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From this, it follows that

γ1,2(h) = (1− e−λ1δ)2(1− e−λ2δ)e−λ1δ(h−1)

× Pr{z2 < z1|z1, z2 < δ}E(z1 − z2|z2 < z1 < δ)

+ (1− e−λ1δ)(1− e−λ2δ)e−λ1δh

× (
E(min{z1, z2})+ δ − E(z2|z2 < δ)

)
.

The expectations on the second line are straightforward, that is,

Eλ(min{z1, z2})= 1

λ1 + λ2

and

Eλ(z2|z2 < δ)= 1− e−λ2δ(1+ λ2δ)

(1− e−λ2δ)λ2
.

To work out E(z1 − z2|z2 < z1 < δ), we proceed as follows:

p(z1, z2|z1, z2 < δ)= λ1λ2e−λ1z1e−λ2z2

(1− e−λ1δ)(1− e−λ2δ)
, z1, z2 < δ.

Integrating the foregoing density over z2 from 0 to z1, and then
over z1 from 0 to δ gives

Pr(z2 < z1|z1, z2 < δ)= 1− e−λ1δ − λ1
(λ1+λ2)

(1− e−(λ1+λ2)δ)

(1− e−λ1δ)(1− e−λ2δ)
,

as required before. Next,

p(z1, z2|z2 < z1 < δ) = p(z1, z2|z1, z2 < δ)

Pr(z2 < z1|z1, z2 < δ)

= ω−1λ1λ2e−λ1z1e−λ2z2, (A.1)

where ω = 1− e−λ1δ − λ1
(λ1+λ2)

(1− e−(λ1+λ2)δ). From this, we
then have

E(z1 − z2|z2 < z1 < δ)

= ω−1
∫ δ

0

∫ z1

0
(z1 − z2)λ1λ2e−λ1z1e−λ2z2 dz2 dz1

= ω−1{λ2
2 − λ2

1e−(λ1+λ2)δ

− e−λ1δ(λ1 + λ2)(λ1λ2δ − λ1 + λ2)
}

× {
λ1λ2(λ1 + λ2)

}−1
.

Collecting the foregoing terms gives the required result.

ADDITIONAL REFERENCES

Bandi, F. M., and Russell, J. R. (2004), “Microstructure Noise, Realized Vari-
ance, and Optimal Sampling,” unpublished manuscript, The University of
Chicago, Graduate School of Business.

Epps, T. W. (1979), “Comovements in Stock Prices in the Very Short Run,”
Journal of the American Statistical Association, 74, 291–298.

Griffin, J. E., and Oomen, R. C. (2005a), “Realized Covariance Measurement
in the Presence of Non-Synchronous Trading and Market Microstructure
Noise,” unpublished manuscript, University of Warwick, Warwick Business
School.

(2005b), “Sampling Returns for Realized Variance Calculations: Tick
Time or Transaction Time?” unpublished manuscript, University of War-
wick, Warwick Business School.

Niederhoffer, V., and Osborne, M. F. M. (1966), “Market Making and Reversal
on the Stock Exchange,” Journal of the American Statistical Association, 61,
897–916.

Comment
Peter C. B. PHILLIPS

Cowles Foundation for Research in Economics, Yale University, New Haven, CT 06520,
University of Auckland, and University of York (peter.phillips@yale.edu)

Jun YU
School of Economics and Social Sciences, Singapore Management University, Singapore 178903
(yujun@smu.edu.sg)

1. INTRODUCTION

With the availability of ultra-high–frequency financial data,
the task of finding an appropriate econometric model to de-
scribe the movement of financial variables at the tick-by-tick
level has become an important goal in financial econometric re-
search. The task has both theoretical and empirical dimensions.
From an empirical perspective, the near-continuous recording
of financial asset prices has opened up the intriguing possibility
of fitting the quadratic variation process empirically, leading to
what is possibly the most direct nonparametric measure of asset
price volatility. The resulting quantity, known in the financial
econometrics literature as realized variance (RV), measures the
accumulated or integrated variance (IV) of the efficient price
process from some given initialization. This quantity is now the
focal point of much of the latest research on market volatility.

