 4 − 22H , and has autocorrelation functions as, for j = 0, 1, 2, . . .,

ρj =
1

2
(
4 − 22H

) {− |j + 2|2H + 4 |j + 1|2H − 6 |j|2H + 4 |j − 1|2H − |j − 2|2H
}
;

b) Define yi,∗ = BH (i + 4)− 2BH (i + 2)+ BH (i) for i = 0, 1, 2, . . .. The process
{
yi,∗
}
is a Gaussian stationary process with(

yi,∗
)

= 0 and Var
(
yi,∗
)

= 22H
(
4 − 22H

)
, and has autocorrelation functions as, for j = 0, 1, 2, . . .,

ρj,∗ = 2−2H (ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|
)
;

(c) Define ξi,∗ = y2i,∗ − E
(
y2i,∗
)
and ξi = y2i − E

(
y2i
)
, for i = 0, 1, 2, . . .. The bivariate process

{(
ξi,∗ ξi

)′} is a weakly
stationary process with mean zero and autocovariance matrices as, for j = 0, 1, 2, . . .,

Γj = E
((
ξi+j,∗
ξi+j

) (
ξi,∗ ξi

))
= 2

(
4 − 22H)2 ( 24Hρ2

j,∗

(
ρj+2 + 2ρj+1 + ρj

)2(
ρj + 2ρ|j−1| + ρ|j−2|

)2
ρ2
j

)
.

Lemma A.2. Let BH (t) be the same fBm as in Lemma A.1 with t ∈ [0, T ], where T is the time span. Suppose BH (t) are
observed at discrete-time points with sampling interval ∆, denoted by

{
BH
i∆ = BH (i∆)

}n
i=0, where n = ⌊T/∆⌋ is the number

of observations. Define

ηi,∗ =

(
BH
(i+4)∆ − 2BH

(i+2)∆ + BH
i∆

∆H

)2

− 22H (4 − 22H) for i = 0, 1, 2, . . . , n − 4,

ηi =

(
BH
(i+2)∆ − 2BH

(i+1)∆ + BH
i∆

∆H

)2

−
(
4 − 22H) for i = 0, 1, 2, . . . , n − 2.

It has, as n → ∞,

1
√
n

(∑n−4
i=0 ηi,∗∑n−2
i=0 ηi

)
d

−→ N

⎛⎝(0
0

)
,Γ0 +

∞∑
j=1

(
Γj + Γ ′

j

)⎞⎠ ,
here Γj are the covariance matrices defined in Lemma A.1, and the long-run covariance matrix in the limiting distribution is
ell-defined.

roof of Lemma A.1. The results in Parts (a)–(b) can be obtained straightforwardly based on the definition of fBm and
ts covariance structure given in (1.1). Details are tedious and omitted here for simplicity.

For Part (c), let us first prove that
{
ξi = y2i − E

(
y2i
)}∞

i=0 is a stationary process. From the stationarity of {yi}, it can be
btained that E (ξi) = 0. Then, we have, for j = 0, 1, 2, . . .,

Cov
(
ξi+j, ξi

)
= E

(
ξi+jξi

)
= E

(
y2i+jy

2
i

)
− E

(
y2i+j

)
E
(
y2i
)

= Var
(
yi+j

)
Var (yi)+ 2

[
Cov

(
yi+j, yi

)]2
− E

(
y2i+j

)
E
(
y2i
)

= 2
(
4 − 22H)2 ρ2

j

here the third equality comes from Isserlis’ theorem (Isserlis, 1918) for computing high-order moments of the
ultivariate normal distribution, and the last equation is from the stationarity properties of {yi} given in Part (a).
Taking the same procedure above with the stationarity properties of

{
yi,∗
}
shown in Part (b) gives a proof of

{
ξi,∗
}

eing a stationary process with mean zero and E
(
ξi+j,∗ξi,∗

)
= 2

(
4 − 22H

)2 24Hρ2
j,∗.

