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1 Introduction

Hypothesis testing is ubiquitous in empirical research in many fields in sciences and

social sciences. In the frequentist paradigm, the p-value of a test statistic (e.g. the likelihood

ratio test, the Wald test, and the Lagrange multiplier test) under the null hypothesis (defined

as H0) is the most popular indicator of the statistical significance of H0. It represents the

probability of observing an outcome or a more extreme outcome when H0 is true. When the p-

value is small enough (smaller than a pre-determined level α, say 5%), we have (1− α)×100%

confidence to reject H0. Typically, H0 corresponds to no effect or simplification of a larger

model specified in the alternative hypothesis (defined as H1). Not surprisingly, in a typical

case, empirical researchers look for evidence against H0 so that they can claim a statistically

significant effect.

In recent years, hypothesis testing based on the p-value has been criticized in many fields.

Many researchers, including prominent scientists and statisticians, claim that we should

abandon the p-value for hypothesis testing; see, for example, Amrhein et al. (2019) and

Wasserstein et al. (2019). More than 800 researchers have added their names as signatories

to support the movement against the use of the p-value (Amrhein et al., 2019).

There are several complaints about the p-value. First, the p-value does not represent the

probability of H0 being true. Second, the p-value does not work under a large sample size

unless the null hypothesis is exactly true (Berkson, 1938). This is because, as the sample size

increases, the sampling distribution (and the asymptotic distribution) of any reasonable test

statistic becomes more concentrated. Thus, in general, the p-value can be made arbitrarily

small by increasing the sample size. This concern becomes more relevant in the big-data era.

Third, p-value-based testing is asymmetric, that is, H0 and H1 are not treated equally by

the p-value. Fourth, the p-value does not measure the size of an effect. Different observed

effects can have the same p-value (Goodman, 2008).

Last but not least, the use of the p-value in academic research causes the so-called “p-

hacking” problem, which is associated with publication bias in the scientific literature and

usually occurs when researchers select and manipulate data and statistical analyses until

some statistically significant evidence is found against H0; see Andrews and Kasy (2019) and

Abadie (2020). The researchers are often motivated to do “p-hacking” since most journals

prefer publishing papers with significant results. This problem of p-hacking has been investi-
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gated extensively by many researchers such as Head et al. (2015) in science, Baker (2015) in

psychology, Kim et al. (2018) in accounting, Kim and Ji (2015) and Harvey (2017) in finance,

and Brodeur et al. (2018) in economics. Recently, Elliott et al. (2022) propose several tests

for p-hacking based on the distribution of p-values across multiple studies. The recommen-

dation from these studies is unanimous: one should be careful with using the p-value and

avoid doing p-hacking.

In the literature, it is well known that the Bayes factor (BF) of Kass and Raftery (1995)

can be an effective alternative to the p-value for hypothesis testing (Marden, 2000). Unlike

the p-value whose interpretation is rooted in the sampling distribution or the asymptotic

distribution of the proposed test statistic, the BF compares the posterior probabilities of

alternative model specifications. It is well documented that the BF enjoys the consistency

property. That is, Prob(H0|y) → 1 under H0 and Prob(H1|y) → 1 under H1 as the sample

size n → ∞, where y = (y1, . . . , yn)′ denote the observed data. This is the reason why the

BF does not suffer from the p-hacking problem.

Unfortunately, the BF is not trouble-free as it suffers from some theoretical and com-

putational difficulties. First, the BF is not well defined under improper priors. Second, the

BF is subject to Jeffreys-Lindley-Bartlett’s (JLB) paradox when proper but vague priors are

used. That is, the BF tends to favor H0 when a vague prior is used for parameters in H0;

see Kass and Raftery (1995). Third, the calculation of the BF requires evaluation of two

marginal likelihoods, p(y|H0) and p(y|H1). In many cases, marginal likelihoods involve high-

dimensional integrations that may be numerically challenging. Although some interesting

approaches have been proposed to calculate the BF from posterior outputs, such as those in

Chib (1995), Friel and Pettitt (2008), and Li et al. (2023), the BF remains challenging to

calculate, especially in the big data environment.

In this paper, we propose to combine the strengths of frequentist-based test statistics

and those of the BF to design new statistics for hypothesis testing. Our idea is related

to that of Johnson (2005, 2008) who propose to compare the sampling distributions of a

frequentist-based test statistic under H0 and H1. In particular, instead of comparing the

marginal likelihoods of H0 and H1, Johnson (2005, 2008) suggest comparing the pivotal

asymptotic distribution under H0 with that under a local alternative hypothesis evaluated

at a frequentist test statistic. For example, when the frequentist test is the likelihood ratio

(LR) statistic, we just compare a central χ2 distribution with a non-central χ2 distribution,
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both evaluated at the LR statistics. This BF-like approach is based on modelling frequentist

test statistics.

As documented in Johnson (2005, 2008), the frequentist-test-based BFs share the strengths

in the frequentist test statistic as well as those in the standard BF. First, they are not subject

to the p-hacking problem because they have the consistency property. Second, they are free

from the JLB paradox as it is independent of priors.

However, when the prior information is available and important, the frequentist-test-

based BF cannot use it to improve statistical inferences. Some prominent researchers believe

that, in some cases, it is important to use priors to reflect their belief about the validity of

underlying theory (An and Schorfheide, 2007). Moreover, the calculation of the frequentist-

test-based BF requires one to obtain optimization-based frequentist estimators of parameters

(such as the maximum likelihood (ML) estimator (MLE) in the case of the LR test). In many

models such as latent variable models, optimization-based frequentist estimators are difficult

to obtain. On the other hand, Bayesian estimation based on posterior sampling (such as

MCMC) has become a powerful alternative to frequentist estimation. Hence, it is useful to

extend the idea of the frequentist-test-based BFs to construct posterior-test-based BFs.

This paper proposes new posterior-test-based BFs. The first is constructed from the

posterior LR (PLR) statistic that modifies the PLR test of Li et al. (2014). The second is

constructed from the posterior Wald statistic (PWald) of Liu et al. (2022). The proposed

posterior-test-based BFs enjoy several good statistical and numerical properties. First, they

are well defined under improper priors. Second, they can avoid the JLB paradox. Third,

they can incorporate the prior information when it is available. Fourth, they are based on

posterior outputs, and hence, can be easier to compute, compared with Johnson (2005, 2008)

when optimization-based estimation is difficult but posterior sampling is easy. Last but not

least, they enjoy the consistency property, and hence, can avoid the p-hacking problem.

The rest of the paper is organized as follows. Section 2 reviews the p-value, the stan-

dard BF, and the frequentist-test-based BFs for hypothesis testing. Section 3 proposes the

posterior-test-based BFs based on two posterior statistics and obtains the consistency prop-

erty. Section 4 checks the finite sample performance and the advantages of the posterior-

test-based BFs. Section 5 explains the advantages of the posterior-test-based BFs via three

empirical studies. Section 6 concludes. The appendix collects proofs of the propositions and

the theorems in the paper while the Online Supplement collects proofs of the two lemmas.
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2 A Literature Review

Assume that the data y is fitted by a correctly specified probability model M ≡ {p(y|θ) :

θ ∈ Θ ⊂ Rq}, where Θ is the parameter space. Write θ = (ϑ′,ψ′)
′
, where ϑ ∈ Θϑ ⊂ Rqϑ

is a vector of parameters of interest and ψ ∈ Θψ ⊂ Rqψ (qϑ + qψ = q) collects nuisance

parameters. Consider the following hypothesis testing problem:

H0 : ϑ = ϑ0 vs H1 : ϑ 6= ϑ0. (2.1)

In the literature there are mainly two classes of approaches to hypothesis testing, fre-

quentist approaches and Bayesian approaches. In the frequentist paradigm, a test statis-

tic is normally introduced. Based on the asymptotic distribution of the test statistic un-

der H0, the p-value is computed so that hypothesis testing can be done by comparing

the p-value with a subjective significance level such as 5%. The p-value is generally de-

noted as either p = Prob (T > tn(y)|H0) or p = Prob (T 6 tn(y)|H0) for one-side testing or

p = Prob (|T | > tn(y)|H0) for two-side testing, where tn(y) is a test statistic that depends on

a frequentist estimator of θ and T is generally the asymptotic distribution (or the finite sam-

ple distribution in rare cases) of tn(y) under H0. The probabilities of Type I error and Type

II error can be expressed as Prob(Reject H0|H0) and Prob(Not reject H0|H1), respectively.

A typical justification of p-value is that it is the probability of observing an outcome

or a more extreme outcome when H0 is true, and hence, can be viewed as a measure of

the “strength of evidence” against H0. The smaller the p-value, the more significant the

statistical evidence against H0. However, the p-value is not the probability of H0 being true.

For more discussions on the p-value, one can refer to Marden (2000).

A serious criticism about its usage is the common practice of “p-hacking” in the scien-

tific literature to search for statistical significance against H0. Simmons et al. (2014) and

Simonsohn et al. (2011) show that “p-hacking” can increase the probability that a study

examining a non-existent effect “works” from the nominal 5% to well above 50%. In prac-

tice, conventional significance levels (such as 1%, 5%, 10%) are exclusively and arbitrarily

used with little consideration of contexts, including the sample size, the power of the test,

and the expected loss. Furthermore, there is strong evidence of publication bias in favor of

statistically significant results. This is not surprising, the researchers are often motivated

to report only statistically significant results without disclosing flexibility in data collection

and/or multiple testing because top journals want to publish papers with positive results.
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In response to these rising criticisms and concerns, to avoid further misinterpretation,

misuse and large scale confusion, the American Statistical Association provides a formal state-

ment to clarify several widely-agreed principles underlying the proper use and interpretation

of the p-values; see Wasserstein and Lazar (2016).

Many researchers have suggested that the p-value should only be abandoned before an

effective alternative is found; see, for example, Benjamin et al. (2018). Recently, researchers

such as Harvey (2017) recommend a simple alternative — BF, which has long been a statistic

used in the Bayesian paradigm, even before the p-value approach has been criticized.

BFs can overcome some difficulties of the p-value and enjoy many desirable properties. In

the context of hypothesis testing specified in (2.1), BF is defined as the ratio of two marginal

likelihoods:

BF01 =
p(y|H0)

p(y|H1)
=

∫
p(y|ϑ0,ψ, H0)p(ψ|H0)dψ∫

p(y|ϑ,ψ, H1)p(ϑ,ψ|H1)dϑdψ
,

where p(ψ|H0) is the prior of ψ under H0 and p(ϑ,ψ|H1) is the prior of (ϑ,ψ) under

H1. When the prior probabilities of two competing hypotheses are the same (Prob(H0) =

Prob(H1) = 0.5), BF01 is the same as the posterior odds, BF01 = Prob(H0|y)/Prob(H1|y). In

general, BF01 requires calculating the two marginal likelihoods,
∫
p(y|ϑ0,ψ, H0)p(ψ|H0)dψ

and
∫
p(y|ϑ,ψ, H1)p(ϑ,ψ|H1)dϑdψ.

As explained in the Introduction, while a major advantage of BFs over the p-value is that

it can avoid the p-hacking problem, it suffers from several problems. These problems motivate

Johnson (2005, 2008) to introduce frequentist-test-based BFs for hypothesis testing. Instead

of comparing the marginal likelihoods of H0 and H1 which are directly data dependent, the

frequentist-test-based BFs of Johnson compare the asymptotic distribution of a frequentist

test statistic under H0 with that under a local alternative, both evaluated at the test statistic.

Since the method is based on frequentist statistics, no prior information on model parameters

is used. Moreover, frequentist estimation (such as ML) is required.

Take the well known LR statistic as an example. The LR test is defined as

LR = 2
[
ln p

(
y|θ̂
)
− ln p

(
y|θ̂0

)]
,

where θ̂0 =
(
ϑ′0, ψ̂

′
0

)′
and θ̂ =

(
ϑ̂
′
, ψ̂
′)′

are the constrained and unconstrained MLE of

θ = (ϑ′,ψ′)
′

under H0 and under H1, respectively. Let θ∗n be the true value that minimizes

the Kullback–Leibler (KL) loss between the data generating process (DGP) and the candidate
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model

θ∗n = arg min
θ∈Θ

1

n

∫
ln

p(y)

p(y|θ)
p(y)dy, (2.2)

where p (·) is the pdf of y.1 Assume regularity conditions hold. Under H0, as n → ∞,

LR
d→ χ2(qϑ) (:= Z|H0). Consider the following sequence of local alternatives for ϑ

HL1 : ϑ∗n = ϑ0 + δ/
√
n, (2.3)

where δ 6= 0. Assume that the nuisance parameters ψ is fixed at ψ∗, which is the true value.