Compared with parametric methods of measuring volatility,
this nonparametric approach basically trades off efficiency in
exchange for robustness to specification bias. The theoretical
justification of RV as a measure of volatility comes directly
from standard stochastic process theory, according to which
the empirical quadratic variation converges to IV as the infill-
sampling frequency goes to zero. The empirical method in-
spired by this convergence has become popular only recently
with the availability of ultra-high–frequency data, but the idea
has been around for a long time, as indicated by Hansen and
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Lunde (hereafter HL). In particular, it has been discussed by
econometricians working with continuous-time models, an ex-
ample being Maheswaran and Sims (1993).

Just as these exciting empirical possibilities have been recog-
nized, a number of practical issues have arisen that challenge
the suitability of conventional model specifications on which
empirical quadratic variation measures depend. For example,
although conventional wisdom may accept that efficient market
prices can be well described by time-homogeneous continuous-
time jump-diffusion models at daily or lower observation fre-
quencies, it is well understood that at higher frequencies these
models are usually too simplistic, and at ultra-high frequencies
the presence of microstructure noise is a compelling compli-
cation that affects the dynamic properties of market prices and
distorts empirical quadratic variation measures.

In practice, therefore, as some recently articulated arguments
have emphasized, one should be careful in pushing the infill-
sampling frequency to the limit, even though this is precisely
what stochastic process theory would suggest in the ideal en-
vironment where the efficient price is observed. Indeed, the
existence of market microstructure noise means that empiri-
cal quadratic variation measures are themselves contaminated
with noise at high observation frequencies. Rather unsurpris-
ingly, in the presence of noise, consistent estimation of IV in-
evitably depends on modifications to the empirical quadratic
variation that take into account the dynamic structure of the
market microstructure noise. In this regard, some recognition
of the properties of microstructure noise in the data is desirable
in designing the modifications. Because both the microstructure
noise and the efficient price are latent variables, direct measure-
ment of the noise is not possible, and thus the empirical and
theoretical modeling issues involve some subtleties. Paramount
among these is that careful attention to specification is required
to achieve identification and the empirical separation of noise
from IV measures. Moreover, it should be acknowledged that
modifications to the empirical IV measures will usually stem
directly from modeling assumptions made about the form of
the latent microstructure noise. Accordingly, the resulting esti-
mates may not be robust to relaxation of these assumptions.

HL’s article provides useful theoretical analysis of the finite-
sample and asymptotic properties of several IV measures and
makes interesting empirical contributions to this emerging
literature. It also documents some stylized facts about market
microstructure noise and its relation to the hypothesized under-
lying efficient price process. These stylized facts are useful in
the development of consistent and more efficient nonparamet-
ric and parametric estimators of IV. The authors’ contribution
to this literature is therefore most welcome.

In developing its theoretical and empirical results, HL im-
pose a stationarity condition on market microstructure noise.
This assumption has been used in other ongoing work in the
field. Prima facie, this assumption seems quite reasonable, but
we question its suitability. Some of HL’s results are based on
more specialized cases, such as pure microstructure noise and
moving average noise. As in much earlier work, the signature
plot is the main graphical tool used here to assess the valid-
ity of these microstructure noise assumptions, but conventional
ACF and PACF plots are also used. HL focus on the bias in IV
estimation induced by microstructure noise and provide useful

methods for correcting for this bias. But because the corrections
do not always retain positivity in the estimates, a clear practical
recommendation does not emerge from their analysis.

In commenting on HL’s article we begin by focusing on
the modeling assumptions used to achieve microstructure noise
separation and the identification of IV, giving particular at-
tention to the advantages, limitations, and suitability of the
commonly used pure microstructure noise assumption and its
stationary extensions. Second, we discuss the use of the sig-
nature plots used by HL and other authors as a graphical di-
agnostic, and suggest an alternative graphical tool called the
microstructure noise function that we are using in our own on-
going work (Phillips and Yu 2005a,b). The microstructure noise
function has some advantages as a graphical device over the sig-
nature plot as a noise diagnostic and lends itself to nonparamet-
ric measurement. The final part of our comment outlines a new
approach that enables us to study IV and microstructure noise in
a panel regression framework. This approach provides a mech-
anism for analyzing and removing the effects of microstructure
noise in a nonparametric way while still treating IV in a general
way through the presence of a fixed effect.

