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Abstract

It is well known that the standard estimators of the risk premium in asset pricing

models are biased when some price factors are omitted. To address this problem, we

propose a two-pass estimation method to quantify the risk premium of an observable

factor. A novel quantile-based asset pricing model and a new estimation method are

introduced. Unlike the existing model and the standard estimators, our new asset

pricing model allows for the risk premium to be quantile-dependent. Moreover, our

method is applicable to situations in which some factors are unobserved because

our method automatically detects missing important factors that are not included

in a working asset pricing model; hence, it also avoids biased estimation results.

Furthermore, our novel approach always ensures a positive risk premium. Thus,

the method provides significant benefits for the estimation of the risk premium.

The method is applied to the U.S., Japan, and U.K. stock markets. The empirical

analysis demonstrates the clear benefits of our approach.
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1 Introduction

Factor-based asset pricing models are highly popular for several compelling reasons.

First, they can explain a cross-section of expected stock returns. Second, they offer

frameworks to test the validity of asset pricing models. Third, they allow users to

estimate the risk premium of factors, usually via a two-pass regression procedure.

Most factor-based asset pricing models share several common features. First, they

assume that factors are observed. Second, a linear relationship between expected

returns and factors is adopted. Third, it is assumed that all relevant factors are

included in the models. Finally, it is assumed that no irrelevant factor is used in

the models.

These assumptions have important implications for model estimation, specifica-

tion analysis, model comparison, estimation of the risk premium and other appli-

cations of a model. For example, when a model is misspecified, a more (or less)

important factor may become less (or more) important. Additionally, in a misspeci-

fied model, the estimated risk premium can be negative, although in theory, the risk

premium, which is what an investor should be compensated for bearing the source

of risk, must be nonnegative.

Empirical researchers may resort to economic theory for guidance on a functional

form and factors. For example, the arbitrage pricing theory of Ross (1976) predicts

a linear relationship between expected returns and factors. However, no economic

theory specifies a complete list of factors. Most asset pricing models simply cannot

include all sources of relevant risk. Moreover, functional forms, such as linearity,

usually come from the assumption about the utility function for the representative

agent. When the assumption is wrong, the linear relationship between the expected

returns and factors may no longer be valid.

Serious attempts to evaluate competing asset pricing models by accounting for

model misspecification have been made in the recent literature. Kan et al. (2013)
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obtained the asymptotic distribution of R2. They showed that the asymptotic dis-

tribution of the difference between the sample R2 of two candidate models depends

on whether the models are correctly specified and whether they are nested. Kan

and Robotti (2015) considered multiple model comparison tests. To search for useful

factors, Feng et al. (2017) proposed a new model selection method to evaluate the

marginal contribution of a new factor when a set of a large number of factors have

been included in the model. The method is robust to model misspecification in the

sense that a large number of factors may include redundant factors.

While these recent studies are attractive, these methods typically prepare a set

of factors somewhat arbitrarily. However, there is no theoretical guarantee that the

set of factors indeed contain all true risk factors required to explain the asset return.

Giglio and Xiu (2017) proposed a three-pass method to estimate the risk premium.

This method is shown to be valid when the observed factors are a strict subset of

the true factors and when the observed factors are subject to measurement errors.

The impact of model misspecification is also studied by Kan and Zhang (1999),

Kan et al. (2013), Shanken and Zhou (2007), Gospodinov et al. (2013), Kleibergen

and Zhan (2018), etc. However, these previous studies assume that the sensitivity to

risk factors is constant over quantiles, while the possibility of quantile dependence of

sensitivity to risk factors has been reported in the literature (see, for example, Ando

and Bai (2018)). To measure the quantile-dependent risk premium, no systematic

solution has been proposed thus far.

This paper directly addresses the abovementioned problems by introducing a new

asset pricing model and a new estimation and inferential procedure. Our model and

estimation method contain several salient features. First, the model assumes a linear

relationship between quantiles of returns (instead of expected return) and factors.

Second, both observed and unobserved factors are allowed in our models. As a

benefit of our approach, we can avoid the omitted variable bias when some important

common factors are missing in the model. Third, restrictions on monotonicity of the
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risk premium are imposed in our estimation method. Fourth, we develop asymptotic

theory to the estimator under a double asymptotic argument (that is, the number

of assets and the number of time series observations both go to infinity), facilitating

statistical inference. Finally, unlike standard two-pass regressions to estimate the

risk premium (see, e.g., Fama and Macbeth (1973), Ferson and Harvey (1991),

Shanken (1992), Jagannathan and Wang (1998), Lewellen et al. (2010), Bai and

Zhou (2015) and Gagliardini et al. (2016)), this paper estimates the risk premium

based on our novel quantile-based asset pricing model. This new asset pricing model

allows for the risk premium to be quantile-dependent. Moreover, our novel approach

always ensures a positive risk premium.

Our quantile-based asset pricing model plays an important role when the risk

premium is quantile-dependent. More specifically, the previous methods for esti-

mating the risk premium ignore the quantile dependency of the risk premium. One

strong assumption implicitly imposed on the previous methods is that the level of

the risk premium does not depend on any quantile point. In other words, the risk

premium is constant, regardless of the scenario of the market. Intuitively, however,

it is natural to consider that investors demand a higher market risk premium when

the market faces pessimistic trends. Thus, it is reasonable to assume that the risk

premium depends on the quantile. Indeed, our empirical analysis reveals that the

risk premium indeed depends on the quantile.

We also make theoretical contributions by developing an asymptotic theory for

the proposed procedure. Due to the presence of estimation errors in unobservable

common factor structures, the development of these results is nontrivial. If the

estimation error for the factor structure is not negligible, then it is important to

investigate the statistical properties of the proposed risk premium estimator by

taking into account the effect of the estimated factor structure. In our asymptotic

framework, the time-series dimension and the individual dimension are diverging.

Therefore, we develop a novel strategy for establishing the asymptotic theory.
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The model and the estimation method are first applied to a large set of equity

portfolios, that is, the universe of component stocks from S&P500 in the U.S.,

TOPIX from Japan, and the FTSE all-share index from the U.K.. The number of

unobserved common factors is identified, and the factors are estimated. The risk

premia are obtained. We then investigate the impact of passive funds on the stock

markets using the estimated common factor. More specifically, we explore whether

the capital flows from/to passive funds have any impact on the risk premium. Our

empirical results indicate that passive flow is related to the risk premium.

The remainder of this paper is organized as follows. Section 2 introduces the

model and the estimation method. Section 3 establishes the asymptotic theory

for our quantile-based 2-pass procedure. Section 4 reports and discusses empirical

results based on the large set of equity portfolios. Section 5 examines the impact

of passive funds on the risk premium. Our method reveals that the passive flow

influences the risk premia in the U.S., Japan, and U.K. stock markets. Section 6

concludes. The proofs of the theorems are collected in the Appendix. The Appendix

also contains a set of assumptions imposed on our procedure.

2 The Method

Our method proceeds in two steps. First, we estimate a quantile-based asset pricing

model to extract unobserved common factors and their loadings from a large panel of

asset returns. This first step allows us to avoid the omitted variable bias problem.

Second, we introduce quantile-based 2-pass procedure motivated from Fama and

MacBeth (1973). The risk premium, which depends on quantile points, is then

estimated.

2.1 A quantile-based asset pricing model

Suppose that an excess return is measured over T time periods together with some

common factors. For the i-th financial instrument (i = 1, ..., N), at time t, its
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return yit is observed together with a p-dimensional vector of observable factors

xit = (xit,1, ..., xit,p)
′. As shown below, our method is useful to study the risk

premium associated with the common factors in an asset pricing model.

Consider the following structure for the τ -th conditional quantile function of yit:

Qyit

(
τ |xit, bi,τ ,f t,τ ,λi,τ

)
= x′

itbi,τ + f ′
t,τλi,τ , i = 1, . . . , N, t = 1, . . . , T, (1)

where bi,τ = (bi,0,τ , bi,1,τ , ..., bi,p,τ )
′ is a p-dimensional vector of regression coefficients.