We now derive the expressions of E
(
ξ ξ

)
and E

(
ξ ξ

)
and show that they only depend on j, not i. For any
i+j i,∗ i+j,∗ i
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= 0, 1, 2, . . ., it can be seen that

yi,∗ =
[
BH (i + 4)− 2BH (i + 3)+ BH (i + 2)

]
+ 2

[
BH (i + 3)− 2BH (i + 2)+ BH (i + 1)

]
+
[
BH (i + 2)− 2BH (i + 1)+ BH (i)

]
= yi+2 + 2yi+1 + yi.

ence, for any j = 0, 1, 2, . . .,

Cov
(
yi+j, yi,∗

)
= Cov

(
yi+j, yi+2 + 2yi+1 + yi

)
=
(
4 − 22H) (ρ|j−2| + 2ρ|j−1| + ρj

)
.

hen, by using Isserlis’ theorem (Isserlis, 1918) again, we have

E
(
ξi+jξi,∗

)
= E

(
y2i+jy

2
i,∗

)
− E

(
y2i+j

)
E
(
y2i,∗
)

= Var
(
yi+j

)
Var

(
yi,∗
)
+ 2

[
Cov

(
yi+j, yi,∗

)]2
− E

(
y2i+j

)
E
(
y2i,∗
)

= 2
(
4 − 22H)2 (ρ|j−2| + 2ρ|j−1| + ρj

)2
.

imilarly, it can be proved that E
(
ξi+j,∗ξi

)
= 2

(
4 − 22H

)2 (
ρj+2 + 2ρj+1 + ρj

)2. Then, the covariance matrices
{
Γj
}
are

btained.
In Remark 4.2, we have proved that ρj = O

(
j2H−4

)
as j → ∞. Therefore, the sequence of covariance matrices

{
Γj
}

s absolutely summable, and the long-run covariance matrix Γ0 +
∑

∞

j=1

(
Γj + Γ ′

j

)
is well-defined. Hence, the bivariate

process
{(
ξi,∗ ξi

)′} is weakly stationary.

roof of Lemma A.2. For the case where T = 1 and m = ⌊1/∆⌋, the asymptotic normality of 1
√
m

(∑m−4
i=0 ηi,∗

∑m−2
i=0 ηi

)′
as m → ∞ can be obtained straightforwardly from the results in Section 2.4 of Bégyn (2007) and also from Coeurjolly
(2001). Note that, from the self-similarity property of fBm, for any i = 0, 1, . . ., we have

BH
(i+4)∆ − 2BH

(i+2)∆ + BH
i∆

∆H
d
= BH (i + 4)− 2BH (i + 2)+ BH (i) := yi,∗ , (A.1)

nd

BH
(i+2)∆ − 2BH

(i+1)∆ + BH
i∆

∆H
d
= BH (i + 2)− 2BH (i + 1)+ BH (i) := yi . (A.2)

ence, for any value of m,

1
√
m

(∑m−4
i=0 ηi,∗∑m−2
i=0 ηi

)
d
=

1
√
m

(∑m−4
i=0

[
y2i,∗ − 22H

(
4 − 22H

)]∑m−2
i=0

[
y2i −

(
4 − 22H

)] )
=

1
√
m

(∑m−4
i=0 ξi,∗∑m−2
i=0 ξi

)
where ξi,∗ and ξi are the same variables defined in Lemma A.1. Therefore, we get the asymptotic normality of
1

√
m

(∑m−4
i=0 ξi,∗

∑m−2
i=0 ξi

)′
asm → ∞. It is important to note that the variables ξi,∗ and ξi are independent of the sampling

requency ∆.
For general values of T , we define n = ⌊T/∆⌋. By the self-similarity property of fBm, we get

1
√
n

(∑n−4
i=0 ηi,∗∑n−2
i=0 ηi

)
d
=

1
√
n

(∑n−4
i=0

[
y2i,∗ − 22H

(
4 − 22H

)]∑n−2
i=0

[
y2i −

(
4 − 22H

)] )
=

1
√
n

(∑n−4
i=0 ξi,∗∑n−2
i=0 ξi

)
.

Therefore, as long as n → ∞, we get the asymptotic normality of 1
√
n

(∑n−4
i=0 ξi,∗

∑n−2
i=0 ξi

)′
and the asymptotic normality

of 1
√
n

(∑n−4
i=0 ηi,∗

∑n−2
i=0 ηi

)′
. Based on the fact that

{(
ξi,∗ ξi

)′} is a weakly stationary vector process, the corresponding

asymptotic covariance is just the long-run variance of the process
{(
ξi,∗ ξi

)′}, as given in the theorem.

