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Abstract

This paper introduces a discrete-time fractional stochastic volatility model (FSV) based on frac-
tional Gaussian noise. The new model includes the standard stochastic volatility model as a special
case and has the same limit as the fractional integrated stochastic volatility (FISV) model. A
simulated maximum likelihood method, which maximizes the time-domain log-likelihood function
calculated by the importance sampling technique, and a frequency-domain quasi maximum likelihood
method (or Whittle) are employed to estimate the model parameters. Simulation studies suggest
that, while both estimation methods can accurately estimate the model, the simulated maximum
likelihood method outperforms the Whittle method. As an illustration, we fit the FSV and FISV
models with the proposed estimation techniques to the S&P 500 composite index over a sample
period spanning 45 years. Our results reveal that the volatilities of the data series are persistent and
rough.

JEL classification: C15, C22, C32
Keywords: Fractional Brownian motion; stochastic volatility; long memory; variance-covariance
matrix; spectral density; rough volatility

1 Introduction

Temporal dependence in volatility has been one of the most studied problems in financial econometrics.

One prominent feature of volatility dynamics is its slowly decaying autocovariance function (Ding et al.,

1993). As illustrated in Figure 1, the sample autocovariance of the daily log squared returns of the

S&P 500 index (from 1975 to 2020) remains non-negligible even at a very large lag order. This feature

of volatility is often referred to as ‘long-range dependence’.

Motivated by this empirical feature, many long-memory volatility models have been put forward. In

the discrete-time framework, we have, for example, the fractional integrated generalized autoregressive
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Figure 1: The sample autocovariance of the daily log squared returns of the S&P composite 500 index
over the period from January 3, 1975 to September 30, 2020

conditional heteroskedastic (FIGARCH) model (Baillie et al., 1996; Bollerslev and Mikkelsen, 1996)

and the fractional integrated stochastic volatility (FISV) models (Breidt et al., 1998; Harvey, 2007;

Hurvich and Soulier, 2009). In both models, the long-range dependent feature of volatilities is captured

by a fractional integrated process (Granger and Joyeux, 1980) which takes the form of

(1− L)dut = et with et
iid∼ N (0, 1) , (1)

where L is the lag operator and d is the fractional parameter. This process has a long memory when

d ∈ (0, 0.5) in the sense that its autocovariances are all positive and decay at a hyperbolic rate.

Similar developments were observed in the continuous-time volatility literature, enabling more accu-

rate pricing of derivative securities (Comte and Renault, 1996, 1998). For example, the continuous-time

fractional stochastic volatility (fSV) model considered in Comte and Renault (1998) takes the following

expression:

dyt = σ∗eht/2dWt

dht = γhtdt+ σ∗hdB
H
t
, (2)

where yt is the log price of an asset at period t, ht is the log volatility of dyt, Wt is a standard Brownian

motion, and BH
t is a fractional Brownian motion (fBM).1 The model considered in Rosenbaum (2008)

is similar to (2) but with a more general drift function for dht. The BH
t process is a zero mean Gaussian

with an autocovariance function of

E(BH
t B

H
s ) =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
. (3)

See, e.g., Mandelbrot and Van Ness (1968). The parameter H is known as the Hurst or memory

1The fractional Brownian motion becomes the standard Brownian motion Wt when H = 0.5.
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parameter in the literature2. When H ∈ (0.5, 1) as in Comte and Renault (1996, 1998) and Rosenbaum

(2008), the fBM has a long memory in the sense that its autocovariance function decays at a hyperbolic

rate (i.e., smooth decaying) and the one-sided long-run variance
∑∞

n=0 E
(
BH

1 (BH
n+1 −BH

n )
)

= ∞.

When H ∈ (0, 0.5), the increment of fBM is negatively correlated, the sample path generated by BH
t is

rough. Consequently, the sample path of the volatility process is rough (as opposed to smooth).

Different techniques have been proposed recently to estimate the Hurst parameter H in model (2).

For example, assuming γ = 0, Fukasawa et al. (2021) propose a quasi-maximum likelihood method

based on an approximate spectral density of daily realized volatilities (obtained from intra-day prices).

Bolko et al. (2020) consider the generalized method of moment (GMM) using moments of daily realized

volatilities. Both papers find evidence of roughness (i.e., H < 0.5) in the volatility process.

In this paper, motivated by model (2) and studies by Fukasawa et al. (2021) and Bolko et al. (2020),

we consider the Euler discretized version of the fSV model and propose two estimation techniques for

the model. This discrete-time model is referred to as FSV. We assume H ∈ (0, 1), allowing for both

smoothed and rough volatilities. Unlike Fukasawa et al. (2021) where γ = 0 is imposed, we assume

γ < 0. The FSV model includes the standard discrete-time log-normal stochastic volatility (SV) model

as a special case with H = 0.5 and shares the same limit as the FISV model when H = d+ 0.5 under

the in-fill asymptotic scheme. We discuss the autocovariance function and spectral density of the log

volatility ht under the new model setting.

For the model estimation, we propose a time-domain simulated maximum likelihood (SML) and

a frequency-domain quasi maximum likelihood (a.k.a., Whittle) method. The log-likelihoods are con-

structed from the daily log returns, with the log volatilities being latent.3 The Whittle method max-

imizes a spectral log-likelihood function of the model and has been employed by Breidt et al. (1998)

for estimating the FISV model. The SML method computes the time-domain likelihood function via

the importance sampling technique. The SML method has been successfully applied to the basic SV

model by Sandmann and Koopman (1998) and Yu (2011) and more recently to an SV model with a

general leverage effect by Catania (2021). One can easily use the classical asymptotic theory to make

statistical inferences and also obtain filtered or smoothed estimates of volatilities.

