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1 Introduction

The standard no-arbitrage condition for the determination of the price Pt of a financial or

real asset at time t implies that

Pt =
1

1 +R
Et (Pt+1 +Dt+1) , (1)

where R, Et, and Dt denote the discount rate, expectation conditional on information

available at time t, and fundamentals (such as the dividend for a stock or the rental

income from a house) at time t. Solving (1) by forward substitution leads to the equation

Pt = PFt +Bt, where

PFt =
∞∑
i=1

(
1

1 +R

)i
Et (Dt+i) (2)

is the fundamental price,

Bt =
1

1 +R
Et(Bt+1) (3)

is the bubble component. Bt is unrelated to fundamentals and emerges as part of the

general solution to (1), whereas PFt in (2) is the particular solution driven by fundamentals

measured by the sum of the discounted expectations of future dividends if Pt is the price

of a stock. Under the transversality condition limT→∞ (1 +R)−T EtPt+T = 0, the general

solution is Bt = 0 and Pt = PFt . When the transversality condition fails, Bt 6= 0. It is

clear from (3) that, when Bt > 0 , Bt satisfies the submartingale property:

Et(Bt+1) = (1 +R)Bt > Bt, (4)

since 1 + R > 1. This submartingale behavior can be well captured by an explosive

autoregressive (AR) model with an AR coefficient greater than 1. Explosive behavior in

Bt ensures that Pt is an explosive process even when fundamentals PFt are themselves not

explosive. It is this property that facilitates empirical analysis of bubbles in time series

and panel data using autoregressive methods.

In practical work, many recent empirical studies have confirmed evidence of episodic

explosive behavior in the price-fundamental ratio using bubble detection techniques; e.g.,

Phillips et al. (2015a) (hereafter PSYa) and Pedersen and Schütte (2020). A natural

approach to bubble detection is to employ a right-tailed unit root test, initially employed by

Diba and Grossman (1988) and subsequently used in sequential testing methods by Phillips

et al. (2011) (hereafter PWY) and Phillips and Yu (2011) (hereafter PY) that provide

consistent estimates of bubble initiation and termination dates. PSYa extended that work

to allow for the detection of multiple bubbles by means of sequential evolving search

methods for episodic bubbles in time series. Harvey et al. (2016, 2018, 2019) provided

further extensions of these methods by allowing for models with heteroskedastic errors and

Pedersen and Schütte (2020) emphasized the importance of treating autocorrelated errors

in the small sample procedures that are inevitably involved in sequential and evolving

testing algorithms. Readers are referred to Phillips and Shi (2020) and Shi and Phillips

(2023) for recent overviews of these methods, including instrumental variable methods for
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calculating fundamentals, bootstrap methods for controlling the multiplicity issues that

affect sequential testing, and algorithms for practical implementation.

The simplest model for explosive behavior testing has the following first-order AR form

yt = ρyt−1 + εt, y0 = Op(1), with εt
iid∼ (0, σ2), t = 1, ..., n. (5)

Under normal market conditions, time series yt of asset prices typically follow random

wandering behavior. Correspondingly, the common null hypothesis for such conditions is

that yt is a random walk process with ρ = 1. Under the alternative hypothesis of bubble

behavior originating from some point of initialization in the sample, the process yt displays

explosive behavior with a fixed coefficient ρ > 1 or mildly explosive behavior with locally

defined coefficient ρ = 1+c/nα, c > 0, and α ∈ (0, 1), as in Phillips and Magdalinos (2007)

and Magdalinos (2012).1 Against both these alternatives, right-tailed unit root tests have

finite sample power and are consistent as n → ∞ (PWY). This framework provides the

basis for more complex versions of tests for explosive behavior and bubbles that are better

suited to the data in financial and real asset markets.

Pedersen and Schütte (2020) allowed for weakly dependent errors in their application,

noting that failure to do so led to considerable size distortion in bubble testing algorithms,

particularly those that use recursive sample methods. The present paper is motivated by

similar concerns and extends the analysis of earlier work by considering a generating

mechanism such as (5) in which the errors follow a strongly dependent process. The

phenomenon of strong dependence is widespread in economic and financial time series.

Cheung (1993) and Baillie et al. (1996) found empirical evidence of strong dependence in

exchange rates. Christensen and Nielsen (2007), Andersen et al. (2003) and Ohanissian

et al. (2008) provided evidence of strong dependence in volatilities of stock returns and

exchange rate returns; and empirical studies by Gil-Alana et al. (2014) and Barros et al.

(2014) showed similar evidence of strong dependence in housing prices. More recently,

Chevillon and Mavroeidis (2017) utilized statistical learning methods in long memory

analysis, finding strong dependence in the US monthly CPI inflation rates.

Consider the following unit root process driven by long memory errors ut{
yt = yt−1 + ut, t = 1, ..., n

ut = ∆−d+ εt, d > 0, εt
iid∼ (0, σ2), E|ε1|2+δ <∞, δ > 0

, (6)

where the operator ∆−d+ associated with the memory parameter d is defined by

∆−d+ εt = (1− L)−d1(t ≥ 1)εt = (1− L)−dεt1(t ≥ 1) =

t−1∑
j=0

(d)j
j!

εt−j , (7)

1Mildly explosive models have distinct advantages over purely explosive systems and have become
commonly used in the recent literature. First, since purely explosive models are asymptotically more
explosive than a mildly explosive model, a test that is consistent in detecting mild explosiveness is also
consistent in detecting pure explosiveness. Hence, the test has asymptotic power unity against both mildly
explosive and purely explosive processes. Second, no central limit theory or invariance principle properties
apply for estimation or testing in a purely explosive model, in contrast to midly explosive processes for
which invariance principles apply that validate inference.
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with (d)j = Γ(d+ j)/Γ(d) and initialization at time t = 0. The moving average coefficients

(d)j /j! =: cdj in (7) are positive when d > 0 for all j. By standard gamma function

asymptotic expansion cdj = 1
Γ(d)j1−d

{1 + O
(

1
j

)
} a∼ 1

Γ(d)j1−d
as j → ∞. If d = 0 in (6),

model (6) reduces to (5) with ρ = 1. When d > 0, there is strong dependence in the

sequence ut, commonly written as ut ∼ FI(d), so that ut is fractionally integrated (FI)

of order d or with long memory parameter d.2 Since the first difference of yt is FI(d), it

follows that yt ∼ FI(dy) with dy = 1 + d.
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Figure 1: The unbroken and dashed blue lines are time series plots of the actual and fitted
monthly PD ratios (left axis), where the fitted value is obtained by an AR(1) regression
with an intercept. The unbroken and dotted red lines are time series plots of residuals
from a fitted least squares autoregression and exact local Whittle (ELW) estimation of
the long memory parameter (right axis). See the text for further details.

Although data yt generated by (6) follow a unit root process driven by strongly de-

pendent errors, it is not uncommon to observe realizations that form time paths with

episodes mimicking an explosive trajectory. Solving (6) gives the partial sum representa-

tion yt =
∑t

i=1 ui + y0. Since ut is strongly dependent with representation (7) and moving

average coefficients cdj > 0 for all j, it is evident that any large positive shock εt−j provides

a sustained positive impact on yt due to strong dependence. Since yt is the cumulative

2More precisely, ut is a Type II FI time series with fractional order d – see Marinucci and Robinson
(1999) and Davidson and Hashimzade (2009) for further discussion of this terminology and Type I FI time
series together with definitions of corresponding fractional Brownian motion processes.

4



effect of such inputs, a succession of positive shocks produces an upward trend in the

process that can mimic an explosive time series.

A standard procedure for testing explosive behavior is to fit an AR model such as (5)

and employ a right-tailed unit root t-test. In this event, if data is generated according to

(6), it is well known that the t-statistic diverges as n→∞ (see Sowell (1990)), so that a

conventional right-tailed test will inevitably lead to rejection of a unit root null when n is

large. Thus, for data from a unit root process with long memory innovations such as (6),

application of right-tailed tests that ignore strong dependence in the innovations when

such dependence is present will lead to the mistaken conclusion of explosive behavior and

spurious detection of a rational bubble in the data. That is, when the true AR parameter

is unity, the test mistakenly concludes that the data is explosive.

To address this problem, we introduce heteroskedasticity-autocorrelation robust (HAR)

statistics to test explosive behavior in data when the error term is strongly dependent.

Unlike the conventional t-test, the new tests avoid the aforementioned spurious detection

problem and have a stable size property. The tests can also be used to consistently esti-

mate the origination date and the termination date of an explosive episode. Monte Carlo

simulations are conducted to check the finite sample performance of the proposed tests

and an empirical illustration of the methods to the S&P 500 index is provided.

The remainder of this paper is organized as follows. Section 2 first briefly reviews

traditional right-tail unit root tests for explosiveness and procedures for date stamping

explosive periods in data. This section also motivates the present paper based on findings

from the S&P 500 data. Section 3 introduces the model with strongly dependent errors,

proposes the new test, and derives asymptotic theory under the null. Section 4 examines

asymptotic properties under explosive alternatives. New estimators of bubble origination

and termination dates in recursive applications of the new statistic are given in Section

5. Section 6 discusses how to conduct tests in the presence of time-varying volatilities.

Simulations exploring finite sample properties of the procedures are reported in Section

7. An empirical study using the S&P 500 index is conducted in Section 8 where the

results are compared with earlier findings that employ standard test procedures. Section

9 concludes. Proofs of the main results in the paper are given in the Appendix. An

Online Supplement provides useful lemmas with proofs, proofs and discussion relating to

several remarks, together with additional technical and simulation results, including the

development of a sup HAR statistic, asymptotic theory and finite sample analysis of the

sup HAR statistic. Notation is standard with
p→, d→, as→,⇒, a∼, b·c, := and =: denoting

convergence in probability, convergence in distribution, almost sure convergence, weak

convergence on the relevant probability space, asymptotic equivalence, the floor function,

and definitional equality.

2 Related Literature and Motivation

Before introducing our new approach, we first briefly review right-tailed unit root tests and

methods to timestamp the origination and termination of explosive episodes in time series

data. Model (5) is fitted by LS regression with an intercept from the full sample giving the

coefficient estimate ρ̂n and associated t-statistic DFn = (ρ̂n − 1) /se(ρ̂n), where se(ρ̂n) is
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the usual standard error of ρ̂n. Under the null hypothesis that ρ = 1, by standard methods

(Phillips, 1987a) as n → ∞, DFn ⇒
∫ 1

0 W̆ (s)dW (s)/
(∫ 1

0 W̆ (s)2ds
)1/2

=: DF∞, where

W (s) is standard Brownian motion (BM) and W̆ (s) = W (s) −
∫ 1

0 W (p)dp is demeaned

BM. Right-tailed unit root tests are implemented by rejecting the null when DFn exceeds

its right-tailed critical value.

In practical work, potentially explosive episodes are typically investigated within sam-

ple at some point of time τe = bnrec, with corresponding sample fraction re ∈ (0, 1). Such

episodes may then end later in the sample at some time τf = bnrfc, with re < rf < 1,

when there is a market correction or shock that terminates exuberance. If explosive be-

havior emerges and collapses within sample in this way, PWY prove that DFn
p→ −∞,

revealing that full sample right-tailed unit root tests of the type suggested in Diba and

Grossman (1988) have no discriminatory power for detecting financial bubbles. Instead,

PWY and PY propose a sup statistic based on recursive regressions of the form

yt = µ̂+ ρ̂τyt−1 + ût, for t = 1, ..., τ = bnrc, r > r0 (8)

where µ̂τ , ρ̂τ , and ût are the fitted intercept, AR coefficient, and residuals from regressions,

respectively, with τ = bnrc > τ0 = bnr0c and τ0 is an initiating sample size for the

recursion for which it is assumed that τ0 < τe. Subsequent regressions proceed from the

initiating sample of size τ0 = bnr0c until the full sample size n with r = 1 is reached.

Using the t-statistic DFτ = (ρ̂τ − 1) /sτ based on the regression with τ observations and

recursive standard error sτ =
(

1
τ

∑τ
t=1 û

2
t /
[∑τ

t=1 y
2
t−1 − 1

τ (
∑τ

t=1 yt−1)2
])1/2

of ρ̂τ , the

test statistic proposed by PWY and PY is supτ∈[τ0,n]DFτ , whose limit distribution is

given by the corresponding functional

SDF := sup
τ∈[τ0,n]

DFτ ⇒ sup
r∈[r0,1]

∫ r
0 W̃ (s)dW (s)(∫ r
0 W̃ (s)2ds

)1/2
, as n→∞.

The null hypothesis is rejected in favor of the presence of an explosive episode in the

sample if the statistic SDF exceeds the right-tailed critical value corresponding to the

specified significance level.