Proof of Theorem 4.1. (a) From Eq. (1.2), we have, as ∆ → 0,

X(i+1)∆ − Xi∆ =
(
e−κ∆

− 1
)
(Xi∆ − µ)+ σ

∫ (i+1)∆

i∆
e−κ[(i+1)∆−s]dBH

s

= Op (∆)+ σ

∫ (i+1)∆

i∆
{1 + O (∆)} dBH

s

= σ
(
BH

− BH )
+ O (∆) = O

(
∆H) ,
(i+1)∆ i∆ p p
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nd

X(i+2)∆ − 2X(i+1)∆ + Xi∆

=
(
X(i+2)∆ − X(i+1)∆

)
−
(
X(i+1)∆ − Xi∆

)
=
(
e−κ∆

− 1
) (

X(i+1)∆ − Xi∆
)
+ σ

(∫ (i+2)∆

(i+1)∆
e−κ[(i+2)∆−s]dBH

s −

∫ (i+1)∆

i∆
e−κ[(i+1)∆−s]dBH

s

)
= Op

(
∆1+H)

+ σ

(∫ (i+2)∆

(i+1)∆
{1 + O (∆)} dBH

s −

∫ (i+1)∆

i∆
{1 + O (∆)} dBH

s

)
= σ

(
BH
(i+2)∆ − 2BH

(i+1)∆ + BH
i∆

)
+ Op

(
∆1+H) .

Therefore, by using the results in Lemma A.2, we have, as ∆ → 0,

σ−2

n∆2H

n−2∑
i=1

(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2
=

1
n∆2H

n−2∑
i=1

{(
BH
(i+2)∆ − 2BH

(i+1)∆ + BH
i∆

)2
+ Op

(
∆1+2H)}

=
1
n

n−2∑
i=1

(
BH
(i+2)∆ − 2BH

(i+1)∆ + BH
i∆

∆H

)2

+
1
n

n−2∑
i=1

Op (∆)

=
1
n

n−2∑
i=1

[
ηi +

(
4 − 22H)]

+ Op (∆)
p

→ 4 − 22H , (A.3)

nd, as ∆ → 0 and T∆ → 0,

σ−2

√
n∆2H

n−2∑
i=1

{(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2
− σ 2 (4 − 22H)∆2H

}
=

1
√
n∆2H

n−2∑
i=1

{(
BH
(i+2)∆ − 2BH

(i+1)∆ + BH
i∆

)2
−
(
4 − 22H)∆2H

+ Op
(
∆1+2H)}

=
1

√
n

n−2∑
i=1

⎡⎣(BH
(i+2)∆ − 2BH

(i+1)∆ + BH
i∆

∆H

)2

−
(
4 − 22H)⎤⎦+

1
n

n−2∑
i=1

Op

(√
T∆
)

=
1

√
n

n−2∑
i=1

ηi + op (1)
d

→ N

⎛⎝0, 2
(
4 − 22H)2⎛⎝ρ2

0 + 2
∞∑
j=1

ρ2
j

⎞⎠⎞⎠ , (A.4)

here the asymptotic variance can be equivalently represented as
(
4 − 22H

)2
Σ22 with Σ22 defined as in (4.5).

Similarly, using the results in Lemma A.2 again, we have, as ∆ → 0,

σ−2

n∆2H

n−4∑
i=1

(
X(i+4)∆ − 2X(i+2)∆ + Xi∆

)2
=

1
n

n−4∑
i=1

[
ηi,∗ + 22H (4 − 22H)]

+ Op (∆)
p

→ 22H (4 − 22H) , (A.5)

nd, as ∆ → 0 and T∆ → 0,

σ−2

√
n∆2H

n−4∑
i=1

{(
X(i+4)∆ − 2X(i+2)∆ + Xi∆

)2
− σ 222H (4 − 22H)∆2H

}

=
1

√
n

n−4∑
i=1

ηi,∗ + op (1)
d

→ N

⎛⎝0, 21+4H (4 − 22H)2⎛⎝ρ2
0,∗ + 2

∞∑
j=1

ρ2
j,∗

⎞⎠⎞⎠ . (A.6)
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he asymptotic variance has an identical representation as

21+4H (4 − 22H)2⎛⎝ρ2
0,∗ + 2

∞∑
j=1

ρ2
j,∗

⎞⎠
= 21+4H (4 − 22H)2⎛⎝1 + 21−4H

∞∑
j=1

[(
ρj+2 + 4ρj+1 + 6ρj + 4ρ|j−1| + ρ|j−2|

)2]⎞⎠
= 24H (4 − 22H)2Σ11 ,

where the first equation comes from the relationship between ρj,∗ and ρj given in Lemma A.1, and Σ11 is defined in (4.3).
Then, based on (A.3) and (A.5), the consistency of 22Ĥ is achieved as long as ∆ → 0:

22Ĥ
=

σ−2

n∆2H

∑n−4
i=1

(
X(i+4)∆ − 2X(i+2)∆ + Xi∆

)2
σ−2

n∆2H

∑n−2
i=1

(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2 p
→

22H
(
4 − 22H

)
4 − 22H = 22H .