Thus, under HL1, θ∗n = (ϑ∗′n ,ψ
∗′)
′
. Clearly, as n→∞, θ∗n → θ∗0 := (ϑ′0,ψ

∗′)
′
. Davidson and

MacKinnon (1987) show that, under HL1, as n→∞,

LR
d→ χ2(qϑ, τ) (:= Z|HL1) with τ = δ′Σ−1

11 δ,

where χ2(qϑ, τ) is a non-central χ2 variate with the non-centrality parameter τ , Σ11 is the

submatrix of Σ corresponding to ϑ, Σ := H−1 is the inverse matrix of H, the negative

expected Hessian of the log likelihood defined by

H = lim
n→∞

E

[
− 1

n

∂2 ln p(y|θ)

∂θ∂θ′
|θ=(ϑ′0,ψ

∗′
)′

]
.

It can be shown that

LR =

{
Z|H0 +Op(n

−1/2) under H0

Z|HL1 +Op(n
−1/2) under HL1

. (2.4)

Based on the LR statistic and its asymptotic distributions under H0 and HL1, Johnson

(2005) proposes the following LR-test-based BF,

BFJ01(LR) =
pZ|H0(LR)

pZ|HL1
(LR)

=
pZ|H0(LR)∫

pZ|HL1
(LR)p(δ)dδ

.

Given the prior distribution of δ ∼ N [0, cΣ11] with Σ11 being defined above, it has

BFJ01(LR) = (cn+ 1)
qϑ
2 exp

{
− LR

2(cn+ 1)/ (cn)

}
, (2.5)

or

ln BFJ01(LR) =
qϑ
2

ln(cn+ 1)− LR

2(cn+ 1)/ (cn)
. (2.6)

1Here we use the subscript n in θ∗n to indicate that the true parameters may change with the sample size
such as under the Pitman local alternatives or when data are heterogeneous over time. Note that when data
is stationary and under fixed alternatives, θ∗n should be θ∗.
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Remark 2.1 Under H0, as n → ∞, LR = Op(1), cn
cn+1

→ 1, qϑ
2

ln(cn + 1) → ∞. Hence,

lnBFJ01(LR)→∞ and BFJ01(LR)→∞, selecting H0. Under H1, Johnson (2008) shows that

when LR ∼ Op(n), lnBFJ01(LR) → −∞ and BFJ01(LR) → 0, selecting H1. In this case, his

LR-test-based BF has the consistency property. Moreover, for large n,

ln BFJ01(LR) ≈ −LR

2
+
qϑ
2

lnn+
qϑ
2

ln c. (2.7)

When c = 1, lnBFJ01(LR) reduces to the well known BIC of Schwarz (1978). We will set

c = 1 in the simulation and empirical studies.

Remark 2.2 Since BFJ01(LR) is based on the LR statistic that requires MLE under H0 and

H1, there is no need to specify prior distributions. Consequently, BFJ01(LR) is always well

defined and can avoid the JLB paradox. However, this convenience comes with a cost. The

first type of cost is that it cannot incorporate the prior information when it exists. The second

type of cost is that for many complicated models such as latent variable models, MLE is

generally difficult to obtain. In this case, Bayesian methods such as MCMC may be appealing

to practitioners. These problems are the motivations for us to introduce posterior-test-based

BFs, which can incorporate prior information and are based on posterior outputs.

3 Posterior-test-based BFs

In this section, we propose two posterior-test-based BFs constructed from two posterior

test statistics. Before we introduce them, we first briefly review the statistical decision

framework for hypothesis testing in Section 3.1.2 In Section 3.2, we give regularity conditions

under which two posterior-test-based BFs are justified asymptotically. In Section 3.3, we

propose the posterior LR (PLR)-test-based BF. In Section 3.4, we propose the posterior

Wald (PWald)-test-based BF.

3.1 Hypothesis testing under the statistical decision framework

It is well known that hypothesis testing can be regarded as a statistical decision problem.

For the hypothesis testing problem considered in (2.1), we can define two statistical decisions

in the decision space, that is, not rejecting H0 (name it d0) or rejecting H0 (name it d1). We

2See Li (2023) for a more detailed review of the posterior hypothesis testing literature.
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can assign a loss function to each decision denoted, respectively, by {L (di,ϑ,ψ) , i = 0, 1}.
Therefore, the net loss function is

∆L (H0,ϑ,ψ) = L (d0,ϑ,ψ)− L (d1,ϑ,ψ) .

If the expected posterior loss of d0 is larger than that of d1, we then reject H0. In other

words, H0 is rejected if and only if (iff)

Eθ|y (∆L (H0,ϑ,ψ)) =

∫
Θ

[L (d0,ϑ,ψ)− L (d1,ϑ,ψ)] p (ϑ,ψ|y) dϑdψ > 0, (3.1)

where p (ϑ,ψ|y) is the posterior distribution under H1. Naturally a posterior test statistic

can be defined as

T (y,ϑ0) = Eθ|y (∆L (H0,ϑ,ψ)) . (3.2)

Remark 3.1 BFs can be cast into this framework. If the loss functions are

L (d0,ϑ,ψ) =

{
0 if ϑ = ϑ0

1 if ϑ 6= ϑ0

, L (d1,ϑ,ψ) =

{
1 if ϑ = ϑ0

0 if ϑ 6= ϑ0

,

then the posterior test statistic is

T (y,ϑ0) = Eθ|y (4L (H0,ϑ, ψ)) > 0.

In this case, Bernardo and Rueda (2002) show that the decision is equivalent to

reject H0 iff BF01 =

∫
p (y|ϑ = ϑ0,ψ) p (ψ|ϑ = ϑ0) dψ∫ ∫
p (y|ϑ,ψ) p (ψ|ϑ) π (ϑ) dϑdψ

< 1, (3.3)

where BF01 is the standard BF. That is, BFs can be regarded as a decision problem with a

simple zero-one loss function when it is used for hypothesis testing. Bernardo and Rueda

(2002) show that it is this zero-one loss that leads to the JLB paradox. Based on alternative

but continuous loss functions, Bernardo and Rueda (2002), Li and Yu (2012), Li et al.

(2014), Li et al. (2015), and Liu et al. (2022) have introduced different posterior statistics

for hypothesis testing.

3.2 Regularity conditions

Let yt denote (y0, y1, . . . , yt) for any 0 ≤ t ≤ n. Let lt (yt,θ) or simply lt (θ) denote

ln p(yt|θ)− ln p(yt−1|θ) which is the log-likelihood for the tth observation for any 1 ≤ t ≤ n.
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Thus, the log-likelihood function Ln(θ)(:= ln p(y|θ, y0)) can be written as
∑n

t=1 lt (θ). Let

l
(j)
t (θ) denote the jth derivative of lt (θ) so that

l
(0)
t (θ) = lt (θ) , l

(1)
t (θ) =

∂lt (θ)

∂θ
and l

(2)
t (θ) =

∂2lt (θ)

∂θ∂θ′
.

Moreover, let

s(yt|θ) :=
∂ ln p(yt|θ)

∂θ
=

t∑
i=1

l
(1)
i (θ) , h(yt|θ) :=

∂2 ln p(yt|θ)

∂θ∂θ′
=

t∑
i=1

l
(2)
i (θ) ,

st(θ) := l
(1)
t (θ) = s(yt|θ)− s(yt−1|θ), ht(θ) := l

(2)
t (θ) = h(yt|θ)− h(yt−1|θ),

H̄n(θ) :=
1

n

n∑
t=1

ht(θ), J̄n(θ) :=
1

n

n∑
t=1

[st(θ)− s̄n(θ)] [st(θ)− s̄n(θ)]′ , s̄n(θ) =
1

n

n∑
t=1

st(θ),

Hn(θ) :=

∫
H̄n(θ)p (y) dy, Jn(θ) :=

∫
J̄n(θ)p (y) dy, H(θ) := lim

n→∞
Hn(θ), J(θ) := lim

n→∞
Jn(θ),

where Hn(θ) is the Hessian matrix, H̄n(θ) the empirical Hessian matrix, Jn(θ) the Fisher

information matrix, and J̄n(θ) the empirical Fisher information matrix. For the development

of our proposed BFs, the following regularity conditions are imposed.

Assumption 1: θ = (ϑ′,ψ′)
′ ∈ Θ that is a compact subset of Rq.

Assumption 2: {yt}∞t=1 is α-mixing with size of α (m) = O
(
m
−2r
r−2
−ε
)

for some ε > 0

and r > 2.

Assumption 3: For all t, lt (θ) satisfies the standard measurability and continuity con-

dition. Moreover, it is eight-times differentiable on F t−∞ ×Θ where F t−∞(:= σ (yt, yt−1, · · · ))
is the σ-field generated by (yt, yt−1, . . .).

Assumption 4: For j = 0, 1, 2, for any θ, θ′ ∈ Θ,∥∥∥l(j)t (θ)− l(j)t (θ′)
∥∥∥ ≤ cjt

(
yt
)
‖θ − θ′‖

in probability, where cjt (yt) is a positive random variable with suptE
∥∥cjt (yt)

∥∥ < ∞ and
1
n

∑n
t=1

[
cjt (yt)− E

(
cjt (yt)

)] p→ 0.

Assumption 5: For j = 0, 1, 2, 3, l
(j)
t (θ) exists and there exists a function Mt(y

t) such

that for any θ ∈ Θ,

sup
θ∈Θ

∥∥∥l(j)t (θ)
∥∥∥ 6Mt(y

t) and sup
t
E
∥∥Mt(y

t)
∥∥r+δ ≤M <∞

for some δ > 0, where r is the same as that in Assumption 2.
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Assumption 6:
{
l
(j)
t (θ)

}
is L2-near epoch dependent (NED) with respect to {yt} of

size −1 for 0 6 j 6 1 and −1
2

for j = 2 uniformly in Θ.

Assumption 7: For δ > 0 and N0(δ) ⊆ Θ, there exists K(δ) > 0 such that

lim
n→∞

Pθ∗n

(
sup

θ∈Θ\N0(δ)

1

n
[Ln(θ)− Ln(θ∗n)] < −K(δ)

)
= 1,

where Pθ∗n
is the probability under θ = θ∗n and N0(δ) is an open ball of radius δ around θ∗n.

Assumption 8: The sequence {Hn (θ∗n)} are negative definite, uniformly in n.

Assumption 9: The prior density p(θ) is eight-times continuously differentiable with

p (θ∗n) > 0 and
∫
‖θ‖2 p(θ)dθ <∞.

Assumption 10: Let ψ0∗
n be the quasi-true value that minimizes the KL loss between

the DGP and the candidate model

ψ0∗
n = arg minψ∈Θψ

1

n

∫
ln

p(y)

p(y|ϑ0,ψ)
p(y)dy,

where Θψ is the support space of ψ, and
{
ψ0∗
n

}
is the sequence of minimizers interior to Θψ

uniformly in n, and p (·) is DGP of y. Under H1 (i.e. ϑ∗n 6= ϑ0), Assumptions 1-9 also hold

for the misspecified model p(y|ϑ0,ψ).

Remark 3.2 Assumptions 1-8 are popular primitive conditions for establishing the ML the-

ory, namely consistency and asymptotic normality, for dependent and heterogeneous data;

see, for example, Gallant and White (1988) and Wooldridge (1994). For more discussions

on these conditions, one can refer to Liu et al. (2022) and Li et al. (2020).

Recall that θ∗n = (ϑ∗′n ,ψ
∗′
n )′ is the true parameters. Its limit is θ∗ = (ϑ∗′,ψ∗′)′. Let

θ̂ = (ϑ̂
′
, ψ̂
′
)′ and θ̂0 = (ϑ′0, ψ̂

′
0)′ denote the unconstrained MLE and constrained MLE,

respectively. The Bayesian estimator of θ under H1 and H0 are given by θ(:= (ϑ
′
,ψ
′
)′ =∫

θp(θ|y, H1)dθ), and θ0 = (ϑ′0,ψ
′
0)′, respectively, where ψ0 is the Bayesian estimator of ψ

under H0, defined by ψ0 =
∫
ψp(ψ|y,ϑ0, H0)dψ.

