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Abstract

This paper introduces a novel and easy-to-implement method for accurately approximating the

spectral density of discretely sampled fractional Ornstein-Uhlenbeck (fOU) processes. The method

offers a substantial reduction in approximation error, particularly within the rough region of the frac-

tional parameter H ∈ (0,0.5). This approximate spectral density has the potential to enhance the

performance of estimation methods and hypothesis testing that make use of spectral densities. We in-

troduce the approximate Whittle maximum likelihood (AWML) method for discretely sampled fOU

processes, utilising the approximate spectral density, and demonstrate that the AWML estimator ex-

hibits properties of consistency and asymptotic normality when H ∈ (0,1), akin to the conventional

Whittle maximum likelihood method. Through extensive simulation studies, we show that AWML

outperforms existing methods in terms of both estimation accuracy and computational speed in finite

samples. We then apply the AWML method to the log realized volatility of 40 financial assets. Our

empirical findings reveal that the estimated Hurst parameters for these assets fall within the range of

0.10 to 0.23, indicating a rough volatility dynamic.
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1 Introduction

The fractional Ornstein-Uhlenbeck (fOU) process is a stochastic process widely applied across diverse
fields such as in finance, physics, biology, and more to model diverse phenomena. An essential parameter
of the fOU process is the Hurst exponent (H), which determines the degree of memory in the process.
When H = 0.5, the fOU process becomes the standard Ornstein-Uhlenbeck (OU) process. For H > 0.5,
the process is characterized by long memory, while for H < 0.5, the process exhibits rough dynamics.
In finance, the fOU process was recently used to model the log volatility of financial assets. See, e.g.,
Gatheral et al. (2018), Wang et al. (2023), Fukasawa et al. (2022), Bennedsen et al. (2022), Bolko et al.
(2023). Wang et al. (2023) have found that the fOU process yields more accurate forecasts than some
popular discrete-time models.

Spectral density serves as a potent tool for scrutinizing the frequency characteristics inherent in time
series data. Its usage extends to the detection of periodic patterns, trends, and cycles, as extensively
demonstrated in previous studies (Burnside (1998), Messina et al. (2009), McElroy and Roy (2017), An-
geletos et al. (2020)). Furthermore, spectral density plays a pivotal role in parameter estimation (Whittle
(1954), Christiano and Vigfusson (2003)) and hypothesis testing (McElroy (2016)).

However, how to calculate the spectral density for discretely sampled fOU processes presents a chal-
lenge due to the requirement for calculating an infinite summation, which poses practical numerical
difficulties.1 Hult (2003) uses the truncation method to approximate the infinite summation in the spec-
tral density and estimate the parameters using the truncation approximation of the spectral density. The
order of approximation error of the truncation method is O(K−2H), where K is cut-off point in the infinite
summation. When H is greater than 0.5, which is the case considered in Hult (2003), with a moderately
large K, the truncation works well. Unfortunately, when H takes a very small value (e.g., 0.2 or less),
which is found empirically relevant in the rough volatility literature (Fukasawa et al., 2022, Bolko et al.,
2023), the truncation method often suffers from diminished accuracy, even when a very large cut-off
point K is used.

To surmount this issue, drawing inspiration from Paxson (1997) and Fukasawa and Takabatake (2019)
where the spectral density of the fractional Gaussian noise (fGn) is approximated, we introduce a novel
method for approximating the spectral density of the fOU process. Our proposed method, named the
modified Paxson approximation, capitalizes on the eventual monotonicity of the summation terms to
derive both lower and upper bounds for the spectral density. We then take the average of these two
bounds to estimate the spectral density. The order of approximation error is shown to be O(K−2H−1),
which is lower than that of the truncation method. This improvement is especially important when H is
close to zero because, as H converges to zero, the order of approximation error are O(1) and O(K−1) for
the two methods, respectively. That is, when H → 0, the approximation error of the truncation method is

1Although the fOU processes is related to an ARFIMA(1,d,0) whose spectral density is trivial to calculate, the spectral
density of fOU is different from that of ARFIMA(1,d,0).
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a constant regardless of the value of K, while the approximation error of the new method diminishes to
zero as the K increases. Furthermore, the results imply that for a fixed H, the new method requires a much
smaller K to achieve the same level of approximation accuracy and hence lead to improved computational
efficiency. Since the modified Paxson method excels in both approximation accuracy and computational
efficiency, it is well-suited for a wide range of practical applications, including the frequency-domain
maximum likelihood (ML) estimation.

We demonstrate the practical value of the modified Paxson method for estimating parameters in fOU
processes. Specifically, we introduce an approximate Whittle maximum likelihood (AWML) method.
This method involves replacing the true spectral density of fOU with the approximate spectral density in
the frequency-domain Whittle ML approach. We first demonstrate that the standard Whittle ML method
exhibits consistency and asymptotic normality when applied to discrete-time observations generated from
a stationary fOU process for H ∈ (0,1), encompassing both long memory and anti-persistent behaviors.
Then we show that the AWML estimator exhibits asymptotic equivalence to the Whittle ML estimator,
inheriting all of its advantageous asymptotic properties.

Through simulation studies, we compare the finite sample performance of the AWML method with
two existing methods: the maximum composite likelihooe (MCL) method (Bennedsen et al., 2022) and
the change-of-frequency (CoF) approach (Wang et al., 2023).2 The AWML method proves to be the most
accurate of the three, with CoF being the least accurate. Furthermore, the AWML method is computa-
tionally more efficient than MCL. We apply the proposed estimation method for fOU to the log realized
volatility of 40 financial assets. Our estimation results suggest that volatility always exhibits rough dy-
namics, with estimated H ranging from 0.1 to 0.25.

The rest of the paper is organized as follows. In Section 2, we present the fOU process and the spectral
density of discretely sampled fOU. Section 3 introduces the truncation based approximation method for
the spectral density, develops the modified Paxson method, and evaluates their approximation accuracy.
Section 4 introduces the AWML method based on the modified Paxson approximate spectral density,
along with MCL and CoF. We develop the asymptotic properties of the AWML method and examine its
finite sample performance relative to alternative estimation methods. We present the empirical results in
Section 5. The proofs of all the theoretical results are provided in the Appendix. Throughout the paper,
the notation AK ⪯ BK signifies that AK/BK is either O(1) or o(1) as K → ∞ (either Op (1) or op (1) if
AK/BK is random).

2Bennedsen et al. (2022) develop the MCL method to estimate not only the fOU process but also some other stationary
processes.
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2 Fractional OU Process

The fOU process {yt : t ∈ R} is the stochastic process given by

dyt = κ (µ − yt)dt +σdBH
t with y0 = Op (1) ,

where σ > 0, µ is a constant, and BH
s is an fBm process with H ∈ (0,1). The fBm is a Gaussian process

with mean zero and autocovariance given by

Cov
(
BH

t ,B
H
s
)
=

1
2

(
|t|2H + |s|2H −|t − s|2H

)
, ∀t,s ∈ (−∞,+∞) . (1)

It includes the standard Brownian motion (Bm) process as a special case with H = 0.5. Just like the Bm,
the fBm is nonstationary for all H ∈ (0,1). However, the first difference or increment of fBm, which
is fGn, is always stationary. The fBm has sample paths smoother (rougher) than the standard Bm when
H > 0.5 (H < 0.5). The autocovariances of fGn are not summable when H > 0.5 (i.e. exhibiting long
memory) but sum to zero when H < 0.5 (i.e. exhibiting anti-persistence).

The fOU process reduces to the traditional OU process when H = 0.5 and to the fBm when κ = 0.
When κ > 0, fOU is stationary. When κ < 0, fOU is explosive. In this paper, we assume that κ > 0.
The fOU process is (locally) Hölder continuous of order H − ε (Gatheral et al., 2018, Gehringer and Li,
2020). The fOU process has a unique path-wise solution:

yt = e−κty0 +
(
1− e−κt)

µ +
∫ t

−∞

σe−κ(t−u) dBH
u , (2)

where E (yt) = µ and Var (yt) = σ2κ−2HHΓ(2H) with Γ(.) being the Gamma function. See Hu and
Nualart (2010a). When κ > 0, the autocovariance of fOU is given by

γk =
σ2

2κ2H

(
1
2

∫
∞

−∞

e−|s| |κk+ s|2H ds−|κk|2H
)
, (3)

and its spectral density is

fy
(
λ ;κ,H,σ2)= σ2

2π
C (H) |λ |1−2H(κ2 +λ

2)−1 for λ ∈ (−∞,∞), (4)

where C (H)=Γ(2H +1)sin(πH). See Garnier and Sølna (2018) for the autocovariance and Hult (2003)
for the spectral density.

Assumption 1 The model parameters (κ,H,σ2) ∈ Θ, where Θ is a compact subset in R+× (0,1)×R+.

Lemma 2.1 Under Assumption 1, the spectral density function fy
(
λ ;κ,H,σ2) is uniquely determined

by the parameters (κ,H,σ2).
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The proof of this lemma can be found in Appendix A. The identification result stands in stark contrast
to the lack-of-identification problem observed in the ARFIMA(1,d,0) model as discussed in Li et al.
(2023).

Empirical observations are often sampled at a fixed sampling interval (denoted by ∆). The discrete-
time observations from the fOU process are denoted by

{
y j∆
}n

j=1, where n is the total number of obser-
vations. Hence, T = n∆ is the time span. The spectral density of discretely sampled fOU is provided by
Hult (2003) and takes the form of

f ∆
y
(
λ ;κ,H,σ2)= σ2

2π
C (H)∆

2H
∞

∑
k=−∞

|λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2 for λ ∈ (0,2π). (5)

Moreover, Hult (2003) shows that

E(y j∆y0) =
∫

∞

−∞

ei j∆λ fy
(
λ ;κ,H,σ2)dλ =

∫ 2π

0
ei jλ f ∆

y
(
λ ;κ,H,σ2)dλ , (6)

which establishes the relationship between fy (λ ;θ) and f ∆
y (λ ;θ). Therefore, by the Fourier inversion

theorem, the uniqueness of fy (λ ;θ) implies the uniqueness of f ∆
y (λ ;θ).

3 Approximation Methods

The spectral density of the discretely sampled fOU process (5) necessitates the computation of an infinite
summation, and the truncation method emerges as a natural choice for its evaluation. In this section,
we introduce the modified Paxson approximation for the spectral density and explore the approximation
accuracy of both the truncation approach and the modified Paxson approximation.