2. STATIONARY AND PURE NOISE ASSUMPTIONS

Let p∗(t), p(t), and u(t) denote the latent log-efficient price
process, the observed log-price process, and the noise process.
The time interval is standardized to [0,1] and is partitioned into
a grid of m subintervals as Gm = {0 = t0,m, t1,m, . . . , tm,m = 1}.
The sampling interval on this grid is the mesh size � =
mini |ti,m − ti−1,m|, and for equispaced observations, we have
�= ti,m − ti−1,m = 1

m for all i.
Like other authors, HL assume that the data-generating

mechanism in continuous time is given by the system

p(t) = p∗(t)+ u(t), (1)

dp∗(t) = µ(t)dt + σ(t)dB(t), (2)

where the efficient price p∗(t) is a latent unobserved variable.
A key assumption of HL (assumption 2) is that u(t) is covari-
ance stationary. Two subcases are given special attention: the
pure noise assumption (assumption 3) and the moving average
assumption (assumption 4).

The apparent advantage of the stationarity and pure noise as-
sumptions is that they substantially simplify econometric analy-
sis. To see this, first consider the pure noise assumption where
u(t) is taken to be iid (0,ω2) over all grids such as Gm and also
to be independent of p∗(t). A direct consequence of this as-
sumption is that the conditional expectation of the RV measure
has the following very simple expression:

E∗
(
RV(m)

)= E
(
RV(m)

∣∣{p∗(t)}10)= IV + 2mω2, (3)

where IV (= ∫ 1
0 σ 2(t)dt) is the integrated variance of the effi-

cient price and RV(m) =∑m
i=1 y2

i,m with yi,m = pi,m−pi−1,m and
pi,m = p(ti,m). Graphical plotting of the quantity RV(m) against
the sampling interval � produces a volatility signature plot.
For (3), it is apparent that the curve is simply a reciprocal func-
tion that has the simple form

E∗
(
RV(m)

)= IV + 2mω2 = IV + 2ω2

�
(4)
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for equispaced sampling, so that E∗(RV(m)) asymptotes as
�→ 0. It is this asymptotic behavior in the neighborhood
�∼ 0 that is the characteristic feature of the signature plot, and
empirical behavior of this type is often taken as confirmatory
evidence that the pure noise model (1) and its central implica-
tion (3) conform to the observed data.

A further implication of (3) is that the second term domi-
nates as m →∞ and �→ 0. Thus, in this model, noise domi-
nates as the infill sampling frequency increases and the quantity
RV(m)/(2m) delivers a consistent estimate of ω2, the noise vari-
ance. Moreover, because the pure noise assumption induces a
unit root MA(1) structure on the return noise, the bias-corrected
estimator,

RV(m)
AC1

=
m∑

i=1

y2
i,m +

m∑
i=1

yi,myi−1,m +
m∑

i=1

yi,myi+1,m,

is naturally unbiased. On the other hand, when the noise follows
a more general MA process, the return noise has a higher-order
MA structure. This linkage explains the rationale for the use of
a higher-order bias-corrected estimator, such as the one defined
in HL’s theorem 2.

Although the pure noise assumption clearly facilitates analy-
sis, it suffers from the unhappy drawback that pure noise lacks
physical realism in continuous time, involving a degree of in-
stantaneous variability that is unimaginable in a physically real-
izable process. In fact, such a process in continuous time needs
to be rigorously modeled as a generalized stochastic process,
and physical realizations occur only in the form of linear func-
tionals, such as temporal averages. Indeed, Gaussian pure noise
may be interpreted as the derivative of Brownian motion, which
does not exist as a conventional stochastic process, and realiz-
able temporal averages of such processes take the form of sto-
chastic integrals, such as

∫
ψ(t − s)dW(s) for some Brownian

motion W and weighting (or test) function ψ . Clearly, the math-
ematical form of (3) is a direct artifact of the pure noise assump-
tion and corresponds with the fact that the quadratic variation
of a pure noise process is infinite, so that the second term of (3)
dominates as m →∞.