Once evidence of an explosive episode is detected, the origination and termination

dates of the episode, represented by τe = bnrec and τf = bnrfc with sample fraction forms

re and rf , can be estimated. Suppose the generating mechanism under the alternative of

an explosive episode within the sample is given by
yt = yt−11 {t < τe}+ ρnyt−11 {τe ≤ t ≤ τf}

+
(∑t

k=τf+1 εk + y∗τf

)
1 {t > τf}+ εt 1 {t ≤ τf}

ρn = 1 + c
nα , c > 0, α ∈ (0, 1) , εt

iid∼ (0, σ2), E|ε1|2+δ <∞, δ > 0

, (9)

where y∗τf = yτe + y∗ with y∗ ∼ Op (1). Model (9) has two structural breaks. Before the

first break (at t = τe), yt follows a unit root process. After the first break and before

the second break (i.e. τe ≤ t ≤ τf ), the process is mildly explosive with autoregressive

coefficient ρn = 1+ c
nα and localizing coefficient c > 0. At τf +1, the explosive period ends
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with a collapse in the process to y∗τf , which is assumed to be in an Op (1) neighborhood

of yτe , the value reached before the explosive episode begins. The sample fractions re and

rf are the true origination and termination dates of the explosive period, which may be

estimated by

r̂PWY
e = inf

r≥r0
{r : DFτ > cvn}, (10)

r̂PWY
f = inf

s≥r̂e+ γ ln(n)
n

{s : DFs < cvn} , (11)

the latter estimate being conditional on evidence of an originating date r̂PWY
e to the

episode. In (10) and (11), the critical value cvn increases with the sample size. If cvn →
∞ at a slower rate than n1−α/2, Phillips and Yu (2009) showed that r̂PWY

e
p→ re and

r̂PWY
f

p→ rf and the two estimates are consistent under some general regularity conditions.

In empirical applications, PWY set cvn proportional to ln lnn.

The methods reviewed above assume the errors in the AR model have weak dependence.

But if the errors in (6) have long memory with memory parameter d ∈ (0, 0.5), Sowell

(1990) showed that the t-statistic diverges with n. This means that as the sample size

rises, conventional right-tailed unit root tests will eventually reject a unit root null, leading

to a spurious bubble conclusion.

To showcase the empirical relevance of this problem, Figure 1 plots historical data for

the monthly price-dividend (PD) ratio of the S&P 500 in the unbroken blue line, following

PSYa.3 The panels shown in Figure 1 cover six periods: (a) January 1872 to February

1880; (b) June 1882 to May 1887; (c) May 1940 to February 1946; (d) June 1948 to

November 1955; (e) May 1979 to March 1987 and (f) May 1989 to August 1997. Each

period contains a trajectory for which there is some apparent exuberance in the S&P 500

market. Under the assumption that the generating mechanism is (5) with errors that are

not strongly dependent, autoregressions with an intercept are fitted for each subperiod

and Dickey-Fuller t-statistics (denoted DFn) are calculated and reported in Table 1. The

results show rejection of a unit root at the 1% level for each of subperiods, indicating

strong statistical evidence for a rational bubble in each case.4

PSYa found evidence of rational bubbles in the S&P 500 for the following periods: the

long-depression period (October 1878 to April 1880), the great crash episode (November

1928 to October 1929), the postwar boom in 1954 (January 1955 to April 1956), Black

Monday in October 1987 (June 1986 to September 1987), and the dot-com bubble (Novem-

ber 1995 to August 2001). Our sampling periods (a), (d), (e) and (f) overlap four of the

PSYa estimated rational bubble periods, re-affirming the evidence for market exuberance

in these periods.5

3Monthly price-dividend ratio measurements are shown on the left axis. The figure also plots the fitted
monthly price-dividend ratio (the blue dashed line), obtained from least squares (LS) autoregression with
an intercept on the left axis, and the residuals obtained from that regression and the LM model with
memory parameter fitted by the exact local Whittle (ELW) method (shown by the red unbroken line and
the red dashed line) on the right axis.

4The asymptotic right-tail 95% critical value for the standard t statistic for the presence of a unit root
is 0.60 (Table B.6 in Hamilton, 1994).

5The periods where statistical significance of a positive LM parameter d is not established are not
reported here.
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Table 1: Right-tailed unit root tests for the S&P 500 PD ratio, exact local Whittle
estimates d̂ of d, and corresponding confidence intervals

Sampling Period DFn d̂ 90% CI 95% CI

(a) Jan 1872 to Feb 1880 1.35 0.24 (0.05,0.43) (0.02,0.46)
(b) Jun 1882 to May 1887 0.66 0.32 (0.10,0.54) (0.06,0.58)
(c) May 1940 to Feb 1946 1.38 0.34 (0.13,0.55) (0.09,0.59)
(d) Jun 1948 to Nov 1955 1.70 0.29 (0.10,0.48) (0.06,0.52)
(e) May 1979 to Mar 1987 1.73 0.21 (0.02,0.40) (-0.01,0.43)
(f) May 1989 to Apr 1998 2.78 0.24 (0.05,0.42) (0.02,0.46)

If the data were assumed to be fractionally integrated as in (6) the composite long

memory parameter dy could be estimated directly and the corresponding memory param-

eter d of the innovations could be deduced. Accordingly, the exact local Whittle (ELW)

procedure (Shimotsu and Phillips, 2005) was used to estimate dy, deduce d, and test for

short memory (d = 0) in the innovations against strong dependence (d > 0).6

In Figure 1, the red solid line is a plot of {ε̂t,LS}nt=2 obtained from least squares

(LS) autoregression and the red dotted line is a plot of {ε̂t,ELW }nt=2 obtained by ELW

estimation7 for each of the six sampling periods. Note that an exuberance trajectory can

be generated either by an explosive AR model with an error sequence {ε̂t,LS}nt=2 or by

a fractionally integrated time series (6) with d = d̂ and the error sequence {ε̂t,ELW }nt=2.

Table 1 reports the ELW estimate of d and its 90% and 95% confidence intervals for each

subperiod.8 In all cases, d̂ is positive and the null hypothesis of short memory is rejected

against the alternative of strong dependence at either the 5% or 10% level, supporting

evidence of long memory in the innovations ut in the sampling periods. These findings

suggest that a plausible alternative model for the generating mechanism is a unit root

model with strong dependent errors (6) instead of the explosive model indicated by the

results of unit root testing. Hence, empirical rejection of a unit root null in favor of an

explosive process may arise from the presence of strong dependence in the errors, raising

the possibility of spurious inference concerning the presence of a rational bubbles.9

Motivated by these empirical findings and the potential implications for bubble detec-

tion with standard right-tail unit root tests, the present paper seeks to address the problem

of spurious test outcomes from right-tail tests. We propose to modify standard test proce-

dures by constructing a heteroskedasticity-autocorrelation robust (HAR) statistic which

controls performance so that the test statistic does not diverge and has a well defined

limit distribution under the null test but diverges and is consistent under the alternative

6We followed Shimotsu (2010) in the implementation of the ELW procedure taking the unknown initial
condition into account. See Shimotsu (2010, Equation (9)) for details.

7These residuals are estimated by computing ε̂t,ELW = (1− L)−d̂+ ∆yt.
8Shimotsu and Phillips (2005) show that the asymptotic distribution of the ELW estimate of d is given

by
√
m(d̂ − d)

d→ N (0, 1/4) using bandwidth m = nδ, where n is the sample size and δ is a bandwidth
parameter that controls the number of periodogram ordinates near the origin that are used in estimation.
The setting δ = 0.65 was used in the computations reported in Table 1.

9An analysis based on a larger sample size is conducted in the Online Supplement, confirming strong
dependence in the residuals using the ELW estimator and explosiveness in the data using DFn tests.
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of an explosive or mildly explosive root. The new HAR test has asymptotic discriminatory

power in detecting explosive time series even in models driven by long memory errors. The

test can be implemented in recursive algorithms to consistently timestamp origination and

termination dates of episodic bubbles. The modified test statistic is constructed in the

same spirit as the use of HAR statistics to perform valid testing in potentially spurious

relationships (Sun, 2004; Phillips et al., 2019).

3 A New Test and Asymptotic Null Distribution

Motivated by the empirical findings in Section 1, we consider the following prototypical

model 
yt = ρnyt−1 + ut, t = 1, ..., n

ut = ∆−d+ εt, d > 0, εt
iid∼ (0, σ2), E|ε1|2+δ <∞, δ > 0

y0 = op(n
1/2+d)

. (12)

Model (12) differs from (5) in that ut can be strongly dependent. The model also differs

from Sowell (1990), who used Type I FI ut = ∆−dεt =
∑∞

j=0

(d)j
j! εt−j with d ∈ (0, 0.5)

to model strong dependence, because the Type II formulation ut = ∆−d+ εt allows for a

wide range of stationary and nonstationary long range dependence, for which consistent

estimation of d or dy is possible using the ELW procedure with associated pivotal Gaussian

inference, as noted in Shimotsu and Phillips (2005) and Hualde and Robinson (2011). We

first consider the asymptotic behavior of the traditional Dickey-Fuller t-test when ρn = 1.

3.1 Asymptotic null distribution of DFτ

Lemma 3.1 Assume the true data generation process (DGP) is given by (12) with ρn = 1

and d ∈ (0, 0.5). For any r ∈ (0, 1] and τ = bnrc as n→∞,

n−dDFτ ⇒
σr
2

(
WH(r)

)2 − σ (∫ r0 WH(s)ds
)
WH(r)

r

(
σu
∫ r

0

(
W̃H(s)

)2
ds

)1/2
. (13)

where σ2
u := E[u2

t ].

Lemma 3.1 implies that DFτ = Op
(
nd
)
, so that the statistic DFτ diverges with the

sample size, implying rejection of the null hypothesis as n → ∞ which leads to spurious

inference concerning explosive behavior in the data. With Type I fractional integration

and d ∈ (0, 0.5), Theorem 4 in Sowell (1990) also showed divergence DFn
p→ ∞. Lemma

3.1 extends that result to Type II fractional integration and the divergence rate Op
(
nd
)

shows faster divergence for larger d holding for any r ∈ (0, 1], so the result is relevant for

subsample inference.

Remark 3.1 To detect the presence of explosiveness, PWY and PSYa and Phillips et al.

(2015b) (hereafter PSYb) proposed to use SDF and GSDF statistics defined by

SDF (τ0) = sup
τ∈[τ0,n]

DFτ and GSDF (τ0) = sup
τ2∈[τ0,n],τ1∈[0,τ2−τ0]

DF τ2τ1 ,
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where τ0 = bnr0c is the minimum data window and DF τ2τ1 is the t statistic based on the

observations from τ1 = bnr1c to τ2 = bnr2c. As Lemma 3.1 holds uniformly for r ∈ (0, 1],

under model (12) with ρn = 1 and d ∈ (0, 0.5), we have

SDF (τ0) = Op

(
nd
)

and GSDF (τ0) = Op

(
nd
)
.

Both statistics lead to the detection of spurious explosive behavior as n→∞.

Remark 3.2 Similar to the framework in Phillips et al. (2014), model (12) can be ex-

tended to include an asymptotically negligible intercept, which can be useful in capturing

the presence of a small drift in the data. In this case,

yt = µn + ρnyt−1 + ut, (14)

where µn = O(n−θ) with θ > 1/2− d. It can be shown that Lemma 3.1 continues to hold

in this case. The result in Lemma 3.1 also continues to hold when the ADF test or the

CUSUM test of Homm and Breitung (2011) is used.

3.2 A new test statistic

The failure of the standard t statistic stems from the use of an inappropriate standard

error based on the sample variance of residuals, 1
τ

∑τ
t=1 û

2
t , which results in the divergence

of DFτ . Instead, we use a self-normalized statistic that employs a robust standard error

estimate, leading to a well defined limit distribution as n→∞ for d ∈ [0, 0.5). Specifically,

allowing for potential strong dependence in ut, we employ the HAR estimate

Ω̂HAR =

τ∑
j=−τ+1

K

(
j

M

)
γ̂j , (15)

where K(·) is a kernel function with bandwidth M = Mτ , and γ̂j = 1
τ

∑τ
t=j+1 ∆yt∆yt−j

is the jth order sample autocovariance over the subsample t = 1, ..., τ . Based on Ω̂HAR,

the t statistic becomes

DFτ,HAR =
ρ̂τ − 1

sτ,HAR
, (16)

in which the robust standard error is

sτ,HAR =

√
Ω̂HAR∑τ
t=1 ȳ

2
t−1

, where ȳt = yt −
1

τ

τ∑
t=1

yt−1. (17)

For HAR estimation, the bandwidth is selected by the fixed-b setting Mτ = b × τ with

b ∈ (0, 1] so the bandwidth is of the same order of magnitude as the subsample τ in the

regression window. This approach follows Kiefer and Vogelsang (2002a,b, 2005), Bun-

zel et al. (2001), Vogelsang (2003) and many subsequent works that employ the fixed-b

method. In the present setting, the HAR normalization of the test statistic plays the same

role as in Sun (2004) in the context of potentially spurious cointegration.
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Theorem 3.1 Suppose Mτ = bτ , and K(x) = KB(x) is the Bartlett kernel with KB(x) =

(1 − |x|)1 (|x| ≤ 1). Under model (12), with τ = bnrc and r ∈ (0, 1] as n → ∞,

DFτ=bnrc,HAR has the following fixed-b asymptotic distribution,

DFτ,HAR ⇒


b1/2r

∫ r
0 W̃ (s)dW (s)[

2
∫ r
0 W̃ (s)2ds

(∫ r
0 W (p)2dp−

∫ (1−b)r
0 W (p)W (p+br)dp

)]1/2 =: F ∗r,0 for d = 0

b1/2
[
r
2(WH(r))

2−(
∫ r
0 W

H(s)ds)WH(r)
]

[
2
∫ r
0 (W̃H(s))

2
ds
(∫ r

0 W
H(p)2dp−

∫ (1−b)r
0 WH(p)WH(p+br)dp

)]1/2 =: Fr,d for d ∈ (0, 0.5)
,

(18)

where WH(r) = 1
Γ(H+1/2)

∫ r
0 (r − s)H−1/2dW (s) is Type II fractional Brownian motion

(fBM) with the Hurst parameter H = 1/2 + d and W̃H(r) = WH(r) − 1
r

∫ r
0 W

H(s)ds is

demeaned Type II fBM.10

In contrast to the divergence of DFτ , Theorem 3.1 shows that DFτ,HAR converges

weakly to a well-defined limit distribution for any τ = bnrc whether d = 0 or d > 0.