Remark 3.3 Under Assumptions 1-10, Li et al. (2022) show that

θ = E [θ|y, H1] = θ̂ +Op(n
−1),

V
(
θ̂
)

= E

[(
θ − θ̂

)(
θ − θ̂

)′
|y, H1

]
= − 1

n
H̄−1
n

(
θ̂
)

+Op(n
−2),
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ψ0 = ψ̂0 +Op(n
−1),

Vψψ

(
θ̂0

)
= E

[(
ψ − ψ̂0

)(
ψ − ψ̂0

)′
|ϑ0,y, H0

]
= − 1

n
[H̄−1

n

(
θ̂0

)
]ψψ +Op(n

−2),

where
[
H̄−1
n

(
θ̂0

)]
ψψ

is the submatrix of H̄−1
n

(
θ̂0

)
corresponding to ψ.

3.3 PLR-based BFs

Under the decision theoretical framework, based on the following net loss function that

is defined as the difference of two log-likelihood functions under H0 and H1,

4L[H0, (ϑ,ψ)] = 2 ln p(y|ϑ,ψ)− 2 ln p(y|ϑ0,ψ), (3.4)

Li et al. (2014) propose an LR-like posterior test statistic

TLZY (y,ϑ0) = 2

∫
[ln p(y|ϑ,ψ)− ln p(y|ϑ0,ψ)] p(ϑ,ψ|y)dϑdψ. (3.5)

Unfortunately, TLZY (y,ϑ0) is not asymptotically pivotal.

To obtain a pivotal asymptotic distribution, we introduce loss functions as

L(d0,ϑ,ψ) =

{
c0 if ϑ = ϑ0

c0 +
[
2 ln p(y, θ̂m)− ln p(y,ϑ,ψ)−Dc(y,ϑ0))

]
if ϑ 6= ϑ0

, (3.6)

L(d1,ϑ,ψ) =

{
c1 if ϑ = ϑ0

c1 −
[
2 ln p(y, θ̂m)− ln p(y,ϑ,ψ)−Dc(y,ϑ0)

]
if ϑ 6= ϑ0

, (3.7)

where Dc(y,ϑ0) =
∫

ln p(y,ϑ0,ψ)p(ψ|y,ϑ0)dψ is the Bayesian complete deviance function

under H0, θ̂m the posterior mode, ci(i = 0, 1) the cost of action di with c = c1− c0 > 0. The

net loss function is

∆L (H0,ϑ,ψ) = 4 ln p(y, θ̂m)− 2 ln p(y,ϑ,ψ)− 2Dc(y,ϑ0)− c := m (ϑ0,ϑ,ψ)− c, (3.8)

where m (ϑ0,ϑ,ψ) = 4 ln p(y, θ̂m)−2 ln p(y,ϑ,ψ)−2Dc(y,ϑ0) is a non-negative discrepancy

measure between two statistical decisions, d0 and d1.

The posterior test statistic can be defined as:

T(y,ϑ0) =

∫ [
4 ln p(y, θ̂m)− 2 ln p(y,ϑ,ψ)− 2Dc(y,ϑ0)

]
p(ϑ|y)dϑdψ. (3.9)
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Note that for T(y,ϑ0) in (3.9), the posterior mode θ̂m is not easy to obtain in general.

Hence, we can consider two alternative versions of PLR test statistics. Let Dc(y) be the

Bayesian complete deviance function under H1 given as

Dc(y) =

∫ ∫
ln p(y,ϑ,ψ)p(ϑ,ψ|y)dϑdψ

=

∫ ∫
[ln p(y|ϑ,ψ) + ln p(ϑ,ψ)] p(ϑ,ψ|y)dϑdψ.

Rewrite ln p(y,ϑ,ψ) = ln p(y|ϑ,ψ) + ln p(ϑ,ψ) and ln p(y,ϑ0,ψ0) = ln p(y|ϑ0,ψ0) +

ln p(ϑ0,ψ0). Then, we define two PLR test statistics as:

PLR1 = 2(Dc(y)−Dc(y,ϑ0)) and PLR2 = 2
[
ln p(y,ϑ,ψ)− ln p(y,ϑ0,ψ0)

]
. (3.10)

Remark 3.4 In the literature, Dc(y,ϑ0) and Dc(y) are generally referred to as the Bayesian

deviances for measuring the Bayesian model fit. Hence, the posterior test statistics defined

in (3.10) represent the difference between the two Bayesian deviances to measure the evi-

dence against H0. For more details about the Bayesian deviance for measuring model fit, see

Spiegelhalter et al. (2002).

We are now in the position to establish the large sample relationship among PLR1,

PLR2, T(y,ϑ0) and LR. We then establish the large sample properties for PLR1 and PLR2,

and introduce their corresponding test-based BFs.

Lemma 3.1 Under Assumptions 1-10, we have

θ = θ̂m +Op(n
−1) and ψ0 = ψ̂m0 +Op(n

−1),

where θ̂m and ψ̂m0 are the posterior mode of θ and ψ under H0, respectively.

Proposition 3.1 Suppose Assumptions 1-10 hold. Under both H0 and H1, we have

T(y,ϑ0) = PLR1 + 2q +Op(n
−1) and PLR1 = PLR2− qϑ +Op(n

−1). (3.11)

Remark 3.5 Proposition 3.1 establishes the large sample relationship among PLR1, PLR2

and T(y,ϑ0). One can observe that PLR1 and PLR2 share the same size and power properties

asymptotically. Compared with T(y,ϑ0), they do not involve the posterior mode, and hence,

are relatively easy to compute. In addition, compared with PLR1, PLR2 only involves the

plug-in parameter estimator, and hence, is even easier to obtain.

13



Lemma 3.2 Suppose Assumptions 1-10 hold. Under H0 and HL1, we have

PLR1 + qϑ = LR +Op(n
− 1

2 ) and PLR2 = LR +Op(n
− 1

2 ). (3.12)

Remark 3.6 Due to the results in the above lemma, PLR1 and PLR2 can be explained as

the posterior version of the LR statistic.

Remark 3.7 The proposed PLR is related to some statistics proposed in the literature on

Bayesian statistics. For example, Aitkin et al. (2005) introduce the following likelihood ratio

LRABC =
p(y|ϑ0,ψ)

p(y|ϑ,ψ)
,

and then suggest evaluating the posterior probability

p (LRABC < k|y)

for any pre-specified k, such as 1, 0.1 or 0.01. For k = 1, if p (LRABC < 1|y) > 1− p, where

p is some small probability, then H0 is rejected. However, in practice the choice of k and p

is arbitrary.

Remark 3.8 The proposed PLR is also related to some statistics proposed in the litera-

ture on Bayesian econometrics. For example, Chen et al. (2018) examine the asymptotic

behavior of LR= −2
[
ln p (y|ϑ∗,ψ∗)− ln p

(
y|ϑ̂, ψ̂

)]
under the frequentist framework and

CLR= −2
[
ln p (y|ϑ,ψ)− ln p

(
y|ϑ̂, ψ̂

)]
conditional on y under the Bayesian framework.

They show that the two statistics have the same asymptotic distribution. Hence, based on

posterior outputs, Chen et al. (2018) use CLR to calibrate the confidence interval for param-

eters in partially identified models.

Proposition 3.2 Suppose Assumptions 1-10 hold. Under H0, we have

PLR1 + qϑ
d→ χ2(qϑ) and PLR2

d→ χ2(qϑ).

Under HL1, we have

PLR1 + qϑ
d→ χ2(qϑ, τ) and PLR2

d→ χ2(qϑ, τ),

where τ := δ′Σ−1
11 δ, Σ11 is the submatrix of H−1(θ∗) corresponding to ϑ with θ∗ = (ϑ∗′,ψ∗′)

′
.
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We are now in the position to construct posterior-test-based BFs via PLR. Let

BF01(PLR1) = (cn+ 1)
qϑ
2 exp

{
− PLR1 + qϑ

2(cn+ 1)/ (cn)

}
, (3.13)

BF01(PLR2) = (cn+ 1)
qϑ
2 exp

{
− PLR2

2(cn+ 1)/ (cn)

}
. (3.14)

When BF01(PLR) > 1 or equivalently lnBF01(PLR) > 0, we find evidence to support H0;

otherwise, we find evidence against H0.

Theorem 3.1 Suppose Assumptions 1-10 hold. Under H0, we have

lnBF J
01(LR) = Op(lnn), lnBF01(PLR1) = Op(lnn), and lnBF01(PLR2) = Op(lnn).

Under the alternative hypothesis with ϑ∗n − ϑ0 = O(n−1/2+a) for some a > 0, we have

lnBF J
01(LR) = Op(n

max{− 1
2

+α,2α}),

lnBF01(PLR1) = Op(n
max{− 1

2
+α,2α}), lnBF01(PLR2) = Op(n

max{− 1
2

+α,2α}).

Remark 3.9 This theorem shows that, like the LR-test-based BFs of Johnson, our proposed

PLR-test-based BFs have the consistency property. However, unlike the LR-test-based BFs of

Johnson, our proposed PLR-test-based BFs can incorporate the prior information. Moreover,

BFJ01(LR) is developed for i.i.d. data by Johnson. This assumption is relaxed in our proposed

PLR-test-based BFs.

Remark 3.10 The proposed PLR-test-based BFs can avoid the JLB paradox. To see this,

consider the example in Li et al. (2014). Let y ∼ N(θ, 1) and consider H0 : θ = 0. Set the

prior distribution of θ to N(0, τ 2
0 ). Then

θ|y ∼ N(µ(y), ω2) where µ(y) =
τ 2

0 y

1 + τ 2
0

and ω2 =
τ 2

0

1 + τ 2
0

,

1

BF01

=

√
1

1 + τ 2
0

exp

{
τ 2

0 y
2

2(1 + τ 2
0 )

}
.

When τ 2 → +∞, BF01 → ∞, that is, the test always supports H0, giving rise to the JLB

paradox. On the contrary, it is easy to show that

PLR1 =
nτ 2

1 + nτ 2
z (ȳ)2 − 1 and PLR2 =

nτ 2

1 + nτ 2
z (ȳ)2 ,

where z (ȳ) =
√
n (ȳ − θ) is the standard z-statistic. When H0 is true, z (ȳ) converges to

N(0, 1) and both PLR1 + 1 and PLR2 are asymptotically distributed as χ2(1), avoiding the

paradox. Consequently, BF01(PLR1) and BF01(PLR2) can also avoid the paradox.
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Remark 3.11 BF01(PLR1) and BF01(PLR2) share the coherence property of BFJ01(LR).

When M1 is nested within M2 and M2 is nested within M3, we have BF31(PLR) = BF32(PLR)×
BF21(PLR). Hence, they can be used to do multiple hypothesis testing; see Hu and Johnson

(2009).

3.4 PWald-based BFs

Liu et al. (2022) propose the following net loss function for hypothesis testing

4L[H0, (ϑ,ψ)] = (ϑ− ϑ0)′V−1
ϑϑ (θ) (ϑ− ϑ0) ,

where Vϑϑ(θ) is the submatrix of V(θ) corresponding to ϑ, and V(θ) is the posterior co-

variance matrix under H1 given by

V(θ) = E
[
(θ − θ)(θ − θ)′|y, H1

]
=

∫
(θ − θ)(θ − θ)′p(θ|y)dθ,

with θ being the posterior mean of θ under H1. They then construct a Wald-like test statistic

based on posterior outputs as:

PWald =

∫
(ϑ− ϑ0)′V−1

ϑϑ (θ) (ϑ− ϑ0) p(ϑ|y)dϑ. (3.15)

Note that the Wald statistic is

Wald = (ϑ̂− ϑ0)′
[
− 1

n
[H̄−1

n (θ̂)]11

]−1

(ϑ̂− ϑ0),

where [H̄−1
n (θ̂)]11 is the corresponding submatrix of H̄−1

n (θ̂) with respect to ϑ. Under As-

sumptions 1-10, when H0 holds and the likelihood information dominates the prior informa-

tion, Liu et al. (2022) show that

PWald− qϑ = Wald + op(1)
d→ χ2(qϑ). (3.16)

Hence, PWald can be understood as a posterior version of Wald.

Proposition 3.3 Suppose Assumptions 1-10 hold. Under HL1, as n→∞, we have

PWald− qϑ = Wald + op(1)
d→ χ2(qϑ, τ) with τ = δ′Σ−1

11 δ, (3.17)

where Σ11 = [H−1(θ∗)]11.
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Let the posterior-test-based BF from PWald be

BF01(PWald) = (cn+ 1)
qϑ
2 exp

{
− PWald− qϑ

2(cn+ 1)/ (cn)

}
. (3.18)

Remark 3.12 Equations (3.16) and (3.17) give the asymptotic distributions of PWald under

H0 and HL1, respectively. When BF01(PWald) > 1 or lnBF01(PWald) > 0, we find evidence

to support H0; otherwise, we find evidence to support H1.