Notwithstanding the foregoing remarks, it is quite possible
to proceed with a rigorous and physically realizable treatment
under a pure noise assumption when attention is confined to a
discrete time finite grid such as Gm. In such a case, the real-
ized microstructure noise process u(ti,m) is a discrete-time iid
process. Such an approach makes it possible to rigorously de-
fine the manner in which pure microstructure noise enters the
system and indeed to study properties in the limit as m →∞.
But although such an approach neatly finesses the mathematical
difficulty of having to define pure noise in continuous time as a
generalized process, the essential implication that the quadratic
variation is infinite in the limit and that the second term of (3)
dominates as m →∞ remains valid. The remaining issue of
importance is whether such behavior is supported by empiri-
cal observation and the realities of practical trading in financial
markets. We now turn to this issue.

It is our contention that pure microstructure noise and sta-
tionary microstructure noise both lack realism with the data.
To illustrate, we make use of the dataset used by HL in their
figure 2. The evidence from this data clearly contradicts the as-
sumptions of stationary noise and pure noise. In our Figure 1

Figure 1. Time Series Plot of 33 Transactions That Occurred After
10:05:17 on May 24, 2004 for AA.

we plot 33 transactions that occurred after 10:05:17 on May 24,
2004 for Alcoa (AA) on the NYSE. This covers a sample period
of just over 4 minutes of calendar time and is a typical segment
of a trading day. It can be seen that the plot starts with a nearly
2-minute period of a flat transaction price, in which 11 trans-
actions were recorded, and finishes with a 40-second period
of another flat transaction price, in which 6 transactions were
recorded. Such an observation record with periods of flat price
trading is completely inconsistent with both stationary noise
and iid noise at the tick-by-tick level. In contrast, this observa-
tion record is compatible with nonstationary noise, as we now
explain.

When the efficient price follows a Brownian semimartingale
as in (2) and the observed trading price is related to the efficient
price according to (1), both conventional assumptions in this
literature, then during the flat pricing period the microstructure
noise must itself completely offset the efficient price process to
produce a sustained flat transactions price. The noise process
thus must inherit the same martingale-like behavior as the ef-
ficient price in continuous time over this subinterval. Conse-
quently, the microstructure noise will be locally nonstationary
and will have unit negative correlation with the efficient price
process. These characteristics, it hardly needs to be said, are
strongly at variance with pure noise or stationary noise assump-
tions.

As evident in column 4 of their table 1, HL also notice
that observed prices normally display many spells of constancy
within a trading day. So Figure 1 is quite typical. More partic-
ularly, for the DJIA stocks traded on the NYSE, the percentage
of observations for which the transaction price was the same
as the previous price ranges from 39% to 71%. The constancy
is even more pronounced in mid-quotes. For example, for the
DJIA stocks traded on the NYSE, the percentage of observa-
tions for which the quote price was the same as the previous
price ranges from 45% to 87%.

These numbers are too substantial to be ignored in modeling
the price process, yet it is now common practice to ignore this
constancy in observed prices when working with ultra-high–
frequency data and building models of microstructure noise.
Ignoring constancy in trading prices inevitably induces speci-
fication error and can explain some of the anomalies that have
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arisen in applied work. In particular, when allowance is made
for the local nonstationarity induced by constant price trading,
signature plots no longer have the simple reciprocal function
form of (4). In fact, local nonstationarity in microstructure noise
can even induce nonmonotonicity in the signature plot, a feature
that HL found in their own data analysis. In general, the larger
the percentage of flat price trading, the further the departure
from the reciprocal curve for the signature plot. This property
may also help explain why signature plots calculated from the
quote price are less like a reciprocal curve than those calculated
from the transaction price.

If the locally nonstationary noise property is taken into ac-
count, then none of the bias-correction procedures examined
by HL or those suggested elsewhere in the literature deliver an
unbiased or consistent estimator of IV. To illustrate, consider
the following simple Bernoulli model of trading:

pi,m =
{

p∗i,m + εi,m with probability π

pi−1,m with probability 1− π ,
(5)

where εi,m ∼ iid(0, σ 2
ε ), p∗i,m follows a random walk or a local-

to-unity discrete time diffusion, and the process is initialized at
i = 0 with p0,m = p∗0,m = Op(1). This model allows for flat trad-
ing with a constant probability of 1− π and efficient price plus
pure noise trading with probability π . Thus, when π ∈ (0,1),
there is a positive probability of flat trading at each point on the
temporal grid. Using conventional indicator notation, we may
write the trading price in the form