Hence, provided the DGP does not have an explosive root, DFτ,HAR has well-behaved

asymptotics for d ≥ 0 and in this respect is better suited to testing. However, although

the statistic is well normalized for d ≥ 0, the limit distribution of DFτ,HAR in (18) is not

uniform over d. The lack of uniformity arises because the centered LS estimator ρ̂τ − 1

involves a component involving n−1−2d
(∑τ

t=1 u
2
t

)
that is asymptotically negligible when

d > 0 but non-negligible when d = 0, thereby affecting the limit theory in that case and

leading to a discontinuity in the limit distribution when d→ 0. As is evident from the form

of the two limits given in (18), the denominator of Fr,d is equivalent to the denominator

of F ∗r,0 as d → 0 (and H → 1/2) but this is not true of the numerators. The discrepancy

produces the discontinuity in the limit theory as d→ 0.

Simulations (not reported here) show that critical values obtained from the limit distri-

bution of DFτ,HAR do not provide satisfactory performance and lead to size distortion in

testing when d is close to zero. This distortion stems from two factors. First, when d > 0

but is close to zero, the component n−1−2d
(∑τ

t=1 u
2
t

)
converges in probability to zero very

slowly and the limit distribution Fr,d does not provide a good finite sample approximation

to the true distribution. Second, when d = 0, use of Fr,d̂ for an asymptotic approximation

with a plug-in estimate d̂ > 0 can be a poor approximation to the correct distribution F ∗r,0
which should be used to provide critical values.

The size distortion in the use of DFτ,HAR and the source of the discrepancy in the

limit theory motivates the design of a modified statistic D̃F τ,HAR whose limit expres-

sion smooths over the discontinuity as d → 0 and assists in delivering satisfactory size

performance. The modified statistic has the form

D̃F τ,HAR =
ρ̃τ − 1

sτ,HAR
, (19)

where ρ̃τ = ρ̂τ +
1
2

∑τ
t=1 ∆y2t∑τ
t=1 ȳ

2
t−1

and ∆yt = yt− yt−1. This correction is analogous to the weak

dependence correction in semiparametric unit root tests in Phillips (1987a).

10It can be shown that DFτ,HAR ⇒ Fr,d for d > 0.5.
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Theorem 3.2 Under the same assumptions as Theorem 3.1, for τ = bnrc with r ∈ (0, 1]

and n→∞,

D̃F τ,HAR ⇒ Fr,d, for d ≥ 0. (20)

where Fr,d is defined in (18).

Theorem 3.2 shows that the limit theory given by Fr,d provides a smooth transition

to Fr,0 as d → 0, replacing F ∗r,0 when d = 0. When H = 1/2 we have WH(r) = W (r)

and Fr,d → Fr,0 as d → 0. The continuity in the limit theory is achieved by simple

algebraic removal of the component n−1−2d
(∑τ

t=1 u
2
t

)
in the centered LS estimator ρ̂τ −1.

The component n−1−2d
(∑τ

t=1 u
2
t

)
is no longer relevant in the limit theory and there is no

abrupt shift in the asymptotic behavior of D̃F τ,HAR at d = 0.

To perform a right-tailed unit root test based on the sample {yt}τt=1 with τ = bnrc
the statistic D̃F τ,HAR can be used in conjunction with the β × 100% asymptotic critical

value cvβr,HAR(d), for which

Pr
(
Fr,d > cvβr,HAR(d)

)
= β, for r ∈ (0, 1], (21)

where Fr,d is defined in (18). This procedure applies to the full sample statistic D̃Fn,HAR
with limit variate F1,d and corresponding critical value cvβ1,HAR satisfying (21).

Remark 3.3 The limit distributions given in Theorem 3.1 and Remark 3.4 below apply

when the error term ut follows a stationary ARFIMA(p, d, q) process with d > 0. Suppose

the ARFIMA(p, d, q) process ut is written as

ut = ∆−d+ A(L)εt,

A(L)εt =
∞∑
j=0

at−jεt−j ,
∞∑
j=0

|aj | <∞.

Silveira (1991); Marinucci and Robinson (2000) show that, as n→∞,

1

n1/2+d

bnrc∑
t=1

ut ⇒ σ̃WH(r), (22)

for r ∈ [0, 1], where σ̃2 =
(
E[ε2t ] + 2

∑∞
k=2E[ε1εk]

)
A(1) with A(1) =

∑∞
j=0 aj. In view of

the the identity

1

n2d

1

n

n∑
t=1

yt−1ut =
1

2n2d

(
y2
n − y2

0

)
− 1

2n2d

(
1

n

n∑
t=1

u2
t

)
,

the second term on the right-hand side vanishes asymptotically when d ∈ (0, 0.5). Hence,

adding the ARMA component provides only a scaling effect on the variance σ̃2 appearing

in (22), and the asymptotic distribution of DFτ,HAR and D̃F τ,HAR are independent of σ̃2.

Hence, the results in Theorem 3.1 and Remark 3.4 continue to apply.
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Remark 3.4 Other kernel functions (K2(·)) may be used in place of the Bartlett ker-

nel KB(·) and similarly lead to a fixed-b limit distribution of the corresponding statistic

D̃F τ,HAR constructed with this kernel. For instance, suppose Ω̂HAR =
∑τ

j=−τ+1K2

(
j
M

)
γ̂j

with some twice continuously differentiable positive and symmetric kernel function K2(·).
Then, for all d ∈ [0, 0.5) and τ = bnrc with r ∈ (0, 1] we have the limit theory as n→∞,

D̃F τ,HAR ⇒
br3/2

2

(
WH(r)

)2 − br1/2
(∫ r

0 W
H(s)ds

)
WH(r)((∫ r

0 W̃
H(s)2ds

) ∫ r
0

∫ r
0 −K

′′
2

(p−q
br

)
WH(p)WH(q)dpdq

)1/2
=: F̃r,d, (23)

where K ′′2 (·) is the second derivative of K2(·).

Remark 3.5 The preceding results are given for long memory time series formulated in

terms of Type II FI and the corresponding limit theory involves Type II fBM. Similar

results apply for innovations involving Type I FI time series with limit theory involving a

Type I fBM process. Specifically, when d ∈ (0, 0.5) we can replace ut = ∆−d+ εt in (12) with

ut = (1− L)−dεt =
∑∞

j=0

(d)j
j! εt−j and WH(t) in (18) and (23) with

BH(t) = WH(t) +
1

Γ(H + 1/2)

∫ 0

−∞
[(r − s)H−1/2 − (−s)H−1/2]dW (s).

For discussion of Type I and Type II formulations of fBM see Marinucci and Robinson

(1999, 2000); Davidson and Hashimzade (2009).

Remark 3.6 As in PWY, a sup statistic supτ∈[τ0,n] D̃F τ,HAR can be constructed from

recursive regression for empirical testing covering subsamples of the full sample. The

limit theory can be obtained by continuous mapping in the usual way (PSYa; PSYb) and

employed in practical work to identify explosive behavior in a subsample. This construction

is discussed in detail in the Online Supplement.

Both dy and d can be consistently estimated by ELW estimation (Shimotsu and

Phillips, 2005) or quasi-maximum likelihood estimation (QMLE) (Hualde and Robinson,

2011). Let d̂ denote the estimate of d so obtained. Critical values for testing can then be

found for F
r,d̂

by simulation. Alternatively, we can tabulate critical values of Fr,d for a

set of grid points for d ∈ [0, 0.5) and interpolation can be employed to obtain the critical

value of F
r,d̂

. Simulations reported in section 7 show that this plug-in approach delivers

good size performance in finite samples even for n = 100 and performs nearly as well

as the infeasible method where the true value of d is used to construct critical values.

For practical implementation it is convenient to impose bounds in estimation so that dy
∈ [1, 1 + d̄] for some 0 < d̄ <∞ when performing optimization in calculating estimates of

dy. Then d̂y ∈ [1, 1 + d̄] and d̂ ∈ [0, d̄]. In the simulations of Section 7 we set d̄ = 0.49.

The plug-in method does not take into account the randomness in d̂. An alternative

feasible inferential procedure that does so is to use the fractional differencing bootstrap

algorithm of Kapetanios et al. (2019) to obtain asymptotically correct critical values or

bootstrap p-values. This approach involves the following five steps.
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1. Let en,t = ∆1+d̂
+ yt and ẽn,t = (en,t − ēn,t) /σ̂e where d̂ is an estimate of d, ēn,t and σ̂e

are the sample mean and sample standard deviation of en,t.

2. Redraw i.i.d. samples
{
e∗n,t
}

from the empirical distribution of ẽn,t with replacement.

3. Let

u∗t = σ̂e∆
−d̂
+ e∗n,t, y

∗
t = y∗t−1 + u∗t , with y0 = 0,

and calculate D̃F
∗
n,HAR as in (19).

4. Repeat Steps 2-4 B times and calculate the bootstrap empirical cdf

F̂ ∗(x) =
1

B

B∑
j=1

1(D̃F
∗,j
n,HAR ≤ x).

Define the β × 100% bootstrap critical value (bcvβ) as the 1− β quantile of F̂ ∗ and

let the bootstrap p-value be

p∗(D̃Fn,HAR) = 1− F̂ ∗(D̃Fn,HAR). (24)

5. Reject the unit root null hypothesis when D̃Fn,HAR > bcvβ or p∗(D̃Fn,HAR) < β.

The following theorem shows that this bootstrap approach delivers the correct test size

asymptotically.

Theorem 3.3 Suppose we reject the hypothesis ρn = 1 when p∗(D̃Fn,HAR) in (24) is less

than β. Under the assumptions specified in Theorem 3.1 and if, nγ(d̂−d)
d→ N (0, V ), with

1/4 < γ ≤ 1/2 and V > 0, then as n→∞, we have

D̃F
∗
n,HAR ⇒ F1,d,

p∗(D̃Fn,HAR) ⇒ U [0, 1].

4 Alternative Hypothesis and Asymptotic Theory

To study the asymptotic behavior of the proposed test statistic under an alternative hy-

pothesis, we follow the literature and use two popular ways of modeling explosive depar-

tures from unity. The first alternative adopts the local to unit root (LUR) framework

of Phillips (1987b) – see Harvey et al. (2016, 2018, 2019). The advantage of using the

locally explosive model is that it facilitates the computation of local power. The second

alternative is the mildly explosive model of Phillips and Magdalinos (2007); see PWY,

PSYa, PSYb and PY. Under a mildly explosive alternative a consistent test is obtained.
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4.1 Locally explosive model

We first consider the alternative hypothesis with the following locally explosive setting:
yt = (yt−1 + ut) 1{t < τe}+ (ρnyt−1 + ut) 1{τe ≤ t ≤ n}, t = 1, ..., n,

ut = ∆−d+ εt, d ≥ 0, εt
iid∼ (0, σ2), E|ε1|2+δ <∞, δ > 0, τe = bnrec ,

ρn = 1 + c/n, c > 0, 1 + c/n, c > 0,

y0 = op
(
n1/2+d

)
.

(25)

In model (25), yt has a unit autoregressive root generating mechanism before time τe and

becomes locally explosive after τe, producing a structural break at τe. During both periods

the errors in the AR model have strong dependence with the same memory parameter d.

We now consider the asymptotic behavior of D̃F τ,HAR.

Theorem 4.1 Under model (25), for τ = bnrc with any r > re, as n→∞,

D̃F τ,HAR ⇒

(
( 1
2
Cr,d− 1

r
Ar,dW

H(r))r
Br,d− 1

r
A2
r,d

+ cr

)(
Br,d − 1

rA
2
r,d

)1/2

[
2
b

(∫ r
0 Gre,c(d, p)

2dp−
∫ (1−b)r

0 Gre,c(d, p)Gre,c(d, p+ br)dp
)]1/2

=: F cr,d,

(26)

where

Ar,d :=

∫ r

0

(
e(x−re)cWH(re) +

∫ x

re

e(x−s)cdWH(s)

)
dx,

Br,d :=

∫ r

0

(
e(x−re)cWH(re) +

∫ x

re

e(x−s)cdWH(s)

)2

dx,

Cr,d :=

(
e(r−re)cWH(re) +

∫ r

re

e(r−s)cdWH(s)

)2

,

Gre,c(p) := WH(p)− cAp,d −
∫ re

0
WH(p)dp.

The limit distribution in Theorem 4.1 depends on the non-centrality localizing scale

parameter c. This parameter differentiates F cr,d from Fr,d and evidently F cr,d = Fr,d for

c = 0 from (20). Since both F cr,d and Fr,d are Op(1), they may be used to compute local

power of the proposed test.