With the continuity of log2 (·), the consistency of Ĥ =
1
2 log2

(
22Ĥ

)
is obtained straightforwardly.

To derive the asymptotic distribution, we first note that, from Lemma A.2,

lim
n→∞

Cov

(
1

√
n

n−4∑
i=1

ηi,∗,
1

√
n

n−2∑
i=1

ηi

)

= 2
(
4 − 22H)2⎛⎝(ρ2 + 2ρ1 + ρ0)

2
+

∞∑
j=1

[(
ρj+2 + 2ρj+1 + ρj

)2
+
(
ρj + 2ρ|j−1| + ρ|j−2|

)2]⎞⎠
= 2

(
4 − 22H)2⎛⎝4 (ρ0 + ρ1)

2
+ 2

∞∑
j=0

(
ρj+2 + 2ρj+1 + ρj

)2⎞⎠ = 22H (4 − 22H)2Σ12,

which leads to the asymptotic result that, as n → ∞,

1
√
n

n−4∑
i=1

ηi,∗ − 22H 1
√
n

n−2∑
i=1

ηi
d

→ N
(
0, 24H (4 − 22H)2 [Σ11 +Σ22 − 2Σ12]

)
,

where Σ12 is defined as in (4.4). Then, together with the results given in (A.3), (A.4) and (A.6), the asymptotic distribution
of 22Ĥ

− 22H is obtained as ∆ → 0 and T∆ → 0 :

√
n
(
22Ĥ

− 22H
)

=

σ−2
√
n∆2H

{∑n−4
i=1

(
X(i+4)∆ − 2X(i+2)∆ + Xi∆

)2
− 22H ∑n−2

i=1

(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2}
σ−2

n∆2H

∑n−2
i=1

(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2
=

1
√
n

∑n−4
i=1 ηi,∗ − 22H 1

√
n

∑n−2
i=1 ηi −

1
√
n2

1+2H
(
4 − 22H

)
σ−2

n∆2H

∑n−2
i=1

(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2
d

→

N
(
0, 24H

(
4 − 22H

)2 [Σ11 +Σ22 − 2Σ12]
)

4 − 22H
d
= N

(
0, 24H [Σ11 +Σ22 − 2Σ12]

)
.

Note that 22Ĥ
= 22H

+ 2 log (2) · 22H̃
(
Ĥ − H

)
, where H̃ lies between H and Ĥ . Therefore, as ∆ → 0 and T∆ → 0,

√
n
(
Ĥ − H

)
=

√
n
(
22Ĥ

− 22H
)

22H̃2 log (2)
d

→ N
(
0,
Σ11 +Σ22 − 2Σ12

{2 log (2)}2

)
.

he proof is completed.
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(b) Based on the result that
√
n
(
Ĥ − H

)
= Op (1) as ∆ → 0 and T∆ → 0, we have

∆2Ĥ−2H
= exp

{
2
(
Ĥ − H

)
log (∆)

}
= exp

{
2
√
n
(
Ĥ − H

) log (∆)
√
n

}
= exp

{
2
√
n
(
Ĥ − H

) 2√∆ log
(√
∆
)

√
T

}
p

→ 1,

here the last limit is due to log(∆)
√
n → 0 as ∆ → 0 and n → ∞. Together with the limiting result given in (A.3), the

consistency of σ̂ 2 is obtained under the condition of ∆ → 0 and T∆ → 0:

σ̂ 2
=

σ−2

n∆2H

∑n−2
i=1

(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2
σ−2

(
4 − 22Ĥ

)
∆2Ĥ−2H

p
→

4 − 22H

σ−2
(
4 − 22H

) = σ 2.