Following Ando and Bai (2018), we have the unobservable factor structure f ′
t,τλi,τ ,

where f t,τ is an rτ × 1 vector of unobservable factors and λi,τ represents the unob-

servable factor loadings. Note that the dimension of unobservable structures may

vary over quantiles. Studies on factors that explain the cross section of expected

stock returns have reported several hundred factors; see, for example, Harvey et al.

(2015). Thus, the p-dimensional observable factor may not be sufficient to capture

the cross-sectional variation of asset returns well. To increase an explanatory power

of asset pricing, the unobservable factor structure f ′
t,τλi,τ is crucial. For the linear

factor models that focus on the conditional mean of asset return yit, refer to Cham-

berlain and Rothschild (1983), Connor and Korajzcyk (1986), Bai and Ng (2002),

Bai (2009), Ando and Bai (2017) and the references therein.

Compared to typical asset pricing models in the literature, Model (1) has a few

unique features. First, instead of assuming that the expected return of yit is a linear

function of factors, we assume the conditional quantile of yit is a linear function of

factors. As the distribution of yit typically has heavy tails and quantiles are robust

against outliers, we expect that the quantile regression and the estimates are more

robust than those in the asset pricing models based on the conditional mean and the

ordinary least squares regression. Second, we do not make serious attempts to find

all observed factors to explain quantiles of yit. Instead, we believe that some factors

are unobserved, and we include them as the latent variables. As these factors are

common across i, we hope to consistently estimate them when N → ∞. Finally, we
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assume both N and T go to infinity. As we will show below, under a mild condition,

the structure of the latent variables can be consistently detected.

To estimate the unknown parameters Bτ = (b1,τ , ..., bN,τ )
′, Λτ = (λ1,τ , ...,λN,τ )

′,

and Fτ =
(
f 1,τ , ...,fT,τ

)′
, a panel quantile approach is needed. In particular, given

value of r, we estimate Bτ , Λτ and Fτ by minimizing

ℓτ (Y |X,Bτ , Fτ ,Λτ ) =
N∑
i=1

T∑
t=1

ρτ
(
yit − x′

itbi,τ − f ′
t,τλi,τ

)
,

where ρτ (u) = u(τ−I(u < 0)) is the quantile loss function. Denote the estimators by

b̂i,τ , f̂ t,τ , λ̂i,τ . Under a set of mild conditions, as reported in the following proposi-

tion, Ando and Bai (2018) showed that the asymptotic distribution of the estimated

common factor f̂ t,τ and factor loadings λ̂i,τ is a multivariate normal distribution.

Proposition 1 (Ando and Bai (2018) Theorem 2) Suppose that Assumption A ∼

Assumption E hold. Then, we have

T 1/2
(
λ̂i,τ − λi,0,τ

)
∼ N(0,Σi,τ ), and N1/2

(
f̂ t,τ − f t,0,τ

)
∼ N(0,Θt,τ ),

where Σi,τ = τ(1− τ)Γ−1
i,0,τV0,τΓ

−1
i,0,τ and Θt,τ = τ(1− τ)Ψ−1

t,0,τR0,τΨ
−1
t,0,τ with

Γi,0,τ := plimT→∞T
−1

T∑
t=1

git,0f t,0,τf
′
t,0,τ , V0,τ := plimT→∞T

−1
T∑
t=1

f t,0,τf
′
t,0,τ ,

Ψt,0,τ := plimN→∞N
−1

N∑
i=1

git,0λi,0,τλ
′
i,0,τ , R0,τ := plimN→∞N

−1
N∑
i=1

λi,0,τλ
′
i,0,τ ,

git,0 := g
(
0|xit,f t,0,τ ,λi,0,τ

)
and g(·) being the true conditional density function of

yit −Qyit(τ |xit, bi,0,τ ,f t,0,τ ,λi,0,τ ).

This proposition implies that the estimated common factor and the estimated

factor loadings converge to their respective true values with
√
T and

√
N conver-

gence rates. Note that the true dimension of unobservable structures is unknown.

Following Ando and Bai (2018), the number of common factors is selected by mini-

mizing the following information criterion:

ICτ (r) = log

[
1

NT

T∑
t=1

N∑
i=1

ρτ
(
yit − x′

itb̂i,τ (r)− f̂ t,τ (r)
′λ̂i,τ (r)

)]
+ r × q(N, T ), (2)

7



where b̂i,τ (r), λ̂i,τ (r) and f̂ t,τ (r) is the estimated model parameters given the number

of common factors r, and q(N, T ) is the penalty term to capture model complexity.

In this paper, we use q(N, T ) = log
(

NT
N+T

) (
N+T
NT

)
. The following proposition, which

also follows the approach of Ando and Bai (2019), ensures that this penalty term

allows us to determine the true dimension of unobservable structure r0.

Proposition 2 (Ando and Bai (2018) Theorem 3) Suppose that Assumption A ∼

Assumption E hold. Under the model selection criterion (2), we have a consistent

model selector of the true dimension of the interactive effects (i.e., the true number

of common factors) r0,τ .

Based on this proposition, one can expect that the estimated factor structure

can well capture the unobservable cross-sectional dependence. The estimated factor

structure plays an important role to adjust the omitted factors that potentially

explain the cross-sectional returns. By analyzing the common factors, it may be

possible to speculate what factors other than the observed factors are driving the

market.

Our procedure also obtains the rτ -dimensional factor structure f̂ t,τ and the cor-

responding factor loading λ̂i,τ for a set of quantile points τ1, ..., τK . Here, K denotes

the number of quantile points. Therefore, for any quantile point τ , we can calcu-

late the asset return adjusted by the unobservable structure f̂
′
t,τ λ̂i,τ . This adjusted

return contains the information on the risk premium for the set of observables xit.

2.2 Quantile-dependent risk premium

After the quantile function is estimated, we obtain yit−f̂
′
t,τk

λ̂i,τk , which is the return

adjusted by the omitted unobservable structure. This adjustment is important, as

endogeneity would be an issue otherwise. This section proposes a new method to

estimate risk premium in the second pass. Our 2-pass approach is motivated by

the well-known 2-pass approach of Fama and MacBeth (1973). Our approach has
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several important properties, which we explain first. The practical implementation

of our approach is then described.

Property 1: Quantile-dependent

Intuitively, an investor may ask for more risk premia for negative returns and

less for positive returns. This implies that the risk premia will vary over the quantile

points of asset returns. From this perspective, the following relationship is expected:

Qzit (τ |xit, r(τ), bi,τ ) ≡ r(τ)′bi,τ , (3)

where r(τ) = (r1(τ), ..., rp(τ)) is the p-dimensional risk premium parameter, and

zit ≡ zit−f ′
t,0,τλi,0,τ is the asset return adjusted by the omitted unobservable struc-

ture.

When the risk premium and the regression coefficient do not depend on the

quantiles such that r(τ) = r and bi,τ = bi for all τ , it is obvious that the quantile

function does not depend on τ either. In this case, the quantile function (3) reduces

to the linear model r′bi. In other words, our model reduces to the model employed

in the 2-pass approach of Fama and MacBeth (1973). Needless to say, this constant

linear model can be estimated using the 2-pass approach of Fama and MacBeth

(1973). However, our empirical results reveal that the risk premium is quantile-

dependent.

Property 2: Positiveness of risk premium

We note that the risk premium should be positive, that is, r(τ) ≥ 0, τ ∈ (0, 1).

Although our approach allows for the risk premium to be negative, it would be

difficult to understand the negative risk premium. Additionally, if the risk pre-

mium is negatively estimated, the estimation procedure would face some technical

issues. One possible reason for the estimated risk premium being negative is model

misspecification. Because our approach carefully avoids omitted variable bias and

endogeneity, we can address the issue of misspecification.