4.2 Mildly explosive model

Next consider the alternative hypothesis with the following mildly explosive setting
yt = (yt−1 + ut) 1{t < τe}+ (ρnyt−1 + ut) 1{τe ≤ t ≤ n}, y0 = op(n

1/2+d1)

ut =

{
∆−d1+ εt if t < τe,

∆−d2+ εt if τe ≤ t ≤ n,
εt
iid∼ (0, σ2), d1, d2 ≥ 0,E|ε1|2+δ <∞, δ > 0,

, (27)

where

ρn = 1 +
c

nα
, c > 0, α ∈ (0, 1) . (28)
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In model (27) yt has unit root behavior before τe and becomes mildly explosive after τe,

implying a structural break at τe. For both periods the errors in the AR model have strong

dependence but with memory parameter d1 prior to the break and memory parameter d2

after the break. Since the localizing rate parameter 0 < α < 1, the specification (28)

delivers stronger explosive behavior than the locally explosive LUR model considered ear-

lier. Note that under the LUR model, the memory parameters have a role in determining

whether the locally explosive trajectory is relevant asymptotically. Suppose that α = 1,

and d1 6= d2, model (27) becomes an LUR model with long memory errors with memory

parameters d1 and d2 at t < τe and t ∈ [τe, n], respectively. It can be shown that the

persistence of yt is solely determined by max(d1, d2) as n→∞, and if d1 > d2 the locally

explosive part will be asymptotically dominated by the non-explosive episode. But when

α < 1, the mildly explosive coefficient is sufficient for a consistent test, as shown in the

following result.

Theorem 4.2 Under model (27) with (28), as n→∞,

DFn = Op(n
1−α/2)

p→∞ and D̃Fn,HAR = Op

(
n

1−α
2

)
p→∞.

Theorem 4.2 shows that the statistic DFn diverges to infinity under mildly explosive

alternatives. Combining with the result in Lemma 3.1, divergence of DFn may be due to

either strongly dependent errors or mildly explosive autoregression. But the modified HAR

statistic D̃Fn,HAR diverges only under the alternative hypothesis given by (27) and (28).

For any β×100% critical value cvβHAR(d), we have Pr
(
D̃Fn,HAR > cvβHAR(d)

)
→ 1 under

model (27) with condition (28), giving a consistent test for mildly explosive alternatives.

Note that DFn diverges at the same rate n1−α/2 as that obtained in PWY and PSYa

under i.i.d. errors. The divergence rate of both statistics does not depend on d.

Remark 4.1 Unlike the local alternative case where α = 1, no assumption about d1 and

d2 is needed. They can be identical or different under the mildly explosive setting (28).

Remark 4.2 Phillips and Magdalinos (2007) proposed the mildly explosive specification

with ρn = 1 + c
kn

where kn → ∞, kn/n → 0 and c > 0. This specification is more

general than ours but with a mild additional condition on kn the test remains consistent.

In particular and without loss of generality let c be normalized to unity (see Phillips (2023)

for discussion). Then, under the condition log(n)kn
n → 0, our test is shown to be consistent

in the Online Supplement.11

Remark 4.3 Setting α = 0 in (28) leads to a purely explosive alternative, which amplifies

explosive behavior. So test divergence and consistency in Theorem 4.2 continue to hold.

The Online Supplement provides further discussion.

11We thank an anonymous referee for suggesting this extension.
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5 Dating Origination and Termination

We now discuss estimation of the origination and termination dates of an explosive period.

Following PWY and PY, we consider the following model:

yt = (yt−1 + ut) 1{t < τe}+ (ρnyt−1 + ut) 1{τe ≤ t ≤ τf}
+
(∑t

k=τf+1 uk + y∗τf

)
1{t > τf}, y0 = op(n

1/2+d1),

ρn = 1 + c
nα , c > 0, α ∈ (0, 1) ,

ut = ∆−dt+ εt, εt
iid∼ (0, σ2), E|ε1|2+δ <∞, δ > 0,

dt = d1 for t ∈ [1, τe) ∪ [τf + 1, n], dt = d2 for t ∈ [τe, τf ], τe = bnrec, τf = bnrfc,
y∗τf = yτe + y∗, and y∗ = Op(1).

(29)

This model extends (9) by allowing for potentially strong dependence in the errors. As in

(9), the notations τe (re) and τf (rf ) are the true temporal (fractional) origination and

termination dates of the explosive period. Different from model (12) which has no break,

model (29) has two breaks. Before the first break (i.e. t < τe]), the model has a unit

root in the AR coefficient. After the first break (i.e. t ∈ [τe, τf ]), yt is mildly explosive

with the AR coefficient ρn = 1 + c
nα , c > 0. The explosive period ends at τf + 1 and

the process returns to a unit root process with a re-initialization at y∗τf which lies in an

Op(1) neighborhood of yτe . This model also extends (9) by allowing for different memory

parameters in the errors during the explosive period and non-explosive periods.

Break point estimators of re and rf are defined by employing the HAR statistic

D̃Fn,HAR in the usual criteria

r̂HARe = infr≥r0{r : D̃F τ,HAR > cvn,HAR},
r̂HARf = infr>r̂e+γ ln(n)/n{r : D̃F τ,HAR < cvn,HAR}.

(30)

The following theorem shows that r̂HARe and r̂HARf deliver consistent estimates of re and

rf when cvn,HAR passes to infinity at a controlled rate.

Theorem 5.1 Under model (29) with τ = bnrc, D̃F τ,HAR has the following asymptotic

behavior:
D̃F τ,HAR = Op

(
n

1−α
2

)
p→ ∞ if τ ∈ [τe, τf ],

D̃F τ,HAR = Op

(
n

1−α
2

)
p→ −∞ if τ ∈ [τf + 1, n].

(31)

If re ≥ r0 and the critical value cvn,HAR satisfies the following condition

1

cvn,HAR
+
cvn,HAR

n
(1−α)/2 → 0, (32)

then, as n→∞,

r̂HARe
p→ re and r̂HARf

p→ rf .

Under the alternative hypothesis, consistent estimation of the origination and termi-

nation dates of an explosive period requires that the critical value cvn,HAR → ∞ but at

a rate slower than n(1−α)/2. This is a slightly stronger control condition for consistency
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than that used in PWY for the model without strongly dependent errors (where the rate is

required to be slower than n(2−α)/2). The difference is due to the presence of long memory.

In PWY, the critical value is set to

log(log(nr))/100, r ∈ (0, 1] (33)

which is close to the critical value corresponding to a 4% significance level of the DF test in

their applications. In our applications, the diverging factor (33) is also used to construct

cvn,HAR, which leads to a critical value close to cv0.03
n,HAR(d) in (21), corresponding to a 3%

significance level and satisfying the rate required in (32).

Remark 5.1 Under the null hypothesis of no explosive behavior, i.e. model (12), if

cvn,HAR →∞ the probability of detecting an explosive episode in the data using D̃F τ,HAR
goes to zero as n→∞. This is because D̃F τ,HAR ∼ Op(1) under model (12).

Remark 5.2 As in PWY, the procedure provides real-time estimates of re and rf because

the date estimates r̂HARe and r̂HARf only use subsamples of data observed to those points.

6 Heteroskedastic model

This section explains how to conduct right-tailed unit root tests in the presence of uncon-

ditional heteroskedasticity. Time series models with unconditionally heteroskedastic errors

were studied in Cavaliere and Taylor (2005, 2007) and Xu and Phillips (2008). More re-

cently, Harvey et al. (2016, 2018, 2019) and Astill et al. (2023) adopted an AR model with

time-varying volatilities and proposed new tests for explosive behavior in such settings.

The following provides an extension of those ideas under strongly dependent errors.

Consider the model
yt = yt−1 + ut, y0 = op(n

1/2+d), t = 1, ..., n,

ut = ∆−d+ εt = ∆−d+ σt,nεt = ∆−d+ g (t/n) εt, εt
iid∼ (0, 1), d ≥ 0,

E|εt|q < K <∞ and q ≥ 4,

(34)

where g is a strictly positive, non-stochastic and continuously differentiable function on

[0, 1] with sups g (s) < C < ∞. Model (34) has strongly dependent errors (captured by

the parameter d) that are also unconditionally heteroskedastic (captured by the weakly

trending function σt,n = g(t/n)).

Lemma 6.1 Under model (34), as n→∞, we have

1

n1/2+d

bnrc∑
t=1

ut ⇒
1

Γ(H + 1/2)

∫ r

0
g(s)(r − s)H−1/2dW (s) =: WH

g (r). (35)

Remark 6.1 When d = 0, Cavaliere (2005) and Cavaliere and Taylor (2005, 2007)

showed that

n−1/2

bnrc∑
t=1

ut ⇒
∫ r

0
g(s)dW (s),

and Lemma 6.1 extends that result to the case where d > 0 and the limit involves a weighted

functional of fBM.
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Using the functional law (35) yields the corresponding limit theory for the statistic D̃F τ,HAR
in the case of strong dependence and unconditional heteroskedasticity.

Theorem 6.1 Under model (34), as n→∞, we have

D̃F τ,HAR ⇒
b1/2

[
r
2

(
WH
g (r)

)2 − (∫ r0 WH
g (s)ds

)
WH
g (r)

]
[
2
∫ r

0

(
W̃H
g (s)

)2
ds
(∫ r

0 W
H
g (p)2 −

∫ (1−b)r
0 WH

g (p)WH
g (p+ br)dp

)]1/2
=: F gr,d,

(36)

where W̃H
g (r) = WH

g (r)− 1
r

∫ r
0 W

H
g (s)ds, b = M/τ where M = Mτ is the bandwidth in the

kernel function used to construct the modified HAR statistic D̃F τ,HAR.

The limit functional F gr,d depends on the unknown quantities d and g. One approach

to operationalize inference is to consistently estimate d and g and obtain critical values

for the functional F ĝ
r,d̂

using these plug-in estimates. For example, we can consistently

estimate dy = 1 + d directly from the given data, and hence d, under model (34) by ELW

or QML estimation. Then {yt} can be filtered using d̂ by calculating ût = ∆1+d̂
+ yt, and

the adaptive kernel method (Beare, 2004; Phillips and Xu, 2006; Xu and Phillips, 2008;

Cavaliere et al., 2022; Astill et al., 2023) can be used to estimate g.

A second approach is to note that, under (34), we have

x̃p =

p∑
t=1

∆−d+

(
∆1+d

+ yt

g(t/n)

)
=

p∑
t=1

∆−d+ εt = x̃p−1 + ∆−d+ εp.

Hence, based on d̂ and ĝ, we can define

xbnsc =

bnsc∑
t=1

∆−d̂+

(
∆1+d̂

+ yt

ĝ(t/n)

)
, x0 = 0, for s ∈ [0, 1], (37)

where ĝ2(t/n) =
∑τ

i=1 ktiε̂
2
i with kti = Kν(t−i)∑τ

i=1Kν(t−i) , ε̂t = ∆1+d̂
+ yt, Kν(·) = K( ·ν ) and K(·)

is a kernel function with bandwidth ν. Following Astill et al. (2023), we assume that the

kernel K(·) satisfies the conditions given in Theorem 6.2.

The following limit theory holds when the D̃F τ,HAR test is applied to {xt}τt=1.

Theorem 6.2 Assume {yt}nt=1 is generated from model (34). Suppose the kernel function

K (·) satisfies the following conditions: it is continuously differentiable over the interval

(0, 1); K(x) = 0, for x ≤ 0 and x ≥ 1;
∫ 1

0 Kdx > 0,
∫ 1

0 |K(x)|dx <∞,
∫ 1

0 |K(x)x|dx <∞,

and the characteristic function of K is absolutely integrable. Suppose that nγ
(
d̂− d

)
d→

N (0, V ) with 1/4 < γ ≤ 1/2 and V > 0. Furthermore, assume the bandwidth ν satisfies

ν →∞, ν
n → 0 and ν2

n →∞ as n→∞. Let D̃F
x

τ,HAR denote the test statistic D̃F τ,HAR
applied to data {xt}τt=1 constructed as in (37). As n→∞, we then have

D̃F
x

τ,HAR ⇒ Fr,d. (38)
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Remark 6.2 Theorem 6.2 states that one can use the same limit distribution as in The-

orem 3.2 to obtain critical values for the test under the heteroskedastic model (34). It

is therefore possible to extend the bootstrap procedures given earlier to accommodate the

presence of error variance heterogeneity. Simulations, not reported here, were conducted

to check size performance in these tests for different forms of error variance function

g(·). Overall, the finite sample performance was found to be comparable to that based on

the statistic D̃F τ,HAR for the homogeneous case where σ2 is fixed — see Table 2 in the

following section and Table 2 in the Online Supplement.