Our simulation results show that both SML and Whittle methods can provide reasonably accurate

2It is sometimes called the self-similarity parameter because BHat
d
= aHBHt for any a ∈ R+.

3Our approach is different from recent studies that are based on daily realized volatilities, e.g., Fukasawa et al. (2021)
and Bolko et al. (2020). See the conclusion section for further discussions on this issue.
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estimation for all model parameters in FSV. The SML method outperforms the Whittle method in

terms of standard errors and root mean square errors, whereas the Whittle estimates have slightly

smaller biases for some parameters. Additionally, our simulations reveal that the semiparametric local

polynomial Whittle with noise (LPWN) method proposed by Frederiksen et al. (2012) does not work

when the fractional process is ‘contaminated’ by a highly persistent short-run dynamic. The estimated

Hurst parameter from LPWN is significantly biased.

We fit the FSV model to the daily S&P 500 composite index from January 1975 to September

2020, spanning over 45 years and consisting 11,519 observations. The estimation results from both

the SML and Whittle methods suggest that the persistency of the volatilities is captured by a near-

unity autoregressive coefficient. Meanwhile, roughness is also present in the data as the estimated

Hurst parameter H is smaller than 0.5. With the same estimation techniques, we obtain similar results

from the FISV model for the data series. Our findings are consistent with the recent literature on

rough volatility. See, for example, Gatheral et al. (2018); Fukasawa et al. (2021); Wang et al. (2021b);

Bennedsen et al. (2021); Bolko et al. (2020).

The paper is organized as follows. Section 2 introduces the FSV model and derives its statistical

properties. In Section 3, we discuss the SML method in the time domain and the Whittle method in

the frequency domain. Section 4 checks the finite-sample performance of the SML, Whittle, and LPWN

methods using data simulated from the FSV model. Section 5 employs the SML and Whittle methods

to estimate the SV, FSV, and FISV models for the S&P 500 composite index. Section 6 concludes the

paper. The appendix collects implementation details of the SML method and estimation details of the

FISV model.

2 Fractional Stochastic Volatility Model

Suppose that log returns rt are available on grids t with t = 1, 2, . . . , T . Consider the following discrete-

time fractional SV model

rt = σeht/2εt, (4)

ht = βht−1 + σhη
H
t , (5)

where β ∈ (−1, 1), εt
iid∼ N (0, 1) and ηHt = BH

t − BH
t−1 is a fractional Gaussian noise with H ∈ (0, 1).

The fractional SV model reduces to the basic SV model when H = 0.5 as in this case ηHt
iid∼ N (0, 1).
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2.1 Autocovariance function of ht

Let k = |t− s|. The autocovariance between ht and hs is denoted by Cov (ht, hs) := γh (k) and has the

form of

γh (k) =

∞∑
j=−∞

γ̃ (j) γη (k − j) , (6)

where γ̃ (j) = σ2
hβ

j/
(
1− β2

)
is the autocovariance of the pure AR component and γη (k) := Cov

(
ηHt , η

H
s

)
is the autocovariance of ηHt . See, for example, Brockwell and Davis (2009).

The autocovariance of the fractional Gaussian noise ηHt has the following expression:

γη (k) =
1

2

[
(k + 1)2H + (k − 1)2H − 2k2H

]
. (7)

The variance γη (0) = 1. When H = 0.5, the fractional Gaussian noise becomes the standard Gaussian

noise and γη (k) = 0 for all k 6= 0. If H 6= 0.5, γη(k) 6= 0 and, by the first order Taylor series expansion,

γη (k) =
1

2
k2H

[(
1 +

1

k

)2H

+

(
1− 1

k

)2H

− 2

]
∼ H(2H − 1)k2H−2 (8)

for large k. The autocovariance γη (k) decays at a hyperbolic rate as k goes to infinity. The two-sided

long-run variance of ηHt is approximately

∞∑
k=−∞

γη (k) ∼ H (2H − 1)
∞∑

k=−∞
k2H−2 =∞

when H > 0.5, and
∞∑

k=−∞
γη (k) = 1 + 2

∞∑
k=1

γη (k) = 0

when H < 0.5.

In summary, ifH > 0.5, ηHt is positively autocorrelated and has a long memory since
∑∞

k=−∞ γη (k) =

∞, whereas if H < 0.5, ηHt is negatively autocorrelated with
∑∞

k=−∞ γη (k) = 0 (a.k.a. anti-persistent).

2.2 Spectral density of ht

The spectral density of ht at frequency λ, denoted by fh(λ), has the following expression:

fh (λ) = |A (λ)|2 fη (λ) with A (λ) =
∞∑
s=0

γ̃(s)eisλ and − π ≤ λ ≤ π, (9)

where fη (λ) is the spectral density of the fractional Gaussian noise ηHt . See Priestley (1981, p226) and

also Beran (1994, p61). Under the model specification, we have

|A (λ)|2 =
σ2
h

1− 2β cos (λ) + β2
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and

fη (λ) = 2CH (1− cosλ)

∞∑
j=−∞

|λ+ 2πj|−1−2H

with CH = (2π)−1 Γ (2H + 1) sin (πH), from Beran (1994, Proposition 2.1). If ηHt is the standard

Gaussian noise, fη (λ) = 1/ (2π).

3 Estimation Methods

In this section, we introduce the time-domain simulated maximum likelihood method and the frequency-

domain quasi maximum likelihood method for the fractional stochastic volatility model defined by

(4)-(5).