Property 3: Monotonicity of risk premium
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As discussed in Property 1, an investor may ask for more risk premia for negative

returns and less for positive returns. From this point of view, the risk premium

should satisfy the monotonicity restriction

r(τa) ≥ r(τb), τa < τb, (4)

for any quantile points 0 < τa < τb < 1. If an investor’s attitude toward risk does not

depend on any quantiles, the risk premium reduces to the constant risk premium.

Our approach estimates the constant risk premium when the risk premium does not

depend on any quantiles τ .

Property 4: Monotonicity of the quantile function of asset return

Finally, the quantile function itself should satisfy the monotonicity restriction.

More specifically, Qzit(τ |xit, r(τ), bi,τ ,λi,τ ) = r(τ)′bi,τ should satisfy the monotonic-

ity restriction,

r(τa)
′bi,τa ≤ r(τb)

′bi,τb , (5)

for any quantile points 0 < τa < τb < 1. This implies that the risk premium r(τ)

should satisfy a monotone restriction of Qzit (τ |xit, r(τ), bi,τ ) from the definition of

the quantile function.

Property 5: Time-varying

In the last 15 years, investors have witnessed the subprime crisis in the U.S.,

the collapse of Lehman Brothers in 2007–2008, and the subsequent sovereign debt

crisis in Europe. It is natural to expect that the risk premium surged during these

chaotic periods compared with normal periods. Thus, we need to measure the risk

premium by taking account its time-varying property.

In the next section, we propose a practical implementation procedure to obtain

the risk premium that satisfies the restrictions (3), (4) and (5).
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2.3 Estimation of risk premium

To accommodate the time-varying property of the risk premium, we use the rolling

strategy, which can be handled by using the certain window of the historical data.

In our empirical analysis, the past 250 days are used. For simplicity of notation, we

drop the time dependency of the risk premium.

Taking account of the properties of the risk premium in (3), (4) and (5), we

estimate the risk premium by solving

r̂(τ) = argmin
1

KN

K∑
k=1

N∑
i=1

ρτk
(
yit − f̂

′
t,τk

λ̂i,τk − r(τk)
′bi,τk

)
,

under the following restrictions:

r(τk)
′bi,τk ≤ r(τk+1)

′bi,τk+1
, for k = 1, ..., K − 1, i = 1, ..., N, (6)

r(τk) ≥ r(τk+1). for k = 1, ..., K − 1, (7)

r(τk) ≥ 0, for k = 1, ..., K, (8)

where {τ1, τ2, ..., τK ; τk ≤ τk+1} are a set of K quantile points. In a practical

implementation, we use a set of K = 5 quantile points, that is, τ1 = 0.05, τ2 = 0.25,

τ3 = 0.5, τ4 = 0.75 and τ5 = 0.95. It is possible to use finer grids.

There are two issues. One is the value of regression parameter bi,τk+1
, which

should also satisfy the restriction (6). The other is that the risk premium should

satisfy these restrictions (7) and (8). However, the direct minimization of a loss func-

tion under a very large number of restrictions, whose order is O(KN), is extremely

time-consuming. This problem can be solved as follows.

Step 1 Similar to Bondell et al. (2010), for each i, we first transform the observable

factor structure xit into the unit hypercube [0, 1]p. This transformation aims to

satisfy the restriction (6). Note that once the transformation is performed, we

then transformed back after the estimation while retaining the noncrossing property.

Hereafter, we denote xit as the transformed vector in the unit hypercube [0, 1]p.
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Then, we estimate the regression coefficient vector bi,τ by minimizing the following

objective function:

ℓ(bi,τ ) =
1

KT

K∑
k=1

T∑
t=1

ρτk
(
yit − f̂

′
t,τk

λ̂i,τk − x′
itbi,τk

)
, (9)

subject to the monotone restriction of the quantile function. This problem can be

solved by directly applying the method of Bondell et al. (2010). Then, we obtain

a set of b̂i,τk for i = 1, ..., N , k = 1, ..., K. Note that the estimated regression

coefficient satisfies the monotone property of the quantile function.

Step 2 For each element of b̂τ , we first transform the estimated regression coefficients

b̂i,τ into the hypercube [−1, 0]p. This mapping is intended to ensure the monotone

property of quantile function (6) and the restrictions on the risk premium (7) and

(8) simultaneously.

Then, the risk premium parameter r(τ) at time t can be estimated by solving

r̂(τ) = argmin

[
1

NK

K∑
k=1

N∑
i=1

ρτk
(
yit − f̂

′
t,τk

λ̂i,τk − r(τk)
′b̂i,τk

)]
, (10)

under the following restriction:

r(τ1) ≥ r(τ2) ≥ ... ≥ r(τK) ≥ 0.

This estimation can be implemented by the restricted optimization problem. Once

we obtain the estimate r̂(τ), this parameter vector is transformed back to the original

space. We then obtain the estimates of the risk premium.

In the next section, we establish a large sample theory for our proposed proce-

dure.

3 Large Sample Theory

In this section, we provide an asymptotic theory of our estimators of the risk pre-

mium. There are several technical challenges. First, the estimated factor structure
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f̂
′
t,τk

λ̂i,τk is plugged into the objective function in (9). Because the correspond-

ing estimation problem involves an estimated factor structure, we must understand

whether the estimation error due to the estimated factor is negligible. Second, the

estimated risk premium is subject to the estimation uncertainty not only of f̂
′
t,τk

λ̂i,τk

but also of b̂i,τk . If the estimation errors are not negligible, then it is important to

investigate the statistical properties of the estimated bi by taking into account the

effect of estimated factor structures. However, these issues are not well understood.

This section establishes the asymptotic property of our estimators by taking these

errors into account.

Let b̃i,τk be the constrained infeasible estimator, which is obtained as the mini-

mizer of

ℓ̃(bi,τk) ≡
1

KT

K∑
k=1

T∑
t=1

ρτk
(
yit − f ′

t,0,τk
λi,0,τk − x′

itbi,τk
)
,

subject to the following restrictions:

x′
itbi,τk−1

≤ x′
itbi,τk , for t = 1, ..., T, k = 2, ..., K.

The following theorem establishes the relationship between b̃i,τk and b̂i,τk .

Theorem 1 Suppose that the conditions A ∼ F hold. Then, for any u ∈ RpK,∣∣∣P (√T (b̂i,τk − bi,0,τk
)
≤ u

)
− P

(√
T
(
b̃i,τk − bi,0,τk

)
≤ u

)∣∣∣→ 0.

so the constrained estimators share the same limiting distribution.

Theorem 1 implies that we can ignore the estimation error of the factor structure.

In other words, our approach captures the omitted common factors accurately and

thus avoids omitted variable bias.

Define r̃(τ) as the risk premium estimator, which is obtained by solving

r̃(τ) = argmin

[
1

NK

K∑
k=1

N∑
i=1

ρτk
(
yit − f ′

t,0,τk
λi,0,τk − r(τk)

′bi,0,τk
)]
, (11)

under the restriction r(τ1) ≥ r(τ2) ≥ ... ≥ r(τK) ≥ 0. In (11), the estimated pa-

rameters are f t,0,τ , λi,0,τ and bi,0,τ are the true parameter values. Although the risk
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premium parameter r(τ) was obtained by using the objective function (10), Theo-

rem 2 ensures that r̃(τ) and r̂(τ) has the same limiting distribution. Additionally,

we further define the classical quantile regression estimator

r̄(τ) = argmin

[
1

NK

K∑
k=1

N∑
i=1

ρτk
(
yit − f̂

′
t,τk

λ̂i,τk − r(τk)
′b̂i,τk

)]
.

Note that no constraints are imposed on the risk premium parameter. The following

theorem implies that the theoretical results on the standard quantile regression is

applicable to our estimator of the risk premium.

Theorem 2 Suppose that the conditions A ∼ F hold. Let r̂(τ) and r̃(τ) be the

constrained and unconstrained risk premium estimators, respectively, for the set of

quantiles τ . Then, for any u ∈ RpK,

∣∣∣P (√N (r̂(τ)− r0(τ)) ≤ u
)
− P

(√
N (r̃(τ)− r0(τ)) ≤ u

)∣∣∣→ 0.

so the constrained estimators share the same limiting distribution. Moreover, the

estimator r̂(τ) has the same limiting distribution as the classical quantile regression

estimator r̄(τ).