pi,m = (p∗i,m + εi,m)1(ζi=1) + pi−1,m1(ζi=0), (6)

where ζi is a Bernoulli variable that is unity with probability
π and zero with probability 1 − π . If π = 1, then 1(ζi=0) = 0
a.s., and the model reduces to the efficient price plus pure noise
model. But for π ∈ (0,1), we have

pi,m = p∗i,m1(ζi=1) + ui,m,

with ui,m = εi,m1(ζi=1) + pi−1,m1(ζi=0), (7)

and it is clear that the “implied noise” process ui,m depends on
pi−1,m. In view of (6), we have the explicit expression

ui,m =
i∑

j=0

p∗i−j,m

{
1(ζi−j=1) − δ0j

} j−1∏
k=0

1(ζi−k=0)

+
i∑

j=0

εi−j,m1(ζi−j=1)

j−1∏
k=0

1(ζi−k=0),

where δ0j = 1,0 as j = 0, �= 0, and where we use the convention∏−1
k=0 = 1. In this case the implied noise process ui,m clearly

depends on the entire past history of shocks and efficient price
realizations {εi−j,m,p∗i−j−1,m; j = 0,1, . . . , i}, and so assump-
tion 4 of HL fails because ui,m has nonzero autocorrelations
at all lags and inherits some persistence characteristics of the
efficient price process. Consequently, the conventional kernel-
based bias-correction procedures considered by HL will fail to
correct for the induced serial correlation of ui,m and its first dif-
ference ui,m − ui−1,m, leading to biased estimates of IV.

Of course, discarding flat prices is one way to circumvent
the problem of nonstationarity. However, by doing so, one must
discard a very large amount of data. For example, from the data

given in the HL’s table 1, for the quote price of Philip Morris
(MO) in 2000, one must throw away 87% of the data. Much of
the present research on this topic, including that of Aït-Sahalia,
Mykland, and Zhang (2005a,b) and Zhang, Mykland, and Aït-
Sahalia (2005), is motivated by the desire to utilize all available
high-frequency data rather than discard data to avoid difficulties
stemming from microstructure noise. The problems outlined
here fall very much within this category, and it seems highly
desirable to seek better models of microstructure noise that ac-
cord with the observed transactions data and to use these mod-
els and all of the available data to provide better solutions to the
problem of estimating the IV functional of the efficient price. In
our work that is now underway (Phillips and Yu 2005a,b), we
are attempting to move in that direction.

3. SIGNATURE PLOTS

Signature plots, which depict RV as a function of the infill
sampling frequency (again, conveniently assuming an equidis-
tant sampling scheme), have proved to be an effective and
popular tool for assessing the degree of bias induced by
microstructure noise. Without noise, one would expect a rel-
atively flat curve corresponding to the convergence of empiri-
cal quadratic variation as � → 0. So any departure from a flat
curve is taken as an indicator of the presence of microstruc-
ture noise. Under the pure noise assumption, the signature plots
should diverge as � → 0 at the rate O(�−1) as in (4). Conse-
quently, several authors have used the apparent explosive pat-
tern (as �→ 0) in observed signature plots as strong evidence
in support of the pure noise assumption.

In constructing signature plots, it is conventional to aggregate
data over a period, such as a month. Figure 2 shows the signa-
ture plot of AA from the consolidated market for May 2004,
thereby giving an aggregate representation for the same month
that includes the transactions data for May 24 that were plotted

Figure 2. Signature Plot for AA From the Consolidated Market. The
horizontal axis is the sampling interval ranging from 1 second to 1,800
seconds. The vertical axis is the averaged realized variance across all
trading days in May 2004. Superimposed is the variable span smoother
developed by Friedman (1984) and implemented by the S–PLUS com-
mand supsmu.
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earlier in Figure 1. The explosive pattern in the signature plot of
Figure 2 stands out in a dramatic way, although it is important
to note that the vertical axis volatility measurements are very
small numbers.

Although an explosive pattern (as �→ 0) in a signature plot
such as Figure 2 is sufficient to refute the noise-free assumption,
it does not necessarily imply the presence of pure microstruc-
ture noise. This is because under the pure noise assumption,
signature plots should behave specifically as reciprocal curves
in �, as manifested in (4). Unfortunately, it is difficult to assess
the rate of divergence through visual inspection of a signature
plot such as our Figure 2. For this reason, we argue that sig-
nature plots are not effective graphical tools for checking the
validity of specific microstructure noise assumptions like pure
noise.