Let β = (κ,H) and θ = (κ,H,σ2). The spectral density of discretely sampled fOU (5) involves the
infinite summation

S (λ ;β )≡
∞

∑
k=−∞

|λ +2πk|1−2H

(κ∆)2 +(λ +2πk)2 ,

which can be rewritten as

S (λ ;β ) =
−1

∑
k=−∞

(−λ −2πk)1−2H

(∆κ)2 +(λ +2πk)2 +
λ 1−2H

(∆κ)2 +λ 2 +
∞

∑
k=1

(λ +2πk)1−2H

(∆κ)2 +(λ +2πk)2

=
∞

∑
k=1

(2πk−λ )1−2H

(∆κ)2 +(2πk−λ )2 +
λ 1−2H

(∆κ)2 +λ 2 +
∞

∑
k=1

(λ +2πk)1−2H

(∆κ)2 +(λ +2πk)2 ,

=
∞

∑
k=1

Q1,k (λ )+Q0 (λ )+
∞

∑
k=1

Q2,k (λ )
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=
K

∑
k=1

Q1,k (λ )+
∞

∑
k=K+1

Q1,k (λ )+Q0 (λ )+
K

∑
k=1

Q2,k (λ )+
∞

∑
k=K+1

Q2,k (λ ) (7)

where Q0 (λ )≡ λ 1−2H

(∆κ)2+λ 2 , Q1,k (λ )≡ (2πk−λ )1−2H

(∆κ)2+(2πk−λ )2 , and Q2,k (λ )≡ (λ+2πk)1−2H

(∆κ)2+(λ+2πk)2 .
The approximate spectral density based on the truncation method, denoted by f̄ ∆

y (λ ;θ), takes the
form of

f̄ ∆
y (λ ;θ) =

σ2

2π
C (H)∆

2H S̄ (λ ;β ) , (8)

with

S̄ (λ ;β ) =
K

∑
k=1

Q1,k (λ )+Q0 (λ )+
K

∑
k=1

Q2,k (λ ) .

Thus, the approximation eror of the truncation method is

∣∣∣ f ∆
y (λ ;θ)− f̄ ∆

y (λ ;θ)
∣∣∣= σ2

2π
C (H)∆

2H

[
∞

∑
k=K+1

Q1,k (λ )+
∞

∑
k=K+1

Q2,k (λ )

]
. (9)

Before we introduce the modified Paxson method, let us first briefly review the Paxson method that
has been employed to approximate the spectral density of fGn. The spectral density of fGn, denoted by
f ∆
x (λ ), takes the form of

f ∆
x (λ ) = R(H,λ ,σ)

(
|λ |−(2H+1)+

K

∑
k=1

Qk(λ )+
∞

∑
k=K+1

Qk(λ )

)
,

where R(H,λ ,σ)= σ2

π
∆2H(1−cosλ )C (H), K is a pre-specified integer and Qk(λ )= (2πk+λ )−(2H+1)+

(2πk − λ )−(2H+1). The monotonicity property of Qk(λ ) in k ensures that ∑
∞
k=K+1 Qk(λ ) has a upper

bound
∫

∞

K Qk(λ )dk and a lower bound
∫

∞

K+1 Qk(λ )dk, that is,

qK(λ ) :=
∫

∞

K
Qk(λ )dk ≥

∞

∑
k=K+1

Qk(λ )≥
∫

∞

K+1
Qk(λ )dk := qK+1(λ ).

Therefore, for any K, f ∆
x (λ ) is bounded from up and below, respectively, by

R(H,λ ,σ)

{
|λ |−(2H+1)+

K

∑
k=1

Qk(λ )+qK(λ )

}
and R(H,λ ,σ)

{
|λ |−(2H+1)+

K

∑
k=1

Qk(λ )+qK+1(λ )

}
.

(10)
Paxson (1997) proposes an approximate spectral density by taking the average of the lower and upper
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bounds in (10). The Paxson approximate spectral density of fGn is denoted by f̃ ∆
x (λ ) and given by

f̃ ∆
x (λ ) = 2(1− cosλ )

σ2

2π
C (H)∆

2H

{
|λ |−(2H+1)+

K

∑
k=1

Qk(λ )+
1
2
[qK(λ )+qK+1(λ )]

}
. (11)

By definition, the quantity

qK(λ ) =
1

4πH

[
(2πK +λ )−2H +(2πK −λ )−2H] .

Both the upper bound and the lower bound, therefore, possess closed-form expressions that greatly sim-
plify the calculation. Furthermore, even when K is set to a small value, these bounds remain remarkably
close to each other. As a result, the Paxson formula stands out as an exceptionally accurate method
for approximating the spectral density of fGn while incurring low computational cost. Fukasawa and
Takabatake (2019) employs this approximate spectral density to construct an approximate Whittle ML
estimation method for H in fGn and find that the estimator has satisfactory finite sample performance.

For fOU processes, the Paxson method encounters two complications. Firstly, neither Q1,k(λ ) nor
Q2,k(λ ) in (7) exhibits monotonic behavior with respect to k. Fortunately, we can identify a critical cut-
off value, denoted by K∗, such that for all k ≥ K∗, Q1,k(λ ) and Q2,k(λ ) are monotonic in k. Secondly, the
upper and lower bounds for both Q1,k(λ ) and Q2,k(λ ) are represented as integrals, and regrettably, their
analytical solutions remain unavailable. To facilitate the calculation, we estabilish alternative upper and
lower bounds for each of these quantities. These results are reported in Lemma 3.1.

Lemma 3.1 (1) The quantity Q1,k(λ ) monotonically decreases in k when k > ∆κ+λ

2π
; (2) The quantity

Q2,k(λ ) monotonically decreases in k when k > ∆κ−λ

2π
; (3) For K > ∆κ+λ

2π
and for any β and λ ∈ (0,2π),

aK (λ )≤
∫

∞

K+1
Q1,k(λ )dk ≤

∞

∑
k=K+1

Q1,k(λ )≤
∫

∞

K
Q1,k(λ )dk ≤ (2πK −λ )−2H

4πH
, (12)

bK (λ )≤
∫

∞

K+1
Q2,k(λ )dk ≤

∞

∑
k=K+1

Q2,k(λ )≤
∫

∞

K
Q2,k(λ )dk ≤ (2πK +λ )−2H

4πH
, (13)

where

aK (λ ) =
[2π (K +1)−λ ]−2H

4π

{
1
H

− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}
, (14)

bK (λ ) =
[2π (K +1)+λ ]−2H

4π

{
1
H

− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}
. (15)

Remark 3.1 According to Lemma 3.1(1)-(2), while Q1,k(λ ) and Q2,k(λ ) do not exhibit monotonic be-

havior with respect to k across the entire range of k ∈ [1,∞), they do become monotonic in k when
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k > ∆κ+λ

2π
. This requirement can be easily satisfied in practical relevant cases. For example, if λ = 2π

(the upper bound for λ ), the threshold is only 2.59 when κ is as large as 2520 (120) for daily (monthly)

data. Since the estimated κ values reported in the volatility literature are typically much smaller than

100, Q1,k(λ ) and Q2,k(λ ) are monotonic in k for k > 2.

Remark 3.2 From Lemma 3.1(3), the natural upper and lower bounds for both Q1,k(λ ) and Q2,k(λ )

involve integrals and lack closed-form expressions. Conversely, the alternative bounds are in close forms

and easy to compute, namely
(

aK (λ ) , (2πK−λ )−2H

4πH

)
for ∑

∞
k=K+1 Q1,k(λ ) and

(
bK (λ ) , (2πK+λ )−2H

4πH

)
for

∑
∞
k=K+1 Q2,k(λ ).

Lemma 3.2 The lower and upper bounds for the spectral density of the discretely sampled fOU are as

follows:
σ2

2π
C (H)∆

2HSL (λ ;β )≤ f ∆
y (λ )≤ σ2

2π
C (H)∆

2HSU (λ ;β ) . (16)

with

SL (λ ;β )≡
K

∑
k=1

Q1,k (λ )+
K

∑
k=1

Q2,k (λ )+
λ 1−2H

(∆κ)2 +λ 2 +aK (λ )+bK (λ ) , (17)

and

SU (λ ;β )≡
K

∑
k=1

Q1,k (λ )+
K

∑
k=1

Q2,k (λ )+
λ 1−2H

(∆κ)2 +λ 2 +
1

4πH

[
(2πK −λ )−2H +(2πK +λ )−2H

]
. (18)

Remark 3.3 Although results in (16) remain valid for small values of K (as discussed in Remark 3.1), the

gap between the lower and upper bounds can be substantial when K is small. To ensure the approximation

accuracy of the modified Paxson method, which entails averaging the lower and upper bounds of the

spectral density, a moderate K may be required.

The modified Paxson approximation of the spectral density, denoted by f̃ ∆
y (λ ), is obtained by aver-

aging these bounds. The word ‘modified’ reflects the adjustment made to accommodate the complexities
associated with fOU. The analytical expression of f̃ ∆

y (λ ) and the order of its approximation error is
provided in Theorem 3.1.

Theorem 3.1 Let the modified Paxson approximate spectral density of the discretely sampled fOU be

f̃ ∆
y (λ ) =

σ2

2π
C (H)∆

2H

[
K

∑
k=1

Q1,k (λ )+
K

∑
k=1

Q2,k (λ )+
λ 1−2H

(∆κ)2 +λ 2 (19)

+
1
2

aK (λ )+
1
2

bK (λ )+ cK (λ )

]
, for λ ∈ (0,2π),

8



where K > ∆κ+λ

2π
, and

cK (λ ) =
(2πK −λ )−2H

8πH
+

(2πK +λ )−2H

8πH
.

Under Assumption 1, for any H ∈ (0,1) and λ ∈ (0,2π), the approximation errors of the truncation

method and the modified Paxson method are, respectively, O
(
K−2H) and O

(
K−2H−1). That is, as K →∞,

sup
λ∈(0,2π)

| f ∆
y (λ )− f̄ ∆

y (λ )| = O
(
K−2H) ; (20)

sup
λ∈(0,2π)

| f ∆
y (λ )− f̃ ∆

y (λ )| = O
(
K−2H−1) . (21)

Remark 3.4 According to Theorem 3.1, the approximation accuracy of the truncation approach depends

on both the cut-off point K and the fractional parameter H. When H assumes a relatively large value,

the approximate error converges rapidly to zero as K becomes larger. This finding aligns with the results

presented in Hult (2003), which highlight the efficacy of the truncation method when H > 0.5. However,

in cases where the fractional parameter H is close to zero, a scenario often observed in empirical studies

with fOU (Wang et al., 2023, Fukasawa et al., 2022, Bolko et al., 2023), the order of the approximation

error becomes relatively large. Indeed, when H → 0, the approximate error of the truncation method is

O(1). Consequently, the use of the truncation method in practice may lead to imprecise estimations by

the AWML method.