Theorem 2 implies that we can ignore the estimation error of the factor structure

and the regression coefficients. Thus, the risk premium estimator will approach

the true value with
√
N convergence rate. Additionally, inference for the

√
N -

consistent restricted estimator of the risk premium can be achieved by using the

known asymptotic results for classical quantile regression.

4 Empirical Results 1: Risk Premium

We apply our modeling procedure to the dataset from several major stock markets

around the world: those of the U.S., Japan, and the U.K..
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4.1 Data

The universe of stocks is the S&P 500, TOPIX, and the FTSE All-Share Index.

The composite stocks of the index at the end of the year are used as the universe of

the following year. Daily stock prices are obtained from Bloomberg, and the data

period spans 2006 to 2017.

Table 1 shows the 5%, 25%, 50%, 75% and 95% quantile points of daily stock

return for every year. With respect to S&P 500 stock returns, a range between 5%

quantile and 95% quantile is typically within −3% to 3%. In 2008 and 2009, the

range is much larger due to the global financial crisis, which increased the volatility

dramatically. Similar observations can be made for the TOPIX and the FTSE.

For the observable factors in the quantile-based asset pricing model, we employ

Fama-French’s 5 factors (Fama and French (2015)) and quantify the price of risk on

these factors. We obtain Fama-French’s 5 factors (North American factors, Japanese

factors, and European factors) from French’s website.5 Japanese 5 factors and Eu-

ropean 5 factors were converted to JPY and GBP currency, respectively. For the

risk-free rate, we employ the three-month deposit rate.

To analyze the universe of stocks for each country, a quantile-based asset pricing

model is specified as

Qyit (τ |xit) = αi,τ +Mktt × βMkt,i,τ +HMLt × βHML,i,τ + SMBt × βSMB,i,τ

+RMWt × βRMW,i,τ + CMAt × βCMA,i,τ + f ′
t,τλi,τ , (12)

where Mktt, HMLt, SMBt, RMWt and CMAt are Fama-French’s five factors at

time t. Here, Mkt is the return on a region’s value-weighted market portfolio minus

the risk-free rate, SMB (small minus big) is the average return on the nine small

stock portfolios minus the average return on the nine big stock portfolios, HML

(high minus low) is the average return on the two value portfolios minus the average

return on the two growth portfolios, RMW (robust minus weak) is the average

5http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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return on the two robust operating profitability portfolios minus the average return

on the two weak operating profitability portfolios, and CMA (conservative minus

aggressive) is the average return on the two conservative investment portfolios minus

the average return on the two aggressive investment portfolios. When Fama-French’s

five factors capture the behaviors of stock returns very well, the unobserved factor

structure f ′
t,τλi,τ in (12) will become redundant. However, as discussed in the next

section, the unobserved factor structure is important for capturing the behaviors of

stock returns.

4.2 Estimated common factors

In this section, we report how the number of unobservable factors varies over quan-

tiles, time and country. The period used for estimation is the past 250 days up to

the end of every month. Then, we roll the estimation period every month.

Figure 1 (a) shows the selected number of factors for each of the percentiles

in the U.S. stock market. It can be seen that there are large variations in the

selected number of factors over time. First, it is easy to observe an increase in

the selected number of factors in 2007-2008 during the global financial crisis. The

selected number of factors is the U.S. is r̂ = 10 at the 95% quantile in July 2007.

During this period, two hedge funds under the Bear Stearns umbrella, which had

purchased a large amount of subprime mortgage securities, failed, and the stock

market declined. Notably, the selected number of factors increased only in July, and

a smaller number of factors are selected before and after July 2007. We also observe

the increase in the number of factors in September-October 2008 when Lehman

Brothers collapsed. The influence of the subsequent European debt crisis, caused

by a concern of Greek departure from the EU, does not seem to have increased

the number of factors in the U.S.. This is consistent with the fact that the effect

of the European debt crisis is local within Europe. During this time period, the

U.S. market remained generally stable. During October 2012-January 2013, we can
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observe a surge in the number of factors. This period experienced political turmoil

due to the expiration of large tax cuts and the forced reduction of fiscal expenditures.

In 2013 and 2014, the selected number of factors remained at a relatively low level.

During this time period, the U.S. stock market had upward trends and maintained a

strong market environment. After 2015, due to the concern of the Chinese economy,

the devaluation of RMB and the EU withdrawal referendum in the U.K. on June

26, 2016, the number of factors increased. In summary, we see that the number of

factors increases when there are strong shocks to the stock market and when the

stock price fluctuates sharply. The influence of shocks is remarkable at lower/upper

tails compared with the median, where stock price fluctuation is not large.

Figure 1 (b) shows the selected number of factors for each of the percentiles in

the Japanese stock market. The trend of the selected number of factors is similar to

that of the U.S. stock market. It generally increases when the stock price fluctuates

sharply. For example, in April 2013, share prices surged because the Bank of Japan

announced quantitative and qualitative monetary easing (quantitative-qualitative

easing, QQE). The announcement clarified that the Bank of Japan was purchasing

financial assets such as government bonds and exchange-traded funds (ETFs) more

than ever. As expected, we observe an increase in the number of selected factors.

Finally, Figure 1 (c) shows the selected number of factors for each of the per-

centiles in the U.K. stock market. Again, there is a strong tendency for the number

of factors at the upper and lower quantiles (5%, 95%) to be larger than that at the

50% quantile. The number of factors also exhibits a trend similar to that in the

U.S. and Japanese stock markets. Unlike in the U.S. stock market, the European

debt crisis increased the number of selected factors in the U.K. stock market, as

expected. Moreover, it can be seen that the factor number has increased greatly as

a result of the EU withdrawal referendum in the U.K..
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4.3 Estimated risk premium

Figure 2 shows the estimated risk premia of Fama-French’s 5 factors. The risk

premia of these factors are obtained by estimating

Qzit (τ |xit) = rMkt(τ)× βMkt,i,τ + rHML(τ)× βHML,i,τ + rSMB(τ)× βSMB,i,τ

+rRMW (τ)× βRMW,i,τ + rCMA(τ)× βCMA,i,τ , (13)

where {βMkt,i,τ , βHML,i,τ , βSMB,i,τ , βRMW,i,τ , βCMA,i,τ} (i = 1, ..., N) are obtained in

Step 1 described in Section 2.2. Then, the risk premia of Fama-French’s 5 fac-

tors that depend on the quantile {rMkt(τ), rHML(τ), rSMB(τ), rRMW (τ), rCMA(τ)}

are obtained by using Step 2 given in Section 2.2. In this section, we discuss these

estimation results.

4.3.1 Comparison over factors

Regarding the market factor (Mkt), the risk premium moves up and down between 0

and 6 for all countries. The risk premium at the 5% quantile occasionally rises to an

exceptionally high level. In addition, except at the 5% quantile, the risk premium at

the other quantiles tends to remain at a similar level. This implies that the investors

request a greater risk premium for the 5% quantiles.

For the size factor (SMB), the level of risk premium in the U.S. market is lower

than that in the other two markets. In fact, the risk premium at the 5% quantile

ranges from nearly 0 to 1 in the U.S., while it ranges from nearly 0 to 6 in the

Japanese and U.K. markets. The risk premium is not as sensitive to quantiles in

the U.S. and Japan, for each quantile, suggesting that the risk premium required for

large stocks is similar to that for small stocks. However, the risk premium is very

sensitive to quantiles in the U.K.. In particular, a large risk premium is requested

for small stocks.

Third, the estimated risk premium for the value factor (HML) ranges from nearly

0 to about 4 in the U.S. market. In contrast, it ranges from nearly 0 to 10 and
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from nearly 0 to 8 for the Japanese and U.K. markets, respectively. In the U.S.,

a large premium is required at the 5% quantile compared to the other quantiles.