7 Monte Carlo Studies

This section reports the results of simulation experiments designed (i) to explore the size

and power performance of the proposed tests for the presence of explosive behavior in

the data, and (ii) to study performance of the procedures for estimating the origination

and termination dates in finite samples. The reported results relate to the model with

homogeneous error variance.12 Normalized partial sums of ut = ∆−d+ εt , with εt
iid∼ (0, 1),

were used to approximate the Type II fBM that appears in the limit theory.13 This

approximation allows us to simulate DF∞, Fr,0 and Fr,d to obtain the critical values. The

number of replications in all experiments is 2,500.

To investigate the empirical size of the tests we use the following DGP,{
yt = yt−1 + ut, t = 1, ..., n

ut = ∆−d+ εt, εt
iid∼ N (0, 1)

, (39)

with parameter settings: d ∈ {0, 0.05, 0.1, ..., 0.45}, y0 = 0, and n ∈ {100, 500}.
For each parameter setting right-tailed unit tests were conducted using the statistics

DFn, DFn,HAR and D̃Fn,HAR. For the standard right-tailed test based on DFn, the

null hypothesis is rejected when the statistic exceeds the 5% right-tail critical value of

the corresponding asymptotic distribution or bootstrap distribution.14. Critical values for

DFn,HAR and D̃Fn,HAR were obtained via simulations. The critical values of DFn,HAR
were obtained from the simulated limit distribution (18) with the true value of d being

replaced by the ELW estimate d̂ (Shimotsu and Phillips, 2005). There are three critical

values for our test statistic D̃Fn,HAR. First, we assume d is known and obtain the asymp-

totic (infeasible) critical value from Fr,d, which provides a benchmark for calibrating the

empirical size of the feasible tests. Second, we obtain the feasible asymptotic critical values

from Fr,d̂.
15 Finally, we obtain critical values from the bootstrap approach. The fixed-b

scale parameter b = 0.05 was used for calculating Ω̂HAR.16

12As indicated earlier, similar findings were obtained in the heteroskedastic case with several variance
functions. These findings are reported in the Online Supplement only to save space.

13The sums 1√
n

∑bnrc
t=1 εt and 1

n1/2+d

∑bnrc
t=1 ut are used to approximate W (r) and WH(r) with n = 5000.

14The critical values for DFn were obtained from Table B.6 in Hamilton (1994)
15We also estimate d by the QMLE method of Hualde and Robinson (2011). The empirical sizes are

similar to those based on the ELW method.
16This value of b was chosen because extensive simulations showed that for any b > 0.05 the test delivered

empirical size close to the nominal value. Notably, however, lower values of b were found to yield higher
power, as is known from other applications of fixed-b methods.
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Table 2: Empirical sizes of DFn, DFn,HAR and D̃Fn,HAR for various d based on a nominal
5% right-tailed critical value

n = 100

d 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
DFn 0.05 0.09 0.14 0.20 0.26 0.31 0.36 0.41 0.45 0.48

DFn,HAR(d̂) 0.12 0.12 0.11 0.09 0.06 0.05 0.04 0.03 0.04 0.04

D̃Fn,HAR(d) 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06

D̃Fn,HAR(d̂) 0.04 0.05 0.05 0.06 0.05 0.05 0.06 0.06 0.06 0.06

D̃F
∗
n,HAR(d̂) 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06

n = 500

d 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
DFn 0.05 0.10 0.18 0.27 0.34 0.40 0.45 0.49 0.53 0.56

DFn,HAR(d̂) 0.15 0.11 0.07 0.03 0.02 0.03 0.03 0.04 0.04 0.05

D̃Fn,HAR(d) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

D̃Fn,HAR(d̂) 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

D̃F
∗
n,HAR(d̂) 0.05 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05

Table 2 reports the empirical sizes of DFn, DFn,HAR and D̃Fn,HAR with the corre-

sponding 5% critical values. For D̃Fn,HAR, we report the test sizes using critical values

obtained from Fr,d (denoted D̃Fn,HAR(d)), Fr,d̂ (denoted D̃Fn,HAR(d̂)), and the bootstrap

method (denoted D̃F
∗
n,HAR(d̂)). Several observations can be made on the findings from

Table 2. First, DFn has satisfactory performance only when d = 0 and the test is oversized

when d > 0. For instance, when d = 0.3 and n = 500, the test rejects the null about 40%

of the time. These simulation results are consistent with the asymptotic theory in Sowell

(1990) and the predictions from Lemma 3.1, which imply severe false detection of explo-

siveness as d increases. Second, use of DFn,HAR does not lead to a divergent empirical

size. But, when the true value of d is equal to or close to zero, some size distortion in

the feasible statistic DFn,HAR(d̂) is noticeable. Finally and most importantly, use of the

modified test D̃Fn,HAR shows good size performance irrespective of the value of d and

alternative ways of obtaining the critical value. The simulation evidence suggests that

D̃Fn,HAR(d̂) with critical values obtained from Fr,d̂ delivers overall good size performance

in finite samples across all values of d.

Given its good size performance, the finite sample power properties of the D̃Fn,HAR
test were explored next. The experiment was designed using model (27) with the following

parameter settings: n = 100, y0 = 100, re = 0.5, d1 = d2 = d ∈ {0, 0.01, 0.02, ..., 0.49},
ρn = 1 + c/nα, c = 1, and α ∈ {0.50, 0.55, 0.56, ..., 1}, which corresponds to the autore-

gressive root ρn ranged from 1.1 to 1.01. 17

Table 3 reports the empirical rejection rates (empirical power) under selected values

of α and d. Figure 2 plots power as a function of α and d. Several finding are notable.

17The initial condition y0 = 100 is used to ensure a positive sample path for the simulated data and
produce an explosive episode that has an upward trajectory. This choice matches the real data considered
later.
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Figure 2: The empirical power of the D̃Fn,HAR test as a function of α and d.

First, the smaller the value of α the higher is the power. This is expected since stronger

explosiveness enhances detection. A sharp contrast can be observed when d = 0.45 in

which case the empirical rejection rate is 1 at α = 0.50 whereas the rejection rate is

0.12 at α = 1 for an LUR alternative. Second, when α is small, variations in memory

parameter only have a small effect on the empirical rejection rates. It can be seen that for

α less than or equal to 0.7, different values of d only slightly change the empirical rejection

rate, whereas different values of d can materially change the empirical rejection rate as α

moves closer to 1. These simulation findings show that our method is more reliable when

α ≤ 0.7, and less powerful as α approaches unity. When α = 1 the model is an LUR

process, D̃F τ,HAR does not diverge, and the tests are not consistent. Similarly, when α

approaches unity yt becomes close to an LUR process and, as expected, empirical power

drops.18 Additional simulations for the empirical rejection rates under various c and n are

reported in the Online Supplement.

To study the accuracy of the date detectors r̂HARe and r̂HARf in finite samples, we used

an experimental design based on model (29) with the following parameter settings: n =

18In particular, when α = 0.85, the detection rate drops from close to 100% to the 30% – 40% range, as
seen in Table 3.

22



Table 3: The empirical rejection rates of D̃Fn,HAR

d 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

α = 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
α = 0.55 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
α = 0.60 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
α = 0.65 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98
α = 0.70 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.96
α = 0.85 0.32 0.35 0.37 0.39 0.40 0.41 0.40 0.37 0.34 0.30

100, y0 = 100, c = 1, α ∈ {0.5, 0.55, ..., 0.7, 0.85}19, d1 = d2 = d ∈ {0, 0.05, 0.1, ..., 0.45},
εt

iid∼ N (0, 1), y∗τf = yτe , re = 0.5, rf = 0.7, r0 = 0.4, and γ ln(n)/n = 0.1. To obtain

r̂HARe and r̂HARf , we first calculate {D̃F τ,HAR}nτ=bnr0c and then obtain {d̂τ}nτ=τ0 using

ELW estimation based on {yt}τt=1. The following critical values for cvn,HAR are employed

cvn,HAR = cv0.03
n,HAR

(
d̂τ

)
+

ln(ln(nr))

100
, (40)

where nr is proportional to the sample size n and r ∈ (0, 1] is the corresponding fraction of

the sample. These critical values are constructed using the 3% critical value of D̃Fn,HAR

under d̂τ augmented with the slowly diverging factor ln(ln(nr))
100 .20 This factor guarantees

that cvn,HAR satisfies condition (32) asymptotically, leading to consistent break point

estimates r̂HARe and r̂HARf . However, in our finite sample setting ln(ln(nr))
100 takes values

between 0.01 and 0.015 and cv0.03
n,HAR

(
d̂τ

)
has a greater magnitude than ln(ln(nr))

100 .

Table 4 reports the successful detection rate and the means of r̂HARe and r̂HARf where

successful detection is obtained. The numbers in parentheses below the means are the

root mean square errors of the estimates. Successful detection is defined whenever r̂HARe

falls into the interval [re, rf ] (i.e. r̂HARe ∈ [re, rf ]). Several findings emerge from this

simulation. First, when α is small, the successful detection rate is only slightly affected

by changes in the memory parameter: the successful detection rate in Table 4 drops only

by 0.01 when α = 0.50 and d increases from 0 to 0.45, whereas it drops by 0.19 when

α = 0.70. Further, the estimates of r̂HARe and r̂HARf are less accurate when both α and d

are large: the root mean square errors of r̂HARe and r̂HARf are 0.09 and 0.03 respectively

when d = 0.45 and α = 0.70, in contrast to the corresponding root mean square errors of

0.01 and 0.00 when d = 0 and α = 0.50.

19The main simulation results cover the domain α ≤ 0.7; and, as remarked above, for values of α closer
to unity such as α = 0.85, sample paths of yt become closer to those of an LUR process and successful
detection rates (defined below) fall and can be significantly lower than 50% as apparent in the final row of
Table 3. Estimates of the break points re and rf are also inaccurate when α moves closer to unity.

20The 3% critical value is adopted here as extensive simulations suggest that it yields a higher successful
detection rate (defined below) than the 5% critical value in most cases.
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Table 4: Finite sample performance of r̂HARe , r̂HARf when re = 0.5, rf = 0.7

d 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

α = 0.50
Detect. Rate 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.91 0.90 0.90
r̂HARe 0.50 0.51 0.51 0.51 0.51 0.51 0.52 0.52 0.53 0.53

(0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.04) (0.05)
r̂HARf 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01)

α = 0.55
Detect. Rate 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.90 0.90 0.88
r̂HARe 0.51 0.51 0.51 0.51 0.52 0.52 0.52 0.53 0.53 0.54

(0.01) (0.01) (0.02) (0.02) (0.02) (0.03) (0.04) (0.04) (0.05) (0.06)
r̂HARf 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02)

α = 0.60
Detect. Rate 0.90 0.90 0.91 0.91 0.91 0.91 0.91 0.90 0.88 0.85
r̂HARe 0.51 0.51 0.51 0.52 0.52 0.53 0.53 0.54 0.54 0.55

(0.01) (0.02) (0.02) (0.02) (0.03) (0.04) (0.05) (0.05) (0.06) (0.06)
r̂HARf 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.71

(0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.02)

α = 0.65
Detect. Rate 0.90 0.90 0.91 0.91 0.91 0.91 0.90 0.88 0.85 0.82
r̂HARe 0.51 0.52 0.52 0.52 0.53 0.53 0.54 0.55 0.55 0.56

(0.02) (0.02) (0.03) (0.03) (0.04) (0.05) (0.06) (0.07) (0.07) (0.08)
r̂HARf 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.71 0.71

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02)

α = 0.70
Detect. Rate 0.90 0.90 0.91 0.90 0.90 0.90 0.88 0.83 0.77 0.71
r̂HARe 0.52 0.52 0.53 0.53 0.54 0.55 0.55 0.56 0.56 0.57

(0.02) (0.03) (0.04) (0.04) (0.05) (0.06) (0.07) (0.08) (0.08) (0.09)
r̂HARf 0.70 0.70 0.70 0.70 0.70 0.70 0.71 0.701 0.71 0.71

(0.00) (0.00) (0.00) (0.01) (0.01) (0.02) (0.02) (0.03) (0.03) (0.03)

8 Empirical Application

To highlight the usefulness of the proposed test and date-stamping strategy we conduct

an empirical study using the same time series as in Table 1. We calculate the D̃Fn,HAR
statistic and use 10%, 5% and 1% critical values when performing the right-tailed unit

root test. Since these data are price-dividend ratios which take account of fundamental

values, explosive behavior in the time series is indicative of a rational bubble.