Remark 3.5 Similar to the truncation method, the accuracy of the modified Paxson method’s approx-

imation deteriorates as H approaches zero. However, as K increases, the approximation error of the

modified Paxson method converges to zero at a faster rate than the truncation approach. Specifically, the

approximation errors of the truncation and modified Paxson approaches are O
(
K−2H) and O

(
K−2H−1),

respectively. This improvement is crucial, especially when H is close to zero. Under such circumstances,

the approximation errors of the modified Paxson method and the truncation approach exhibit orders of

O(K−1) and O(1), respectively. The former diminishes as K increases to infinity, while the latter is a

constant regardless of the setting of K.

Remark 3.6 While the approximation accuracy enhances as K increases for both approximation meth-

ods, computing the quantities ∑
K
k=1 Q1,k and ∑

K
k=1 Q2,k becomes computationally costly when K is very

large. Hence, there exists a trade-off between numerical accuracy (requiring a large K) and computa-

tional efficiency (benefiting from a small K).

Remark 3.7 It may seem surprising that the approximation error exhibits uniform convergence when

H > 0.5, given that in this scenario, f ∆
y (λ ) behaves as λ 1−2H → ∞ as λ → 0. The reason behind this

uniform bound is that both f ∆
y (λ ) and f̃ ∆

y (λ ) contain the same term, λ 1−2H

(∆κ)2+λ 2 , which effectively cancels

out in the approximation error. Uniform convergence plays a crucial role in establishing the asymptotic

equivalence between the Whittle ML estimator and the AWML estimator.
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Approximation Accuracy

We evaluate the accuracy of two approximation methods for the spectral density of discretely sampled
fOU: the truncation method (5) and the modified Paxson approximation method (8). We examine three
different values of the Hurst parameter (H = 0.1,0.2,0.7) and three configurations for K (namely, K =

50,100,200). The remaining model parameters are held constant, with κ set to 25 and a fixed sampling
interval of ∆ = 1/250, which corresponds to daily observations over a one-year period.3 Based on the
path-wise solution (2), we may obtain the exact discrete time representation of fOU as:

y j∆ = e−κ∆y( j−1)∆ +
(

1− e−κ∆

)
µ + ε j∆ with ε j∆ = σ

∫ j∆

( j−1)∆
e−κ( j∆−u) ddBH

u .

The values of κ and ∆ leads to an autoregressive coefficient of 0.90. The monotonically of the Q1,k(λ )

and Q2,k(λ ) is achieved when k > ∆κ+2π

2π
= 1.016.

Figure 1 plots the ratio of the lower and upper bounds of f ∆
y (λ ) to the modified Paxson approximation

for λ ∈ (0,π).4 Several observations emerge from Figure 1. First and foremost, for all values of K and
all values of H, both the lower and upper bounds closely align with the modified Paxson approximation.
This indicates that the modified Paxson approximation, which averages the two bounds, offers highly
accurate approximations to the true spectral density. Secondly, for any fixed H, increasing K enhances the
precision of the approximation, consistent with the predictions of Theorem 3.1. For example, when H =

0.1, both bounds are in the neighbourhood of 0.06% relative errors if K = 50, which decrease to 0.015%
for K = 200. Thirdly, for any fixed K, the larger H is, the higher the precision of the approximation. For
example, when K = 200, both bounds are in the neighbourhood of 0.015% relative errors if H = 0.1 and
decrease to 0.006% (0.00003%) if H = 0.2 (H = 0.7), consistent with the prediction of Theorem 3.1. The
conclusion of this exercise is that the modified Paxson method offers reliable approximations to the true
spectral density. For the rest of the paper, we treat the modified Paxson approximation with K = 200 as
the true spectral density.

To compare the performance of the modified Paxson method and the truncation method, we calculate
the ratio of the two approximate spectral densities f̄ ∆

y (λ )/ f̃ ∆
y (λ ), the truncation method to the modified

Paxson method. Three values of K are considered for the truncation method, 2000, 5000, 20000. For the
modified Paxson method, we fix K to 200. Figure 2 presents the ratios for H = 0.1,0.2,0.3. Evidently,
unlike the modified Paxson approach, the truncation method is less reliable, especially when H is small.
Even with large values of K, the truncation method falls short in accurately approximating the spec-
tral density. It works well for H ≥ 0.5, which explains its usage in previous studies (e.g., Hult, 2003).
However, given recent empirical findings of small H values, using the truncation method for spectral
density approximation is not recommended. Indeed, as shown in Theorem 3.1, the approximate error

3Results are qualitatively unchanged for κ = 1,5,250.
4We focus on this range for the spectral density as f ∆

y (λ ) = f ∆
y (2π −λ ).
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Figure 1: Ratio of the upper and lower bounds of the spectral density to the modified Paxson approxima-
tion f̃ ∆

y (λ ) for λ ∈ (0,π) with κ = 25, ∆ = 1/250.

(a) K = 50,H = 0.1 (b) K = 100,H = 0.1 (c) K = 200,H = 0.1

(d) K = 50,H = 0.2 (e) K = 100,H = 0.2 (f) K = 200,H = 0.2

(g) K = 50,H = 0.7 (h) K = 100,H = 0.7 (i) K = 200,H = 0.7

Note: The lower and upper bounds are given in Lemma 3.2, while the modified Paxson approximation is
given in Theorem 3.1.

is O(1) when H approaches zero, regardless of the choice of K. Furthermore, for the specific values of
H, although the approximation error reduces when K increases, the truncation method becomes exceed-
ingly computationally intensive when K is very large, thereby negatively impacting the computational
efficiency of the AWML method.5

5We compute the approximate spectral density for a set of 1000 frequencies ranging between 0.001π to π , using K = 200
for the modified Paxson method and K = 20,000 for the truncation method. On a standard laptop computer (MacBook Pro
with an M2 chip, 8-core CPU, and 10-core GPU), the modified Paxson method takes 0.05 seconds, while the truncation
method requires 71 times of CPU time compared to the modified Paxson method.
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Figure 2: Ratios of the truncation method with K = 2000,5000,20000 to the modified Paxson method
with K = 200: κ = 25, ∆ = 1/250

(a) H = 0.1 (b) H = 0.2 (c) H = 0.7

Note: The approximate spectral density based on the truncation method is given in equation (8), while the
spectral density based on the modified Paxson approximation is presented in Theorem 3.1.

4 Model Estimation

In this section, we introduce the AWML method for estimating the parameters of the fOU process, based
on the Paxson approximate spectral density. We compare the performance of AWML with two existing
methods: the MCL approach and the CoF approach. Our main focus is on the Hurst parameter H, which
is a key parameter in the fOU process. We demonstrate that AWML provides an effective and efficient
alternative to existing methods for estimating H.

4.1 Whittle ML and Approximate Whittle ML Methods

Consider a sample
{

y j∆
}n

j=1. Let η (λ ;β ) = σ−2 f ∆
y
(
λ ;β ,σ2). The normalized spectral density, de-

noted by h(λ ;β ), is defined as h(λ ;β ) = η(λ ;β )g(β ) with g(β ) = exp
(
− 1

2π

∫ 2π

0 logη(λ ;β )dλ

)
. This

normalized spectral density satisfies the property that

∫ 2π

0
logh(λ ;β )dλ = 0. (22)

The log Whittle likelihood function (Whittle, 1951) is specified as the following:

logLW (β ) =
1
m

m

∑
s=1

I(λs)

h(λs;β )
, (23)

where m = ⌊n/2⌋ and λs = 2πs/n (with s = 1, ...,m) is the Fourier frequency. The periodogram I (λs) is
defined as

I (λs) =
1

2πn

∣∣∣∣∣ n

∑
j=1

y j∆ exp(−i jλs)

∣∣∣∣∣
2

. (24)
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The objective function of the Whittle ML method (23) is derived from the time-domain ML with the ap-
proximations: Σ−1

z ≈
[
a jk
]T

j,k=1 with a jk ≈ (2π)−2 ∫ 2π

0 f ∆
y
(
λ ;β ,σ2)−1 ei( j−k)λ dλ and log |Σz| ≈T (2π)−1∫ 2π

0 log f ∆
y
(
λ ;β ,σ2)dλ .

The Whittle ML estimator (denoted by β̂W ) is defined as

β̂W = argmin
β

logLW (β )

and the parameter σ2 is estimated separately as the averaged ratio between I(λs) and the original spectral
density η(λs; β̂W ), i.e.,

σ̂
2
W =

1
m

m

∑
s=1

I(λs)

η(λs; β̂W )
.

The Whittle ML method generally offers significantly improvements in terms of computational effi-
ciency compared to the time-domain ML (TDML) method, particularly when dealing with a large sample
size n. This efficiency gain arises because implementing the TDML method necessitates the calculation
of the variance-covariance matrix Σz and its determinant and inverse (|Σz| and Σ−1

z ), for which closed-
form expressions are unavailable. However, computing the spectral density of fOU, which are essential
for the implementation of the Whittle ML method, entails infinite summations and poses a significant
challenge. As shown in Section 3, when the value of H is close to zero, achieving satisfactory computa-
tional accuracy with the truncation method is challenging, even with exceedingly large values of K. In
contrast, the modified Paxson approximate spectral density f̃ ∆

y (λ ) is much more computational efficient
and accurate across all values of H.

Consequently, we propose to replace the true spectral density f ∆
y (λ ;β ) with the modified Paxson

approximate f̃ ∆
y (λ ;β ) = σ2η̃(λ ;β ), resulting in the AWML method, denoted by θ̂AW =

(
β̂AW , σ̂2

AW

)
and defined by

β̂AW = argmin
β

1
m

m

∑
s=1

I(λs)

h̃(λs;β )
and σ̂

2
AW =

1
m

m

∑
s=1

I(λs)

η̃(λs; β̂AW )
,

where h̃(λs;β ) = η̃(λ ;β )g̃(β ) and g̃(β ) = exp
(
− 1

2π

∫ 2π

0 log η̃(λ ;β )dλ

)
.