This indicates that investors require a large risk premium at lower quantiles. On

the other hand, in Japan and in the U.K., the level of risk premium varies across

quantiles. For example, the risk premium at 5% quantile is always larger than other

quantiles in Japan and the U.K..

For the profit margin (RMW) factor, the ranges of the risk premium in the

U.S., Japan and the U.K. are from nearly 0 to 3.5, nearly 0 to 7 and nearly 0 to 8,

respectively. In the U.S., the risk premium is very small at all quantiles during the

periods between 2006 and 2008 and between 2013 and 2015. This means that as long

as the stock market is on a steady upward trend, the demand for a risk premium

on the margin factor is nearly zero regardless of the performance of the stock. In

Japan and the U.K., we observe a tendency for the risk premium to decrease as the

quartile rises for the entire period.

Finally, for the investment attitude (CMA) factor, the risk premium ranges from

nearly 0 to about 5 in the U.S. In contrast, the range of the Japanese stock market

is nearly doubled, that is, from nearly 0 to 10. Similarly, in the U.K., it ranges from

0 to 9. Its difference in the risk premium at the 5% and 25% quantiles is much larger

than in other countries.

We also explored whether the risk premium is sensitive to major economic events,

such as the 2007-2008 financial crisis and the 2009 European debt crisis. Figure 2

indicates that the SMB and RMW factors in the U.S., the Mkt, SMB, HML and

RMW factors in Japan, and the SMB, RMW and CMA factors in the U.K. exhibit

larger changes compared to the other factors. These factors rise around 2007-2009,

indicating that investors require larger risk premia on these factors in a risk-averse

market environment. We note that the risk premia on the SMB and RMW factors

increased in each country during this time period. Thus, these factors are strongly

related to investors’ risk-aversion attitude. This result is consistent with that in
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Liew and Vassalou (2000), which noted that style portfolios would capture certain

aspects of the business cycle risk.

4.3.2 Comparison over quantiles

Figure 3 shows how the total sum of estimated risk premia of Fama-French’s 5

factors vary over quantiles. We can see that the sum of the risk premia of Fama-

French’s 5 factors at the 5% quantile in the U.S. remains at a lower level throughout

the period compared to those of Japan and the U.K.. In terms of the share of a

risk premium of an individual factor to the total risk premium, after the middle of

2011, the share of CMA became relatively high in the U.S. Although HML, Mkt

and RMW occasionally increase, SMB continues to be at a low level throughout the

period. The total risk premium of the Fama-French 5 factors in Japan and the U.K.

is much higher than in the U.S. It ranges from 5 to 10 throughout the time period.

Similar to the U.S., the risk premium of the CMA factor occupies a large proportion

in the total risk premium. We can see that RMW and HML occasionally increase.

In terms of the total risk premium at the 25% quantile, it remains at a level

of approximately 2 or less in the U.S. market. This level is much smaller than the

total risk premium at the 5% quantile. The shares of HML and CMA in the total

risk premium are higher than the others. This observation is similar to those at 5%

quantile except that the proportion of Mkt is relatively large. In Japan, the total

risk premium of Fama-French’s 5 factors remains at a higher level. We can also

see that the risk premium of the CMA, RMW and HML factors are relatively large

compared to the other two factors. In the U.K., the overall level drops more than

in Japan. Additionally, HML and SMB become increasingly important in addition

to CMA and RMW in the total risk premium.

At the 50% quantile, the total risk premium in the U.S. continues to be lower

than those in Japan and the U.K. In the U.S., the overall trend of the share of a risk

premium of individual factors to the total risk premium is similar to those of the
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25th percentile point. The share of risk premium of CMA becomes smaller compared

to that of Mkt. In Japan, the total risk premium becomes much smaller compared

with those of the 25% quantiles during some of the time period. In the U.K., the

risk premium level becomes smaller in 2007–2008 and 2011–2012 compared with the

other periods. The risk premium for the 75% and 95% quantiles continues to exhibit

similar changes to those for the 25% to 50% quantiles. The main difference is that

CMA is smaller during 2009-2010 in Japan and the U.K..

4.3.3 Estimation of risk premium by Fama-MacBeth regression

In this section, we compare our estimation result with that based on Fama-Macbeth’s

approach. We considered two versions of Fama-Macbeth’s approach. The first

version directly applies Fama-Macbeth’s procedure to the Fama-French 5 factors.

In the second version, the first stage applies the method in Section 2.1 and creates

the factor returns for each quantile. Then, we apply Fama-Macbeth’s procedure to

these quantile factors. Similar to the previous section, returns of the past 250 days

are used for the estimation.

Figure 4 shows the estimated risk premium based on the first approach. The

crucial difference between Fama-Macbeth’s method and our proposed method is

that the former may obtain negative estimates of the risk premium. We can see

that estimated risk premium of some factors has been negative for a long period of

time. In the U.S., for example, the estimated risk premium for the Mkt factor is

negative for the second half of 2008 through the first half of 2009 and for the year

2015-2016. For the RMW and CMA factors, the length of periods of positive risk

premium is comparable to that of the negative period. Notably, the SMB and HML

factors have a long negative period. Similarly, the estimated risk premia in Japan

and the U.K. can take negative values. In contrast, our approach ensures a positive

risk premium.

We also apply Fama-Macbeth’s approach to the factor returns for each quantile
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by using the estimated beta per quantile obtained. As in the analysis in Section 4.2,

the period used for estimation is the past 250 days up to the end of every month.

Then, we roll the estimation period every month. Figure 5 shows the estimated

risk premium based on Fama-Macbeth’s approach for the U.S., Japan and the U.K.

markets. We can see that the estimated risk premium may take negative values.

Additionally, the monotonicity of the risk premium over quantile does not hold; the

risk premium at a lower quantile (higher risk) is sometimes smaller than that at a

higher quantile (low risk). This is simply because there is no constraint on the risk

premium between the quantiles during the estimation process.

When we check the signs of the estimated risk premium, it can be seen that

the signs are approximately in agreement irrespective of the quantile. In addition,

the sign of the risk premium continues for a certain period. Then, the positive risk

premium and the negative risk premium are alternately repeated. Needless to say, in

all three countries, the magnitude of the estimated risk premium from our method

and those from Fama-MacBeth’s method are different.

4.3.4 Discussion

Our proposed method provides a useful tool for practitioners. For example, by

monitoring the movement of the risk premium on the Fama-French five factors, we

can see what kind of risk premium is required by investors and how much it varies

over quantiles. Additionally, paying attention to the movement of the lower quantile

point may be useful for detecting anomalies such as sudden changes in the market.

The proposed method is also useful for formulating an investment strategy. When

we construct a portfolio, it is common to pay attention only to the exposure to the

style factors. However, the risk premium of the factor is regarded as constant,

regardless of the quantile. In contrast, our method suggests that the risk premia

may vary over quantiles. By adopting the proposed method, there is a possibility

of constructing a portfolio that can expect a more precise acquisition of the risk
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premium.

5 Empirical Results 2: Impact of Passive Funds

on the Risk Premium

According to Morningstar’s 2017 report, in the U.S., the financial market experi-

enced capital inflows of $691.6 billion to passive funds, while active funds saw capital

outflows of $7.0 billion. The year 2017 is no exception. Migration from active funds

to passive funds has been a long trend since 2006. The trend may be explained by

a low management cost of passive funds, as well as the difficulty in finding skilled

active fund managers. The difficulty in finding a skilled fund manager is related to

the debate on whether active funds have generated excess returns. This topic has

been widely discussed by academics for a long time (see, e.g., Jensen (1969), Brinson

et al. (1986), Fama and French (2010), Cremers et al. (2016) and Crane and Crotty

(2018)).

In this section, carrying over the empirical results from Section 4, we further

explore the impact of passive funds on the risk premium. More specifically, we first

study the relationship between the Mkt factor and liquidity and show that these

two measures are related. As the next step, the impact of cash flow to passive funds

on the risk premium on the Mkt factor will be investigated.