Table 5 reports the HAR test statistic D̃Fn,HAR together with 10%, 5%, and 1%

critical values computed for the six different sample periods. In Table 1 it was found that

standard testing using the DFn statistic exceeded the 5% critical value for each sample

period, indicating strong evidence for the presence of bubbles. Table 5 updates the analysis

by using the new HAR statistic to allow for the possible presence of strong dependence in

the data. The results show that for the sample period (b) the test fails to reject a unit

root null at the 10% level; for period (c) the test rejects the null at the 10% level but fails

to reject a unit root null at the 5% level; and for periods (a), (d), (e) and (f), the test

rejects the null at the 5% level. Thus, using the conventional 5% level the four periods

(a), (d), (e) and (f) show significant evidence of being bubble episodes in the S&P stock
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Table 5: Empirical results for the S&P 500 with D̃Fn,HAR and critical values

Sampling Period d̂ D̃Fn,HAR cv10%
HAR

(
d̂
)

cv5%
HAR

(
d̂
)

cv1%
HAR

(
d̂
)

(a) Jan 1872 to Feb 1880 0.24 1.25 0.70 0.92 1.30
(b) Jun 1882 to May 1887 0.32 0.62 0.76 0.97 1.36
(c) May 1940 to Feb 1946 0.34 0.89 0.77 0.98 1.38
(d) Jun 1948 to Nov 1955 0.29 1.54 0.74 0.94 1.33
(e) May 1979 to Mar 1987 0.21 1.28 0.67 0.90 1.26
(f) May 1989 to Aug 1997 0.24 1.18 0.70 0.92 1.30

market. Taking into account the findings for the other periods, it is clear that allowing for

the presence of strong dependence does change the outcomes, giving statistical evidence

only for the existence of explosive behavior in periods (a), (d), (e) and (f). However, these

results continue to support the presence of stock market bubble behavior, including the

internet bubble of the late 1990s even in the presence of strong dependence.

The bubble dating methodology was used to estimate the origination and termination

dates re and rf in sample periods (a), (d), (e) and (f) where bubble behavior was evident

in the data. For this implementation 48 monthly observations were used to initialize esti-

mation, the minimum explosive episode duration was 4 months, and the statistic D̃F τ,HAR

and critical value cv3%
n,HAR

(
d̂τ

)
were computed recursively, as in PSYa.

Table 6: Empirical results for bubble origination and termination (r̂HARe , r̂HARf )

Sampling period r̂HARe r̂HARf Duration

(a) Jan 1872 to May 1880 Oct 1879 Apr 1880 6 months
(d) Jun 1948 to Feb 1957 Dec 1954 Feb 1956 14 months
(e) May 1979 to Jan 1988 Feb 1987 Sep 1987 7 months
(f) May 1989 to Jan 1998 Feb 1997 Nov 1997 9 months

Table 6 reports the estimates r̂HARe and r̂HARf and associated bubble duration (in

months) for episodes (a), (d), (e) and (f). The following conclusions can be drawn from

these results. First, in episode (a) a rational bubble is found to originate in October

1879 and collapse in April 1880, lasting six months. Second, in episode (d), the bubble

lasts for fourteen months from December 1954 to February 1956. Third, in episode (e),

the explosive period begins in February 1987 and ends in September 1987, lasting seven

months. Finally, in episode (f), the bubble starts in February 1997 and ends in November

1997, lasting night months.

These findings coincide with those of PSYa in rational bubble identification. In partic-

ular, the explosive episodes in the Great Depression, postwar boom, before Black Monday,

and the dotcom bubble period are also found using our estimation method. However,

while explosive behavior is detected using our methods, the episode durations are often

shorter than those obtained by PSYa. In PSYa the explosive episodes in the Great De-

pression, postwar boom, Black Monday, and dotcom bubble periods were estimated to
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last for 18 months, 15 months, 15 months and 87 months, respectively. The explosive

episodes identified by our method last for 6 months, 14 months, 7 months and 9 months,

respectively. The presence of strong dependence in the data therefore does affect bubble

duration. Nonetheless, the most striking overall result is that the empirical findings in

PSYa of several major bubble episodes in the historical S&P 500 data are sustained using

methods that are robust to data dependence, including possible long memory in the data.

9 Conclusion

This paper introduces a new right-tailed test and new dating algorithm to detect the

presence of explosive episodes in time series data. The approach is motivated by showing

empirical evidence of strong dependence in the errors of the autoregressive model em-

ployed for estimation and inference. Strongly dependent errors lead to divergent unit root

test statistics, thereby leading to potential spurious detection of explosive behavior in

traditional right-tailed unit root test statistics. To avert problems of spurious detection,

this paper proposes a robust approach to inference using an appropriately self-normalized

HAR statistic that accommodates potential strong dependence in the errors. Recursive

implementation of this procedure enables consistent estimation of the origination and ter-

mination dates of explosive episodes in the data. The proposed test and asymptotics are

extended to models with unconditional heteroskedasticity, thereby accommodating fea-

tures that are known to be relevant in practice, particularly in financial data. Simulations

show reliable finite sample performances of the new method in terms of both size and

power. An empirical application corroborates the robustness of earlier findings on certain

bubble episodes in historical S&P 500 data but leads typically to shorter duration periods

of financial exuberance.

This paper has not addressed the complex additional issue of possible multiple bubble

episodes in the same time series sample. However, the procedures developed here can be

extended to allow for such multiple periods and break points in the data in precisely the

same way as PSYa and PSYb. This extension simply involves replacing the use of the

DFτ statistic by D̃F τ,HAR in the PSY algorithm and imposing the conditions used here

for consistency in the presence of strong dependence. We expect that when modified in

this way the algorithm will retain validity for multiple bubble detection using the robust

statistic D̃F τ,HAR. This investigation is left for future study.

10 Appendix

The main results rely on several lemmas which are given, with proofs, in the Online

Supplement.

10.1 Proofs of Theorem 3.1 and Theorem 3.2

Write

DFτ,HAR =
ρ̂τ − 1

sτ,HAR
=

τ (ρ̂τ − 1)(
τ2s2

τ,HAR

)1/2
, (41)
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D̃F τ,HAR =
τ (ρ̃τ − 1)(
τ2s2

τ,HAR

)1/2
. (42)

and to show the limit we first study the denominator in (41) and (42). Note that s2
τ,HAR =

Ω̂HAR∑τ
t=1 ȳ

2
t−1
. For Ω̂HAR, letting Ki,j = K

(
i−j
bτ

)
and St =

∑t
i=1 ∆yi, we have

Ω̂HAR =

τ∑
j=−τ+1

K

(
j

bτ

)
γ̂j =

1

τ

τ∑
i=1

τ∑
i=1

∆yiKi,j∆yj

=
1

τ

τ−1∑
i=1

1

τ

τ−1∑
j=1

τ2 [(Ki,j −Ki,j+1)− (Ki+1,j −Ki+1,j+1)]
1√
τ
Ŝi

1√
τ
Ŝj

=
1

τ

τ−1∑
i=1

1

τ

τ−1∑
j=1

τ2Dτ

(
i− j
bτ

)
1√
τ
Si

1√
τ
Sj , (43)

where Dτ

(
i−j
bτ

)
= (Ki,j −Ki,j+1) − (Ki+1,j −Ki+1,j+1). The last equality follows from

Equation (A.1) in Kiefer and Vogelsang (2002b).

Straightforward calculations show that

Dτ

(
i− j
bτ

)
=


2
bτ if |i− j| = 0

− 1
bτ if |i− j| = bbτc

0 otherwise

,

which implies

Ω̂HAR =
τ−1∑
i=1

τ−1∑
j=1

Dτ

(
i− j
bτ

)
1√
τ
Si

1√
τ
Sj

=
2

bτ

τ−1∑
i=1

(
1√
τ
Si

)2

− 2

bτ

τ−bbτc−1∑
i=1

(
1√
τ
Si

)(
1√
τ
Si+bbτc

)

=
2

b

n

bnrc
1

n

τ−1∑
i=1

(
1√
τ
Si

)2

− 2

b

n

bnrc
1

n

τ−bbτc−1∑
i=1

(
1√
τ
Si

)(
1√
τ
Si+bbτc

)
. (44)

Thus, with i = bnpc and under the assumption ρn = 1, we have Si =
∑i

j=1 ∆yj =∑bnpc
j=1 uj . This implies that

1

nd
1√
τ
Sbnpc =

(n
τ

)1/2 1

n1/2+d

bnpc∑
t=1

ui ⇒
σ

r1/2
WH(p). (45)

Therefore

1

n2d
Ω̂HAC =

2n

bτ

1

n

τ−1∑
i=1

(
1

nd
1√
τ
Sbnpc

)2

− 2n

bτ

1

n

τ−bbτc−1∑
i=1

(
1

nd
1√
τ
Si

)(
1

nd
1√
τ
Si+bbτc

)
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⇒ 2

br

∫ r

0

( σ

r1/2
WH(p)

)2
dp− 2

br

∫ (1−b)r

0

σ2

r
WH(p)WH(p+ br)dp (46)

=
2σ2

br2

(∫ r

0

(
WH(p)

)2
dp−

∫ (1−b)r

0
WH(p)WH(p+ br)dp

)
, (47)

where we have applied (45) and continuous mapping to obtain the limit (46).

Combining (A.1.3) in the Online Supplement and (46), upon normalization we have

τ2s2
τ,HAR =

( τ
n

)2 1
n2d Ω̂HAR

1
n2+2d

(∑τ
t=1 y

2
t−1 − τ−1 (

∑τ
t=1 yt−1)2

)
⇒

2
(∫ r

0 W
H(p)2dp−

∫ (1−b)r
0 WH(p)WH(p+ br)dp

)
b
∫ r

0

(
W̃H(s)

)2
ds

. (48)

We now proceed to obtain the limit of DFτ,HAR. When d = 0, we have

DFτ,HAR =
τ (ρ̂τ − 1)(
τ2s2

τ,HAR

)1/2
=
bnrc
nr

r
n (ρ̂τ − 1)(
τ2s2

τ,HAR

)1/2

⇒
r
∫ r

0 W̃ (s)dW (s)∫ r
0

(
W̃ (s)

)2
ds

 b
∫ r

0 W̃ (s)2ds

2
(∫ r

0 (W (p))2 dp−
∫ (1−b)r

0 W (p)W (p+ br)dp
)
1/2

=
b1/2r

∫ r
0 W̃ (s)dW (s)[

2
∫ r

0

(
W̃ (s)

)2
ds
(∫ r

0 (W (p))2 dp−
∫ (1−b)r

0 W (p)WH(p+ br)dp
)]1/2

,

where the standard result n (ρ̂τ − 1)⇒
∫ r

0 W̃ (s)dW (s)/
∫ r

0

(
W̃ (s)

)2
ds and (48) are used

with H = 1/2.

For d ∈ (0, 0.5), similarly write

DFτ,HAR =
τ (ρ̂τ − 1)(
τ2s2

τ,HAR

)1/2

⇒
r
2

(
WH(r)

)2 − (∫ r0 WH(s)ds
)
WH(r)∫ r

0

(
W̃H(s)

)2
ds

 b
∫ r

0 W̃
H(s)2ds

2
(∫ r

0 (WH(p))2 dp−
∫ (1−b)r

0 WH(p)WH(p+ br)dp
)
1/2

=
rb1/2

2

(
WH(r)

)2 − b1/2 (∫ r0 WH(s)ds
)
WH(r)[

2
∫ r

0

(
W̃H(s)

)2
ds
(∫ r

0 (WH(p))2 dp−
∫ (1−b)r

0 WH(p)WH(p+ br)dp
)]1/2

, (49)

where the limit is obtained using (A.1.5) in the Online Supplement and (48).

For D̃F τ,HAR, using (A.1.6) in the Online Supplement and (48), we have

D̃F τ,HAR =
τ (ρ̃τ − 1)(
τ2s2

τ,HAR

)1/2
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⇒
rb1/2

2

(
WH(r)

)2 − b1/2 (∫ r0 WH(s)ds
)
WH(r)[

2
∫ r

0

(
W̃H(s)

)2
ds
(∫ r

0 W
H(p)2dp−

∫ (1−b)r
0 WH(p)WH(p+ br)dp

)]1/2
,

which completes the proof of Theorems 3.1 and 3.2. �

10.2 Proof of Theorem 3.3

In this proof, random sequences are assumed to belong to an expanded common proba-

bility space in which a weakly convergent sequence can be represented by a sequence that

converges almost surely via the Skorohod representation (see, e.g. Pollard (1984)).

We first show that the bootstrap residuals fall into the class of Lr(K,M, θ) in Lemma

1.4 of the Online Supplement and verify the three conditions in the lemma. The first

condition is satisfied because the residuals are centered. For the third condition, note that

en,t = ∆1+d̂
+ yt = ∆1+d

+ yt +Rn = εt +Rn,

where Rn = Op(m
−1 log n), and the second equality is established from Lemma 1.3 in the

Online Supplement. Further,

1

n

n∑
t=1

|en,t|r =
1

n

n∑
t=1

|εt +Rn|r ≤ Cr
1

n

n∑
t=1

|εt|r + Cr
1

n

n∑
t=1

|Rn|r. (50)

Note that the first term 1
n

∑n
t=1 |εt|r is bounded almost surely by virtue of the strong

law of large numbers, and with Lemma 1.3 in the Online Supplement, the second term

converges almost surely to zero via the Skorohod representation theorem. This verifies the

third condition in Lemma 1.4 in the Online Supplement.

For the second condition, since ēn,t ≡ 1
n

∑n
t=1 en,t

as→ 0 and σ̂2
e ≡ 1

n

∑n
t=1(εt +Rn)2 as→

σ2, therefore

1

n

n∑
t=1

e∗n,t
2 − 1 =

1

n

n∑
t=1

(
en,t − ēn,t

σ̂e

)2

− 1 =
1

σ̂2
e

(
1

n

n∑
t=1

(
e2
n,t − 2en,tēn,t + ē2

n,t

))
− 1

=
1

σ̂2
e

(
1

n

n∑
t=1

e2
n,t − 2ēn,t

1

n

n∑
t=1

en,t + ē2
n,t

)
− 1

as→ 1− 1 = 0.