In ongoing work (Phillips and Yu 2005a), we suggest an
alternative graphical method that is better suited for this
purpose—a direct plot of the microstructure noise functions,
where RV is treated as a function of the number of observations
in a given sampling time frame. In such noise functions, shape
characteristics are more evident as the number (m) of infill ob-
servations increases. Pure noise manifests as a linear relation
in m as in (3), and departures from pure noise show up sim-
ply as nonlinearities or, more specifically, as concave shapes.
Using DJIA transaction prices (from both a single market and
the consolidated market), our estimates of microstructure noise
functions have always turned out to be decisively concave, de-
spite being monotonically increasing. This concavity indicates
that the pure noise assumption is altogether too strong for most
stock price data. Another advantage of plotting microstructure
noise functions is that there is no need to do equidistant sam-
pling.

Figure 3 shows the microstructure noise function for the
same data as Figure 2. The departure from linearity is very evi-
dent in this plot and the (super smoother) fitted curve.

Figure 3. Market Microstructure Noise Function for AA From the Con-
solidated Market. The horizontal axis is the number of prices used to
construct the realized variance. The vertical axis is the averaged re-
alized variance across all trading days in May 2004. Superimposed is
the variable span smoother developed by Friedman (1984) and imple-
mented by the S–PLUS command supsmu.

4. PANEL APPROACH

Like other methods in this literature, the bias-correction pro-
cedures suggested by HL are all time series–based approaches.
There are alternative approaches to dealing with noise and esti-
mating IV. The microstructure noise function (3) has motivated
us (Phillips and Yu 2005a) to use panel data methods to model
the effects of microstructure noise nonparametrically and treat
IV parametrically as a fixed effect in a panel regression. These
panel data methods can be used to test more specialized specifi-
cations, such as that implied by the pure noise assumption. We
briefly explain this idea here.

Suppose that Gn is a grid containing some or all the ob-
servation points, where n + 1 = #(Gn). Denote the empirical
quadratic variation by ynd = [p,p]Gn

d , using d = 1, . . . ,D as the
date stamp for each day’s observations with D days in total,
where [·, ·]Gn represents the empirical quadratic variation on the
grid Gn. Similarly, let αd =

∫ 1
0 σ 2

dt dt denote the IV for day d,
and let σ 2

dt be the diffusion function of the efficient price for
day d. In general, IV is a random variable and varies from day to
day. Often these variations are of interest in empirical work. On
the other hand, it may be reasonable to assume the pure noise
variance, ω2, is constant across days over a relatively short time
interval. Under these conditions, the microstructure noise func-
tion (3) may be formulated as

ynd = αd + 2σ 2n+ εnd = αd + βn+ εnd, (8)

where β = 2σ 2, d is the daily date stamp, and εnd is an induced
error process of the form

εnd = ([p∗,p∗]Gn
d − [p∗,p∗]d)

+ 2[p∗, ε]Gn
d + ([ε, ε]Gn

d − E{[ε, ε]Gn
d }). (9)

Because [p∗,p∗]Gn
d − [p∗,p∗]d →p 0 as n →∞, and the empir-

ical covariation [p∗, ε]Gn
Td has mean 0 and variance asymptoti-

cally proportional to [p∗,p∗]d , the dominant term of εnd is the
final component of (9). This component, [ε, ε]Gn

d − E{[ε, ε]Gn
d },

has mean 0 and variance O(n).
By varying the number of observations used in the construc-

tion of RV, say n = n1, . . . ,nN , the formulation (8) leads to a
panel data model for RV. The model is complicated by the fact
that the error process,

εnid = [ε, ε]Gni
d − E

{[ε, ε]Gni
d

}+Op(1)= Op
(
n1/2

i

)
is heterogeneous and autocorrelated over ni. Nevertheless,
even crude estimation methods, such as dummy variable least
squares, can be used to estimate the model and deliver a consis-
tent estimate of the slope coefficient 2σ 2, because the regressor
ni is deterministic and has a stronger signal than εnid . To ensure
consistency of estimates of the fixed effects and hence of IV,
some sample splitting and jackknifing methods are required, as
in the work of Zhang et al. (2005) and Aït-Sahalia et al. (2005b).
One advantage of (8) is that it sets out a formal framework for
studying such approaches.