Theorem 3.2 Suppose Assumptions 1-10 hold. Under H0, we have

lnBF01(PWald) = Op(lnn). (3.19)

Under the alternative hypothesis with ϑ∗n − ϑ0 = O(n−1/2+a) for some a > 0, we have

lnBF01(PWald) = −Op(n
2a). (3.20)

Remark 3.13 Theorem 3.2 shows that the proposed PWald-test-based BFs are consistent.

Similar to the idea in Equation (2.5), one can define a frequentist-test-based BF via the

Wald statistic as:

BFJ01(Wald) = (cn+ 1)
qϑ
2 exp

{
− Wald

2(cn+ 1)/ (cn)

}
. (3.21)

This is closely related to Equation (1) in Johnson (2008) although his definition is developed

for a specific model.

Remark 3.14 Unlike BFJ01(Wald), BF01(PWald) incorporates the prior information when it

is available. Unlike BF01(PLR) that requires posterior outputs under H0 and H1, BF01(PWald)

only requires posterior outputs under H1. Moreover, unlike BF01(PLR) that is based on the

likelihood function, BF01(PWald) does not need the likelihood function. Hence, for models

where the likelihood function is difficult to calculate, BF01(PWald) is easier to obtain than

BF01(PLR).

4 Simulation Studies

In this section, we design two simulation experiments to investigate the finite sample

performance of the proposed posterior-test-based BFs and to compare the performance with
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that of the frequentist test-based BFs of Johnson and the conventional BF. In the first

experiment, we consider a simple linear regression model to illustrate how the proposed

posterior-test-based BFs can avoid the p-hacking problem and the JLB paradox as well

as examine the usefulness of informative priors. In the second experiment, we consider

a nonlinear regression model where the likelihood function is multi-modal, making MLE

sensitive to initial values and distorting the performance of the frequentist test statistics and

the corresponding test-based BFs. However, the posterior distributions are not subject to

the multi-modality problem when the sample size is large or when the informative prior is

used. Therefore, our posterior-test-based BFs have good finite-sample performances.

4.1 Model 1: Simple linear regression model

In this subsection, we consider the following simple linear regression model where all

BFs have closed-form expressions:

yi = α + βxi + εi, εi ∼ i.i.d.N(0, σ2), i = 1, · · · , n,

where xi ∼ i.i.d.N(0, 1) and fixed under repeated sampling. We test H0 : β = 0 against

H1 : β 6= 0. For the Bayesian analysis, the conjugate Normal-Gamma priors are used, i.e.,

(α, β)′ ∼ N(µ0, σ
2V0) and h =

1

σ2
∼ Γ(a, b),

where µ0 = (µα, µβ)′, V0 =diag(Vα, Vβ), Γ(a, b) denotes the gamma distribution with the

shape parameter a and the rate parameter b. Let µ = (α, β)′, y =
(
y1 . . . yn

)′
, X =(

1 . . . 1
x1 . . . xn

)′
. The posterior distributions under H1 are:

µ|y, h;H1 ∼ N(µ1, σ
2V1), h|y;H1 ∼ Γ

(
a+

n

2
, b+

1

2

(
y′y + µ′0V

−1
0 µ0 − µ′1V −1

1 µ1

))
,

where V1 =
(
X′X + V −1

0

)−1
and µ1 = V1(X′Xµ̂ + V −1

0 µ0) = V1(X′y + V −1
0 µ0) with µ̂ being

the usual OLS estimator of µ. The posterior distributions under H0 are

α|y;H0 ∼ N(µα1, σ
2Vα1) and h|y;H0 ∼ Γ

(
a+

n

2
, b+

1

2

(
y′y +

µ2
α

Vα
− µ2

α1

Vα1

))
,

where Vα1 = Vα
nVα+1

and µα1 = Vα1

(∑n
i=1 yi + µα

Vα

)
. We draw 10,000 random samples from

each posterior distribution. Based on these random samples, we then calculate the posterior-

test-based BFs.3

3The closed-form expressions for BF01, BFJ01(LR) and BFJ01(Wald) can be easily obtained for this model.
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Table 1: Rejection rate, mean, standard deviation of BFs when β∗ = 0.0
Non-informative prior (NP)

n n = 50 n = 500 n = 5000 n = 15000

BF01
0.00%

(539.12, 218.33)
0.00%

(1536.88, 632.25)
0.00%

(5000.73, 1871.56)
0.00%

(8669.58, 3302.44)

BFJ01(LR)
4.40%

(5.11, 2.05)
1.00%

(15.58, 6.40)
0.20%

(50.59, 18.93)
0.00%

(87.02, 33.15)

BFJ01(Wald)
4.50%

(5.07, 2.01)
1.00%

(15.57, 6.39)
0.20%

(50.59, 18.93)
0.00%

(87.02, 33.14)

BF01(PLR1)
4.10%

(5.09, 1.99)
1.00%

(15.58, 6.38)
0.20%

(50.60, 18.95)
0.00%

(87.03, 33.17)

BF01(PLR2)
4.10%

(5.09, 1.99)
1.00%

(15.58, 6.39)
0.20%

(50.59, 18.93)
0.00%

(87.02, 33.14)

BF01(PWald)
4.60%

(5.07, 2.01)
1.10%

(15.57, 6.39)
0.20%

(50.60, 18.92)
0.00%

(87.05, 33.12)

Informative Prior (IP)
n = 50 n = 500 n = 5000 n = 15000

BF01
31.10%

(1.00, 0.04)
29.00%

(1.05, 0.19)
13.50%

(1.81, 0.60)
7.90%

(2.88, 1.05)

BFJ01(LR)
4.40%

(5.11, 2.05)
1.00%

(15.58, 6.40)
0.20%

(50.59, 18.93)
0.00%

(87.02, 33.15)

BFJ01(Wald)
4.50%

(5.07, 2.01)
1.00%

(15.57, 6.39)
0.20%

(50.59, 18.93)
0.00%

(87.02, 33.14)

BF01(PLR1)
0.00%

(7.05, 0.73)
0.00%

(19.32, 3.57)
0.00%

(52.88, 17.46)
0.00%

(88.45, 32.32)

BF01(PLR2)
0.00%

(6.96, 0.26)
0.00%

(19.29, 3.53)
0.00%

(52.88, 17.44)
0.00%

(88.44, 32.30)

BF01(PWald)
0.00%

(6.96, 0.25)
0.00%

(19.29, 3.53)
0.00%

(52.87, 17.46)
0.00%

(88.43, 32.32)

To examine the influence of prior, two prior distributions are considered, a non-information

prior and an informative prior. The informativeness level is set such that under the small

sample size (say n = 50), the prior information dominates the data information, while under

the large sample size (n = 5, 000), the data information exceeds the prior information. To

be more specific,

� for the non-informative prior (NP), we set (µα, µβ, Vα, Vβ, a, b) = (α∗, β∗, 10000, 10000, 1, 1);

� for the informative prior (IP), we set (µα, µβ, Vα, Vβ, a, b) = (α∗, β∗, 10000, 0.001, 1, 1).

We set the true values for α∗ and σ2∗ to 1. Two β values (0.0, 0.1) are considered to

obtain the Type-I and Type-II errors. When β = 0, four sample sizes (n=50, 500, 5,000,

15,000) are considered; When β = 0.1, three sample sizes (n=50, 500, 5,000) are considered.

For each case, we simulate data from the true DGP and perform hypothesis testing based on

various BFs, replicating the experiment 1,000 times. We report the rejection rate of H0, the

mean, and the standard deviation of BFs across 1,000 replications. The results are reported

in Table 1 when β∗ = 0.0 and in Table 2 when β∗ = 0.1.
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Table 2: Rejection rate, mean, standard deviation of BFs when β∗ = 0.1
Non-informative prior (NP)

n = 50 n = 500 n = 5000

BF01
0.30%

(461.82, 245.87)
4.40%

(484.21, 610.65)
99.80%

(0.01, 0.13)

BFJ01(LR)
12.40%

(4.39, 2.31)
38.30%

(4.92, 6.19)
100.00%

(0.00, 0.00)

BFJ01(Wald)
12.40%

(4.35, 2.28)
38.40%

(4.91, 6.19)
100.00%

(0.00, 0.00)

BF01(PLR1)
11.60%

(4.38, 2.26)
38.20%

(4.93, 6.19)
100.00%

(0.00, 0.00)

BF01(PLR2)
11.50%

(4.38, 2.26)
38.10%

(4.92, 6.19)
100.00%

(0.00, 0.00)

BF01(PWald)
12.50%

(4.35, 2.28)
38.50%

(4.91, 6.19)
100.00%

(0.00, 0.00)

Informative prior (IP)
n = 50 n = 500 n = 5000

BF01
64.50%

(1.00, 0.90)
84.80%

(0.60, 1.41)
100.00%

(0.00, 0.00)

BFJ01(LR)
12.40%

(4.39, 2.31)
38.30%

(4.92, 6.19)
100.00%

(0.00, 0.00)

BFJ01(Wald)
12.40%

(4.35, 2.28)
38.40%

(4.91, 6.19)
100.00%

(0.00, 0.00)

BF01(PLR1)
100.00%

(0.05, 0.04)
99.30%

(0.07, 0.17)
100.00%

(0.00, 0.00)

BF01(PLR2)
100.00%

(0.05, 0.04)
99.30%

(0.07, 0.17)
100.00%

(0.00, 0.00)

BF01(PWald)
100.00%

(0.07, 0.08)
98.90%

(0.08, 0.19)
100.00%

(0.00, 0.00)

Some interesting findings emerge from the two tables. First, all BFs can consistently

select the true model, as indicated by the last column of both tables. The only exception

is for the standard BF under the informative prior. When n = 15, 000, its Type I error is

7.9%. Since the standard BF is consistent, we expect the rejection rate eventually becomes

zero. Our unreported simulations suggest that a sample size of more than 108 is required to

achieve zero rejection rate. It is surprising that the standard BF requires such a big sample

size under such a simple model.

Second, as expected, the standard BF suffers from the JLB paradox. For example, when

the true value of β is 0.1 and n is 50 (or 500), the standard BF under the vague prior only

rejects H0 in 0.30% (or 4.4%) of replications.

Third, two frequentist-test-based BFs of Johnson, BFJ01(LR) and BFJ01(Wald), can avoid

the JLB paradox but are independent of the prior distribution. That is, the prior information

could not improve their performance.

Fourth, three posterior-test-based BFs, BF01(PLR1), BF01(PLR2), and BF01(PWald)
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can avoid the JLB paradox. When the true value of β is 0.1, three posterior-test-based BFs

under the vague prior lead to nearly identical rejection rates to two frequentist-test-based

BFs. Under the informative prior, they lead to much better rejection rates when n is 50 or

500. When the true value of β is 0.0, under the informative prior, they lead to much better

rejection rates (always zero) than BF01 and two frequentist-test-based BFs.

Finally, to illustrate the p-hacking problem in p-value-based methods and how the test-

based BFs can avoid it, we conduct a small trial using data simulated from the simple linear

regression model with the 5% significance level. There are three common practices to do

p-hacking.

1. Random sampling and selective reporting. As pointed out by Rouder et al. (2009), the

p-value can randomly walk below the pre-specified significance level even when H0 is

true. Therefore, one can repeatedly collect different observations until a small p-value

is found but selectively report the significant results only. In our simulation, if we set β∗

at 0, the random seed for generating y at 88, the random seed for generating x at 12345,

and the prior the noninformative one, we would find that all the p-value-based methods,

including LR, Wald, PLR1, PLR2, and PWald, result in a p-value around 0.0058 < 0.05

when n = 15, 000, rejecting H0 falsely. On the contrary, all the posterior-test-based

BFs are around 2.72, suggesting H0 cannot be rejected.

2. Increase the sample size. It is possible that with β∗ = 0, the test statistics do not reject

H0 when n is small, but reject it when n is bigger. For instance, if set the random

seed for generating y at 88, the random seed for generating {xt} at 12345, and the

prior the noninformative one, we would find that all p-value-based methods result in a

p-value around 0.0845 > 0.05 when n = 5, 000, suggesting the null hypothesis cannot

be rejected at the 5% significance level. However, as shown in 1, when n = 15, 000,

these test statistics reject H0. On the contrary, the corresponding posterior-test-based

BFs take values of around 16.00 and 2.72 for n = 5, 000 and n = 15, 000 respectively,

suggesting that H0 cannot be rejected.