To derive the asymptotic distribution of σ̂ 2, we first prove that, as ∆ → 0 and T∆ → 0,

∆2Ĥ−2H
− 1 = exp

{
2
√
n
(
Ĥ − H

) log (∆)
√
n

}
− 1 = 2

√
n
(
Ĥ − H

) log (∆)
√
n

+ op

(
log (∆)

√
n

)
,

nd
√
n

log (∆)

(
∆2Ĥ−2H

− 1
)

= 2
√
n
(
Ĥ − H

)
+ op (1)

d
→ N

(
0,
Σ11 +Σ22 − 2Σ12

{log (2)}2

)
. (A.7)

Then, from the representation of σ̂ 2 given in (3.2), we have

σ̂ 2
− σ 2

=

σ−2
√
n∆2H

∑n−2
i=1

{(
X(i+2)∆ − 2X(i+1)∆ + Xi∆

)2
− σ 2

(
4 − 22H

)
∆2H

}
√
nσ−2

(
4 − 22Ĥ

)
∆2Ĥ−2H

+
σ 2 (n − 2)

(
4 − 22H

)
n
(
4 − 22Ĥ

)
∆2Ĥ−2H

− σ 2

=
Op (1)

Op
(√

n
) +

(n − 2)
(
4 − 22H

)
σ 2

n
(
4 − 22Ĥ

)
∆2Ĥ−2H

− σ 2

=
σ 2(

4 − 22Ĥ
)
∆2Ĥ−2H

{
n − 2
n

(
4 − 22H)

−

(
4 − 22Ĥ

)
∆2Ĥ−2H

}
+ Op

(
1

√
n

)
=

σ 2(
4 − 22Ĥ

)
∆2Ĥ−2H

{(
22Ĥ

− 22H
)

−

(
4 − 22Ĥ

)(
∆2Ĥ−2H

− 1
)

+ O
(
1
n

)}
+ Op

(
1

√
n

)
,

where the second equation is from the result in (A.3). Note that 22Ĥ
− 22H

= Op
(
1/

√
n
)
and ∆2Ĥ−2H p

→ 1. Therefore, as
→ 0 and T∆ → 0, we have

√
n

log (∆)

(
σ̂ 2

− σ 2)
= −

√
n

log (∆)

(
∆2Ĥ−2H

− 1
)
σ 2

∆2Ĥ−2H
+ Op

(
1

log (∆)

)
d

→ N
(
0,
Σ11 +Σ22 − 2Σ12

{log (2)}2
σ 4
)
,

here the last limit comes from the asymptotic result proved in (A.7).

roof of Theorem 4.3. Starting from the definition of µ̂ given in (3.3), we have, as ∆ → 0,

µ̂ =
1
n

n∑
i=1

Xi∆ =
1
T

n−1∑
i=0

∫ (i+1)∆

i∆
Xi∆dt +

XT − X0

n

=
1
T

n−1∑
i=0

∫ (i+1)∆

i∆

(
Xt + Op

(
∆H)) dt +

XT − X0

n
=

1
T

∫ T

0
Xtdt + Op

(
∆H)

+ Op

(
1
n

)
.

herefore, as T → ∞ and ∆ → 0,

µ̂ =
1
T

∫ T

0
Xtdt + op (1)

p
→ E (Xt) = µ,

where the last limit comes from the ergodicity of the process {X } when κ > 0 (see Xiao and Yu (2019a,b)).
t

23



X. Wang, W. Xiao and J. Yu Journal of Econometrics xxx (xxxx) xxx

w

P
F

T
T

a

a

To derive the limiting distribution, first notice that, according to Theorem 3.3 of Xiao and Yu (2019a) and Theorem 3.1
of Xiao and Yu (2019b), as T → ∞,

T 1−H
(
1
T

∫ T

0
Xtdt − µ

)
d

→ N
(
0,
σ 2

κ2

)
,

for the cases where H ∈ [1/2, 1) and H ∈ (0, 1/2), respectively. Consequently, when T → ∞, ∆ → 0, and T 1−H∆H
→ 0,

e have

T 1−H (µ̂− µ) = T 1−H
(
1
T

∫ T

0
Xtdt − µ

)
+ Op

(
T 1−H∆H)

+ Op

(
T 1−H∆H∆

1−H

T

)
= T 1−H

(
1
T

∫ T

0
Xtdt − µ

)
+ op (1)

d
→ N

(
0, σ 2/κ2) .

roof of Theorem 4.4. We first prove the consistency of κ̂ for all H ∈ (0, 1) under the condition of T → ∞ and T∆ → 0.
rom the definition of κ̂ given in (3.4), we have

κ̂−2Ĥ
=

1
n

∑n
i=1 X

2
i∆ −

( 1
n

∑n
i=1 Xi∆

)2
σ̂ 2ĤΓ

(
2Ĥ
) .