3.1 Time-domain Simulated Maximum Likelihood

Let r = (r1, r2, · · · , rT )′ and h = (h1, h2, · · · , hT )′. Model parameters are collected in θ, that is,

θ = (σ, β, σh, H). Under the model specification of (4)-(5), the joint probability density function (pdf)

of returns is

f (r|θ) =

∫
f (r;h|θ) dh =

∫
f (r|h, θ) f (h|θ) dh, (10)

where the conditional density f (r|h, θ) = ΠT
t=1φ

(
rt; 0, σ2eht

)
with φ

(
·; 0, σ2

)
being the pdf of a normal

distribution with mean zero and variance σ2 and the pdf of h

f (h|θ) = (2π)−T/2 |Ξθ|−1/2 exp

(
−1

2
h′Ξθh

)
, (11)

with Ξθ being a T × T matrix whose (t, s)th element is given by Cov (ht, hs) for t, s = 1, 2, · · · , T . We

compute Ξθ using formula (6) as in Bertelli and Caporin (2002). The summand is truncated at m,

which takes a larger value when β is close to unity.4

3.1.1 Likelihood Evaluation

The exact likelihood f (r|θ) involves a T -dimensional integral which makes it extremely difficult to

evaluate. A natural alternative way of evaluating the likelihood function is by Monte Carlo simula-

tions. One can draw h(s) from the multivariate normal distribution N (0,Ξθ) with s = 1, · · · , S and

4Specifically, we set m = 1000 for β < 0.9, m = 2000 for 0.9 ≤ β < 0.99, m = 4000 for 0.99 ≤ β < 0.995, and m = 7000
for β ≥ 0.995. For formula (6) to be applicable, |β| must be strictly smaller than one as in our model.
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approximate the likelihood function via the following ‘brute force’ Monte Carlo method,

1

S

S∑
s=1

f
(
r|h(s), θ

)
. (12)

The distribution of h and the pdf f (h|θ) in (11) are obtained directly from the statistical assumption

of the model. This importance sampler, however, ignores the crucial information brought by the data r

regarding the latent variable h. As such, the approximation in (12) is extremely inefficient and requires

an enormous N to gain a reasonable accurate approximation of f (r|θ) (Liesenfeld and Richard, 2003).

To improve the estimation efficiency, we employ the importance sampling technique to approximate

the log-likelihood function, in the spirit of Shephard and Pitt (1997) and Durbin and Koopman (1997)

for non-Gaussian and nonlinear state space models. Although our model is not a state-space model

as h does not have the Markovian property unless H = 0.5, the idea of Shephard and Pitt (1997)

and Durbin and Koopman (1997) is general enough to be applicable to our models. Maximizing the

log-likelihood leads to the SML estimators of the parameters.

The idea of the importance-sampling-based approximation of the log-likelihood is to sample h(s) from

an alternative multivariate normal distribution with mean h∗θ (r) and variance-covariance matrix Σ∗θ (r),

denoted by N (h∗θ (r) ,Σ∗θ (r)). Let g (·) and G (·) be the pdf and cdf of N (h∗θ (r) ,Σ∗θ (r)), respectively.

The pdf f (r|θ) can be approximated by the sample average of
{
f
(
r;h(s)|θ

)
/g
(
h(s)

)}S
s=1

, that is,

f (r|θ) =

∫
f (r;h|θ)
g (h)

dG (h) ≈ 1

S

S∑
s=1

f
(
r;h(s)|θ

)
g
(
h(s)

) . (13)

Importantly, unlike the ‘brute force’ technique (12),
{
h(s)

}S
s=1

are drawn from a proposal distribu-

tion N (h∗θ (r) ,Σ∗θ (r)) that is obtained by the Laplace approximation. In detail, we compute h∗θ (r) as

the modal configuration of log (f (r;h|θ)) such that

h∗θ (r) = arg max
h

log (f (r;h|θ)) , (14)

where log (f (r;h|θ)) has the form

log f (r;h|θ) =

T∑
t=1

log
(
φ
(
rt; 0, σ2eht

))
+ log (f (h|θ)) (15)

= −T log (2π)− T

2
log
(
σ2
)
− 1

2

T∑
t=1

ht −
1

2

T∑
t=1

zt −
1

2
log |Ξθ| −

1

2
h′Ξ−1

θ h, (16)
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with zt = r2
t /
(
σ2eht

)
. The variance-covariance matrix Σ∗θ (r) is calculated as

Σ∗θ (r) =

[
−∂

2 log (f (r;h|θ))
∂h∂h′

]−1
∣∣∣∣∣
h=h∗θ(r)

. (17)

Clearly, the proposal distribution N (h∗θ (r) ,Σ∗θ (r)) depends on the data r.