3. Use a subsample of data. It is possible that one can obtain either significant results

or insignificant results depending on the subsample he uses. For instance, given the

data set used in 1, we find that all the p-value-based statistics cannot reject H0 if the

first 1/3 subsample or the last 1/3 subsample is used (with the p-value being 0.0845
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and 0.7638 respectively). However, all the p-value-based statistics reject H0 if one uses

the middle 1/3 subsample with the p-value being 0.0067 < 0.05. The corresponding

test-based BFs based on the three subsamples are 16.00, 3.11, and 67.63, respectively,

all suggesting that H0 cannot be rejected.

4.2 Model 2: Nonlinear regression model

In this subsection, we use a nonlinear regression model where the likelihood function

is multi-modal. In this case, the ML estimation can be sensitive to the initial values, and

hence, distort the performance of frequentist-test-based BFs. On the contrary, the posterior

distribution of parameters is immune to multi-modality of likelihood, especially when the

sample size is reasonably large or when the prior is informative. Consequently, we expect

better performances of the posterior-test-based BFs than the frequentist-test-based BFs.

Consider the nonlinear regression model of Dorsey and Mayer (2000),

yi = θ1 + θ2
1x1i + θ2x2i + θ2

2x3i + εi, i = 1, · · · , n

where xji ∼ i.i.d.U(0, 1) for j = 1, 2, 3 and εi ∼ i.i.d.N(0, 1). To simulate data, we set θ∗1 = 2

and θ∗2 = −2 or 0 and test H0 : θ2 = 0 against H1 : θ2 6= 0. When θ2 = 0, four sample sizes

(n=100, 1000, 10000, 30000) are considered; when θ2 = 0.2, three sample sizes (n=100, 1000,

10000) are considered. We replicate the experiment for 500 times and report the empirical

rejection rate of H0 based on various test-based BFs across 500 replications.

The prior distributions are specified as

θ1 ∼ N(θ∗1, 10000), and θ2 ∼ N(θ∗2, 10000) or θ2 ∼ N(θ∗2, 0.01).

As there is multi-modality in the likelihood function, we use the Sequential Monte Carlo

(SMC) technique of Herbst and Schorfheide ( 2014) for posterior sampling. SMC utilizes a

set of particles to approximate the posterior distribution and is robust to multi-modality in

the target distribution.4 With the posterior draws, we can compute PLR1, PLR2, PWald,

BF01(PLR1), BF01(PLR2), BF01(PWald). For LR, Wald, and their corresponding test-based

BFs, one needs to obtain the MLE numerically and the initial values of θ1 and θ2 are randomly

drawn from N(0, 100) for numerical optimizations.

4For SMC, the number of particles is set at M = 1, 000, the number of grids between zero and one
(S = 500), and the grids bs = ( sS )λ, s = 1, 2, · · · , S, λ = 2. In each iteration with respect to bs, the mutation
step conducts Metropolis-Hastings sampling for once.
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Table 3: Rejection rate of BFs for the nonlinear regression model
Non-informative prior (NP)

θ∗2 = 0 θ∗2 = −2
n = 100 n = 1000 n = 10000 n = 30000 n = 100 n = 1000 n = 10000

BFJ01(LR) 91.00% 0.20% 0.20 0.00% 75.80% 53.00% 53.60%

BFJ01(Wald) 90.40% 96.40% 99.20% 99.20% 100.00% 99.80% 100.00%
BF01(PLR1) 1.60% 0.60% 0.60% 0.00% 100.00% 100.00% 100.00%
BF01(PLR2) 1.40% 0.60% 0.60% 0.00% 100.00% 100.00% 100.00%
BF01(PWald) 1.80% 1.00% 0.60% 0.00% 100.00% 100.00% 100.00%

Informative prior (IP)
θ∗2 = 0 θ∗2 = −2

n = 100 n = 1000 n = 10000 n = 30000 n = 100 n = 1000 n = 10000

BFJ01(LR) 90.80% 0.40% 0.40% 0.00% 73.20% 50.20% 54.20%

BFJ01(Wald) 90.60% 96.20% 98.80% 99.40% 100.00% 100.00% 100.00%
BF01(PLR1) 0.00% 0.00% 0.40% 0.00% 100.00% 100.00% 100.00%
BF01(PLR2) 0.00% 0.00% 0.40% 0.00% 100.00% 100.00% 100.00%
BF01(PWald) 0.00% 0.00% 0.60% 0.00% 100.00% 100.00% 100.00%

The rejection rates of H0 of alternative test-based BFs are reported in Table 3. There are

three main findings from the table. First, BFJ01(LR) and BFJ01(Wald) do not perform well. For

example, when H0 is true and n = 100, under the non-informative prior, BFJ01(LR) incorrectly

rejects H0 in 91% of replications; BFJ01(Wald) incorrectly rejects H0 in 90.4% of replications.

This very high false rejection rate even goes up for BFJ01(Wald) when n increases. The

rejection rates under the informative prior are nearly unchanged as they are independent of

prior.5 When H0 is false, under the non-informative prior, BFJ01(LR) incorrectly accepts H0 in

25%, 47%, and 47% of replications if n=100, 1000, 10000, respectively. Second, BF01(PLR1),

BF01(PLR2) and BF01(PWald) perform much better regardless of n or prior. WhenH0 is true,

the rejection rates are either zero or very close to zero. When H0 is false, the rejection rates

are always one. Third, the use of informative prior improves the finite sample performance

of BF01(PLR1), BF01(PLR2) and BF01(PWald) when H0 is true and n is 100 or 1000.

To understand why three posterior-test-based BFs perform much better than two frequentist-

test-based BFs, we obtain the rejection rate of H0 for LR, Wald, PLR1, PLR2, and PWald

under the same simulation design. Table 4 reports the rejection rates. It is clear that there

are serious size distortions in LR when n = 100 and in Wald for all sample sizes. Their empir-

ical size and empirical power do not approach their nominal levels. This suggests that MLE,

which depends on the initial values, may correspond to a local maximum of the likelihood

function, and hence, the finite sample distributions of LR and Wald are not close to their

5They are slightly different because the initial values are randomly picked.
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Table 4: Rejection rate of LR, Wald, PLR1, PLR2, and PWald for the nonlinear regression
model

Non-informative prior (NP)
θ∗2 = 0 θ∗2 = −2

n = 100 n = 1000 n = 10000 n = 100 n = 1000 n = 10000
LR 91.20% 3.20% 3.20% 75.80% 53.00% 53.60%

Wald 91.40% 97.00% 99.60% 100.00% 99.80% 100.00%
PLR1 2.60% 4.40% 5.80% 100.00% 100.00% 100.00%
PLR2 2.40% 4.40% 5.80% 100.00% 100.00% 100.00%
PWald 3.20% 4.40% 5.80% 100.00% 100.00% 100.00%

Informative prior (IP)
θ∗2 = 0 θ∗2 = −2

n = 100 n = 1000 n = 10000 n = 100 n = 1000 n = 10000
LR 91.20% 2.60% 1.80% 73.20% 50.20% 54.20%

Wald 91.40% 96.80% 99.40% 100.00% 100.00% 100.00%
PLR1 0.00% 0.60% 5.40% 100.00% 100.00% 100.00%
PLR2 0.00% 0.60% 5.40% 100.00% 100.00% 100.00%
PWald 0.00% 0.60% 5.20% 100.00% 100.00% 100.00%

asymptotic distributions. Whereas, the posterior distribution has a less serious problem in

terms of multi-modality.

To get the support of this argument, we simulate three sample paths with θ∗ = (2,−2)

and n = 10, 10000. Based on the simulated paths, we plot the posterior densities of θ1 and

θ2 and the likelihood function of θ in Figures 1, 2 under the non-informative prior when

n = 10, 10000. We also plot the posterior densities of θ1 and θ2 in Figure 3 under the

information prior when n = 10. It is clear that when n = 10 and under the non-informative

prior (NP), both the likelihood function and the posterior distributions are multi-modal.

The multi-modality problem disappears in the posterior distributions when n increases but

stays in the likelihood function even when n = 10000. Moreover, the multi-modality problem

disappears in the posterior distributions when n = 10 but the informative prior is used.

5 Empirical Studies

In this section, we apply the proposed test-based BFs to three empirical examples, a

linear regression model, a time-varying parameter model, and a stochastic volatility (SV)

model. Specifically, for a time-varying parameter model, the likelihood function must be

computed from recursion, making MLE not easy to obtain. Thus, we only report two PLR-

based BFs and the PWald-based BF. For the SV model, the likelihood function does not

have an analytical expression, making the likelihood function and MLE even more difficult
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Figure 1: Posterior densities of θ1 (top left) and θ2 (top right), and the likelihood function
of θ (bottom) under the non-informative prior and when θ∗ = (2,−2), n = 10

Figure 2: Posterior densities of θ1 (top left) and θ2 (top right), and the likelihood function
of θ (bottom) under the non-informative prior and when θ∗ = (2,−2), n = 10000
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Figure 3: Posterior densities of θ1 (left) and θ2 (right) under the informative prior and when
θ∗ = (2,−2), n = 10

to obtain. Consequently, LR, Wald, PLR1, and PLR2 are all difficult to obtain. In practice,

the SV model is often estimated by MCMC. From MCMC outputs, one can easily obtain

PWald. This is why we only report PWald-based BF for the SV model.

5.1 A simple linear regression model

The first empirical study is a simple linear regression model where the dependent variable

is the daily log returns of S&P 500 (denoted by ∆ ln st) and the independent variable is the

corresponding log returns of the futures (denoted by ∆ ln ft). The sample period is from

January 22, 2019 to October 14, 2022. The effective sample size is 902. The model is

∆ ln st = α + β∆ ln ft + εt, εt ∼ i.i.d.t(0, σ2, v),

where β captures the optimal hedge ratio. We test H0 : β = 1 against H1 : β 6= 1.

The prior distribution for the parameters are set as

(α, β)′ ∼ N(µ0, V0), µ0 = (0, 0)′, V0 = diag(100, Vβ), σ−2 ∼ Γ(1, 1), v − 2 ∼ Exp(0.05).

To compute the posterior statistics, we use WinBUGS to obtain posterior samplers and

compute the corresponding statistics. Since we assume the t distribution for the error term,

which is empirically more reasonable, the standard BF does not have an analytical expression.

We use the algorithm proposed by Li et al. (2023) to calculate the standard BF. To check

the sensitivity to the prior, we let Vβ vary from 100 to 1015.

Various BFs are reported in Table 5. Again, the JLB paradox is clearly seen in the

standard BF. When Vβ = 1015 (i.e., a very vague prior), BF supports H0. Whereas, when

the prior becomes more informative, BF supports H1. By taking nearly identical values, all

the other test-based BFs are immune to the JLB paradox and reject H0.
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Table 5: Various BFs for the linear regression model
Hyper-parameters Vβ = 1 Vβ = 105 Vβ = 1010 Vβ = 1015

ln BF01 -7.22 1.43 13.23 39.63

ln BFJ01(LR) -4.06 -4.06 -4.06 -4.06

ln BFJ01(Wald) -3.83 -3.83 -3.83 -3.83
ln BF01(PLR1) -3.95 -3.91 -3.93 -3.93
ln BF01(PLR2) -3.98 -3.95 -3.95 -3.95
ln BF01(PWald) -3.74 -3.94 -3.92 -3.75

5.2 An extended CAPM

In this section, we test the extended capital asset pricing model (CAPM) of Sharpe

(1964), where beta is allowed to be time-varying. To model the time-varying beta, following

Mergner and Bulla (2008), we write the extended CAPM in a state-space form,

rst = α + βtr
m
t + εt, εt ∼ i.i.d.N(0, σ2

ε),

βt+1 = µ+ φ(βt − µ) + ηt, ηt ∼ i.i.d.N(0, σ2
η),

where rst , r
m
t are weekly excess returns for the pan-European insurance industry portfolio and

the DJ STOXX 600 index from December 2, 1987 to January 14, 2016, respectively. When

there is no pricing error, α must be zero. Hence, we test H0 : α = 0 vs H1 : α 6= 0. The

sample size is 1,467.

Although the likelihood function of this model can be computed via the Kalman filter, it

is known that ML estimation for this model can be unstable. Moreover, the Hessian matrix is

not easy to compute. Whereas, the MCMC analysis is relatively easier to conduct. Therefore,

we use our posterior-test-based BFs to perform hypothesis testing. To make posterior draws,

following Li et al. (2018), we use the following priors,

α ∼ N(0, 103), µ ∼ N(0, 1003), φ ∼ Beta(1, 1), σ−2
ε ∼ Γ(0.001, 0.001), σ−2

η ∼ Γ(0.001, 0.001).

For the model under H0, we draw 500,000 MCMC samples with the first 50,000 as burn-in.