Note that, as T → ∞ and ∆ → 0,

1
n

n∑
i=1

X2
i∆ =

1
T

n−1∑
i=0

∫ (i+1)∆

i∆
X2
i∆dt +

X2
T − X2

0

n

=
1
T

n−1∑
i=0

∫ (i+1)∆

i∆

(
X2
t + Op

(
∆H)) dt +

X2
T − X2

0

n

=
1
T

∫ T

0
X2
t dt + Op

(
∆H)

+ Op (1/n)

p
→ E

(
X2
t

)
= σ 2κ−2HHΓ (2H)+ µ2,

where the limit has been proved in Xiao and Yu (2019a,b) for H ∈ [1/2, 1) and H ∈ (0, 1/2), respectively. With the limit
of 1

n

∑n
i=1 Xi∆ obtained in the proof of Theorem 4.3, it is obtained that

1
n

n∑
i=1

X2
i∆ −

(
1
n

n∑
i=1

Xi∆

)2
p

→ E
(
X2
t

)
− µ2

= σ 2κ−2HHΓ (2H) .

he consistency of σ̂ 2 and Ĥ has been proved in Theorem 4.1 under the condition of T∆ → 0. As a result, we have, when
→ ∞ and T∆ → 0,

κ̂−2Ĥ
=

1
n

∑n
i=1 X

2
i∆ −

( 1
n

∑n
i=1 Xi∆

)2
σ̂ 2ĤΓ

(
2Ĥ
) p

→
σ 2κ−2HHΓ (2H)
σ 2HΓ (2H)

= κ−2H ,

nd

κ̂ = exp
{
−

1
2Ĥ

log
{̂
κ−2Ĥ

}}
p

→ exp
{
−

1
2H

log
{
κ−2H}}

= κ .

To derive the asymptotic distribution of
√
T (̂κ − κ) as shown in Part (a) of the theorem, we will first find the

symptotic distribution of
√
T
(̂
κ−2Ĥ

− κ−2H
)
. Notice that

σ̂ 2ĤΓ
(
2Ĥ
) (̂
κ−2Ĥ

− κ−2H
)

=
1
n

n∑
i=1

X2
i∆ −

(
1
n

n∑
i=1

Xi∆

)2

− κ−2H σ̂ 2ĤΓ
(
2Ĥ
)

=
1
n

n∑
i=1

X2
i∆ −

(
1
n

n∑
i=1

Xi∆

)2

− σ 2κ−2HHΓ (2H)

− κ−2H {σ̂ 2ĤΓ
(
2Ĥ
)
− σ 2HΓ (2H)

}
. (A.8)
24



X. Wang, W. Xiao and J. Yu Journal of Econometrics xxx (xxxx) xxx

T

w

A

a

T

From the asymptotic theory of σ̂ 2 and Ĥ provided in Theorem 4.1, we have, as T∆ → 0,

σ̂ 2ĤΓ
(
2Ĥ
)
− σ 2HΓ (2H)

=
(
σ̂ 2

− σ 2) ĤΓ (2Ĥ)+ σ 2 (Ĥ − H
)
Γ
(
2Ĥ
)
− σ 2H

[
Γ
(
2Ĥ
)
− Γ (2H)

]
= Op

(
log (∆)

√
n

)
+ Op

(
1

√
n

)
+ Op

(
1

√
n

)
. (A.9)

he order of the term Γ
(
2Ĥ
)
− Γ (2H) is from the Taylor expansion as

Γ
(
2Ĥ
)
− Γ (2H) = Γ ′

(
2H̃
)
2
(
Ĥ − H

)
,

here H̃ takes values between Ĥ and H and Γ ′ (·) is finite over the interval (0, 4).
Define

κ̂HN =

⎛⎜⎝ 1
T

∫ T
0 X2

t dt −

(
1
T

∫ T
0 Xtdt

)2
σ 2HΓ (2H)

⎞⎟⎠
−1/(2H)

. (A.10)

ccording to Theorem 3.3 of Xiao and Yu (2019a) and Theorem 3.1 of Xiao and Yu (2019b), when H ∈ [1/2, 3/4) and
H ∈ (0, 1/2), as T → ∞,

√
T (̂κHN − κ)

d
→ N (0, κφH) .