The SML estimator of the FSV model is denoted by θ̂ and defined as

θ̂ = arg max
θ∈Θ

log

[
1

S

S∑
s=1

exp

(
log

f
(
r;h(s)|θ

)
g
(
h(s)

) )]
, (18)

where Θ is the parameter space and

log
f
(
r;h(s)|θ

)
g
(
h(s)

) = −T
2

log (2π)− T log
(
σ2
)
− 1

2

T∑
t=1

h
(s)
t −

1

2

T∑
t=1

zt −
1

2
log |Ξθ| −

1

2
h(s)′Ξ−1

θ h(s)

+
1

2
log |Σ∗θ (r)|+ 1

2

(
h(s) − h∗θ (r)

)′
Σ∗θ (r)−1

(
h(s) − h∗θ (r)

)
. (19)

3.1.2 Smoothed and Filtered Volatilities

The estimated volatility sequence ĥ is taken as h∗
θ̂

(r), which is the modal configuration of log f
(
r, h|θ̂

)
using equation (14) with θ replaced by θ̂.5 Clearly, ĥt, the tth element in ĥ, uses all the information

in {rt}Tt=1 and hence, is a smoothed estimate of ht. Correspondingly, the quantity exp (ht/2), which

follows a log-normal distribution, can be estimated as

exp

h∗(t)θ̂
(r)

2
+

Σ
∗(t,t)
θ̂

(r)

8

 , (20)

where h
∗(t)
θ̂

(r) is the tth element in h∗
θ̂

(r), Σ
∗(t,t)
θ̂

(r) is the tth diagonal element in Σ∗
θ̂
(r) (computed from

(17) with h∗θ (r) replaced by h∗
θ̂

(r)).

To obtain the filtered estimates of ht and exp (ht/2), one can apply the Laplace approximation

analogously to log f
(
r1, ..., rt, h1, ..., ht|θ̂

)
instead.

3.2 Frequency-domain Quasi Maximum Likelihood Method

Let xt = log r2
t be the log squared return at period t. Under the model specification we have

xt = log
(
σ2
)

+ ht + log ε2
t = µ+ ht + ωt, (21)

where µ = log
(
σ2
)

+ E
[
log ε2

t

]
and ωt = log ε2

t − E
[
log ε2

t

]
. Since εt ∼ N(0, 1), log ε2

t is a log χ2
(1)

distribution with E
[
log ε2

t

]
= −1.27 and V

[
log ε2

t

]
= V [ωt] = π2/2 ≈ 4.9.

5Since ht is normally distributed, the mode is the same as the expected value.
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The Whittle estimator minimizes the negative of the log spectral likelihood function

Ln (θ) =
π

n/2

n/2∑
k=1

{
log fx (λk) +

In (λk)

fx (λk)

}
, (22)

where λk = 2πk/n, fx (λ) is the spectral density of xt at frequency λk, and In (λk) is the kth normalized

periodogram ordinate specified as

In (λk) =
1

2πn

∣∣∣∣∣
n∑
t=1

xt exp (−itλk)

∣∣∣∣∣
2

=
1

2πn

( n∑
t=1

xt cos (λkt)

)2

+

(
n∑
t=1

xt sin (λkt)

)2
 .

The spectral density of xt takes the form of

fx (λk) = fh (λk) +
σ2
ω

2π
,

where fh(λk) is given in (9) and σ2
ω = V [ωt] is the unconditional volatility of ωt. When εt is assumed

to be standard normal as in our case, σ2
ω = π2/2 and hence need not be estimated. That is, only three

parameters (i.e., H,β, σh) are estimated by the Whittle method.

Although the spectral log-likelihood takes the variance of ωt into consideration, it ignores the distri-

butional assumption of the noise (i.e., logχ2
(1) under our setting). In other words, the expression of the

spectral likelihood function remains the same if ωt ∼ N(0, π2/2). That is why we refer to the method as

the frequency-domain quasi maximum likelihood method. In contrast, the SML method utilizes the full

information for the estimation. As such, SML is expected to be more efficient than Whittle. Moreover,

the filtered and smoothed estimates of volatilities can be obtained as the by-product of SML, while

an additional step is needed when the Whittle method is used for parameter estimation. A significant

advantage of the Whittle estimation method over SML is that it does not require the computation of

the variance-covariance matrix, and hence, is less computationally costly.

4 Simulation Studies

In this section, we investigate the estimation accuracy of the proposed estimation methods for the FSV

model in terms of bias, standard error, and root mean square error (RMSE). Log returns are generated

from equation (4), while the latent variable ht is from (5). The fractional Gaussian noises are generated

using fast Fourier transforms (Kroese and Botev, 2015).
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We consider two sets of model parameters. The first one corresponds to our empirical estimation

results in Section 5 for the S&P 500 composite index (from 1975 to 2020):

Set I: H = 0.176, β = 0.998, σh = 0.464, σ = 0.008.

The second set of model parameters are those obtained by Breidt et al. (1998) from the S&P 500 CRSP

data over the sample period from July 1962 to December 1987 for the FISV model (23)-(25) with the

Whittle method.6 The parameter values are:

Set II: H = 0.944, β = 0.932, σh = 0.0564, σ = 0.008.

The sample size T is set to be 11, 520 as in our empirical application. Figure 2 displays one typical

realized sample path of the data generating process with the two different sets of model parameters.

It is obvious from the graphs that the sample path based on our empirical results is more empirically

realistic.

Figure 2: One typical sample path of the FSV model with the two different sets of model parameters

(a) Set I (b) Set II

The number of replications for the simulation study is 100. The choice of a small number of

replications is due to the long computational time required by the SML method. Although it is relatively

6In particular, Breidt et al. (1998) report 0.444 and 0.932 for d and β that jointly determine the dynamics of volatilities,
and 0.00318 for σ2

h. The parameter σ, which only affects the level of volatilities, is specified by us.
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fast to compute the variance-covariance matrix with the split method (Bertelli and Caporin, 2002), the

sample size considered is very large, and the estimation involves numerical optimization, which evaluates

the likelihood function repeatedly until a global maximum is reached. We set the initial values for the

optimizations to be the true values. For SML, the number of samples in the importance sampling is

1, 000.