5.1 Data: flows into passive funds

To quantify the impact of flows into passive funds, we study the passive funds linked

to the S&P 500, TOPIX, and the FTSE All-Share Index in each country. Appendix

B provides the details of the data acquisition process from Bloomberg, including

how to create a list of funds. For each of the mutual funds, we define the time series

named “Flowt” to measure the liquidity as follows:

Flowt =

(
TNAt

NAVt

− TNAt−1

NAVt−1

)
× NAVt,
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where TNAt is the total net asset at period t and NAVt is net asset value at period

t. When the number of outstanding shares is missing, we estimate it by linear

interpolation. As a result, the number of mutual funds and the exchange-traded

funds (ETFs) that track the S&P 500 were 61 and 14, respectively. The number of

mutual funds and ETFs for TOPIX were 61 and 6, and those for the FTSE All-Share

Index were 6 and 3, respectively.

Figure 6 summarizes the daily next flow of passive funds linked to the three

indices of S&P500, TOPIX, and FTSE All-Share every year. The net flow is nor-

malized by the trading value of the stock market. It is worth noting that the net

flow is normalized by the total of the transaction (sell and buy) at the stock market.

Therefore, the normalized share becomes larger when the net transaction at the

stock market is employed. We can see that the inflow to the passive fund trading

has been positive in all three countries. It is natural to expect that the impact of

this net flow on the stock price is not negligible.

5.2 Empirical results

5.2.1 The relationship between the Mkt factor and the liquidity factor

We first study the relationship between the Mkt factor and the liquidity factor.

Because we study market-weighted passive funds that are representative of each

country’s market, it is most likely that Mkt receives a large impact from in/out flows

to passive funds. The correlation between the exposure to Mkt for each quantile and

the liquidity is calculated over time. We carried out the same analysis for the other

Fama-French factors. However, no clear relationships are observed for the other 4

Fama-French factors.

Figure 7 shows the historical correlation between the Mkt factor and the liquidity

factor for each of the quantiles. In the U.S. market, the correlation is largely positive

at the 95th and 75th percentile points. On the other hand, the correlation is largely

negative at low quantiles such as the 5th percentile point and the 25th percentile
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point. This implies that liquidity contributes to the large fluctuations in the stock

market. Similar observations can be made for the Japanese and the U.K. stock

markets. We can also observe that the magnitude of correlation of the U.K. is

relatively smaller than that of the U.S. and Japanese markets. In summary, the

analysis reveals that there is a strong correlation between the Mkt factor and the

liquidity factor. In the next section, we further examine whether the passive flow is

affecting the risk premium on the Mkt factor.

5.2.2 The relationship between the market risk premium and passive
flow

We study the correlation between the market risk premium on the Mkt factor and

the flows to passive funds. Figure 8 shows the calculated correlation from 2008 April

to 2017 December for each of the three markets.

For the U.S. market, we can see relatively high correlation from 2007 to 2010.

This period coincides with the term when the inflow to the passive funds accounted

for a large share of the market inflow. Notably, there is no significant difference in

the correlation between quantiles in this period. From these results, it is likely that

the increase in inflow to passive funds equally affected both high to low quantiles.

From 2011 to the end of 2016, the correlation was around 0. We note that that the

magnitude of the correlation is different between the 5th percentile point and the

other quantile points. For example, from October 2012 to June 2013, the correlation

with respect to the 5 percentile points behaves differently from those of the other

quantiles. This indicates that some other factors in addition to the inflows to passive

fund factors are important when the largely negative stock return is observed.

Compared to the U.S. market, the correlation for the Japanese market behaves

differently. The magnitude of correlation varies over quantiles. For example, in 2010

and 2015-16, a largely positive correlation is observed at the 5th percentile point

only. Thus, the correlation with the passive flow is high when stock market returns

are low. In April 2013, the Bank of Japan announced quantitative-qualitative easing
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(QQE), purchasing financial assets such as government bonds and listing investment

funds (ETFs) more than ever. We can see the effect such that the stock price is

supported by this policy.

The correlation of the U.K. market also shows different behavior. The magni-

tudes of correlation at each quantile point are different compared to the U.K. and

Japan. We can observe the negative correlation, while a positive is expected if cash

flows are affecting market factors. Together with the observations of the U.S. and

Japanese markets, the magnitude of the influence of capital flows in the U.K. market

factors seems smaller compared with that in the U.S. and Japanese markets.

6 Conclusion

A quantile-based asset pricing model was introduced. The proposed method has

several attractive features. First, the method automatically detects the set of nec-

essarily common factors for a working asset pricing model. This is a very important

feature because a more (or less) important factor may become less (or more) im-

portant when a model is misspecified. Second, the method always ensures that

the estimated risk premium is positive. Third, the method can allow for the risk

premium to vary over quantiles while keeping economic intuition. Note that the

method obtains the constant risk premium when it does not vary over quantiles.

This is an attractive feature because, as shown in our empirical analysis, the risk

premium varies over quantiles. Fourth, the developed asymptotic theory ensures

the consistency and the asymptotic normality of the estimated parameters. Finally,

the method transforms a large number of stock returns simultaneously and thus is

capable of large-scale data analysis.

To justify our procedure, we further studied the theoretical property of our pro-

posed procedure. Due to the estimation errors in the unobservable common factor

structures, we needed to develop the asymptotic results carefully. More specifically,

we developed the asymptotic theory of the proposed risk premium estimator by tak-
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ing into account the effect of estimated factor structure. Under the condition when

the time-series dimension and individual dimension are large, we developed a novel

strategy for establishing asymptotic theory.

The model and the estimation method are applied to the universe of compo-

nent stocks from S&P500 in the U.S., TOPIX from Japan, and FTSE All-Share

index from the U.K. Based on our approach, our empirical results revealed many

interesting findings.
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(a) U.S.

(b) Japan

(c) UK

Figure 1: Selected number of factors at quantiles 5%, 50% and 95%, respectively.
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(a) SP500 Mkt (b) SP500 SMB

(c) SP500 HML (d) SP500 RMW

(e) SP500 CMA

Figure 2: S&P500: Quantified price of risk at quantiles 5%, 25% 50%, 75% and
95%, respectively.
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(a) TOPIX Mkt (b) TOPIX SMB

(c) TOPIX HML (d) TOPIX RMW

(e) TOPIX CMA

Figure 2: (Continued) TOPIX: Quantified price of risk at quantiles 5%, 25% 50%,
75% and 95%, respectively.
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(a) FTSE Mkt (b) FTSE SMB

(c) FTSE HML (d) FTSE RMW

(e) FTSE CMA

Figure 2: (Continued) FTSE: Quantified price of risk at quantiles 5%, 25% 50%,
75% and 95%, respectively.

33



U.S. 5% U.S. 25%

Japan 5% Japan 25%

UK 5% UK 25%

Figure 3: Total sum of risk premium of Fama-French 5 factors.
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U.S. 50% U.S. 75%

Japan 50% Japan 75%

UK 50% UK 75%

Figure 3: (Continued). Total sum of risk premium of Fama-French 5 factors.
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U.S. 95%

Japan 95%

UK 95%

Figure 3: (Continued). Total sum of risk premium of Fama-French 5 factors.
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(a) SP500

(b) TOPIX

(c) FTSE

Figure 4: Quantified price of risk of Fama and French 5 factors. The results are
obtained based on Fama-Macbeth (1973)’s approach.
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(a) SP500 Mkt (b) SP500 SMB

(c) SP500 HML (d) SP500 RMW

(e) SP500 CMA

Figure 5: S&P500: Quantified price of risk at quantiles 5%, 25% 50%, 75% and 95%,
respectively. The results are obtained based on Fama-Macbeth (1973)’s approach.
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(a) TOPIX Mkt (b) TOPIX SMB

(c) TOPIX HML (d) TOPIX RMW

(e) TOPIX CMA

Figure 5: (Continued) TOPIX: Quantified price of risk at quantiles 5%, 25% 50%,
75% and 95%, respectively. The results are obtained based on Fama-Macbeth
(1973)’s approach.
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(a) FTSE Mkt (b) FTSE SMB

(c) FTSE HML (d) FTSE RMW

(e) FTSE CMA

Figure 5: (Continued) FTSE: Quantified price of risk at quantiles 5%, 25% 50%, 75%
and 95%, respectively. The results are obtained based on Fama-Macbeth (1973)’s
approach.
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Figure 6: Capital inflow and outflow of passive funds.
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(a) U.S.