As a result, we have

1
T

∫ T
0 X2

t dt −

(
1
T

∫ T
0 Xtdt

)2
σ 2HΓ (2H)

= (̂κHN)
−2H

= κ−2H
− 2Hκ−2H−1 (̂κHN − κ)+ Op

(
(̂κHN − κ)2

)
,

nd, as T → ∞,

√
T

{
1
T

∫ T

0
X2
t dt −

(
1
T

∫ T

0
Xtdt

)2

− σ 2κ−2HHΓ (2H)

}
=

√
Tσ 2HΓ (2H)

{
(̂κHN)

−2H
− κ−2H}

=
√
Tσ 2HΓ (2H)

{
−2Hκ−2H−1 (̂κHN − κ)+ Op

(
(̂κHN − κ)2

)}
d

→ σ 2HΓ (2H)
(
−2Hκ−2H−1)N (0, κφH) .

hen, for the first term in (A.8), it is obtained that, as T → ∞ and
√
T∆H

→ 0,

√
T

⎧⎨⎩1
n

n∑
i=1

X2
i∆ −

(
1
n

n∑
i=1

Xi∆

)2

− σ 2κ−2HHΓ (2H)

⎫⎬⎭
=

√
T

{
1
T

∫ T

0
X2
t dt −

(
1
T

∫ T

0
Xtdt

)2

− σ 2κ−2HHΓ (2H)+ Op
(
∆H)

+ Op

(
1
n

)}
d

→ σ 2HΓ (2H)
(
−2Hκ−2H−1)N (0, κφH) . (A.11)

Now, putting (A.9) and (A.11) in Eq. (A.8), we have, as T → ∞, T∆ → 0, and
√
T∆H

→ 0,
√
T σ̂ 2ĤΓ

(
2Ĥ
) (̂
κ−2Ĥ

− κ−2H
)

d
→ σ 2HΓ (2H)

(
−2Hκ−2H−1)N (0, κφH) ,

and
√
T
(̂
κ−2Ĥ

− κ−2H
)

d
→
(
−2Hκ−2H−1)N (0, κφH) .

Note that the first-order Taylor expansion of κ̂−2Ĥ at κ̂ = κ takes the form of

−2Ĥ −2Ĥ ˆ −2Ĥ−1
κ̂ = κ − 2Hκ̃ (̂κ − κ) ,
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here κ̃ lies between κ̂ and κ . As a result, we have

−2Ĥκ̃−2Ĥ−1 (̂κ − κ) = κ̂−2Ĥ
− κ−2Ĥ

=

(̂
κ−2Ĥ

− κ−2H
)

−

(
κ−2Ĥ

− κ−2H
)

=

(̂
κ−2Ĥ

− κ−2H
)

+ 2 log (κ) κ−2H (Ĥ − H
)
+ Op

((
Ĥ − H

)2)
,

here the third equation comes from the first-order Taylor expansion of κ−2Ĥ at Ĥ = H . Finally, we have, as T → ∞,
∆ → 0, and

√
T∆H

→ 0,

−2Ĥκ̃−2Ĥ−1
√
T (̂κ − κ) =

√
T
(̂
κ−2Ĥ

− κ−2H
)

+ Op

(√
∆

)
d

→
(
−2Hκ−2H−1)N (0, κφH) ,

thereby,
√
T (̂κ − κ)

d
→ N (0, κφH) ,

which gives the asymptotic distribution shown in Part (a) of the theorem.
For κ̂HN given in (A.10), Xiao and Yu (2019a) have proved that, when H = 3/4,

√
T

log(T )
(̂κ − κ)

d
→ N

(
0,

16κ
9π

)
, as T → ∞,

nd, when H ∈ (3/4, 1),

T 2−2H (̂κ − κ)
d

→
−κ2H−1

HΓ (2H + 1)
R , as T → ∞,

where R denotes the Rosenblatt random variable with E
(
R2
)

= 2H2(2H − 1)/(4H − 3). Using these results and taking the
ame procedure above for the proof of Part (a) of the theorem will give the asymptotic distributions in Part (b)–(c) of the
heorem, respectively. The proof of the theorem is completed.

ppendix B. Supplementary empirical results

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.08.001.
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