Like the TDML method, the Whittle ML estimator is shown to be consistent, asymptotically normal
and efficient in the sense of Fisher by Fox and Taqqu (1986) for strongly dependent processes whose
spectral density satisfies fy (λ ;β )∼ |λ |−2d Lβ (λ ) as λ → 0, where d ∈ (0,1/2) and Lβ (λ ) varies slowly
at 0. Velasco and Robinson (2000) extend the asymptotic results to include nonstationary d ∈ [0.5,1) or
antipersistent d ∈ (−0.5,0), while Lieberman et al. (2009) provide the asymptotic results for d < 0.5.6

Hult (2003) checks the validity of the asymptotic results of the Whittle ML estimator for the discretely

6Fukasawa and Takabatake (2019) study the asymptotic properties of the Whittle estimator for the case d ∈ (−0.5,0.5)
under a double asymptotic scheme (i.e., the sampling interval shrinks to zero and the time span goes to infinity), which is
different from the long span scheme that we adopt here.
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sampled fOU process when H ∈ [0.5,1). Our aim here is to establish the asymptotic properties of the
Whittle ML and AWML estimators for the discretely sampled fOU process with H ∈ (0,1). We first
derive the asymptotic results of the Whittle ML estimator under the given data generating process.

Theorem 4.1 Assume that the true parameters (κ0,H0,σ
2
0 ) ∈ Interior(Θ) where Θ is a compact set in

R+× (0,1)×R+. As n → ∞, the Whittle ML estimator is consistent and has asymptotic normality:

√
n
(

β̂W −β0

)
→d N

(
0,4πΣ

−1
0
)
,

and σ̂2
W →p σ2

0 where

Σ0 =
∫ 2π

0

{
∂

∂β
logη (λ ;β0)

}{
∂

∂β ′ logη (λ ;β0)

}
dλ .

Theorem 4.2 below shows that this AWML estimator is asymptotically equivalent to the Whittle ML
estimator and hence consistent and asymptotically normal.

Theorem 4.2 Assume that the true parameters (κ0,H0,σ
2
0 ) ∈ Interior(Θ) where Θ is a compact set in

R+× (0,1)×R+. As n → ∞ and K → ∞, the AWML estimator is asymptotically equivalent to the Whittle

ML estimator such that

√
n
(

β̂AW −β0

)
=

√
n
(

β̂W −β0

)
+op (1) ,

σ̂
2
AW = σ̂

2
W [1+op (1)] .

4.2 Other estimation methods

We now briefly review two existing methods for estimating parameters in the fOU process: the MCL
method of Bennedsen et al. (2022) and the CoF method Wang et al. (2023). Both methods are designed
to improve the computational speed of TDML.

4.2.1 TDML and MCL

Let y = (y1∆,y2∆, · · · ,yn∆)
′, θ = (κ,H,σ), and Σy be the covariance matrix of y.7 Since y− µ̂ ∼ N(0,Σy)

, the log likelihood function of fOU is

logL(θ) ∝ −1
2

log |Σy|−
1
2
(y− µ̂)′Σ−1

y (y− µ̂). (25)

7Following Lieberman et al. (2009), we assume there exists a consistent estimate (denoted by µ̂) of µ .
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The TDML estimator is defined as
θ̂ML = argmax

θ∈Θ

logL(θ).

The asymptotic theory of θ̂ML was studied in Dahlhaus (1989) when H ∈ (0.5,1) and Lieberman et al.
(2012) when H ∈ (0,0.5). Under both settings, the TDML estimator is consistent, asymptotically normal,
and asymptotically efficient in the sense of Fisher.

However, the TDML method can be computationally intensive, which makes it unsuitable for a sam-
ple with a large sample size. To address this difficulty, Bennedsen et al. (2022) propose the MCL method,
which aims to improve the computational speed. The objective function of the MCL is given by:

logLc(θ) =
M

∑
k=1

n−k

∑
i=1

logω
(
y(i+k)∆,yi∆;θ

)
,

where M ∈ N+ is fixed, ω
(
y(i+k)∆,yi∆;θ

)
is the pairwise joint probability density function (pdf) of(

y(i+k)∆,yi∆
)
. Since

(
y(i+k)∆,yi∆

)
follows a bivariate normal distribution with correlation coefficient ρk,

the pdf of
(
y(i+k)∆,yi∆

)
takes the form of

ω
(
y(i+k)∆,yi∆;θ

)
=

1

2πσ2
√

1−ρ2
k

exp

[
− 1

2σ2
(
1−ρ2

k

) (y2
(i+k)∆ + y2

i∆ −2yi∆y(i+k)∆ρk

)]
.

The computation of the correlation coefficient ρk is based on (3). The MCL estimator is defined as

θ̂MCL = argmax
θ∈Θ

logLc(θ).

Unfortunately, the asymptotic theory for the MCL estimator, including the rate of convergence and
the asymptotic distribution, critically depends on the true value of H (i.e., whether H < 0.75 or H > 0.75).
Moreover, the asymptotics of the MCL estimator for the case of H = 0.75 is yet to be developed in the
literature. See Bennedsen et al. (2022) for details.

4.2.2 CoF method

The CoF approach only relies on the first two moments of yi∆ which makes it very easy to implement.
The Hurst parameter H is estimated as

ĤCoF =
1
2

log2

∑
n−4
j=1
(
y( j+4)∆ −2y( j+2)∆ + y j∆

)2

∑
n−2
j=1
(
y( j+2)∆ −2y( j+1)∆ + y j∆

)2

 ,

15



where log2 is 2-based logarithm. The numerator and the denominator are the second order difference of
y j∆ at different frequencies and hence the name of the method. The remaining two parameters σ and κ

are estimated in a second stage such that

σ̂
2
CoF =

∑
n−2
j=1
(
y( j+2)∆ −2y( j+1)∆ + y j∆

)2

n
(

4−22Ĥ
)

∆2Ĥ
and κ̂CoF =

n∑
n
j=1 y2

j∆ −
(

∑
n
j=1 y j∆

)2

n2σ̂2ĤΓ
(
2Ĥ
)


− 1

2Ĥ

.

Both ĤCoF and σ̂2
CoF exhibit consistency and asymptotic normality when T ∆ → 0 and n = T/∆ → ∞.

The asymptotic variance of Ĥ increases as H moves closer to zero. While ĤCoF achieves
√

n-consistency,
the convergent rate of σ̂2

CoF is slower, specifically at a rate of
√

n/(log(1/∆)). The consistency of κ̂CoF

requires T → ∞ and ∆ → 0. The asymptotic theory for κ̂CoF , including the rate of convergence, the
asymptotic variance, and the asymptotic distribution, heavily depends on the true value of H; for more
details, refer to Wang et al. (2023).

In summary, both MCL and CoF yield the asymptotic theory that is discontinuous in H, making statis-
tical inferences difficult to implement. In contrast, the asymptotic theory for the AWML method remains
the same across all values of H within the range of (0,1), thereby simplifying statistical inferences.

4.3 Simulation studies

The data generating process is fOU defined in (2) with two parameter settings:
{

κ,H,σ2}= {1,0.1,0.2}
and

{
κ,H,σ2}= {5,0.2,1}, which are close to the estimated coefficients in the empirical applications.

We set the sample size to n = 2000,4000 and conduct 1000 replications to compare the estimation ac-
curacy of AWML, MCL, and CoF. For AWML, we use K = 200. We use the CoF estimate as an initial
value.

Figures 3 and 4 depict the kernel density of the three estimates from each of the three estimation
methods under the two parameter settings. The top row corresponds to a sample size of n = 2000,
while the bottom row corresponds to n = 4000. It is evident that the AWML method delivers the most
precise estimation results, with values clustering closely around the true value and a narrower distribution,
followed by MCL. The advantage of AWML is more pronounced in Figure 3 (with a smaller value of H)
than in Figure 4.

Table 1 reports the bias, standard error (std), and root mean square error (RMSE) of the three estimates
from each of the three estimation methods under the two parameter settings. Evidently, the AWML
method performs better than MCL, which in turn performs much better than CoF. For example, when
H = 0.1 and n = 4000, the RMSE of CoF estimator for H is about four times greater than that of AWML.
The benefit is also visible when we contrast the AWML method with MCL. For instance, when H = 0.1,
the AWML method demonstrates a 50% (37%) reduction in RMSE for H in comparison to MCL for
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Figure 3: Kernel densities of the estimated model parameters: H = 0.1,κ = 1,σ2 = 0.2

(a) Ĥ : n = 2000 (b) κ̂ : n = 2000 (c) σ̂2 : n = 2000

(d) Ĥ : n = 4000 (e) κ̂ : n = 4000 (f) σ̂2 : n = 4000

Note: The kernel densities are computed from the 1000 estimates of the model parameters. The x-axis is the
estimated coefficients and y-axis displays the kernel density.

n = 2000 (n = 4000). The advantage of AWML method remains sizeable when H increases to 0.2.
Furthermore, the AWML method is computationally less expensive than MCL. On a standard laptop
computer, it takes AWML and MCL, respectively, approximately 1.19 and 4.32 seconds to complete one
iteration for 2000 observations.8

5 Financial Volatility Dynamics

Volatility is a critical factor in many financial decisions, and the availability of intraday data allows for
the construction of realized volatility measures. In this study, we obtain the daily realized volatility
(RV) of several assets, including the S&P 500 index exchange-traded fund (ETF), ETFs tracking various
industry indices, and 30 Dow Jones industrial average stocks, from the Risk Lab.9 The sample period
runs from 2012 to 2019, with the number of observations ranging between 1909 and 2005. The choice of
the sample period allow us to avoid the global financial crisis in 2008 and the stock turbulence in March

8The CPU time is based on MacBook Pro M2 chip, 8-core CPU and 10-core GPU.
9https://dachxiu.chicagobooth.edu/#risklab.
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Table 1: Bias, standard error and RMSE of alternative estimators.