Table 1 reports the bias, standard error, and RMSE of the estimated model parameters using the

SML and Whittle methods under both parameter settings. Let us examine the performance of the

two estimation methods under the more empirically realistic parameter setting, that is, Set I. First, it

can be seen that both methods can estimate all parameters accurately. The bias is always very small,

although the biases obtained from the Whittle method are slightly smaller than those of SML. Secondly,

the SML method outperforms the Whittle method in terms of standard error, especially for H and σh.

The relative inefficiency of Whittle over SML is 43% and 22% for H and σh, respectively. This suggests

that ignoring the distributional information in logχ2
(1) can result in severe efficiency loss.7 Third, not

surprisingly, the RMSEs, which summarize the trade-off between biases and variances, are smaller for

SML than for Whittle for H and σh. To visualize the estimation biases and variations, we show in

3-D scatter plots (Panel (a) and Panel (b) of Figure 3) the estimated model parameters of the SML

and Whittle methods from the 100 replications. The red circle indicates the location of true model

parameters. It is obvious that the estimates by SML are more concentrated than those by Whittle.

Table 1: Biases, standard errors and RMSEs of the estimated model parameters

Bias Std. Err. RMSE
H β σh H β σh H β σh

Parameter Set I
SML 0.034 -0.0008 -0.080 0.023 0.001 0.034 0.041 0.001 0.086
Whittle 0.001 -0.0002 0.033 0.054 0.001 0.151 0.054 0.001 0.154
LPWN
(Rshort, Rnoise) = (1, 0) 0.931 0.048 0.933
(Rshort, Rnoise) = (1, 1) 0.931 0.048 0.932

Parameter Set II
SML -0.099 0.0123 -0.002 0.146 0.026 0.019 0.176 0.029 0.019
Whittle -0.088 -0.065 0.133 0.194 0.241 0.277 0.212 0.249 0.306
LPWN
(Rshort, Rnoise) = (1, 0) 0.091 0.062 0.110
(Rshort, Rnoise) = (1, 1) 0.093 0.063 0.112

7Kim et al. (1998) examines the difference between the logχ2
(1) and normal distributions and shows that replacing the

logχ2
(1) distribution with a normal distribution can lead to poor finite sample performance.
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For the second parameter setting, SML outperforms Whittle in terms of both bias and RMSE. The

only exception is that the bias of H is slightly smaller when using the Whittle method. However, the

estimation accuracy of both methods is not as high as that for Set I. The improvement of SML over

Whittle can also be seen from Panels (c) and (d) of Figure 3.

Figure 3: Estimated model parameters of the FSV model: SML and Whittle. The red circle indicates
the location of the true model parameters.

(a) SML: Set I (b) Whittle: Set I

(c) SML: Set II (d) Whittle: Set II

Other than using SML and Whittle to estimate the FSV model, one can also implement the semi-

parametric local polynomial Whittle with noise (LPWN) method of Frederiksen et al. (2012). The

LPWN method was proposed to estimate the memory parameter of a perturbed long memory process.

The perturbations can be short-run dynamics and/or shocks with short-memory persistency. Under

our model specification, xt is the perturbed data series. Specifically, ht perturbs the fractional process

ηHt with a stationary AR(1) component whose persistent level is determined by β and xt perturbs the

fractional process with the stationary AR(1) component and an i.i.d. log χ2
(1) noise. When H > 0.5 and
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the short-run dynamics are far away from unit root nonstationarity, Frederiksen et al. (2012) find that

LPWN performs well in finite samples. However, the applicability of LPWN for perturbed fractional

processes with H < 0.5 and β being very close to unity is yet to be investigated. We apply LPWN to

the same simulated data sets. The two tuning parameters (Rshort, Rnoise) of LPWN are set to be either

(1, 0) or (1, 1) as in Frederiksen et al. (2012).

Evidently, from Table 1, the LPWN method cannot accurately estimate H under the first parameter

setting. We think this inaccuracy is due to the fact that β is very close to one, although LPWN works

well under the second parameter setting when β = 0.932.8 See Shi and Yu (2021) for explanations on

why local Whittle methods cannot separate persistent short-run dynamics from fractional processes.

This inaccuracy is one of the reasons why more efficient estimation methods (i.e., SML and Whittle

methods) were introduced for the FSV model.

5 Empirical Studies

The FSV model, along with the basic SV and the FISV models, are employed to study the S&P 500

composite index from January 3, 1975 to September 30, 2020 at the daily frequency. The FISV model

is closely related to the FSV model and has been widely studied in the literature. It has a specification

of the following:

rt = σeht/2εt, (23)

ht = βht−1 + σhut, (24)

ut = (1− L)−det with et
iid∼ N (0, 1) . (25)

The fractional difference operator is defined as

(1− L)−d =
∞∑
j=0

φjL
j with φj =

Γ(j + d)

Γ(d)Γ(j + 1)
, (26)

where Γ (·) is the gamma function and d ∈ (−0.5, 0.5). The fractional integrated process ut defined in

(26) is a ‘Type I’ I(d) process in the sense of Marinucci and Robinson (1999) and Robinson (2005).9

The SML method can be applied analogously to estimate the FISV model. The Whittle method has

8One difference between our DGPs and the DGPs considered in Frederiksen et al. (2012) is that implicitly we perturb
the signal with an i.i.d. log χ2

(1) noise, instead of an i.i.d. Gaussian noise. Our unreported simulation shows that the
non-Gaussian noise does not lead to a larger bias in LPWN (although increasing its variance).

9The ‘Type II’ fractional integrated process u∗
t is associated with a truncated error noise e∗t , where e∗t = et if t ≥ 1 and

0 if t < 1.
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been employed by Breidt et al. (1998) to estimate the FISV model. See Appendix B for the estimation

details.