We then take 1 observation for every 45 iterations, resulting in 10,000 effective samples. For

the model under H1, we draw 150,000 MCMC samples with the first 20,000 as burn-in. We

then take 1 observation for every 13 iterations, also resulting in 10,000 effective samples. The

posterior-test-based BFs are reported in Table 6. They all favor H0, suggesting the extended

CAPM can price the returns of the pan-European insurance industry portfolio well.
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Table 6: Posterior-test-based BFs for the extended CAPM
ln BF01(PLR1) 3.0267
ln BF01(PLR2) 3.0368
ln BF01(PWald) 3.0384

5.3 A stochastic volatility model

The SV model is a nonlinear non-Gaussian state space model where the likelihood func-

tion is intractable as it involves high-dimensional integrals. As a result, the MLE is very

difficult to obtain. In practice, MCMC is often used to provide full likelihood-based estima-

tion.

Following Yu (2005), we formulate the SV model with the leverage effect as,

yt − α = exp(ht/2)ut, ut ∼ N(0, 1),

ht+1 = µ+ φ(ht − µ) + vt+1, vt+1 ∼ N(0, τ 2),

and h0 = µ. Let Corr(ut, vt+1) = ρ captures the leverage effect if ρ < 0. We test H0 : ρ = 0

against H1 : ρ 6= 0.

We use 945 daily mean-corrected returns on Pound/Dollar exchange rates from October

1, 1981 to June 28, 1985. Following Meyer and Yu (2000), we use the following priors:

µ ∼ N(0, 100), φ ∼ Beta(1, 1, ), 1/τ 2 ∼ Γ(0.001, 0.001), ρ ∼ U(−1, 1).

For posterior sampling, we iterate the Gibbs sampler 110,000 times and throw away the

first 10,000 iterations. We collect every 20th iterations to get 5,000 effective draws. We then

use the 5,000 posterior samples to obtain BF01(PWald), which equals 30.67. Hence, we find

no evidence of a leverage effect in the exchange rate data.

6 Conclusion

This paper is concerned with hypothesis testing. The p-value-based methods, including

all the frequentist tests relying on the asymptotic theory, are subject to the p-hacking prob-

lem. One of the manifestations of the p-hacking problem is publication bias. Not surprisingly,

hypothesis testing based on p-values has been criticized by many researchers.

As important alternatives, BFs have been suggested as a replacement for hypothesis

testing. BFs have a consistent property so that they can select the true model with probability
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going to one. Unfortunately, the standard BF suffers from both theoretical and computational

difficulties, including the JLB paradox. In this paper, based on the posterior test statistics, we

mainly propose two new BF-like statistics for hypothesis testing. The first one is constructed

from a posterior version of the LR test while the second one is from the posterior Wald test.

The two proposed posterior-test-BFs inherit some of the good properties of the standard

BFs and the frequentist test statistics and avoid many problems in the standard BFs and the

frequentist test statistics. In particular, they inherit the consistent property of the standard

BF and hence, avoid the p-hacking problem. Moreover, compared with the standard BF,

they avoid the JLB paradox because they are constructed from the posterior test statistics,

which are based on continuous loss functions. Furthermore, compared with frequentist test

statistics and the corresponding frequentist-test-based BFs of Johnson (2005, 2008), they

can incorporate the prior information to improve the test behavior. This is an important

advantage when the informative prior is indeed available. Last but not least, they are based

on posterior outputs, and hence, avoid the need to do frequentist estimation. An impor-

tant frequentist estimation technique is maximum likelihood. For many important models,

maximum likelihood is difficult to use because (1) the likelihood function does not have a

closed-form expression; (2) the likelihood function is multi-modal.

We have designed two experiments to study the finite-sample performances of the pro-

posed posterior-test-based BFs and compare them with those of the standard BF and the

frequentist-test-based BFs of Johnson (2005, 2008). The simulation studies confirm the con-

sistency property and hence, avoid the p-hacking problem. The simulation studies also show

that the posterior test-based BFs outperform the standard and frequentist-test-based BFs.

When applying the proposed posterior-test-based BFs to real data, we continue to find that

the proposed posterior-test-based BFs lead to good performances and are easier to implement,

even for models where MLE is difficult to obtain.

Appendix

Appendix 1: Proof of Proposition 3.1

Note that∫
ln [p(y|θ)p(θ)] p(θ|y)dθ =

∫
[ln p(y|θ)]p(θ|y)dθ +

∫
[ln p(θ)]p(θ|y)dθ. (6.1)
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It is sufficient to derive large sample approximations for
∫

[ln p(θ)] p(θ|y)dθ and
∫

[ln p(y|θ)] p(θ|y)dθ,

respectively.

First, note that∫
[ln p(θ)]p(θ|y)dθ =

∫
ln p(θ)

p(y|θ)p(θ)

p(y)
dθ

=

∫
ln p(θ) exp [ln (p(y|θ)p(θ))] dθ

p(y)
=

∫
ln p(θ) exp [ln (p(y|θ)p(θ))] dθ∫

exp [ln (p(y|θ)p(θ))] dθ
.

From this formula, we let

g0(θ) = ln p(θ), bD(θ) = 1, and hn(θ) = − 1

n
ln [p(y|θ)p(θ)] .

According to Lemma 6.1, and noting that b
(1)
D (θ) = 0, we can show that∫

[ln p(θ)]p(θ|y)dθ = ĝ0 +
1

n
B0 +Op

(
1

n2

)
, (6.2)

where

B0 =
1

2
tr

[(
ĥ(2)
)−1

ĝ
(2)
0

]
− 1

2
vec

((
ĥ(2)
)−1
)
ĥ(3)

(
ĥ(2)
)−1

ĝ
(1)
0 .

Second, let gt(θ) = ln p(yt|It−1,θ), where It−1 is the information set generated by

{y0, y1, y2, · · · , yt−1}. We can write

ln p(y|θ) =
n∑
t=1

ln p(yt|It−1,θ) =
n∑
t=1

gt(θ).

Hence, we can show that∫
[ln p(y|θ)]p(θ|y)dθ =

∫
ln p(y|θ)

p(y|θ)p(θ)

p(y)
dθ

=

∫
ln p(y|θ) exp [ln (p(y|θ)p(θ))] dθ

p(y)
=

∫
ln p(y|θ) exp [ln (p(y|θ)p(θ))] dθ∫

p(y|θ)p(θ)dθ

=

∫
ln p(y|θ) exp [ln (p(y|θ)p(θ))] dθ∫

exp [ln (p(y|θ)p(θ))] dθ
=

∫ ∑n
t=1 ln p(yt|It−1,θ) exp [ln (p(y|θ)p(θ))] dθ∫

exp [ln (p(y|θ)p(θ))] dθ

=
n∑
t=1

[∫
gt(θ) exp [ln (p(y|θ)p(θ))] dθ∫

exp [ln (p(y|θ)p(θ))] dθ

]
.

From this formula, we also can observe that

bD(θ) = 1 and hn(θ) = − 1

n
ln [p(y|θ)p(θ)] . (6.3)
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According to Lemma 6.1, we can show that∫
gt(θ) exp [ln (p(y|θ)p(θ))] dθ∫

exp [ln (p(y|θ)p(θ))] dθ
= ĝt +

1

n
Bt +Op

(
1

n2

)
,

where

Bt =
1

2
tr

[(
ĥ(2)
)−1

ĝ
(2)
t

]
− 1

2
vec

((
ĥ(2)
)−1
)
ĥ(3)

(
ĥ(2)
)−1

ĝ
(1)
t .

From (6.2) and (6.3), we can further show that∫
[ln p(θ) + ln p(y|θ)] p(θ|y)dθ =

∫
[ln p(θ)]p(θ|y)dθ +

∫
[ln p(y|θ)]p(θ|y)dθ

=
n∑
t=0

[∫
gt(θ) exp [ln (p(y|θ)p(θ))] dθ∫

exp [ln (p(y|θ)p(θ))] dθ

]
=

n∑
t=0

ĝt +
1

n

n∑
t=0

Bt +Op

(
1

n

)
. (6.4)

Note that

n∑
t=0

gt(θ) =
n∑
t=1

ln p(yt|It−1,θ) + ln p(θ) = ln p(y|θ) + ln p(θ).

Based on the definition of the posterior mode (i.e. hn(θ̂m) = 0), we know that

n∑
t=0

ĝ =
n∑
t=0

ĝ(θ̂m),
n∑
t=0

ĝ(1) =
n∑
t=0

ĝ(1)(θ̂m) =
∂[ln p(y|θ) + ln p(θ)]

∂θ
|
θ=θ̂m

= −nhn(θ̂m) = 0,

n∑
t=0

ĝ(2) =
n∑
t=0

ĝ(2)(θ̂m) =
∂2[ln p(y|θ) + ln p(θ)]

∂θ∂θ′
|
θ=θ̂m

= −nĥ(2)(θ̂m) = −nĥ(2).

Hence, we can show that

n∑
t=0

Bt =
n∑
t=0

{
1

2
tr

[(
ĥ(2)
)−1

ĝ
(2)
t

]
− 1

2
vec

((
ĥ(2)
)−1
)
ĥ(3)

(
ĥ(2)
)−1

ĝ
(1)
t

}

=
1

2
tr

[(
ĥ(2)
)−1 (

sumn
t=0ĝ

(2)
t

)]
− 1

2
vec

((
ĥ(2)
)−1
)
ĥ(3)

(
ĥ(2)
)−1

(
n∑
t=0

ĝ
(1)
t

)
= −n

2
q + 0 = −n

2
q.

Consequently, we can derive that∫
[ln p(y,θ)]p(θ|y)dθ =

∫
[ln p(θ) + ln p(y|θ)] p(θ|y)dθ
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=
n∑
t=0

ĝt +
1

n

n∑
t=0

Bt +Op

(
1

n

)
= ln p(θ̂m) + ln p(y|θ̂m)− q

2
+Op(n

−1). (6.5)

Thus, we have,

2

[
ln p(y, θ̂m)−

∫
[ln p(y,θ)]p(θ|y)dθ

]
= q +Op(n

−1). (6.6)

Naturally, the posterior test statistic can be derived as follows:

T(y,ϑ0) =

∫
∆L (H0,ϑ,ψ) p(θ|y)dθ

=

∫ [
4 ln p(y, θ̂m)− 2 ln p(y,ϑ,ψ)− 2Dc(y,ϑ0)

]
p(θ|y)dθ

=

∫ [
4 ln p(y, θ̂m)− 4 ln p(y,ϑ,ψ) + 2 ln p(y,ϑ,ψ)− 2Dc(y,ϑ0)

]
p(θ|y)dθ

= 2q + 2 [Dc(y)−Dc(y,ϑ0)] +Op(n
−1)

= PLR1 + 2q +Op(n
−1). (6.7)

Similarly to the result in (6.6), when ϑ = ϑ0, we can also derive that

2

[
ln p(y, ψ̂m0|ϑ0)−

∫
[ln p(y,ψ|ϑ0)]p(ψ|y,ϑ0)dψ

]
= qψ +Op(n

−1), (6.8)

that is,

2

∫
[ln p(y,ψ|ϑ0)]p(ψ|y,ϑ0)dψ = 2 ln p(y, ψ̂m0|ϑ0)− qψ +Op(n

−1).

By (6.6) and (6.8), we can show that

Dc(y) =

∫
[ln p(y,θ)]p(θ|y)dθ = ln p(y, θ̂m)− q

2
+Op(n

−1),

and

Dc(y,ϑ0) =

∫
[ln p(y,ϑ0)]p(ψ|y,ϑ0)dψ

=

∫
[ln p(y,ψ|ϑ0) + ln p(ϑ0)] p(ψ|y,ϑ0)dψ

=

∫
[ln p(y,ψ|ϑ0)]p(ψ|y,ϑ0)dψ + ln p(ϑ0)

= ln p(y, ψ̂m0|ϑ0) + ln p(ϑ0)− qψ
2

+Op(n
−1)

= ln p(y,ϑ0, ψ̂m0)− qψ
2

+Op(n
−1). (6.9)
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Based on Lemma 3.1, using the Talyor expansion and the definition of the posterior

mode, we can further show that

ln p(y,θ) = ln p(y, θ̂m) +
∂ ln p(y, θ̂m)

∂θ′
(θ − θ̂m) +

1

2
(θ − θ̂m)′

∂2 ln p(y, θ̃m)

∂θ∂θ′
(θ − θ̂m)

= ln p(y, θ̂m) + 0 +Op(n
−1)Op(n)Op(n

−1)

= ln p(y, θ̂m) +Op(n
−1), (6.10)

where θ̃m is some intermediate value between θ and θ̂m. Similarly, we can further show that

ln p(y,ψ0|ϑ0) = ln p(y, ψ̂m0|ϑ0) +Op(n
−1).