CoF MCL AWML CoF MCL AWML
∆ = 1/250,n = 2000 ∆ = 1/250,n = 4000

DGP 1: H = 0.1,κ = 1,σ2 = 0.2
H Bias -0.0004 -0.0004 0.0024 0.0007 -0.0004 0.0011

Std 0.0335 0.0151 0.0091 0.0243 0.0086 0.0062
RMSE 0.0335 0.0151 0.0094 0.0243 0.0086 0.0063

κ Bias 0.8561 0.0203 0.0976 0.4440 -0.0458 0.0174
Std 2.6400 0.9263 0.8465 1.5629 0.6184 0.4793

RMSE 2.7754 0.9266 0.8521 1.6247 0.6201 0.4796

σ2 Bias 0.0125 0.0011 0.0059 0.0081 -0.0005 0.0023
Std 0.0817 0.0278 0.0185 0.0553 0.0171 0.0124

RMSE 0.0826 0.0279 0.0194 0.0559 0.0171 0.0126
DGP 2: H = 0.2,κ = 5,σ2 = 21

H Bias -0.0009 0.0007 0.0016 -0.0017 -0.0003 0.0002
Std 0.0332 0.0154 0.0131 0.0241 0.0095 0.0085

RMSE 0.0332 0.0154 0.0132 0.0242 0.0095 0.0085

κ Bias 0.5272 0.1855 0.2636 0.1661 0.0328 0.0802
Std 3.4972 1.7727 1.3945 2.4975 1.1861 0.9816

RMSE 3.5367 1.7824 1.4192 2.5030 1.1865 0.9849

σ2 Bias 0.0560 0.0184 0.0263 0.0128 -0.0030 0.0029
Std 0.4050 0.1648 0.1393 0.2776 0.0976 0.0867

RMSE 0.4089 0.1658 0.1417 0.2779 0.0976 0.0867
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Figure 4: Kernel densities of the model parameter estimates: H = 0.2,κ = 5,σ2 = 1

(a) n = 2000,H = 0.2 (b) n = 2000,κ = 5 (c) n = 2000,σ2 = 1

(d) n = 4000,H = 0.2 (e) n = 4000,κ = 5 (f) n = 4000,σ2 = 1

Note: The kernel densities are computed from the 1000 estimates of the model parameters. The x-axis is the
estimated coefficients and y-axis displays the kernel density.

2020 at the onset of Covid-19, as in Shi et al. (2022). The logarithm of RV is modeled as the fOU process.
To estimate the model parameters, we employ three different approaches: AWML, MCL, and CoF. The
sampling interval ∆ is set to 1/252. We use the estimates from CoF as the initial values for AWML and
MCL. As in our simulations, we set K = 200 for AWML. The computing times for MCL and AWML are
approximately 20 and 8 seconds, respectively.

Table 2 reports the estimation results of the fOU process for the ten index ETFs (top panel) and the 30
Dow Jones industrial average stocks (bottom panel). The results indicate that AWML and MCL provide
very similar estimates for all three model parameters, with the estimated H ranging between 0.12 and
0.23. In contrast, the CoF estimates of H are consistently higher than those of AWML and MCL. The
estimated κ by AWML and MCL falls between 1.5 and 13.23, which implies a very persistent process
with the autoregressive coefficient e−κ∆ between 0.95 and 0.994. The CoF estimates of κ and σ2 are
significantly higher than those of the ML methods, suggesting that the former may overestimate the
volatility and the degree of mean reversion.
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Table 2: Estimation results of fOU for the index ETFs and the 30 Dow Jones Industrial Average stocks

CoF MCL AWML
H κ σ2 H κ σ2 H κ σ2

Index ETFs
SPY 0.29 11.85 1.64 0.23 5.79 0.91 0.23 4.79 0.90
XLB 0.25 12.08 0.97 0.16 2.41 0.37 0.16 2.17 0.37
XLE 0.34 15.64 1.72 0.19 1.62 0.33 0.20 1.87 0.37
XLF 0.24 15.36 0.97 0.19 7.18 0.54 0.19 5.51 0.53
XLI 0.24 10.73 0.91 0.19 5.32 0.56 0.19 3.67 0.52
XLK 0.26 14.79 1.38 0.21 7.51 0.79 0.20 4.57 0.71
XLP 0.17 4.56 0.42 0.16 4.06 0.40 0.15 2.78 0.36
XLU 0.17 5.22 0.34 0.16 3.56 0.28 0.14 1.56 0.23
XLV 0.22 7.11 0.74 0.19 3.67 0.5 0.18 2.59 0.47
XLY 0.23 9.77 0.93 0.19 4.41 0.56 0.18 3.55 0.55

Dow Jones 30 stocks
AAPL 0.36 34.44 3.72 0.21 7.81 0.71 0.21 5.05 0.66
ALD 0.24 18.27 1.04 0.18 7.41 0.52 0.17 4.47 0.46
AMGN 0.22 10.89 0.71 0.15 2.80 0.34 0.15 2.08 0.34
AXP 0.23 23.13 0.96 0.16 7.95 0.42 0.15 5.44 0.38
BA 0.31 32.66 2.23 0.17 6.46 0.50 0.16 2.90 0.43
BEL 0.19 15.70 0.50 0.15 7.84 0.32 0.14 4.62 0.28
CAT 0.26 16.88 1.08 0.14 1.80 0.29 0.13 1.30 0.27
CHV 0.22 4.30 0.52 0.20 2.84 0.41 0.19 1.98 0.37
CRM 0.31 25.50 2.11 0.19 6.06 0.57 0.18 2.68 0.49
CSCO 0.28 21.86 1.16 0.19 6.93 0.44 0.18 3.95 0.39
DIS 0.25 22.61 1.03 0.18 9.08 0.48 0.17 5.52 0.43
GS 0.30 22.57 1.27 0.22 9.59 0.54 0.21 5.90 0.49
HD 0.25 21.32 1.00 0.17 5.93 0.39 0.16 4.45 0.37
IBM 0.29 31.91 1.56 0.17 7.01 0.40 0.16 4.90 0.37
INTC 0.26 17.18 0.91 0.21 9.05 0.53 0.18 3.90 0.40
JNJ 0.12 1.54 0.26 0.14 2.78 0.31 0.13 2.13 0.29
JPM 0.26 15.65 0.98 0.22 8.86 0.60 0.20 5.34 0.52
KO 0.21 12.73 0.58 0.17 6.10 0.36 0.15 3.08 0.29
MCD 0.29 37.41 1.58 0.14 4.75 0.30 0.13 2.62 0.27
MMM 0.26 15.73 1.17 0.17 4.26 0.47 0.16 1.77 0.39
MRK 0.21 15.81 0.66 0.15 5.83 0.35 0.14 3.78 0.32
MSFT 0.29 19.13 1.31 0.21 7.19 0.54 0.21 5.03 0.51
NIKE 0.27 30.84 1.17 0.17 9.78 0.41 0.16 5.47 0.34
PG 0.18 8.02 0.42 0.16 4.99 0.32 0.15 3.54 0.29
SPC 0.17 13.04 0.49 0.12 4.47 0.28 0.12 2.29 0.26
UNH 0.21 14.82 0.68 0.14 4.91 0.35 0.13 2.26 0.29
V 0.23 15.12 0.79 0.16 4.89 0.38 0.15 3.05 0.36
WAG 0.27 37.57 1.67 0.18 13.23 0.57 0.15 5.30 0.43
WMT 0.26 33.99 1.26 0.14 6.32 0.33 0.13 3.53 0.30
XOM 0.25 9.81 0.73 0.19 3.14 0.35 0.18 2.43 0.34
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6 Conclusion

Computing the spectral density of the discretely sampled fOU process presents challenges due to the
infinite summation in the formula, rendering it impractical for widespread application. Particularly when
the Hurst parameter is low, e.g., 0.1, the commonly employed truncation method falls short. In our paper,
we introduce an improved Paxson approximation for the spectral density. Our novel approach not only
enhances accuracy but also boasts superior computational efficiency compared to the truncation method.

Furthermore, we demonstrate how the approximate spectral density of fOU can serve as a valuable
tool for parameter estimation via the Whittle maximum likelihood method. Specifically, we propose sub-
stituting the true spectral density with its approximate counterpart in the implementation of the Whittle
maximum likelihood technique, which we refer to as the AWML method. We show that for data sampled
from the stationary fOU processes with H ∈ (0,1), the standard Whittle estimator exhibits consistency,
asymptotic normality, and efficiency. Moreover, we demonstrate that the AWML estimator is asymptot-
ically equivalent to the Whittle ML estimator. In other words, the asymptotic distribution of AWML is
continuous in H ∈ (0,1) whereas it critically depends on the true value of H for the existing methods
(e.g., MCL and CoF). This property facilitates statistical inference when using our method. Simulation
results show that our proposed method outperforms existing estimation methods in finite samples.

We apply the proposed estimation method to analyze the log realized volatility of the S&P 500 index
ETF, nine industry index ETFs, and 30 Dow Jones industrial average stocks from 2012 to 2019. Our
estimated Hurst parameters range from 0.1 to 0.23, indicating rough volatility dynamics. Our study adds
to the ongoing research on fOU processes and provides new insights into the use of the modified Paxson
approximate spectral density in estimation.

Although we only demonstrate the usefulness of the approximate spectral density in constructing the
ML estimate in the present paper, it can be applied in various other contexts. One potential applications
is nonnested model comparison (McElroy, 2016), which is beyond the scope of the present paper and
will be explored in a separate paper.
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A Spectral Densities
Proof of Lemma 2.1. Let θ =

(
κ,H,σ2). The spectral density of fOU is given by

fy (λ ;θ) =
σ2

2π
Γ(2H +1)sin(πH)

|λ |1−2H

κ2 +λ 2 , with λ ∈ (−∞,∞) .

We aim to show that if θ1 ̸= θ2, there must be at least one value of λ for which fy (λ ;θ1) ̸= fy (λ ;θ2)
under the assumption that θ ∈ Θ which is a compact set in R+× (0,1)×R+. Without loss of generality,
we assume that σ1 = σ2.

We prove this uniqueness by contradiction. Suppose that fy (λ ;θ1) = fy (λ ;θ2) for all λ . By defini-
tion, it implies that

κ2
1 +λ 2

κ2
2 +λ 2 =

Γ(2H1 +1)sin(πH1)

Γ(2H2 +1)sin(πH2)
|λ |2(H2−H1) . (26)

Now, let us consider different cases:

• If H1 = H2, then κ1 ̸= κ2, given that θ1 ̸= θ2. The right-hand side of the equation is constant for all
λ , while the left-hand side of (26) depends on λ . Therefore, the only way for equality to hold is if
κ1 = κ2, which contradicts with the initial assumption of θ1 ̸= θ2.