As discussed earlier, it seems important in practical work to
allow for the fact that the microstructure noise function may be
nonlinear. We may generalize (8) by formulating a nonparamet-
ric noise function and attempting to fit this function empirically.
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For example, suppose that f is continuous and asymptotically
homogeneous of degree γ as n →∞. Then we can formulate
the noise function in standardized form as

ynid − αd

nγ
N

= f

(
ni

nN

)
+ εnid

nγ
N

, i = 1, . . . ,N, (10)

where f is taken to be common across days and n1 is the small-
est number of observations used in the calculation of RV. It is
convenient for identification purposes to normalize the function
f to pass through the origin so that

f

(
n1

nN

)
= 0. (11)

For example, if n1 = 1,800, which corresponds to a 30-minute
sampling frequency, then the identification condition (11) is
equivalent to assuming that RV calculated at the 30-minute
sampling frequency yields an unbiased estimator. This is the
benchmark that HL used. Averaging across days and using (11)
leads to the estimable model

ȳni• − ȳn1•
nγ

N

= f

(
ni

nN

)
+ ε̄ni• − ε̄n1•

nγ
N

, i = 1, . . . ,N, (12)

where we use the notation ȳni• = D−1 ∑D
d=1 ynid and ε̄ni• =

D−1 ∑D
d=1 εnid . When γ > 1/2, n−γ (ε̄ni• − ε̄n1•) = op(1), and

then (12) can be fitted consistently by kernel smoothing, mak-
ing it possible to estimate the shape of the microstructure noise
function and test the pure noise/linearity assumption. Because
nγ

N is simply a constant scaling factor in this regression, it is
not necessary to standardize the data when performing the re-
gression empirically, and the shape of the curve is invariant to
the scaling factor. Hence γ does not need to be known a priori,
and it is in fact implicitly determined within the nonparametric
estimation of the function f ( ni

nN
). However, the standardization

factor nγ
N and the magnitude of γ do affect the limit theory.

There is an interesting link between the general model (10)
and the specific approach taken by Zhang et al. (2005) to elim-
inate the effects of microstructure noise. When γ = 1 and the
microstructure noise function is asymptotically linear as in (8),
local level kernel estimation of (10) for a particular day leads to
the estimate

f̂ (1) =
∑N

j=1
ynjd−αd

nN
Kh(

nj
nN

− 1)∑N
j=1 Kh(

nj
nN

− 1)

∼
∑N

j=1
ynjd

nN
Kh(

nj
nN

− 1)∑N
j=1 Kh(

nj
nN

− 1)
, (13)

where Kh(·) = h−1K(·/h) for some given kernel function K(·)
and bandwidth parameter h. The estimate (13) is simply a lo-
cally smoothed version of the estimate

f̃ (1)= ynN d

nN
= 1

nN
[p,p]GnN

d

that Zhang et al. (2005) suggested for estimating the mi-
crostructure noise variance 2σ 2 in the model with pure noise,
that is, the slope coefficient in the linear regression (8). Non-
parametric estimation of (10) and (12) may be considered a
generalization of this approach that allows for a much wider
class of microstructure noise.

Figure 4. Locally Weighted Regression Estimate (with a tricube
weight) of the Microstructure Noise Function f for AA for May 2004. The
value γ = 1 is used, and the vertical axis is multiplied by 1 × 108.

Using the same data for AA as before, Figure 4 shows
the nonparametric estimate of the function f obtained by
locally weighted least squares regression of Cleveland and
Devlin (1988) on (12). As before, the empirical evidence rather
strongly rejects the pure noise assumption.

5. CONCLUSION

We find ourselves very much in agreement with the thrust
of HL’s message concerning the complexity induced by mi-
crostructure noise. In particular, we agree that noise is time
dependent and correlated with the efficient price (features that
in our view are a necessary consequence of the observed form
of market transactions, as we have argued earlier) and that the
properties of noise inevitably evolve over time, again just as
the efficient price is itself evolutionary. We further agree that
microstructure noise cannot be accommodated by simple speci-
fications. Because microstructure noise at ultra-high infill sam-
pling frequencies often offsets the actual transactions data to
the latent efficient price, the complexity of microstructure noise
includes local nonstationarity and perfect correlation with the
efficient price. These properties are not permitted in the mod-
els and methods presently used in the literature. However, there
are empirical procedures that are capable of addressing these
additional complexities, as we have indicated in parts of our
discussion.