Hence, from (6.9), it is easy to show that

PLR1 = 2 [Dc(y)−Dc(y,ϑ0)]

= 2
[
ln p(y, θ̂m)− q

2
+Op(n

−1)
]
− 2

[
ln p(y,ϑ0, ψ̂m0)− qψ

2
+Op(n

−1)
]

= 2
[
ln p(y, θ̂m)− ln p(y,ϑ0, ψ̂m0)

]
− qϑ +Op(n

−1)

= 2
[
ln p(y,θ)− ln p(y,ϑ0,ψ0)

]
− qϑ +Op(n

−1)

= PLR2− qϑ +Op(n
−1).

Appendix 2: Proof of Proposition 3.2

According to Lemma 3.2, we have

PLR1 + qϑ = LR + op(1) and PLR2 = LR + op(1)

under either H0 or HL1. Under H0, it can be easily shown that

PLR1 + qϑ = LR + op(1)
d→ χ2(qϑ) and PLR2 = LR + op(1)

d→ χ2(qϑ).

Also the proof under H0 can be seen as a special case under HL1 with δ = 0. Hence, we only

establish the limiting distribution of the LR test under the local alternatives HL1 : ϑ∗n =

ϑ0 + δ/
√
n with the regularity conditions imposed.

Recall that θ∗n = (ϑ∗′n ,ψ
∗′
n )
′

is the true value and θ∗ = (ϑ∗′,ψ∗′)
′

is the limit. Clearly,

under HL1, θ∗ = (ϑ′0,ψ
∗′)
′
. Also note that θ̂ and θ̂0 are the unconstrained MLE and the con-

strained MLE, respectively. When the model is correctly specified, we have E
[
l
(1)
t (θ∗n) |F t−1

∞

]
=
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0 where F t−1
∞ = σ (yt−1, . . .). Under Assumptions 1-9, it is straightforward to verify that As-

sumptions DG, OP’, MX’, SM, DM”, NE”, ID’, PD’, CN and DR in Theorem 7.4 (i) in

Gallant and White (1988, page 125) hold. Then we can establish the following results:

(a) θ̂ = θ∗n + op (1);

(b) θ̂0 = θ∗n + op (1);

(c) H̄n (θ)−Hn (θ) = op (1) a.s. uniformly in θ ∈ Θ;

(d) J
−1/2
n (θ∗n)

√
ns̄n (θ∗n)

d→ N (0, Iq) and Hn (θ∗n) + Jn (θ∗n) = 0.

To be specific, following the proof of Lemma 7.3 in Gallant and White (1988), we can

show (a)-(c). When the model is correctly specified, we can obtain the first part of (d)

by verifying the CLT for a martingale difference sequence (MDS) using Assumption 3; the

second part of (d) is the information identity, which can be easily justified.

Using the Taylor expansion and the first-order condition (FOC) s̄n

(
θ̂
)

= 0, we can

rewrite the LR testing statistic as follows

LR = 2n
[
Ln
(
θ̂0

)
− Ln

(
θ̂
)]

= 2ns̄n

(
θ̂
)

+ n
(
θ̂0 − θ̂

)′
H̄n

(
θ̃
)(
θ̂0 − θ̂

)
=
√
n
(
θ̂0 − θ̂

)′
H̄n

(
θ̃
)√

n
(
θ̂0 − θ̂

)
,

where θ̃ is a value between θ̂0 and θ̂. We complete the proof by showing that

(i) H̄n

(
θ̃
)
−Hn (θ∗n) = op (1) ;

(ii)
√
n
(
θ̂0 − θ̂

)
= H−1

n (θ∗n) B′[BH−1
n (θ∗n) B′]−1BH

−1/2
n (θ∗n) Z + op (1), where B =

(Iqϑ ,0qϑ×qψ) is a qϑ×q matrix and Z :=N
(
−H1/2(θ∗)Cδ, Iq

)
with Cδ = (δ′,01×qψ)′.

By (a) and (b), we have θ̃ − θ∗n = op (1). Together with (c) it leads to (i). For (ii), we

first show that
√
n
(
θ̂ − θ∗n

)
= −Hn (θ∗n)

√
ns̄n (θ∗n) + op (1) . For the unconstrained MLE θ̂,

we have the FOC, s̄n

(
θ̂
)

= 0. Taking the first-order Taylor expansion at the true value θ∗n

leads to

0 = s̄n

(
θ̂
)

= s̄n (θ∗n) + H̄n

(
θ†
) (
θ̂ − θ∗n

)
,

where θ† lies between θ̂ and θ∗n. By (a) and Assumptions 4-5, we can show that H̄n

(
θ†
)
−

H̄n (θ∗n) = op (1). Together with (d) it gives

H̄n

(
θ†
)
−Hn (θ∗n) =

[
H̄n

(
θ†
)
− H̄n (θ∗n)

]
+
[
H̄n (θ∗n)−Hn (θ∗n)

]
= op (1) .
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Then we obtain
√
n
(
θ̂ − θ∗n

)
= −H−1

n (θ∗n)
√
ns̄n (θ∗n) + op (1) . (6.11)

For the constrained MLE θ̂0, following Davidson (2000, page 300), we obtain that

√
n
(
θ̂0 − θ∗n

)
= −

[
H̄−1
n (θ∗n)− H̄−1

n (θ∗n) B′[BH̄−1
n (θ∗n) B′]−1BH̄−1

n (θ∗n)
]√

ns̄n (θ∗n)

− H̄−1
n (θ∗n) B′[BH̄−1

n (θ∗n) B′]−1BCδ + op (1)

= −
[
H−1
n (θ∗n)−H−1

n (θ∗n) B′[BH−1
n (θ∗n) B′]−1BH−1

n (θ∗n)
]√

ns̄n (θ∗n)

−H−1
n (θ∗n) B′[BH−1

n (θ∗n) B′]−1BCδ + op (1) . (6.12)

where we use the result in (c) in the last step. Using (6.11)-(6.12), we have

√
n
(
θ̂0 − θ̂

)
=
√
n
(
θ̂0 − θ∗

)
−
√
n
(
θ̂ − θ∗n

)
= H−1

n (θ∗n) B′[BH−1
n (θ∗n) B′]−1BH−1

n (θ∗n)
√
ns̄n (θ∗n)

−H−1
n (θ∗n) B′[BH−1

n (θ∗n) B′]−1BCδ + op (1)

= H−1 (θ∗n) B′[BH−1 (θ∗n) B′]−1BH−1/2 (θ∗n) H−1/2 (θ∗n) J1/2 (θ∗n)N (0, Iq)

−H−1 (θ∗n) B′[BH−1 (θ∗n) B′]−1BH−1/2 (θ∗n) H1/2 (θ∗n) Cδ + op (1)

= H−1 (θ∗n) B′[BH−1 (θ∗n) B′]−1BH−1/2 (θ∗n) Z + op (1) ,

with Z : = N
(
−H1/2 (θ∗) Cδ, Iq

)
, where we have used the definitions of H (·) and J (·) and

the result in (d) in the third step, and the fact θ∗n → θ∗ as n → ∞ in defining the normal

random variable Z.s Lastly, we have

LR = 2n
[
Ln
(
θ̂0

)
− Ln

(
θ̂
)]

=
√
n
(
θ̂0 − θ̂

)′
H (θ∗)

√
n
(
θ̂0 − θ̂

)
+ op (1)

d→ Z′H−1/2 (θ∗) B′[BH−1 (θ∗) B′]−1BH−1/2 (θ∗) Z

= Z′P (θ∗) Z,

where P (θ∗) = H−1/2 (θ∗) B′[BH−1 (θ∗) B′]−1BH−1/2 (θ∗). Clearly, P (θ∗) P (θ∗) = P (θ∗)

and tr (P (θ∗)) = qϑ. Then LR→d χ
2 (qϑ, τ) with τ = C′δ[BH−1 (θ∗) B′]−1Cδ = δ′[H−1]−1

11 δ,

H = H (θ∗), and [H−1]11 being the qϑ×qϑ submatrix of H−1 corresponding to ϑ.
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Appendix 3: Proof of Theorem 3.1

The proof is a direct result of Lemmas 3.1 and 3.2. Note that

BF01(PLR1) = (cn+ 1)
qϑ
2 exp

{
− PLR1 + qϑ

2(cn+ 1)/ (cn)

}
.

Hence, we can show that

ln BF01(PLR1) =
qϑ
2

ln (cn+ 1)−
{

PLR1 + qϑ
2(cn+ 1)/ (cn)

}
. (6.13)

UnderH0, PLR1 = Op(1), cn
cn+1

= O(1), and qϑ
2

ln(cn+1) = O(lnn). Hence, lnBFJ01(LR) =

Op(lnn). Under HL1, we have ϑ∗n − ϑ0 = O(n−1/2+a) for some a > 0. Based on Lemma 3.1,

it can be shown that PLR1 = LR + op(1).

Furthermore, we can write

LR = 2
[
ln p(y|θ̂)− ln p(y|θ̂0)

]
= 2

[
ln p(y|θ̂)− ln p(y|θ∗n)

]
+
[
ln p(y|θ∗n)− ln p(y|θ̂0)

]
.

(6.14)

By the standard ML theory, for the first term in (6.14), we have

2
[
ln p(y|θ̂)− ln p(y|θ∗n)

]
= Op(1).

In the following, we only need to derive the probability order of 2
[
ln p(y|θ∗n)− ln p(y|θ̂0)

]
.

Based on the first-order Taylor expansion, we can show that

∂ ln p(y|θ̂0)

∂θ
=
∂ ln p(y|θ∗n)

∂θ
+
∂2 ln p(y|θ̃1)

∂θ∂θ′
(θ̂0 − θ∗n),

where θ̃1 is some intermediate value between θ∗n and θ̂0. Hence, we can further show that

0 =
∂ ln p(y|θ̂0)

∂ψ
=
∂ ln p(y|θ∗n)

∂ψ
+
∂2 ln p(y|θ̃1)

∂ψ∂ϑ′
(ϑ0 − ϑ∗n) +

∂2 ln p(y|θ̃1)

∂ψ∂ψ′
(ψ̂0 −ψ∗n).

From the above formula, we can get that

ψ̂0 −ψ∗n =

[
∂ ln p(y|θ̃1)

∂ψ∂ψ′

]−1 [
∂ ln p(y|θ∗n)

∂ψ
+
∂2 ln p(y|θ̃1)

∂ψ∂ϑ′
(ϑ0 − ϑ∗n)

]
= Op(n

−1)
[
Op(n

1
2 ) +Op(n)O(n−

1
2

+α)
]

= Op(n
1
2

+α).

Based on the second-order Taylor expansion, it can be shown as

2[ln p(y|θ∗n)− ln p(y|θ̂0)]
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= 2
∂ ln p(y|θ̂0)

∂θ′

(
θ∗n − θ̂0

)
+
(
θ∗n − θ̂0

)′ [∂2 ln p(y|θ̃2)

∂θ∂θ′

](
θ∗n − θ̂0

)
= 2

∂ ln p(y|θ̂0)

∂ϑ′
(ϑ∗n − ϑ0) +

(
θ∗n − θ̂0

)′ [∂2 ln p(y|θ̃2)

∂θ∂θ′

](
θ∗n − θ̂0

)
= Op(n)Op(n

− 1
2

+α) +Op(n
− 1

2
+α)Op(n)Op(n

− 1
2

+α)

= Op(n
− 1

2
+α) +Op(n

2α) = Op(n
max{− 1

2
+α,2α}),

where θ̃2 is some intermediate value between θ∗n and θ̂0.

Hence, from Equation (6.13), we can get the order of LR= Op(lnn)−Op(n
max{− 1

2
+α,2α})

such that LR = −Op(n
max{− 1

2
+α,2α}), lnBFJ01(LR) → −∞, and BFJ01(LR) → 0 with proba-

bility approaching one. In this case, the proposed LR-test-based BFs have the consistency

property.

From Equation (6.26) in Lemma 3.2, we can show that

PLR1 = 2 [Dc(y)−Dc(y,ϑ0)]

= PLR2− qϑ +Op(n
−1)

= LR−
[
ln p(θ̂)− ln p(θ̂0)

]
− qϑ +Op(n

−1)

= −Op(n
max{− 1

2
+α,2α}). (6.15)

Hence, from Equation (6.15), we can get the order of PLR1= −Op(n
max{− 1

2
+α,2α}), lnBF01(PLR1)

→ −∞, and BF01(PLR1)→ 0 with probability approaching one. Using the same approach,

we can show that lnBF01(PLR2)→ −∞ and BF01(PLR2)→ 0 with probability approaching

one. In this case, both the proposed LR-test-based BFs and PLR-test-based BFs have the

consistency property.