Given that E[|εt|2+δ] < ∞, the sample variance estimator has a non-trivial convergence

rate. Therefore, there exist a positive θ which allows us to verify the second condition and

apply the approximation in (A.1.8) of the Online Supplement.

Note that y∗t = y∗t−1 + u∗t with u∗t = ∆−d̂+ e∗n,t and so y∗t = ∆
−(1+d̂)
+ e∗n,t. Let πdj =

Γ(j−d)
Γ(j+1)Γ(−d) and applying a similar argument to (A.1.7) in the Online Supplement we have

y∗t = σ̂e∆
−(1+d̂)
+ e∗n,t = σ̂e∆

−(1+d)
+ e∗n,t +Op(m

−1)

= σ̂e∆
−dy
+ e∗n,t +Op(m

−1) = σ̂e

t∑
j=1

π
dy
t−je

∗
n,j +Op(m

−1).
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Set φ = bnrc, S∗j =
∑j

t=1 e
∗
n,t, Y

∗
bnrc = n1/2−dyy∗bnrc and write

Y ∗bnrc = n1/2−dy σ̂e

bnrc∑
j=1

π
dy
t−je

∗
n,j + op(1) = n1/2−dy σ̂e

φ∑
j=1

π
dy
t−j
(
S∗j − S∗j−1

)
+ op(1).

Following Silveira (1991), letting Vj =
∑j

i=1 zi and zt
iid∼ N (0, 1), we have

Y ∗n (r) = Q1n(r) +Q2n(r) +Q3n(r) +Q4n(r) + op(1),

where

Q1n(r) = σ̂e

n1/2−dy
φ−1∑
j=1

(φ− j)dy−1

Γ(dy)
(Vj − Vj−1)

 ,

Q2n(r) = σ̂en
1/2−dy

φ−1∑
j=1

π
dy
φ−j

[(
S∗j − S∗j−1

)
− (Vj − Vj−1)

]
,

Q3n(r) = σ̂en
1/2−dy

φ−1∑
j=1

(
π
dy
φ−j −

(φ− j)dy−1

Γ(dy)

)
(Vj − Vj−1) ,

Q4n(r) = σ̂en
1/2−dy (S∗φ − S∗φ−1

)
.

Silveira (1991) shows that

n1/2−dy
φ−1∑
j=1

(φ− j)dy−1

Γ(dy)
(Vj − Vj−1)⇒WH(r),

n1/2−dy
φ−1∑
j=1

(
π
dy
φ−j −

(φ− j)dy−1

Γ(dy)

)
(Vj − Vj−1)

p→ 0.

We can also show Q4n(r) = op(1) by applying Donsker’s theorem for martingale difference

arrays (MDAs) as in Theorem 27.14 of Davidson (1994). Coupled with σ̂e
p→ σ, we find

that Q1n(r)⇒ σWH(r), Q3n(r) = op(1), and Q4n(r) = op(1).

To show Q2n(r) = op(1), note that

sup
r
|Q2n(r)| ≤ σ̂e sup

r

φ−1∑
j=1

|πdy−1
φ−j | sup

j≤n
n1/2−dy |Sj − Vj |

= σ̂e
1

nd
sup
r

φ−1∑
j=1

|πdy−1
φ−j | sup

j≤n

∣∣∣∣Sj − Vjn1/2

∣∣∣∣ ≤ Cσ̂e 1

nd

n−1∑
j=1

(n− j)dy−2 sup
j≤n

∣∣∣∣Sj − Vjn1/2

∣∣∣∣
= Cσ̂e

1

nd

n−1∑
j=1

jdy−2 ×Op(n−δ), (51)

where C is a constant and Sj =
∑j

t=1 et with et ∼i.i.d. N (0, 1).Note that supr
∑φ−1

j=1 |π
dy−1
φ−j | ≤∑n−1

j=1 (n − j)dy−2 is obtained by applying Lemma 3-A-2 in Silveira (1991) and the last

equality is due to Lemma 1.4 in the Online Supplement.
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If d = 0,
∑n−1

j=1 j
dy−2 =

∑n−1
j=1

1
j diverges at the log n rate and is dominated by Op(n

−δ).

If d > 0,
∑n−1

j=1 j
dy−2 diverges at the nd rate and this divergence is neutralized by the

factor 1
nd

, so that the whole term in (51) is of order Op(n
−δ) in this case. We deduce

that Q2n(r) = op(1) and 1
n1/2+d y

∗
bnrc ⇒ σWH(r). Then by repeated applications of the

continuous mapping theorem (CMT) and analysis analogous to Lemma 1.2 in the Online

Supplement and Theorem 3.2, we obtain D̃F τ,HAR ⇒ Fr,d.

This result implies that the CDF of D̃Fn,HAR converges to the CDF of F1,d uniformly

in probability. Therefore, p∗(D̃Fn,HAR)⇒ U [0, 1] under the null hypothesis and the proof

of Theorem 3.3 is completed. �

10.3 Proof of Theorem 4.1

From (44)

Ω̂HAR =
2

b

n

bnrc
1

n

τ−1∑
i=1

(
1√
τ
Si

)2

− 2

b

n

bnrc
1

n

τ−bbτc−1∑
i=1

(
1√
τ
Si

)(
1√
τ
Si+bbτc

)
, (52)

where Sbnpc =
∑bnpc

i=1 ∆yi. Write the partial sum Sbnpc =
∑bnpc

i=1 ∆yi as

Sbnpc =

τe−1∑
i=1

∆yi +

bnpc∑
i=τe

∆yi =

τe−1∑
i=1

ui +
c

n

bnpc∑
i=τe

yi−1 +

bnpc∑
i=τe

ui

=

bnpc∑
i=1

ui +
c

n

bnpc∑
i=1

yi−1 −
c

n

τe−1∑
i=1

yi−1.

Upon normalization, we have

1

n1/2+d
Ŝbnpc =

1

n1/2+d

bnpc∑
i=1

ui +
c

n3/2+d

bnpc∑
i=1

yi−1 −
c

n3/2+d

τe−1∑
i=1

yi−1

⇒ σ

(
WH(p) + cAp,d −

∫ re

0
WH(p)dp

)
:= σGre,c(p). (53)

Thus, combining (52) and (53), as n→∞,

1

n2d
Ω̂HAR ⇒

2σ2

br2

(∫ r

0
Gre,c(d, p)

2dp−
∫ (1−b)r

0
Gre,c(d, p)Gre,c(d, p+ br)dp

)
.

With Lemma 1.5 in the Online Supplement,

τ2s2
τ,HAR =

( τ
n

)2 1
n2d Ω̂HAR

1
n2+2d

(∑τ
t=1 y

2
t−1 − τ−1 (

∑τ
t=1 yt−1)2

)
⇒

2
b

(∫ r
0 Gre,c(d, p)

2dp−
∫ (1−b)r

0 Gre,c(d, p)Gre,c(d, p+ br)dp
)

Br,d − 1
rA

2
r,d

. (54)
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Hence,

D̃F τ,HAR =
bnrc
nr

nr (ρ̃τ − 1)(
τ2s2

τ,HAR

)1/2

⇒

( 1
2
Cr,d− 1

r
Ar,dW

H(r))r
Br,d− 1

r
A2
r,d

+ cr√
2
b

(∫ r
0 Gre,c(d,p)

2dp−
∫ (1−b)r
0 Gre,c(d,p)Gre,c(d,p+br)dp

)
Br,d− 1

r
A2
r,d

=

(
( 1
2
Cr,d− 1

r
Ar,dW

H(r))r
Br,d− 1

r
A2
r,d

+ cr

)(
Br,d − 1

rA
2
r,d

)1/2

[
2
b

(∫ r
0 Gre,c(d, p)

2dp−
∫ (1−b)r

0 Gre,c(d, p)Gre,c(d, p+ br)dp
)]1/2

,

where the limit holds by applying Lemma 1.5.6 in the Online Supplement and (54) since
bnrc
nr → 1. This completes the proof of Theorem 4.1. �

10.4 Proofs of Theorems 4.2 and 5.1

These proofs are similar and are combined. Since the error ut involves two memory

parameters in non-explosive periods and the explosive period (viz., d1 and d2), we write ut
as ut,d when ut is an FI(d) process. Let B = [τe, τf ] be the bubble period and N0 ∈ [1, τe)

and N1 = [τf + 1, n] be the normal market periods before and after the bubble period.

Recall DFτ = ρ̂τ−1.
sτ

and suppose that τ ∈ B. Applying Lemma 1.9.1, 1.13.1 and 1.14

in the Online Supplement, we obtain

ρ̂τ − 1

sτ
= Op(n

1+α/2)
c

nα
= Op(n

1−α/2). (55)

This proves the first claim in Theorem 4.2.

Note that D̃F τ,HAR =
(∑τ

i=1 ȳ
2
i−1

Ω̂HAR

)1/2

(ρ̃τ − 1). Suppose that τ ∈ B. As in showing

(55), we find that(∑τ
i=1 ȳ

2
i−1

Ω̂HAR

)1/2

(ρ̃τ − 1) = Op

(
n1+α+2d1ρ

2(τ−τe)
n

n2d1ρ
2(τ−τe)
n

)1/2
c

nα

= Op

(
n

1−α
2

)
→∞,

which gives the second claim of Theorem 4.2.

Suppose that τ ∈ N1. Applying the results in Lemma 1.9.1, 1.13.2 and 1.14 in the

Online Supplement, we have(∑τ
i=1 ȳ

2
i−1

Ω̂HAR

)1/2

(ρ̃τ − 1) = Op

(
n1+α+2d1ρ

2(τf−τe)
n

n2d1ρ
2(τ−τe)
n

)1/2 (
− c

nα

)
= −Op

(
n

1−α
2

)
→ −∞.

To show r̂HARe
p→ re and r̂HARf

p→ rf , note that if τ ∈ N0,

lim
n→∞

Pr(D̃F τ,HAR > cvn,HAR) = Pr (Fr,d >∞) = 0.
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If τ ∈ B, limn→∞ Pr(D̃F τ,HAR > cvn,HAR) = 1, given that
cvn,HAR
n(1−α)/2 → 0. If τ ∈ N1,

limn→∞ Pr(D̃F τ,HAR > cvn,HAR) = 0, as D̃F τ,HAR = −Op
(
n

1−α
2

)
. It follows that, for

any η, ϑ > 0, we have

Pr(r̂HARe > re + η)→ 0, and Pr(r̂HARf < rf + ϑ)→ 0,

due to the fact that Pr(D̃F (τe+αη/n),HAR > re + η) → 1 for all 0 < αη < η and

Pr(D̃F (τf−αϑ/n),HAR > cvn,HAR) → 1 for all 0 < αϑ < ϑ. As η and ϑ are arbitrary and

Pr(r̂HARe < re) → 0 and Pr(r̂HARf > rf ) → 0, we deduce that Pr(
∣∣r̂HARe − re

∣∣ > η) → 0

and Pr(
∣∣∣r̂HARf − rf

∣∣∣ > ϑ)→ 0 as n→∞, provided that

1

cvn,HAR
+
cvn,HAR

n
(1−α)/2 → 0.

This completes the proof of Theorem 5.1. �

10.5 Proof of Theorem 6.2

We shall only prove that under the assumptions in Theorem 6.2, we have

1

n1/2+d
xbnsc ⇒WH(s), (56)

as when (56) holds we can use the steps in proving Theorem 3.1 to establish the claim in

Theorem 6.2. We first show the following two results which will be useful in establishing

(56).

Letting m = nγ , we have

sup
1≤t≤n

∣∣∣∆1+d̂
+ yt −∆1+d

+ yt

∣∣∣ = Op(m
−1 lnn), (57)

and

max
1≤t≤n

∣∣ĝ2(t/n)− g2(t/n)
∣∣ = op(1). (58)

Set ξn = d̂− d and zt = ∆1+d
+ yt = g(t/n)εt. To show (57), note that

∆1+d̂
+ yt = ∆d̂−d

+

(
∆1+d

+ yt

)
= ∆ξn

+ zt, and

∆ξn
+ zt =

t−1∑
k=0

(
ξn
k

)
(−L)kzt = zt − ξn

(
t−1∑
k=1

zt−k
k

)
+Op(ξ

2
n). (59)

Therefore

sup
1≤t≤n

∣∣∣∆1+d̂
+ yt −∆1+d

+ yt

∣∣∣ = sup
1≤t≤n

∣∣∣∣∣−ξn
(
t−1∑
k=1

zt−k
k

)
+Op(ξ

2
n)

∣∣∣∣∣
≤ |ξn| sup

1≤t≤n

∣∣∣∣∣
t−1∑
k=1

zt−k
k

∣∣∣∣∣+Op(ξ
2
n). (60)
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Note that ξn is dependent on n but not t. Also, for any 1 ≤ t ≤ n, by Chebyshev’s

inequality, we have, for any δ > 0 and some positive constant C <∞,

Pr

(∣∣∣∣∣
t−1∑
k=1

zt−k
k

∣∣∣∣∣ ≥ δ
)
≤ sup

1≤t≤n
g

(
t

n

)2

σ2

∑t−1
k=1

1
k2

δ2
< C

∑∞
t=1

1
k2

δ2
= C

π

6

1

δ2
,

so that
∣∣∣∑t−1

k=1
zt−k
k

∣∣∣ = Op(1) for all 1 ≤ t ≤ n, and then (60) and ξn
p→ 0 give (57).