Under the in-fill asymptotic scheme (i.e., as the sampling interval goes to zero), Tanaka (2013)

shows that FISV converges weakly to fSV defined by (2) with H = d + 0.5. Since FSV is the Euler

discretization of the fSV model, when the sampling interval goes to zero, FSV also converges weakly to

fSV. As such, the FISV and FSV processes are asymptotically equivalent under the in-fill scheme subject

to a normalization factor, and the fractional parameter d in FISV is linked to the Hurst parameter H

of the FSV model in the form of H = d + 0.5. See Wang et al. (2021a, Remark 3) for more details.

However, as remarked in Wang et al. (2021a), there is no reason to believe the two models perform the

same in finite samples.

The data are obtained from DataStream, containing 11,520 daily observations within the sample

period. Figure 4 displays the dynamics of the log returns rt and xt = log(rt − r̄)2 with r̄ being the

sample mean. Table 2 provides the summary statistics of the data series. One can see that for all data

series considered, both rt and xt are left skewed and leptokurtic. The standard deviations of xt are

greater than
√

4.9 ≈ 2.21, consistent with our model.

Table 2: Summary statistics: the S&P 500 composite index

Mean Std. dev Skew. Kurto.
rt 0.0003 0.011 -1.12 29.28
xt -10.96 2.49 -1.15 5.85

For the numerical optimization of SML, we consider a set of 2, 500 initial values and choose the

one with the largest log-likelihood value as the initial input of the optimization. The 2, 500 grid points

considered cover a wide range of values of the model parameters. The autoregressive coefficient is from

−0.205 to 0.995 with an increment of 0.05, that is, β0 ∈ {−0.205 : 0.05 : 0.995}, the Hurst parameter

H0 ∈ {0.001 : 0.1 : 0.999}, and σh0 ∈ {0.05 : 0.05 : 0.5}. We set σ0 to be the estimate of the standard

SV model. Notice that we use a subscript 0 to denote the initial values. The optimization is done with

the constraint maximum likelihood function fmincon in MATLAB, with the upper bound being one for

all parameters and the lower bound being −1 for β and zero for the other three parameters.

Estimation results, including the point estimates and 90% confidence intervals of all four parameters,

are reported in Table 3.10 First, the log-likelihood values (the second last column) of the FSV and FISV

10When obtaining the 90% confidence intervals, we use the standard asymptotic distribution for the SML estimator.
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Figure 4: The S&P 500 composite index from January 3, 1975 to September 30, 2020

(a) Return rt

(b) Log squared return xt

models are much larger than that of the basic SV model.11 The log-likelihood ratio statistics (last

column) suggest that by freeing up only the memory parameter, the FSV and FISV models improve

the likelihood value substantially. The 1% critical value for χ2
(1) is 6.63, overwhelmingly rejecting the

basic SV model in favor of the FSV or FISV model. This means that the FSV and FISV models are far

more suitable for the data series. The log-likelihood values of the FSV and FISV models are very close

to each other, with log-likelihood value of the FSV model being higher. Interestingly, the log-likelihood

value for FSV is larger than that for FISV.

However, we note that the asymptotic normal distribution may poorly approximate the finite sample distribution of β if
β is very close to one and the time span of the data is small or moderately large.

11The estimated coefficients of the basic SV model are almost identical to those provided in Sandmann and Koopman
(1998) for the sample period running from 1928 to 1987.

15



Table 3: Estimation results from the SML method for the basic SV, FSV and FISV models. Numbers
in the square brackets are the 90% confidence intervals. The last column is the log-likelihood ratio test
for H0: Basic SV and H1 : FSV or FISV.

SML

H β σh σ lld LR stat.
SV - 0.982 [0.978,0.986] 0.166 [0.150,0.181] 0.008 [0.008,0.009] 38139 -
FSV 0.176 [0.144,0.207] 0.998 [0.996,0.999] 0.464 [0.402,0.526] 0.008 [0.008,0.009] 38168 59
FISV 0.142 [0.099,0.186] 0.998 [0.997,0.999] 0.360 [0.320,0.399] 0.008 [0.008,0.009] 38164 51

Second, the estimated autoregressive coefficient from both the FSV and FISV models is 0.998,

suggesting that volatilities are highly persistent. In fact, our empirical estimates of β are very close to

those obtained in Table 3 of Bolko et al. (2020) based on the generalized method of moment method,

although we use the daily log returns and Bolko et al. (2020) use the daily realized volatilities.12

Third, the Hurst parameter H is estimated to be 0.176 and 0.142 for the FSV and FISV models,

respectively. The 90% confidence intervals do not cover 0.5, a value that is assumed in the basic SV

model. Consequently, both FSV and FISV models suggest that the log volatility process is rough. The

point estimates are very close to what Gatheral et al. (2018) and Wang et al. (2021b) found from the

volatility surface and the log realized volatility. They are slightly larger than the estimates obtained

by Fukasawa et al. (2021) and Bolko et al. (2020) for log spot volatilities. We expect the estimated H

in FSV to be larger if β = 1 is imposed. This assumption is equivalent to have γ = 0 in the fSV model,

as in Fukasawa et al. (2021).