• If H1 > H2, we have H2 −H1 < 0 and as λ → 0, |λ |2(H2−H1) → ∞. Consequently, the right-hand
side of the equation diverges to ∞. However, the left-hand side remains bounded as long as κ1 and
κ2 are bounded from zero and infinity, as assumed due to the compactness of κ in R+. Therefore,
the equality does not hold.

• If H1 < H2, we have H2 −H1 > 0 and as λ → 0, |λ |2(H2−H1) → 0. Consequently, the right-hand
side of the equation converges to zero. However, the left-hand side remains bounded away from
zero under the assumption that κ1 and κ2 are bounded from zero and infinity. Thus, the equality
fails in this case as well.

This concludes the proof.

Proof of Lemma 3.1. (1) Taking derivative of Q1,k (λ ) with respect to k, we have

∂Q1,k (λ )

∂k
=

2π (1−2H)(2πk−λ )−2H [(∆κ)2 +(2πk−λ )2]−2π(2πk−λ )1−2H2(2πk−λ )

[(∆κ)2 +(2πk−λ )2]
2 .
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To check the sign of ∂Q1,k (λ )/∂k, we can focus on the numerator as the denominator is always positive.
Since H > 0, the numerator is

2π (1−2H)(2πk−λ )−2H [(∆κ)2 +(2πk−λ )2]−2π(2πk−λ )1−2H2(2πk−λ )

=2π(2πk−λ )−2H [(1−2H)(∆κ)2 − (1+2H)(2πk−λ )2]
<2π(2πk−λ )−2H [(∆κ)2 − (2πk−λ )2] .

When k > ∆κ+λ

2π
, ∂Q1,k (λ )/∂k < 0. Hence, for any given ∆κ , we can always find K such that for any

k > K, the function Q1,k (λ ) monotonically decreases in k.
(2) Similarly, the first order derivative of Q2,k (λ ) is

∂Q2,k (λ )

∂k
=

(−2H +1)(λ +2πk)−2H2π[(∆κ)2 +(λ +2πk)2]− (λ +2πk)−2H+12(λ +2πk)2π

[(∆κ)2 +(λ +2πk)2]
2 .

Since H > 0, the numerator can be simplified as

2π(λ +2πk)−2H [(1−2H)(∆κ)2 − (1+2H)(λ +2πk)2]< 2π(λ +2πk)−2H [(∆κ)2 − (λ +2πk)2].

It follows that when k > ∆κ−λ

2π
, ∂Q2,k (λ )/∂k < 0. That is, for any given ∆κ , we can always find K such

that for any k > K, the function Q2,k (λ ) monotonically decreases in k.
(3) By combining the above results, when k > ∆κ+λ

2π
, we have both Q1,k (λ ) and Q2,k (λ ) monotoni-

cally decrease in k. Based on a properties of the harmonic sum, we have

∫
∞

K+1
Q1,k (λ )dk ≤

∞

∑
k=K+1

Q1,k (λ )≤
∫

∞

K
Q1,k (λ )dk,

∫
∞

K+1
Q2,k (λ )dk ≤

∞

∑
k=K+1

Q2,k (λ )≤
∫

∞

K
Q2,k (λ )dk,

in which the two left Riemann integrals are the lower bounds and the two right Riemann integrals are the
upper bounds.

Since the two sets of integrals are not available in closed-form, the upper bounds can be further
bounded by

∫
∞

K
Q1,k (λ )dk =

∫
∞

K

(2πk−λ )1−2H

(∆κ)2 +(2πk−λ )2 dk ≤
∫

∞

K
(2πk−λ )−1−2Hdk =

(2πK −λ )−2H

4πH
,

and

∫
∞

K
Q2,k (λ )dk =

∫
∞

K

(2πk+λ )1−2H

(∆κ)2 +(2πk+λ )2 dk ≤
∫

∞

K
(2πk+λ )−1−2H dk =

(2πK +λ )−2H

4πH
.
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The lower bounds can be further bounded by

∫
∞

K+1
Q1,k (λ )dk =

∫
∞

K+1

(2πk−λ )1−2H

(∆κ)2 +(2πk−λ )2 dk

=
∫

∞

K+1

(2πk−λ )2

(∆κ)2 +(2πk−λ )2
(2πk−λ )1−2H

(2πk−λ )2 dk

=
∫

∞

K+1

[
1− (∆κ)2

(∆κ)2 +(2πk−λ )2

]
(2πk−λ )1−2H

(2πk−λ )2 dk

=
∫

∞

K+1

(2πk−λ )1−2H

(2πk−λ )2 dk−
∫

∞

K+1

(∆κ)2

(∆κ)2 +(2πk−λ )2
(2πk−λ )1−2H

(2πk−λ )2 dk

≥
∫

∞

K+1
(2πk−λ )−1−2Hdk− (∆κ)2

∫
∞

K+1
(2πk−λ )−3−2H dk

=
1

4πH
[2π (K +1)−λ ]−2H − (∆κ)2 1

4π (1+H)
[2π (K +1)−λ ]−2−2H

=
1

4π
[2π (K +1)−λ ]−2H

{
1
H

− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}
,

and ∫
∞

K+1
Q2,k (λ )dk =

∫
∞

K+1

(2πk+λ )1−2H

(∆κ)2 +(2πk+λ )2 dk

=
∫

∞

K+1

(2πk+λ )2

(∆κ)2 +(2πk+λ )2
(2πk+λ )1−2H

(2πk+λ )2 dk

=
∫

∞

K+1

[
1− (∆κ)2

(∆κ)2 +(2πk+λ )2

]
(2πk+λ )1−2H

(2πk+λ )2 dk

≥ 1
4πH

[2π (K +1)+λ ]−2H − (∆κ)2 1
4π (1+H)

[2π (K +1)+λ ]−2−2H

=
1

4π
[2π (K +1)+λ ]−2H

{
1
H

− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}
.

Therefore,

[2π (K +1)−λ ]−2H

4π

{
1
H

− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}
≤

∞

∑
k=K+1

Q1,k (λ )≤
(2πK −λ )−2H

4πH
,

[2π (K +1)+λ ]−2H

4π

{
1
H

− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}
≤

∞

∑
k=K+1

Q2,k (λ )≤
(2πK +λ )−2H

4πH
.

25



Proof of Lemma 3.2. (1) The discrete time spectral density of fOU is

f ∆
y (λ ) =

σ2

2π
C (H)∆

2HS (λ ;β ) .

The quantity S (λ ;β ) can be rewritten as

S (λ ;β ) =
K

∑
k=1

Q1,k (λ )+
∞

∑
k=K+1

Q1,k (λ )+Q0 (λ )+
K

∑
k=1

Q2,k (λ )+
∞

∑
k=K+1

Q2,k (λ ) .

It follows directly from Lemma 3.1(3) that

S (λ ;β )≥ SL (λ ;β )≡
K

∑
k=1

Q1,k (λ )+
K

∑
k=1

Q2,k (λ )+
λ 1−2H

(∆κ)2 +λ 2

+
1

4π
[2π (K +1)−λ ]−2H

{
1
H

− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}

+
1

4π
[2π (K +1)+λ ]−2H

{
1
H

− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}
,

(27)

and

S (λ ;β )≤ SU (λ ;β )≡
K

∑
k=1

Q1,k (λ )+
K

∑
k=1

Q2,k (λ )+
λ 1−2H

(∆κ)2 +λ 2

+
1

4πH
(2πK −λ )−2H +

1
4πH

(2πK +λ )−2H .

(28)

Therefore, the spectral density f ∆
y (λ ) satisfies the following inequality:

σ2

2π
C (H)∆

2HSL (λ ;β )≤ f ∆
y (λ )≤ σ2

2π
C (H)∆

2HSU (λ ;β ) . (29)

The modified Paxson approximation of the fOU spectral density is defined as the average of the lower
and upper bounds such that

f̃ ∆
y (λ ) =

σ2

2π
C (H)∆

2H 1
2
[SL (λ ;β )+SU (λ ;β )]

=
σ2

2π
C (H)∆

2H

{
K

∑
k=1

Q1,k (λ )+
K

∑
k=1

Q2,k (λ )+
λ 1−2H

(∆κ)2 +λ 2

+
1

8π
[2π (K +1)−λ ]−2H

{
1
H

− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}

+
1

8π
[2π (K +1)+λ ]−2H

{
1
H

− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}
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+
1

8πH
(2πK −λ )−2H +

1
8πH

(2πK +λ )−2H
}
.

Proof of Theorem 3.1. (1) From Lemma 3.1, the lower bound of the quantity is given by

∞

∑
k=K+1

Q1,k (λ )+
∞

∑
k=K+1

Q2,k (λ ) ≥ [2π (K +1)−λ ]−2H

4π

{
1
H

− (∆κ)2

(1+H) [2π (K +1)−λ ]2

}

+
[2π (K +1)+λ ]−2H

4π

{
1
H

− (∆κ)2

(1+H) [2π (K +1)+λ ]2

}

=
1
H

{
[2π (K +1)−λ ]−2H

4π
+

[2π (K +1)+λ ]−2H

4π

}
[1+o(1)]

≥ 1
H

(2π)−2H−1 (K +2)−2H [1+o(1)] = O
(
K−2H)

and the upper bound of the quantity is

∞

∑
k=K+1

Q1,k (λ )+
∞

∑
k=K+1

Q2,k (λ ) ≤ 1
4πH

[
(2πK −λ )−2H +(2πK +λ )−2H

]
≤ 1

H
(2π)−2H−1 (K −1)−2H = O

(
K−2H) .

This implies that
∞

∑
k=K+1

Q1,k (λ )+
∞

∑
k=K+1

Q2,k (λ ) = O
(
K−2H) .

Therefore, for a fixed H and ∆, as K → ∞, the approximation error of the truncation method

∣∣∣ f ∆
y (λ ;θ)− f̄ ∆

y (λ ;θ)
∣∣∣= σ2

2π
C (H)∆

2H

[
∞

∑
k=K+1

Q1,k (λ )+
∞

∑
k=K+1

Q2,k (λ )

]
= O

(
K−2H)

for any λ ∈ (0,2π).
(2) Let

f ∆,L
y (λ ) =

σ2

2π
C (H)∆

2HSL (λ ;β ) and f ∆,U
y (λ ) =

σ2

2π
C (H)∆

2HSU (λ ;β ) .