To show (58), note that

ĝ2

(
t

n

)
=

τ∑
j=1

ktj

(
∆1+d̂

+ yj

)2
=

τ∑
j=1

ktj [g(j/n)εj +Rn]2

=
τ∑
j=1

ktjg
2(j/n)ε2

j + 2Rn

τ∑
j=1

ktjg(j/n)εj +R2
n, (61)

where Rn is Op(m
−1 lnn), as indicated by (57).

We now show that the second term in (61) is op(1). Note that

τ∑
j=1

ktjg(j/n)εj =

∑τ
j=1K

(
t−j
ν

)
g(j/n)εj∑τ

i=1K
(
t−i
ν

) . (62)

First consider the numerator of (62). As in Theorem 2.8 of Pagan and Ullah (2006), write

τ∑
j=1

K

(
t− j
ν

)
g(j/n)εj =

1

2π

τ∑
j=1

∫
exp

(
−iv

(
t− j
ν

))
g(j/n)εjφ(v)dv

=
1

2π

∫ τ∑
j=1

exp

(
ivj

ν

)
g(j/n)εjφ(v) exp

(
−ivt
ν

)
dv

=
ν

2π

∫ τ∑
j=1

exp (ixj) g(j/n)εjφ(νx) exp (−ixt) dx,

where φ(·) is the characteristic function of K and we let v = νx to obtain the third

equality. Thus,

max
t<τ

∣∣∣∣∣∣
τ∑
j=1

K

(
t− j
ν

)
g(j/n)εj

∣∣∣∣∣∣ = max
t<τ

∣∣∣∣∣∣ ν2π
∫ τ∑

j=1

exp (ixj) g(j/n)εjφ(νx) exp (−ixt) dx

∣∣∣∣∣∣
≤ ν

2π

∫ ∣∣∣∣∣∣
τ∑
j=1

exp (ixj) g(j/n)εj

∣∣∣∣∣∣
(

max
t<τ
|exp (−ixt)|

)
|φ(νx)| dx

≤ ν

2π

∫ ∣∣∣∣∣∣
τ∑
j=1

exp (ixj) g(j/n)εj

∣∣∣∣∣∣ |φ(νx)| dx.

Note that

1√
n

τ∑
j=1

exp (ixj) g(j/n)εj =
1√
n

τ∑
j=1

cos(xj)g(j/n)εj + i
1√
n

τ∑
j=1

sin(xj)g(j/n)εj
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= Op(1),

which implies
∑τ

j=1 exp (ixj) g(j/n)εj = Op(
√
n). Therefore,

max
t<τ

∣∣∣∣∣∣
τ∑
j=1

K

(
t− j
ν

)
g(j/n)εj

∣∣∣∣∣∣ ≤ ν

2π
Op(
√
n)

∫
|φ(νx)| dx = Op(

√
n).

Note that the denominator in (62) is O(ν). Hence, the second term in (61) is

Rn

t∑
j=1

ktjg(j/n)εj = Op(m
−1 lnn)

Op(
√
n)

O(ν)
= Op

(
n1/2−γ

ν
lnn

)
= Op

(( n
ν2

)1/2 lnn

nγ

)
= op(1).

For the first term in (61), given the rate condition of ν and the kernel function of K(·),
Lemma 1 in Astill et al. (2023) shows maxt

∣∣∑τ
i=1 ktig

2(i/n)ε2
i − g2(t/n)

∣∣ = op(1). This

implies that

max
1≤t≤n

∣∣ĝ2(t/n)− g2(t/n)
∣∣ = op(1). (63)

Since ∆1+d̂
+ yt = g(t/n)εt +Op(m

−1), letting Rn = Op(m
−1 lnn) we have

1

n1/2+d

t∑
s=1

∆−d̂+

(
∆1+d̂

+ ys

ĝ(s/n)

)

=
1

n1/2+d
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∆−d̂+

[
g(s/n)εs
ĝ(s/n)

+
Rn

ĝ(s/n)

]

=
1

n1/2+d

t∑
s=1
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g(s/n)

ĝ(s/n)
εs +

1

n1/2+d

t∑
s=1

∆−d̂+

Rn
ĝ(s/n)

. (64)

Equation (63) implies that second term of (64) is Op(n
−1/2−γ). By Stirling’s approxima-

tion, for large enough S there is a constant C such that, as n→∞,

1

n1/2+d

bnrc∑
s=1

∆−d̂+ Rn ≤
1

n1/2+d
C +Rn

C

n1/2+d

bnrc∑
s=S

sd−1 ≤ Rn
C

n1/2+d

∫ n

0
sd−1ds =

RnC

n1/2
→ 0.

Further, (63) implies that ĝ2(t/n) = Op(1) for all t. Therefore, the second term of (64) is

Op(n
−1/2−γ).

For the first term in (64), let t = bnrcand note that

1

n1/2+d

bnrc∑
s=1

∆−d̂+

g(s/n)

ĝ(s/n)
εs

=
1
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∆−d̂+

[(
g(s/n)− ĝ(s/n)
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εs
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1
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1

n1/2+d

bnrc∑
s=1

∆−d̂+

(
g(s/n)− ĝ(s/n)

ĝ(s/n)

)
εs. (65)
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We shall prove

1

n1/2+d

bnrc∑
s=1

∆−d̂+ εs ⇒WH(r) and (66)

1

n1/2+d
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s=1

∆−d̂+

(
g(s/n)− ĝ(s/n)

ĝ(s/n)

)
εs = op(1). (67)

Since

1

n1/2+d

bnrc∑
s=1

∆−d̂+ εs =
1

n1/2+d

bnrc∑
s=1

∆−d̂+d
+

(
∆−d+ εs

)
,

using the same technique as in (59), we have

1
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∆−d+ εs

)

=
1
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j
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2
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1
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j=1

∆−d+ εs−j

j
+ op(1), (68)

where bnrc
n1/2+dOp(ξ

2
n) = Op(n

−(1/2+d−1+2γ)) = op(1) because γ > 1/4.

For the first term in (68), by Lemma 1.1,

1

n1/2+d

bnrc∑
s=1

∆−d+ εs ⇒WH(r).

For the second term in (68), suppose that d ≥ 0. In particular, to simplify notation let

us = ∆−d+ εs. Then

ξn
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s−1∑
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j
=

ξn
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1

j
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Op(1) = ξn
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(
1
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= Op (ξn lnn) = op(1).

Therefore, ξn
n1/2

∑bnrc
s=1

∑s−1
j=0

εs−j
j = op(1) and (66) is established.

To show (67), note that

1
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bnrc∑
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ĝ(s/n)

)
εs + op(1),

36



and that
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1
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By Lemma 1.1,

1

n1/2+d

bnrc∑
s=1

∆−d+ (|εs| − E |εs|) = Op(1).

And for 1
n1/2+d

∑bnrc
s=1 ∆−d+ E |εs| in (69), there exists a bound for which C

n1/2+d
1

Γ(d)

∑bnrc
s=1 s

d−1 <

C
n1/2+d

1
Γ(d)n

d → 0, with a positive constant C. This implies 1
n1/2+d

∑bnrc
s=1 ∆−d̂+

(
g(s/n)−ĝ(s/n)

ĝ(s/n)

)
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Combining (65), (66) and (67), we have 1
n1/2+dxbnsc ⇒ WH(s). The limit theorem in

(38) follows in a straightforward way.

References

Andersen, T. G., T. Bollerslev, F. X. Diebold, and P. Labys (2003): “Modeling
and Forecasting Realized Volatility,” Econometrica, 71, 579–625.

Astill, S., D. I. Harvey, S. J. Leybourne, A. M. R. Taylor, and Y. Zu (2023):
“CUSUM-Based Monitoring for Explosive Financial Bubbles in the Presence of Time
Varying Volatility,” Journal of Financial Econometrics, 21, 187–227.

Baillie, R. T., T. Bollerslev, and H. O. Mikkelsen (1996): “Fractionally inte-
grated generalized autoregressive conditional heteroskedasticity,” Journal of Economet-
rics, 74, 3–30.

Barros, C., L. Gil-Alana, and J. Payne (2014): “Tests of Convergence and Long
Memory Behavior in U.S. Housing Prices by State,” Journal of Housing Research, 23,
73–87.

Beare, B. (2004): “Robustifying unit root tests to permanent changes in innovation
variance,” Yale University, mimeographed.

Bunzel, H., N. M. Kiefer, and T. J. Vogelsang (2001): “Simple Robust Testing of
Hypotheses in Nonlinear Models,” Journal of the American Statistical Association, 96,
1088–1096.

37



Cavaliere, G. (2005): “Unit Root Tests under Time-Varying Variances,” Econometric
Reviews, 23, 259–292.

Cavaliere, G., M. Ø. Nielsen, and A. M. R. Taylor (2022): “Adaptive Inference
in Heteroscedastic Fractional Time Series Models,” Journal of Business & Economic
Statistics, 40, 50–65.

Cavaliere, G. and A. R. Taylor (2005): “Stationarity tests under time-varying second
moments,” Econometric Theory, 21, 1112–1129.

——— (2007): “Testing for unit roots in time series models with non-stationary volatility,”
Journal of Econometrics, 140, 919–947.

Cheung, Y.-W. (1993): “Long Memory in Foreign-Exchange Rates,” Journal of Business
& Economic Statistics, 11, 93.

Chevillon, G. and S. Mavroeidis (2017): “Learning can generate long memory,”
Journal of Econometrics, 198, 1–9.

Christensen, B. J. and M. Ø. Nielsen (2007): “The Effect of Long Memory in
Volatility on Stock Market Fluctuations,” Review of Economics and Statistics, 89, 684–
700.

Davidson, J. (1994): Stochastic Limit Theory, Oxford University Press.

Davidson, J. and N. Hashimzade (2009): “Type I and type II fractional Brownian
motions: A reconsideration,” Computational Statistics & Data Analysis, 53, 2089–2106.

Diba, B. T. and H. I. Grossman (1988): “Explosive Rational Bubbles in Stock Prices?”
American Economic Review, 78, 520–530.

Gil-Alana, L. A., C. Barros, and N. Peypoch (2014): “Long memory and fractional
integration in the housing price series of London and Paris,” Applied Economics, 46,
3377–3388.

Hamilton, J. (1994): Time Series Analysis, Princeton University Press.

Harvey, D. I., S. J. Leybourne, R. Sollis, and A. R. Taylor (2016): “Tests
for explosive financial bubbles in the presence of non-stationary volatility,” Journal of
Empirical Finance, 38, 548–574.

Harvey, D. I., S. J. Leybourne, and Y. Zu (2018): “Testing explosive bubbles with
time-varying volatility,” Econometric Reviews, 38, 1131–1151.

——— (2019): “Sign-based Unit Root Tests for Explosive Financial Bubbles in the Pres-
ence of Nonstationary Volatility,” Econometric Theory, 36, 122–169.

Homm, U. and J. Breitung (2011): “Testing for Speculative Bubbles in Stock Markets:
A Comparison of Alternative Methods,” Journal of Financial Econometrics, 10, 198–
231.

Hualde, J. and P. M. Robinson (2011): “Gaussian pseudo-maximum likelihood esti-
mation of fractional time series models,” The Annals of Statistics, 39, 3152–3181.

Kapetanios, G., F. Papailias, and A. M. R. Taylor (2019): “A Generalised Frac-
tional Differencing Bootstrap for Long Memory Processes,” Journal of Time Series
Analysis, 40, 467–492.

Kiefer, N. M. and T. J. Vogelsang (2002a): “Heteroskedasticity-Autocorrelation
Robust Standard Errors Using The Bartlett Kernel Without Truncation,” Econometrica,
70, 2093–2095.

38



——— (2002b): “Heteroskedasticity-autocorrelation robust testing using bandwidth equal
to sample size,” Econometric Theory, 18, 1350–1366.

——— (2005): “A new asymptotic theory for heteroskedasticity-autocorrelation robust
tests,” Econometric Theory, 21, 1130–1164.

Magdalinos, T. (2012): “Mildly explosive autoregression under weak and strong depen-
dence,” Journal of Econometrics, 169, 179–187.

Marinucci, D. and P. Robinson (1999): “Alternative forms of fractional Brownian
motion,” Journal of Statistical Planning and Inference, 80, 111–122.

——— (2000): “Weak convergence of multivariate fractional processes,” Stochastic Pro-
cesses and their Applications, 86, 103–120.

Ohanissian, A., J. R. Russell, and R. S. Tsay (2008): “True or Spurious Long
Memory? A New Test,” Journal of Business & Economic Statistics, 26, 161–175.

Pagan, A. R. and A. Ullah (2006): Nonparametric Econometrics, vol. 10, Themes in
Modern Econometrics, Cambridge University Press.
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