Table 4 presents estimation results for our data series with the Whittle method and the noise-robust

local Whittle method. For the Whittle method, we again employ the grid searching method for the

initial values of the optimization. We allow the parameter σ2
ω to be either fixed at the value π2/2

(i.e., under the Gaussian assumption of εt) or unknown (i.e., εt is allowed to have a non-Gaussian

distribution). Similar to those from SML, the estimated fractional parameters in FSV and FISV under

both assumptions suggest rough and persistent volatility. However, the estimated fractional parameters

from the Whittle method (0.292 and 0.346) are larger than those obtained from SML (0.176 and 0.142)

when we allow the distribution of εt to be non-Gaussian and smaller (0.082 and 0.096) when assuming

σ2
ω = π2/2. The estimated σ2

ω are slightly larger than 4.9. As expected, the LPWN method cannot

separate a highly persistent autoregressive coefficient from the memory parameter and leads to a large

12Note that our β corresponds to 1− λ in Bolko et al. (2020).
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value for H, suggesting long memory and nonstationary volatility.

Table 4: Empirical Results from the Whittle and LPWN methods

H β σh H β σh σ2
ω

Whittle method σ2
ω = π2/2 Unknown σ2

ω

SV - 0.990 0.126 - 0.992 0.113 5.419
FSV 0.082 0.999 0.895 0.292 0.997 0.249 5.371
FISV 0.096 0.999 0.403 0.346 0.996 0.180 5.390

LPWN
(Rshort, Rnoise) = (1, 0) 1.093
(Rshort, Rnoise) = (1, 1) 1.093

Interestingly, the Whittle estimates of FISV are remarkably different from those reported in Breidt

et al. (1998) for the S&P 500 CRSP data from 1962 to 1987 where σ2
ω is assumed to be unknown. They

find that the estimated H parameter is approximately 0.944 (or d = 0.444), and the autoregressive

parameter β is around 0.932. The differences in the estimates may be due to the different datasets used

in estimation.

The sample autocovariance of xt, along with the theoretical implied autocovariance of the three

models, are displayed in Figure 5. Overall, the autocovariance functions of the FSV and FISV models

are near each other (reassuring of the estimation accuracy) and provide a much better fit for the

autocovariance than the basic SV model for the data series. The three estimation methods lead to a

slightly different fit of the ACF.

Figure 5: The sample autocovariance of xt and the theoretical implied autocovariance

(a) SML (b) Whittle (known σ2
ω)

The smoothed estimates of volatilities (20) from the FSV and FISV models with SML are presented

in Figure 6. The two volatility estimates are almost identical. The volatilities of the equity index

increased to unprecedented levels in the 1987 stock market crash, during the 2008 subprime mortgage
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crisis period, and again at the onset of Covid-19 in March 2020.

Figure 6: The smoothed volatility estimates obtained from the FSV and FISV models: SML

6 Conclusions

This paper introduces a discrete-time fractional stochastic volatility model based on the fractional

Gaussian noise, whose dynamic is governed by a Hurst parameter H. It includes the standard stochastic

volatility model as a special case with H = 0.5 and is asymptotically equivalent to the fractional

integrated stochastic volatility model with H = d+ 0.5. We discuss its statistical properties, allowing

the Hurst parameter to take values between 0 and 1.

We propose to estimate the model with a simulated maximum likelihood and a frequency domain

quasi maximum likelihood method. For the SML method, the (time-domain) likelihood function is

evaluated with the importance sampling technique, where the Laplace approximation determines the

proposal distribution. The estimation method allows us to obtain both filtered and smoothed estimates

of latent variables. Simulation studies show that the proposed SML and Whittle (frequency domain

ML) methods can accurately estimate the FSV model. The SML method performs better than the

Whittle method in terms of root mean square errors, whereas the Whittle method provides estimates

with smaller biases for H.

We apply the proposed FSV model, along with the standard SV model and the FISV model, to

the S&P 500 composite index over a long sampling period, spanning over 45 years. Our empirical

results suggest that the log volatility of the S&P 500 index is persistent and rough. The estimated

autoregressive coefficient of the log volatility process is very close to unity, and the estimated Hurst

parameter of the FSV model is less than half. The latter is consistent with the findings of the recent
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literature on rough volatility.

The SML method is general enough to deal with more flexible model specifications. Specifically,

suppose that εt in the return equation (4) or (23) is assumed to follow another parametric distribution

(such as a student t distribution) to generate extra kurtosis in the distribution of rt. One could simply

modify the probability density function f(r|h; θ) in the SML algorithm to accommodate this change.

The FSV model could potentially be applied to daily log realized volatilities. Let RVt and IVt be the

realize volatility and integrated volatility on day t. The realized volatility is computed from intraday

returns and defined as the summation of the log squared returns within the day. RVt is a consistent

measure of the integrated variance IVt = σ∗2
∫ t
t−1 exp(hs)ds such that

RVt = σ∗2
∫ t

t−1
exp(hs)ds+ νt, (27)

where νt
a∼ N(0, 2IQt/M) with IQt being the integrated quarticity of day t and M being the number

of intra-day returns within day t. See Barndorff-Nielsen and Shephard (2002). RVt is recognized as an

improved estimate of IVt compared with the daily squared return.

Under the continuous-time specification of

dht = γhtdt+ σ∗hdB
H
t ,

we have the following unique path-wise solution:

ht = e−γth0 + σ∗h

∫ t

0
e−γ(t−s)dBH

s , (28)

where h0 is the initial value. Hence,

ht = e−γht−1 + σ∗h

∫ t

t−1
e−γ(t−s)dBH

s . (29)

According to Theorem 8 of Bergstrom (1984), the time aggregation over a day leads to the following

discrete-time model: ∫ t

t−1
hrdr = e−γ

∫ t−1

t−2
hrdr + ηt, (30)

where ηt is a noise term that has an MA(1) structure.