The modified Paxson approximate spectral density is

f̃ ∆
y (λ ) =

1
2

(
f ∆,L
y (λ )+ f ∆,U

y (λ )
)
.
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The approximation error is∣∣∣ f̃ ∆
y (λ )− f ∆

y (λ )
∣∣∣= 1

2

∣∣∣ f ∆,L
y (λ )− f ∆

y (λ )+ f ∆,U
y (λ )− f ∆

y (λ )
∣∣∣≤ ∣∣∣ f ∆,U

y (λ )− f ∆,L
y (λ )

∣∣∣ .
By definition

f ∆,U
y (λ )− f ∆,L

y (λ ) =
σ2

2π
C (H)∆

2H [SU (λ ;β )−SL (λ ;β )] .

Hence, by the mean value theorem, we have, uniformly in λ ∈ (0,2π),

SU (λ ;β )−SL (λ ;β ) =
(2πK −λ )−2H +(2πK +λ )−2H − [2π (K +1)−λ ]−2H − [2π (K +1)+λ ]−2H

4πH

+
1

4π

(∆κ)2

1+H

{
[2π (K +1)−λ ]−2H−2 +[2π (K +1)+λ ]−2H−2

}
= ξ

−2H−1 +ξ
′−2H−1 +

(∆κ)2

π
λξ

′′−2H−3

≤ ξ
−2H−1 +ξ

′−2H−1 +(∆κ)2
ξ

′′−2H−3

≤ 2(2π)−2H−1 (K −1)−2H−1 +(∆κ)2 (2π)−2H−3 K−2H−3 = O
(
K−2H−1) ,

where ξ ∈ [2πK −λ ,2π (K +1)−λ ], ξ ′ ∈ [2πK +λ ,2π (K +1)+λ ], ξ
′′ ∈ [2π (K +1)−λ ,2π (K +1)+λ ].

It follows that

sup
λ∈(0,2π)

∣∣∣ f ∆,U
y (λ )− f ∆,L

y (λ )
∣∣∣= sup

λ∈(0,2π)

∣∣∣∣σ2

2π
C (H)∆

2H [SU (λ ;β )−SL (λ ;β )]

∣∣∣∣= O
(
K−2H−1) .

Consequently, we have
∣∣ f̃ ∆

y (λ )− f ∆
y (λ )

∣∣= O
(
K−2H−1) .

B Whittle ML and Approximate Whittle ML Estimators
Proof of Theorem 4.1. Let qφ (λ ) represent a general spectral density that belongs to the parametric
family

{
qφ : φ ∈ Θ ⊆ Rp} such that for all φ ∈ Θ,

qφ (λ )∼ |λ |−α(φ)Lφ (λ ) as λ → 0,

where α (φ) < 1, which implies that the underlying process is stationary. Lieberman et al. (2009) show
that under Assumptions 2-3 listed below, the Whittle ML estimator is consistent and asymptotically
normal.

Assumption 2 The true parameter value φ0 ∈ Interior(Θ) ⊂ Rp where Θ is compact. If φ1 and φ2 are
distinct elements in Θ, then the set

{
λ ∈ [0,2π] : qφ1 (λ ) ̸= qφ2 (λ )

}
has a positive Lebesgue measure.

Assumption 3 There exists a continuous function α (φ) : Θ → (−∞,1) such that for each δ > 0, the
following conditions hold for every (φ ,λ ) ∈ Θ× (0,2π):
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(1) qφ (λ ), q−1
φ
(λ ) and ∂

∂λ
qφ (λ ) are continuous at all (λ ,φ), λ ∈ (0,2π) and

qφ (λ ) = O
(

λ
−α(φ)−δ

)
; q−1

φ
(λ ) = O

(
λ

α(φ)−δ

)
;

∂

∂λ
qφ (λ ) = O

(
λ
−α(φ)−1−δ

)
;

(2) ∂qφ (λ )/∂φ j and ∂ 2qφ (λ )/∂φi∂φ j are continuous at all (λ ,θ), λ ∈ (0,2π) and for any l ∈{1,2,3}
and ki ∈ {1,2, . . . , p},

∂ l

∂φk1 · · ·∂φkl

qθ (λ ) = O
(

λ
−α(φ)−δ

)
;

(3) ∂ 2qφ (λ )/∂λ∂φi are continuous at all (λ ,θ), λ ∈ (0,2π) and

∂ 2

∂λ∂φi
qφ (λ ) = O

(
λ
−α(φ)−1−δ

)
,1 ≤ i ≤ p.

Assumption 4 The constants appearing in the O(·) terms above can be chosen independently of φ .

We aim to establish the asymptotic theory for the Whittle ML estimator in the discretely sampled fOU
process. Given the results in Lieberman et al. (2009), what we need to do is to check if Assumptions 2-4
are satisfied in our setting.

The spectral density of the discretely sampled fOU process is given by:

f ∆
y (λ ) = σ

2
η (λ ;β ) with η (λ ;β ) =

1
2π

C (H)∆
2HS (λ ;β ) for λ ∈ [0,2π] , (30)

and

S (λ ;β )≡
∞

∑
k=1

Q1,k (λ )+Q0 (λ )+
∞

∑
k=1

Q2,k (λ ) .

Let α(β ) be a continuous function of β that takes the form of:

α(β ) =

{
2H −1, if H > 1/2,
0, if H ≤ 1/2.

We show in Lemma 2.1 that for the discretely sampled fOU, under Assumption 1, the spectral den-
sities fy(λ ) and f̃y(λ ) are uniquely identified by θ and hence Assumption 2 is satisfied. We now verify
the continuity property in Assumption 3. Since σ2, C(H) and ∆2H are continuous, it suffices to verify
the continuity property for S(λ ;β ).

• S (λ ;β ): for any k, we have

Q1,k (λ ) =
(2πk−λ )1−2H

(∆κ)2 +(2πk−λ )2 < (2kπ −λ )−1−2H < π
−1−2H (2k)−1−2H ,

Q2,k(λ ) =
(2kπ +λ )1−2H

(∆κ)2 + |2kπ +λ |2
< (2kπ +λ )−1−2H < π

−1−2H (2k)−1−2H . (31)
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It follows that
∞

∑
k=1

Q1,k(λ )+
∞

∑
k=1

Q2,k(λ )< 2(2π)−1−2H
∞

∑
k=1

k−1−2H < ∞. (32)

By Weierstrass’s M test, ∑
∞
k=1 Q1,k(λ )+∑

∞
k=1 Q2,k(λ ) converges uniformly across all (λ ,β ). Con-

sequently, we can find an N such that∣∣∣∣∣ ∞

∑
k=N+1

Q1,k(λ1)+
∞

∑
k=N+1

Q2,k(λ1)

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
k=N+1

Q1,k(λ2)+
∞

∑
k=N+1

Q2,k(λ2)

∣∣∣∣∣< ε/2.

Then, for any λ1 and λ2 with |λ1 −λ2|< ε , we have

|S (λ1;β )−S (λ2;β )|

≤
N

∑
k=1

∣∣Q1,k(λ1)−Q1,k(λ2)
∣∣+ N

∑
k=1

∣∣Q2,k(λ1)−Q2,k(λ2)
∣∣+ |Q0 (λ1)−Q0 (λ2)|

+

∣∣∣∣∣ ∞

∑
k=N+1

Q1,k(λ1)+
∞

∑
k=N+1

Q2,k(λ1)

∣∣∣∣∣+
∣∣∣∣∣ ∞

∑
k=N+1

Q1,k(λ2)+
∞

∑
k=N+1

Q2,k(λ2)

∣∣∣∣∣< ε.

The first three term can be made arbitrarily small because Q1,k (λ ) and Q2,k(λ ) are continuous with
respect to (λ ,β ) for each k and Q0 (λ ) is continuous with respect to λ except λ = 0. Similarly,
one can show the continuity of S (λ ;β ) with respect to β . Therefore, S (λ ;β ) is continuous at all
(λ ,β ) with λ ∈ (0,2π).

• S (λ ;β )−1: For any λ1 and λ2 with |λ1 −λ2|< ε , we have∣∣∣S (λ1;β )−1 −S (λ2;β )−1
∣∣∣= |S (λ1;β )−S (λ2;β )|

S (λ1;β )S (λ2;β )
< ε,

since S (λ ;β ) is continuous and bounded below and away from zero at all (λ ,β ) with λ ∈ (0,2π).
Similarly, one can show the continuity of S (λ ;β )−1 with respect to β .

• ∂

∂λ
S(λ ;β ): By definition,

∂

∂λ
S(λ ;β ) =

∞

∑
k=1

∂

∂λ
Q1,k(λ )+

∞

∑
k=1

∂

∂λ
Q2,k(λ )+

∂

∂λ
Q0 (λ ) ,

where
∂

∂λ
Q0 (λ ) =

(1−2H)λ−2H

(∆κ)2 +λ 2 − 2λ 2−2H

[(∆κ)2 +λ 2]
2 ,

∂

∂λ
Q1,k(λ ) =

(2H −1)(2πk−λ )−2H

(∆κ)2 +(2πk−λ )2 +
2(2πk−λ )2(1−H)

[(∆κ)2 +(2πk−λ )2]
2
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≤ 2H(2πk−λ )−2H

(2πk−λ )2 +
2(2πk−λ )2(1−H)

(2πk−λ )4 = 2(H +1)(2πk−λ )−2H−2

< 2(H +1)(2π)−2H−2 k−2H−2,

and

∂

∂λ
Q2,k(λ ) =

(1−2H)(2πk+λ )−2H

(∆κ)2 +(2πk+λ )2 − 2(2πk+λ )2(1−H)

[(∆κ)2 +(2πk+λ )2]
2

≤ (1−2H)(2πk+λ )−2H−2 < (1−2H)(2π)−2H−2 k−2H−2.

Therefore, by Weierstrass’s M test, the summation of the two infinite series is bounded above for
all (λ ,β ) with λ ∈ (0,2π):

∞

∑
k=1

∂

∂λ
Q1,k(λ )+

∞

∑
k=1

∂

∂λ
Q2,k(λ )< 3(2π)−2H−2

∞

∑
k=1

k−2H−2 < ∞. (33)

Since ∂

∂λ
Q0 (λ ) is continuous at all (λ ,θ), following the standard argument, we can show the

continuity of ∂

∂λ
S(λ ;β ) at all (λ ,θ) with λ ∈ (0,2π).