We join the authors in saying there is still much to do in this
exciting field, and look forward to further developments that
build on the work that they and others have done.
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Rejoinder
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1. INTRODUCTION

It is a privilege to receive this much feedback on our article
from leading researchers whose work has inspired much of our
research. We are grateful for the many insightful comments and
interesting discussions. The comments not only elucidate key
aspects of the problems that we have analyzed, but also provide
us (and other readers alike) with a window onto many of the
interesting topics that define the research frontier of this area.

The nine comments span a wide range of issues. In this re-
joinder we first give a brief response to each comment, and then
focus on key issues.

Aït-Sahalia, Mykland, and Zhang (AMZ) provide a very in-
sightful discussion and challenge us to come up with better ar-
guments and additional empirical evidence. Their discussion on
identification is important and interesting. They argue that it
may not be possible to identify parameters of interest and es-
timate the IV consistently for some types of dependent noise.
This can be viewed as a shortcoming of a given model (as em-
phasized by AMZ) or as a limitation of the available informa-
tion in the data. So an interesting question is: “What are the
actual properties of the noise, and which limitations are im-
plied for estimation of the quadratic variation?” Although this
remains largely an open question, we believe that our results
demonstrate that this problem is more complicated than that as-
sociated with independent noise. Of the nine comments, the one
by AMZ is perhaps the most critical one. For example, AMZ
express their doubts about our results on the dependence be-
tween efficient price and noise process and are critical of our
procedure for cleaning the data for outliers. Many of the issues
that we discuss in greater detail, such as in Sections 4 and 7, are
motivated by their comment.

Much progress has been made since November 2003, when
many works in this field were presented for the first time at a
Montreal conference organized by Nour Meddahi. For exam-
ple, Zhang, Mykland, and Aït-Sahalia (2005) have improved
their original two-time scale estimator (TSRV) with a small-
sample correction to deal with “small” noise and extended
the applicability of the TSRV to a situation with dependent
noise (see Aït-Sahalia, Mykland, and Zhang 2005). We have

also benefitted from the “synergy effect,” because the proper-
ties of the TSRV estimator challenged us to develop kernel-
based estimators (in collaboration with Barndorff-Nielsen and
Shephard) that are better estimators of IV. AMZ’s comment
is another addition to this active field of research, and, de-
spite some differences of opinion, we found their comment im-
mensely constructive.

Andersen, Bollerslev, Frederiksen, and Nielsen (ABFN) fo-
cus on the importance of jumps. They give a general discus-
sion of realized power and bipower variation and suggest a
way to robustify such quantities by skipping observations. They
present several volatility signature plots for the robust bipower
variation (BPV) that provide evidence of jumps in the efficient
price (an issue that we ignored in our article). We give a brief
discussion of jumps and BPV in relation to our results in Sec-
tion 5.3 and in our discussion of Diebold’s comment.

Bandi and Russell (BR) focus on properties of the noise
process and include a very intuitive discussion of the results
in our article. We very much agree with their call for the use of
economic criteria for assessing the consequences of noise, and
we enjoyed their perspective on issues that need to be addressed
in future research. Their extensive empirical analysis adds clar-
ity and additional evidence to some of our empirical findings.
In our discussion of Figure 2 in Section 4, we add some insight
to some of BR’s volatility signature plots.

Barndorff-Nielsen and Shephard (BNS) stress that noise
is very important in the multivariate context, an area that
is currently undergoing much development (see, e.g., Renò
2003; Martens 2004; Barndorff-Nielsen and Shephard 2004;
Hayashi and Yoshida 2005; Bandi and Russell 2005b; Griffin
and Oomen 2005; Voev and Lunde 2006; Sheppard 2005).
BNS also include a discussion of volatility in the context of
non-Brownian stochastic volatility models and show that the
bipower variation is another tool for dealing with the effects of
market frictions.
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