(b) Japan

(c) UK

Figure 7: Correlation between the Mkt factor and the liquidity factor.
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(a) U.S.

(b) Japan

(c) U.K.

Figure 8: Time series plot of the correlation between the Mkr risk premium and the
capital inflow to passive funds.
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S&P 500
Year 5% 25% 50% 75% 95%

2005 -0.022 -0.008 0.000 0.008 0.024
2006 -0.023 -0.007 0.000 0.008 0.025
2007 -0.029 -0.009 0.000 0.009 0.028
2008 -0.065 -0.020 -0.001 0.016 0.062
2009 -0.050 -0.014 0.001 0.016 0.055
2010 -0.030 -0.009 0.001 0.010 0.032
2011 -0.035 -0.011 0.000 0.011 0.035
2012 -0.024 -0.008 0.000 0.009 0.026
2013 -0.020 -0.006 0.001 0.009 0.023
2014 -0.021 -0.006 0.001 0.008 0.021
2015 -0.027 -0.009 0.000 0.009 0.026
2016 -0.027 -0.007 0.001 0.009 0.028
2017 -0.019 -0.005 0.001 0.007 0.020

TOPIX
Year 5% 25% 50% 75% 95%

2005 -0.024 -0.008 0.000 0.010 0.032
2006 -0.034 -0.012 0.000 0.011 0.035
2007 -0.033 -0.012 0.000 0.010 0.033
2008 -0.059 -0.020 -0.001 0.016 0.056
2009 -0.041 -0.014 0.000 0.013 0.045
2010 -0.031 -0.010 0.000 0.010 0.032
2011 -0.034 -0.011 0.000 0.011 0.036
2012 -0.029 -0.010 0.000 0.010 0.033
2013 -0.034 -0.010 0.000 0.013 0.040
2014 -0.029 -0.009 0.000 0.010 0.031
2015 -0.030 -0.009 0.000 0.010 0.032
2016 -0.037 -0.011 0.000 0.011 0.038
2017 -0.022 -0.007 0.000 0.008 0.027

ASX
Year 5% 25% 50% 75% 95%

2005 -0.021 -0.005 0.000 0.006 0.024
2006 -0.026 -0.007 0.000 0.008 0.028
2007 -0.032 -0.009 0.000 0.009 0.031
2008 -0.058 -0.018 -0.001 0.014 0.053
2009 -0.043 -0.012 0.000 0.015 0.050
2010 -0.031 -0.009 0.000 0.010 0.033
2011 -0.034 -0.011 0.000 0.010 0.033
2012 -0.027 -0.008 0.000 0.009 0.030
2013 -0.025 -0.007 0.000 0.009 0.027
2014 -0.025 -0.007 0.000 0.007 0.025
2015 -0.025 -0.007 0.000 0.008 0.027
2016 -0.029 -0.008 0.000 0.009 0.032
2017 -0.021 -0.006 0.000 0.007 0.023

Table 1: Summary statistics
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A Assumptions and Technical Details

For clarity, we state the assumptions on the quantile function in (1) introduced in

the main text.

A.1 Assumptions

Assumption A: Common factors

Let F be a compact subset of Rrτ . The unobservable common factors f t,0,τ ∈ F

satisfy T−1∑T
t=1 f t,0,τf t,0,τ

′ → ΣFτ as T → ∞, where ΣFτ is an rτ × rτ positive

definite matrix.

Assumption B: Factor loadings and regression coefficients

Let B and L be compact subsets Rp+1 and Rrτ . The regression coefficient bi,0,τ

and the factor-loading for the common factors satisfy bi,0,τ ∈ B and λi,0,τ ∈ L. In

addition, the factor-loading matrix Λ0,τ = (λ1,0,τ , . . . ,λN,0,τ )
′ satisfies N−1Λ′

0,τΛ0,τ

being a rτ×rτ positive definite matrix for allN . Also, the matrixN−1∑N
i=1 bi,0,τb

′
i,0,τ

is positive definite for all τ ∈ (0, 1).

Assumption C: Idiosyncratic error terms

(C1): The random variable εit,τ = yit − x′
itbi,0,τ − f ′

t,0,τλi,0,τ is independently dis-

tributed over i and t, conditional on X, F0,τ and Λ0,τ . In addition, it satisfies

E
[
|εit,τ − E[εit,τ ]|K

]
< K!CK

ε for K ≥ 1 and a positive constant Cε <∞.

(C2): The conditional density function of εit,τ given xit,f t,0,τ ,λi,0,τ , denoted as

git
(
εit,τ |xit,f t,0,τ ,λi,0,τ

)
, is continuous. In addition, for any compact set C,

there exists a positive constant ḡ > 0 (depending on C) such that infc∈C git(c|xit,f t,0,τ ,λi,0,τ ) ≥

ḡ for all i and t.

Assumption D: Predictors and design matrix

(D1): For a positive constant Cx, predictors satisfy supit ∥xit∥ < Cx <∞.
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(D2): There exist positive constants C1 and C2 such that for each Xi,

0 < C1 < λmin(T
−1(Xi, F0,τ )

′(Xi, F0,τ )) < λmax(T
−1(Xi, F0,τ )

′(Xi, F0,τ )) < C2 <∞,

where Xi = (xi1, ...,xiT )
′, λmin(A) and λmax(A) denote the smallest and the

largest eigenvalue of a matrix A, respectively. These inequalities hold with

probability approaching 1 as T → ∞.

(D3): Define Ai,τ = 1
T
X ′

iMFτXi, Bi,τ = (λi,0,τλ
′
i,0,τ )⊗IT , C ′

i,τ = 1√
T
λ′

i,0,τ ⊗(X ′
iMFτ ),

MFτ = I−Fτ (F
′
τFτ )

−1F ′
τ . Let Fτ be the collection of Fτ such that Fτ = {Fτ :

F ′
τFτ/T = I}. We assume

infFτ∈Fτλmin

[
1

N

N∑
i=1

Ei,τ (Fτ )

]
> 0,

where Ei,τ (Fτ ) = Bi,τ − C ′
i,τA

−1
i,τCi,τ and inf is taken under the fixed τ which

is the focus.

Assumption E: Restrictions on N , T

N and T in Step 1 satisfy T 1/2/N1−γ → 0 andN1/2/T 1−γ → 0 for a small γ satisfying

1/16 < γ.

Assumption F: Restrictions on τk

N−1/2mink(τk+1 − τk) → ∞.

Remark 1 Assumptions A ∼ E are taken from Ando and Bai (2018). The full rank

assumption in Assumptions A and B is imposed to ensure the number of common

factors being rτ . In Assumption C, we impose some mild conditions on the idiosyn-

cratic errors. As given in Assumption D, we need to impose the regularity condition

on design matrix Xi and common factor structure F0,τ . the usual rank condition is

used for identification in (D2). (D3) is also imposed to ensure the consistency of the

estimated parameters. Assumption E bands the diverging magnitudes of N and T.

However, it is not strong assumption. Assumption F is used for Theorem 1 so that

the inference for the N1/2-consistent constrained estimator.
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A.2 Proof of Theorem 1

We use Knight’s identity,

ρτ (u− ν)− ρτ (u) = −νψτ (u) +
∫ ν

0
(I(u ≤ s)− I(u ≤ 0))ds,

with ψτ (u) = τ − I(u ≤ 0). From Proposition 1, we have

T 1/2
(
λ̂i,τ − λi,0,τ

)
∼ N(0,Σi,τ ), and N1/2

(
f̂ t,τ − f t,0,τ

)
∼ N(0,Θt,τ ),

which implies

max
i

∥λ̂i,τ − λi,0,τ∥ = Op(log(N)/
√
T ),

max
t

∥f̂ t,τ − f t,0,τ∥ = Op(log(T )/
√
N).