• Similar results can be obtained for ∂

∂H S(λ ;β ), ∂

∂κ
S(λ ;β ), ∂ 2

∂H2 S(λ ;β ), ∂ 2

∂κ2 S(λ ;β ), ∂ 2

∂H∂κ
S(λ ;β ),

∂ 2

∂λ∂H S(λ ;β ), and ∂ 2

∂λ∂κ
S(λ ;β ), which are omitted here for brevity.

We now verify the order property in Assumption 3. Since f ∆
y (λ ) = σ2 1

2π
C (H)∆2HS (λ ;β ), the

orders of terms related to f ∆
y (λ ) are same as those of S (λ ;β ).

• S(λ ;β ): From (32), ∑
∞
k=1 Q1,k(λ )+∑

∞
k=1 Q2,k(λ ) converges uniformly across (λ ,β ). As λ → 0,

Q0 (λ ) =
λ 1−2H

(∆κ)2 +λ 2

{
∼ c|λ |1−2H → ∞, if H > 1/2,
→ 0, if H ≤ 1/2.

(34)

Therefore, Q0 (λ ) dominates the other two terms in S (λ ;β ) when H > 1/2. Whereas, when H ≤
1/2, all three terms in S (λ ;β ) are bounded. It follows that

S (λ ;β ) =

{
O
(
λ 1−2H) , if H > 1/2,

O(1) , if H ≤ 1/2.
(35)

and that for any δ > 0,
S (λ ;β )

λ−α(β )−δ
→ 0.
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• S−1(λ ;β ): from (35) we have

S (λ ;β )/λ 1−2H = λ−(1−2H)

S(λ ;β )−1 = O(1) , if H > 1/2,

S (λ ;β ) = 1
S(λ ;β )−1 = O(1) , if H ≤ 1/2.

This implies that

S (λ ;β )−1 =

{
O
(
λ−1+2H) , if H > 1/2,

O(1) , if H ≤ 1/2.

It follows that for any δ > 0,
S (λ ;β )−1

λ α(β )−δ
→ 0.

• ∂

∂λ
S(λ ;β ): from (33), we know that ∑

∞
k=1

∂

∂λ
Q1,k(λ )+∑

∞
k=1

∂

∂λ
Q2,k(λ ) is bounded. When λ → 0,

∂

∂λ
Q0 (λ ) = λ

−2H 1−2H
(∆κ)2 +λ 2 −

2λ 2−2H

[(∆κ)2 +λ 2]
2

= λ
−2H 1−2H

(∆κ)2 +λ 2 +o(1)

=


O
(
λ−2H)→ ∞, if H < 1/2,

o(1) , if H = 1/2,
O
(
λ−2H)→−∞, if H > 1/2.

Consequently, given the settings of α(φ) for fOU, as λ → 0, we have

∂

∂λ
S(λ ;β )

λ−α(β )−1−δ
=


λ−2H

λ−1−δ
= λ 1−2H+δ → 0, if H < 1/2,

λ 2−2H

λ−1−δ
= λ 3−2H+δ → 0, if H = 1/2,

λ−2H

λ−(2H−1)−1−δ
= λ δ → 0, if H > 1/2.

• Similar results can be obtained for ∂

∂H S(λ ;β ), ∂

∂κ
S(λ ;β ), ∂ 2

∂H2 S(λ ;β ), ∂ 2

∂κ2 S(λ ;β ), ∂ 2

∂H∂κ
S(λ ;β ),

∂ 3

∂H3 S(λ ;β ), ∂ 3

∂κ3 S(λ ;β ), ∂ 3

∂H∂κ2 S(λ ;β ), ∂ 3

∂κ∂H2 S(λ ;β ), ∂ 2

∂λ∂H S(λ ;β ), ∂ 2

∂λ∂κ
S(λ ;β ).

Therefore, all three assumptions (Assumptions 2-4) are satisfied by the discretely sampled fOU pro-
cess. This means that for fOU processes where the true parameters (κ0,H0,σ

2
0 ) ∈ Interior(Θ) with Θ

being a compact set in R+× (0,1)×R+, the Whittle ML estimator is consistent an asymptotically nor-
mally distributed.

Proof of Theorem 4.2. To obtain the asymptotic theory for β̂AW and σ̂AW , it is sufficient to show that

√
n(β̂AW −β0) =

√
n
(

β̂W −β0

)
+
√

n
(

β̂AW − β̂W

)
=
√

n
(

β̂W −β0

)
+op (1) ,

σ̂
2
AW − σ̂

2
W = op (1) .
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From Theorem 3.1, we know that

sup
λ∈(0,2π)

|η̃(λ ;β )−η(λ ;β )|= O(K−2H−1). (36)

By definition, η (λ ;β ) = 1
2π

C (H)∆2HS (λ ;β ) where

S (λ ;β ) =
∞

∑
k=1

Q1,k (λ )+Q0 (λ )+
∞

∑
k=1

Q2,k (λ ) .

From (32), ∑
∞
k=1 Q1,k(λ )+∑

∞
k=1 Q2,k(λ ) converges uniformly in (λ ,β ) with λ ∈ (0,2π). Moreover,

Q0 (λ ) =
λ 1−2H

(∆κ)2 +λ 2

{
→ ∞ if H > 0.5 and λ → 0
< ∞ otherwise

.

Consequently, when H > 0.5 and λ → 0,

η (λ ;β ) =
1

2π
C (H)∆

2HQ0 (λ ) [1+o(1)] =
1

2π
C (H)∆

2H λ 1−2H

(∆κ)2 +λ 2 [1+o(1)]→ ∞; (37)

otherwise, η (λ ;β )< ∞. It follows that

sup
λ∈(0,2π)

|η̃(λ ;β )−η(λ ;β )|
η(λ ;β )

⪯ O(K−2H−1). (38)

Therefore, as K → ∞, for all λs,

η̃(λs;β ) = η(λs;β )

[
1+

η̃(λ ;β )−η(λ ;β )

η(λ ;β )

]
⪯ η(λs;β )

[
1+O(K−2H−1)

]
, (39)

and
1

η̃(λs;β )
− 1

η(λs;β )
=

η(λs;β )− η̃(λs;β )

η̃(λs;β )η(λs;β )
⪯ O(K−2H−1). (40)

Next, we examine the properties of 1/g(β ). When H ≤ 0.5, S(λ ;β ) is bounded above for all (λ ,β ).
It follows that

1
g(β )

= exp
(

1
2π

∫ 2π

0
logη(λ ;β )dλ

)
=

2π

C (H)∆2H exp
(

1
2π

∫ 2π

0
logS (λ ;β )dλ

)
< ∞.

When H > 0.5, η(λ ;β ) is not defined at λ = 0 and η(λ ;β )→ ∞ as λ → 0. Otherwise, it is bounded.
Assume that ε → 0, and λ is the lowest frequency in (0,2π) such that Q0(λ ) is bounded. It follows that

1
g(β )

= lim
ε→0

2π

C (H)∆2H exp
(

1
2π

∫ 2π

ε

logS (λ ;β )dλ

)
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≤ lim
ε→0

2π

C (H)∆2H exp
[

1
2π

(∫
λ

ε

log
λ 1−2H

(∆κ)2 +λ 2 dλ +
∫ 2π

λ

logS (λ ;β )dλ

)]

= lim
ε→0

2π exp
{

1
2π

[
(1−2H) limε→0

∫
λ

ε
logλ dλ − limε→0

∫
λ

ε
log(

(
∆κ)2 +λ 2)dλ +

∫ 2π

λ
logS (λ ;β )dλ

]}
C (H)∆2H

< ∞,

since limε→0
∫

λ

ε
log(

(
∆κ)2 +λ 2)dλ < ∞,

∫ 2π

λ
logS (λ ;β )dλ < ∞, and

lim
ε→0

∫
λ

ε

logλ dλ = (1−2H)(λ logλ −λ + ε)< ∞.

That is, for all β ,
1

g(β )
= O(1) . (41)

By definition and using results in (38),

g(β )
g̃(β )

= exp
(
− 1

2π

∫ 2π

0
logη(λ ;β )dλ +

1
2π

∫ 2π

0
log η̃(λ ;β )dλ

)
= exp

(
1

2π

∫ 2π

0
log

η̃(λ ;β )

η(λ ;β )
dλ

)
= exp

(
1

2π

∫ 2π

0
log
[

1+
η̃(λ ;β )−η(λ ;β )

η(λ ;β )

]
dλ

)
⪯ 1+O(K−2H−1).

Let ΘS be a compact subsect in R+× (0,1). Using (39), (40) and (41), for any given β ,

sup
β∈Θs

{
1
m

m

∑
s=1

I(λs)

h̃(λs;β )
− 1

m

m

∑
s=1

I(λs)

h(λs;β )

}

= sup
β∈Θs

1
m

[
1

g̃(β )

m

∑
s=1

I(λs)

η̃(λs;β )
− 1

g(β )

m

∑
s=1

I(λs)

η(λs;β )

]

= sup
β∈Θs

1
m

1
g(β )

m

∑
s=1

I(λs)

[
g(β )
g̃(β )

1
η̃(λs;β )

− 1
η(λs;β )

]
= sup

β∈Θs

1
m

1
g(β )

m

∑
s=1

I(λs)

[(
1

η̃(λs;β )
− 1

η(λs;β )

)
+

(
g(β )
g̃(β )

−1
)

1
η̃(λs;β )

]
⪯ sup

β∈Θs

1
m

1
g(β )

m

∑
s=1

I(λs)
[
O(K−2H−1)+O(K−2H−1)×O(1)

]
= sup

β∈Θs

1
m

1
g(β )

m

∑
s=1

I(λs)O(K−2H−1) = Op(K−2H−1).
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The last equality is guaranteed by the stationarity and ergodicity of the fOU process (Hu and Nualart,
2010b) and the results in Lemma 8.2.2 of Giraitis et al. (2012).

This uniform convergence in the Whittle likelihood function implies that, for any n, the difference
between the maximum Whittle likelihood function and the maximum approximate Whittle likelihood
function can be made smaller than any positive number ε/n, as K → ∞. Consequently, for any n, as
K → ∞, the difference between βAW and βW can be made smaller than any positive number εβ/n, where
εβ is independent of n. Hence,

√
n
(

β̂AW −β0

)
=

√
n
(

β̂W −β0

)
+
√

n
(

β̂AW − β̂W

)
=

√
n
(

β̂W −β0

)
+
√

nεβ/n,

=
√

n
(

β̂W −β0

)
+op(1).

Similarly, we can show that as n → ∞ and K → ∞, σ̂2
AW = σ̂2

W [1+op (1)].
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