Equations (27) and (30) form a discrete-time nonlinear state-space model that can be potentially

estimated by the SML method proposed in this paper. We leave the study of the estimation approach

based on realized volatility to a future study.
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A Implementation Details

The optimization problem (14) can be solved numerically with the Newton-Raphson’s method. Specif-

ically, we start from an initial proposal h
(0)
t and iterate recursively with the formula

h
(k+1)
t = h

(k)
t −

[
∂2 log f (r;h|θ)

∂h∂h′

∣∣∣∣
ht=h

(k)
t

]−1 [
∂ log f (r;h|θ)

∂h

∣∣∣∣
ht=h

(k)
t

]
,

where
∂ log f (r;h|θ)

∂h
= −1

2
+

1

2
z − h′Ξ−1

θ and
∂2 log f (r;h|θ)

∂h∂h′
= −1

2
diag (z)− Ξ−1

θ

with z = [z1, z2, · · · zT ].
The distributional approximation of h|(θ, r) or the optimization of (14) is conducted independently

for every given θ. To ensure the smoothness of the likelihood function (13) with respect to θ,13 it

is essential that all importance sampling sequences h(i) are obtained as transformations of a common
sequence of random draws. This is the so-called Common Random Numbers’ technique. For our
application, we use a fixed random seed to draw a random sequence of dimension T × N from the
standard normal distribution, which is then transformed to have the distribution of N (h∗θ (r) ,Σ∗θ (r)).

Furthermore, to prevent overflow of the likelihood value, we apply some simple re-scaling techniques.
Let w(s) = f

(
h(s)|θ

)
/g
(
h(s)

)
. The log-likelihood function can be rewritten as

log

[
1

S

S∑
s=1

exp

(
log

f
(
r;h(s)|θ

)
g
(
h(s)

) )]
= log

[
1

S

S∑
s=1

f
(
r|h(s), θ

)
w(s)

]

= log

(
1

S

S∑
s=1

w(s)

)
+ log

[
S∑
s=1

f
(
r|h(s), θ

)
w∗(s)

]

= log

(
1

S

S∑
s=1

exp
(
A(s)

))
+ log

[
S∑
s=1

exp
(
B(s)

)
w∗(s)

]
, (31)

where A(s) = logw(s) = log f
(
h(s)|θ

)
− log g

(
h(s)

)
, B(s) = log f

(
r|h(s), θ

)
, and

w∗(s) =
w(s)∑S
s=1w

(s)
=

exp
(
A(s)

)∑S
s=1 exp

(
A(s)

) .
The computation of the likelihood involves exponential functions of A(s) and B(s), which could poten-
tially result in a numeric value that is outside of the range of computer precision and hence compromise
the reliability of the program. To avoid such an overflow condition, we rescale A(s) and B(s) such that

w∗(s) =
exp

(
A(s) + C1

)∑S
s=1 exp

(
A(s) + C1

) ,
log

(
1

S

S∑
s=1

exp
(
A(s)

))
= −C1 + log

(
1

S

S∑
s=1

exp
(
A(s) + C1

))
,

log

[
S∑
s=1

exp
(
B(s)

)
w∗(s)

]
= −C2 + log

[
S∑
s=1

exp
(
B(s) + C2

)
w∗(s)

]
,

13Smoothness is essential for the numerical convergence of an optimization algorithm. See, for example, Gouriéroux
and Monfort (1997).
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where C1 = −maxs
{
A(s)

}
+ 1 and C2 = −maxs

{
B(s)

}
+ 1. It follows that the log-likelihood function

log

[
1

S

S∑
s=1

exp

(
log

f
(
r;h(s)|θ

)
g
(
h(s)

) )]

= −C1 − C2 + log

(
1

S

S∑
s=1

exp
(
A(s) + C1

))
+ log

[
S∑
s=1

exp
(
B(s) + C2

) exp
(
A(s) + C1

)∑S
s=1 exp

(
A(s) + C1

)] .
B Estimation of the FISV model

The estimation of the FISV model with SML requires the variance-covariance matrix of ht. The
autocovariance of ht be can again computed from

γh (k) =
∞∑

s=−∞
γ̃ (s) γu (k − s) , (32)

with γ̃ (s) = σ2
hβ

s/
(
1− β2

)
and

γu (k) =
(−1)k Γ (1− 2d)

Γ (k − d+ 1) Γ (1− k − d)
. (33)

Alternative expressions of the auto-covariance function are provided by Hosking (1981, Lemma 1),
Sowell (1992), and Chung (1994). All three forms involves the hypergeometric function, which are
more computational intensive than the form we employed here.

The spectral density of xt under the model specification of (23)-(25), which is required for the
Whittle method, is

fx (λ) =
σ2
u

2π

(√
2− 2 cos (λ)

)−2d

1− 2β cos (λ) + β2
+
σ2
ω

2π
.

It follows that the Whittle log likelihood function

Ln (θ) = −π log 2π − d2π

n

n/2∑
k=1

log (2− 2 cos (λk)) +
2π

n

n/2∑
k=1

logψθ (λk) (34)

+
4π2

n

n/2∑
k=1

(2− 2 cos (λ))d In (λk)

ψθ (λk)
. (35)

where ψθ (λk) = σ2
h/
[
1− 2β cos (λ) + β2

]
+ σ2

ω (2− 2 cos (λk))
d. Breidt et al. (1998) argue that the

term −d2π
n

∑n/2
k=1 log (2− 2 cos (λk)) in the log likelihood is negligible, and hence, was omitted in their

empirical application. In our paper, we employ the original log likelihood function for the purpose of
more accurate evaluations of the log-likelihood.

23