For some positive constant C, we thus have

max
i

max
t

∥∥∥f̂ ′
t,τk

λ̂i,τk − f ′
t,0,τk

λi,0,τk

∥∥∥
≤ C ×max

t

∥∥∥f̂ t,τk
− f t,0,τk

∥∥∥+ C ×max
i

∥∥∥λ̂i,τk − λi,0,τk

∥∥∥
= Op(log(N)/

√
T ) +Op(log(T )/

√
N)

= op(1).

Using these results, we have

1

KT

K∑
k=1

T∑
t=1

ρτk
(
yit − f̂

′
t,τk

λ̂i,τk − x′
itbi,τk

)

=
1

KT

K∑
k=1

T∑
t=1

ρτk
(
yit − f ′

t,0,τk
λi,0,τk − x′

itbi,τk −
{
f̂

′
t,τk

λ̂i,τk − f ′
t,0,τk

λi,0,τk

})

=
1

KT

K∑
k=1

T∑
t=1

ρτk
(
yit − f ′

t,0,τk
λi,0,τk − x′

itbi,τk
)

− 1

KT

K∑
k=1

T∑
t=1

{
f̂

′
t,τk

λ̂i,τk − f ′
t,0,τk

λi,0,τk

}
ψτ

(
yit − f ′

t,0,τk
λi,0,τk − x′

itbi,τk
)

+
1

KT

K∑
k=1

T∑
t=1

∫ ˆf
′

t,τk

ˆλi,τk
−f ′

t,0,τk
λi,0,τk

0

(
I(yit − f ′

t,0,τk
λi,0,τk − x′

itbi,τk ≤ s)

−I(yit − f ′
t,0,τk

λi,0,τk − x′
itbi,τk ≤ 0)

)
ds

=
1

KT

K∑
k=1

T∑
t=1

ρτk
(
yit − f ′

t,0,τk
λi,0,τk − x′

itbi,τk
)
+ op(1).
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From now, we investigate the asymptotic property of the infeasible estimator

b̃i,τk , which is obtained as the minimizer of

ℓ̃(bi,τk) ≡
1

KT

K∑
k=1

T∑
t=1

ρτk
(
yit − f ′

t,0,τk
λi,0,τk − x′

itbi,τk
)
.

subject to the restrictions:

x′
itbi,τk−1

≤ x′
itbi,τk , t = 1, ..., T, k = 2, ..., K.

Regarding yit − f ′
t,0,τk

λi,0,τk is the response variable, this optimization problem is

identical to that of Bondell et al. (2010). Thus, the asymptotic property of b̃i,τk

directly follows from Theorem 1 of Bondell et al. (2010). Thus, we obtain the claim.

This completes the proof of Theorem 1.

A.3 Proof of Theorem 2

Using the same argument used in the proof of Theorem 1, the objective function of

the risk premium parameter is re-expressed as

1

NK

K∑
k=1

N∑
i=1

ρτk
(
yit − f̂

′
t,τk

λ̂i,τk − r(τk)
′b̂i,τk

)

=
1

NK

K∑
k=1

N∑
i=1

ρτk
(
yit − f ′

t,0,τk
λi,0,τk − r(τk)

′bi,0,τk
)
+ op(1),

where used

max
i

∥λ̂i,τ − λi,0,τ∥ = Op(log(N)/
√
T ),

max
i

∥b̂i,τ − bi,0,τ∥ = Op(log(N)/
√
T ),

max
t

∥f̂ t,τ − f t,0,τ∥ = Op(log(T )/
√
N)

and Knight’s identity.

Thus, it is enough to show the asymptotic equivalence of r̃(τ) and r̄(τ). Let

ẑ = N1/2 (r̄ − r0) and z̃ = N1/2 (r̃ − r0). Similar to Bondell et al. (2010), we can

decompose

|P (ẑ ≤ v)− P (z̃ ≤ v)| = |P (ẑ ≤ v|ẑ ̸= z̃)− P (z̃ ≤ v|ẑ ̸= z̃)| × P (ẑ ̸= z̃) .
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Because the first term in the product is bounded by 1, it suffices to show that

P (ẑ = z̄) → 1. As discussed in the proof of Theorem 1 in Bondell et al. (2010), due

to the formulation of the estimator, the event ẑ = z̄ is equivalent to the event that

the quantile estimator r̄(τ)′bi,0,τ based on r̄(τ) maintains its appropriate quantile

ordering. To show that the probability of this event goes to one, we consider the

difference in the following quantity N1/2
(
r̄(τk+1)

′bi,0,τk+1
− r̄(τk)

′bi,0,τk
)
with τk+1 >

τk and τk+1 and τk are from a set of K pre-specified quantile levels τ1 < ... < τK in

the estimation.

The difference N1/2
(
r̄(τk+1)

′bi,0,τk+1
− r̄(τk)

′bi,0,τk
)
can be decomposed as

N1/2
(
r̄(τk+1)

′bi,0,τk+1
− r̄(τk)

′bi,0,τk
)

= N1/2
(
r̄(τk+1)

′bi,0,τk+1
− r0(τk+1)

′bi,0,τk+1
)−N1/2(r̄(τk)

′bi,0,τk − r0(τk)
′bi,0,τk

)
+N1/2

(
r0(τk+1)

′bi,0,τk+1
− r0(τk)

′bi,0,τk
)
. (14)

It is known that the unrestricted estimator r̄ is N1/2-consistent. Therefore, the first

two terms in (14) are Op(1) for any τa.

We next investigate the last term in (14). By the Mean Value Theorem, we have

N1/2
(
r0(τk+1)

′bi,0,τk+1
− r0(τk)

′bi,0,τk
)
= (τk+1 − τk)

∂

∂τ
r0(τk∗)

′bi,0,τk∗ ,

where τk ≤ τk∗ ≤ τk+1. Because bi,0,τ < 0 and the negativity of r0(τk), we have

∂

∂τ
r0(τk∗)

′bi,0,τk∗ > C > 0.

where C is some positive constant. Therefore, we have

N1/2
(
r0(τk+1)

′bi,0,τk+1
− r0(τk)

′bi,0,τk
)
≥ C ×N1/2 × (τk+1 − τk).

By assumption, the right hand side diverges. This indicates that the third term in

(14) dominates in the difference N1/2
(
r̄(τk+1)

′bi,0,τk+1
− r̄(τk)

′bi,0,τk
)
with probabil-

ity tending to one. Noting that the difference τk+1 − τk > 0, the difference will be

positive. This implies that r̄(τ) and r̂(τ) share the same asymptotic distribution.

This completes the proof of Theorem 2.

49



B Data acquisition procedure of mutual fund data

First, we obtained a list of passive funds that are classified as mutual funds. The

screening criteria are as follows: General Attribute is ‘Index Fund’, Fund Type is

‘Open-End Funds’, and Fund Primary Share Class is ‘Yes’. Then, we obtained

a list of passive funds that are classified as ETFs. The screening criteria are as

follows: Fund Type is ‘Exchange Traded Products’, and Fund Primary Share Class

is ‘Yes’. After we obtained the list of passive funds, we omitted the leveraged funds,

bear funds, and misclassified funds. Specifically, we calculated the beta against the

benchmark of each fund and then excluded funds that have beta less than 0.95 or

greater than 1.05. The flow data for ETFs were directly obtained from Bloomberg.

However, the flow data of ETFs in the U.S. were adjusted a lag of one day because

the shares outstanding is reported by the ETF issuers with a one-day lag. There are

some administrators who reported no lag data, but it has not been distinguished on

Bloomberg data. 6 For this reason, we adjusted one day for every ETF in the U.S.

6We confirmed this point to Bloomberg.
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