Appendix 4: Proof of Proposition 3.3

First, from Remark 3.6, we note that

V
(
θ
)

= E
[
(θ − θ)(θ − θ)′|y

]
= E

[(
θ − θ̂ + θ̂ − θ

)(
θ − θ̂ + θ̂ − θ

)′
|y
]

= E

[(
θ − θ̂

)(
θ − θ̂

)′
|y
]

+ E

[(
θ̂ − θ

)(
θ̂ − θ

)′
|y
]

+ E

[(
θ̂ − θ

)(
θ − θ̂

)′
|y
]

+ E

[(
θ − θ̂

)(
θ̂ − θ

)′
|y
]

37



= V
(
θ̂
)

+ E

[(
θ̂ − θ

)(
θ̂ − θ

)′
|y
]

= V
(
θ̂
)

+ op(n
−1/2)op(n

−1/2)

= V
(
θ̂
)

+ op(n
−1)

= − 1

n
H̄−1
n (θ̂) + op

(
n−1
)

= Op

(
1

n

)
, (6.16)

and that

V0
ϑϑ = E

[
(ϑ− ϑ0) (ϑ− ϑ0)′ |y

]
= E

[(
ϑ− ϑ+ ϑ− ϑ0

) (
ϑ− ϑ+ ϑ− ϑ0

)′ |y]
= Vϑϑ

(
ϑ
)

+
(
ϑ− ϑ0

) (
ϑ− ϑ

)′
+
(
ϑ− ϑ

) (
ϑ− ϑ0

)′
+
(
ϑ− ϑ0

) (
ϑ− ϑ0

)′
= Vϑϑ

(
ϑ
)

+
(
ϑ− ϑ0

) (
ϑ− ϑ0

)′
. (6.17)

Furthermore, under the local hypothesis and the standard ML theory, we have

ϑ̂− ϑ0 = ϑ̂− ϑ∗n + ϑ∗n − ϑ0 = Op(n
−1/2) +Op(n

−1/2) = Op(n
−1/2).

Hence, we can further derive that(
ϑ− ϑ0

) (
ϑ− ϑ0

)′
=
(
ϑ− ϑ̂+ ϑ̂− ϑ0

)(
ϑ− ϑ̂+ ϑ̂− ϑ0

)′
=
(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
+
(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′
+
(
ϑ− ϑ̂

)(
ϑ̂− ϑ0

)′
+
(
ϑ̂− ϑ0

)(
ϑ− ϑ̂

)′
= op(n

−1/2)op(n
−1/2) +

(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′
+ 2op(n

−1/2)Op(n
−1/2)

=
(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′
+ op(n

−1). (6.18)

Based on Equations (6.16), (6.17), and (6.18), we can further derive that

PWald =

∫
Θ

(ϑ− ϑ0)′
[
V−1
ϑϑ

(
θ
)]

(ϑ− ϑ0) p(ϑ|y)dϑ

= tr
{[

V−1
ϑϑ

(
θ
)]
E
[
(ϑ− ϑ0) (ϑ− ϑ0)′ |y

]}
= tr

{[
V−1
ϑϑ

(
θ
)] [

Vϑϑ

(
θ
)

+
(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′
+ op(n

−1)

]}
= qϑ + tr

{[
V−1
ϑϑ

(
θ
)] (

ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′}
+ tr

[
V−1
ϑϑ

(
θ
)
op(n

−1)
]
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= qϑ + tr

{[
V−1
ϑϑ

(
θ
)] (

ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′}
+Op(n)op(n

−1)

= qϑ + tr

{[
V−1
ϑϑ

(
θ
)] (

ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′}
+ op(1)

= qϑ + tr

{[
nV−1

ϑϑ

(
θ
)]
n
(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′}
+ op(1)

= qϑ + tr

{[
nV−1

ϑϑ

(
θ
)]
n
(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′}
+ op(1)

= qϑ + tr

{[
−[H̄−1

n (θ̂)]ϑϑ + op (1)
]−1

n
(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′}
+ op(1).

From the above derivation, it is easy to show that

PWald− qϑ = tr

{[
−[H̄−1

n (θ̂)]ϑϑ

]−1

n
(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′}
= n

(
ϑ̂− ϑ0

)′ [
−[H̄−1

n (θ̂)]ϑϑ

]−1 (
ϑ̂− ϑ0

)
+ op (1) = Wald + op(1).

Hence, under the local hypothesis, we can show that

PWald =

∫
(ϑ− ϑ0)′

[
V−1
ϑϑ (θ)

]
(ϑ− ϑ0) p(ϑ|y)dϑ

d→ χ2(qϑ, τ). (6.19)

We only prove the limiting distribution of Wald under HL1. First, we have

√
n
(
ϑ̂− ϑ∗n

)
d→ BH−1 (θ∗) J1/2 (θ∗)N (0, Iq)

d
= δ + BH−1/2 (θ∗)N (0, Iq) ,

where H (θ∗) = limn→∞Hn (θ∗n) and J (θ∗) = limn→∞ Jn (θ∗n). Here we have used the fact

that limn→∞[Hn (θ∗n) + Jn (θ∗n)] = 0 when there is no model misspecification. It follows that

√
n
(
ϑ̂− ϑ0

)
=
√
n
(
ϑ̂− ϑ∗n

)
+ δ

d→ N
(
δ,BH−1 (θ∗) B′

)
.

Then

Wald = n
(
ϑ̂− ϑ0

)′
[BH̄−1

n

(
θ̂
)

J̄n

(
θ̂
)

H̄−1
n

(
θ̂
)

B′]−1
(
ϑ̂− ϑ0

)
=
√
n
(
ϑ̂− ϑ0

)′ [
BH−1 (θ∗) B′

]−1√
n
(
ϑ̂− ϑ0

)
+ op (1)

= Z′0Z0 + op (1)
d→ χ2 (qϑ, τ) ,

where

Z0 =
[
BH−1 (θ∗) B′

]−1/2√
n
(
ϑ̂− ϑ0

)
d→ N

([
BH−1 (θ∗) B′

]−1/2
δ, Iq

)
,

and τ = δ′[BH−1 (θ∗) B′]−1δ.
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Appendix 5: Proof of Theorem 3.2

First, when ϑ∗n − ϑ0 = O(n−1/2+a) for some a > 0, based on the ML theory, we have

ϑ̂− ϑ0 = ϑ̂− ϑ∗n + ϑ∗n − ϑ0 = Op(n
−1/2) +Op(n

−1/2+a) = Op(n
−1/2+a). (6.20)

By Remark 3.2, we can further show that(
ϑ− ϑ0

) (
ϑ− ϑ0

)′
=
(
ϑ− ϑ̂+ ϑ̂− ϑ0

)(
ϑ− ϑ̂+ ϑ̂− ϑ0

)′
=
(
ϑ− ϑ̂

)(
ϑ− ϑ̂

)′
+
(
ϑ̂− ϑ0

)(
ϑ̂− ϑ0

)′
+
(
ϑ− ϑ̂

)(
ϑ̂− ϑ0

)′
+
(
ϑ̂− ϑ0

)(
ϑ− ϑ̂

)′
= op(n

−1/2)op(n
−1/2) +Op(n

−1/2+a)Op(n
−1/2+a) + 2op(n

−1/2)Op(n
−1/2+a)

= Op(n
−1+2a).

Note that E
[
(ϑ− ϑ0) (ϑ− ϑ0)′ |y

]
= Vϑϑ

(
θ
)
+
(
ϑ− ϑ0

) (
ϑ− ϑ0

)′
, and Vϑϑ

(
θ
)

= Op(n
−1)

in (6.16). Hence, we can derive that

PWald =

∫
Θϑ

(ϑ− ϑ0)′
[
V−1
ϑϑ

(
θ
)]

(ϑ− ϑ0) p(ϑ|y)dϑ

= tr
{[

V−1
ϑϑ

(
θ
)]
E
[
(ϑ− ϑ0) (ϑ− ϑ0)′ |y

]}
= tr

{[
V−1
ϑϑ

(
θ
)] [

Vϑϑ

(
θ
)

+
(
ϑ− ϑ0

) (
ϑ− ϑ0

)′]}
= qϑ + tr

{[
V−1
ϑϑ

(
θ
)] [(

ϑ− ϑ0

) (
ϑ− ϑ0

)′]}
= qϑ +Op(n)Op(n

−1+2a) = qϑ +Op(n
2a) = Op(n

2a).

As a consequence, we have

ln BF01(PWald) =
qϑ
2

ln (cn+ 1)−
{

PWald− qϑ
2(cn+ 1)/ (cn)

}
.

Hence, under H0, we can show that PWald = Op(1), cn
cn+1

= O(1), qϑ
2

ln(cn + 1) = O(lnn),

and lnBF01(PWald) = Op(lnn). Under HL1, when ϑ∗n − ϑ0 = O(n−1/2+a), it can be shown

that PWald = Op(n
2a) such that lnBF01(PWald) = Op(lnn) + Op(−n2a) = Op(−n2a) with

a > 0.
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Online Supplement: Proofs of Lemmas

Supplement 1: Proof of Lemma 3.1

To prove this lemma, we first restate a lemma developed in Li et al. (2020) about the

high-order stochastic expansion. This lemma is also used to prove Theorem 3.1.

Without any loss of generality, for any function f(θ), let f (j) (θ) be the jth order deriva-

tive of f (θ) for j = 1, 2, 3, 4, 5. When there is no confusion, for convenience, we simply let f̂

be the value of function f evaluated at θ̂, i.e., f̂ := f
(
θ̂
)

and for convenience of exposition,

we write ∂d

∂θj1∂θj2 ···∂θjd
f (θ) as fj1···jd , and let f̂j1···jd := fj1···jd

(
θ̂
)

. The lemma developed in Li

et al. (2020) states as below.

Lemma 6.1 For some real-valued function g(θ), if both ({hn} , g × bD) and ({hn} , bD) sat-

isfy the analytical assumptions for the stochastic Laplace method, then we have∫
g (θ) bD (θ) exp (−nhn (θ)) dθ∫
bD (θ) exp (−nhn (θ)) dθ

= ĝ +
1

n
B +Op

(
1

n2

)
,

where

B =
1

2
tr

[(
ĥ(2)
)−1

ĝ(2)

]
+
(
ĝ(1)
)′ (

ĥ(2)
)−1 b̂

(1)
D

b̂D
− 1

2
vec

((
ĥ(2)
)−1
)
ĥ(3)

(
ĥ(2)
)−1

ĝ(1).

For more details about this lemma, one can refer to Li et al. (2020).

The proof of Lemma 3.1 is similar to the proof of Lemma 3.2 in Li et al. (2020). Note

that

θ =

∫
θp(θ|y)dθ =

∫
θ
p(y|θ)p(θ)

p(y)
dθ (6.21)

=

∫
θ exp [ln (p(y|θ)p(θ))] dθ

p(y)
=

∫
θ exp [ln (p(y|θ)p(θ))] dθ∫
exp [ln (p(y|θ)p(θ))] dθ

.

From this formula, we can let

gi(θ) = θi = a′iθ, i = 1, · · · , q, bD(θ) = 1, hn(θ) = − 1

n
ln [p(y|θ)p(θ)] ,

where ai is an indicator vector with the ith element being one and the others being zero.

Hence, according to Lemma 6.1, it is easy to show that for i = 1, · · · , q,

θi =

∫
gi(θ) exp [ln (p(y|θ)p(θ))] dθ∫

exp [ln (p(y|θ)p(θ))] dθ
= gi(θ̂m) +Op(n

−1)
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= a′iθ̂m +Op(n
−1) = θ̂mi +Op(n

−1).

Similarly, under the null hypothesis, it is also easy to show that

ψ0 = ψ̂m0 +Op(n
−1).

Supplement 2: Proof of Lemma 3.2

From (6.6) and (6.10) in the proof of Theorem 3.1, we get that

2Dc(y) =

∫
ln p(y,θ)p(θ|y)dθ

= 2 ln p(y, θ̂m)− q +Op(n
−1) = 2 ln p(y,θ)− q +Op(n

−1). (6.22)

By Remark 3.3, the Taylor expansion, and the definition of MLE, we have

ln p(y|θ) = ln p(y|θ̂) +
∂ ln p(y|θ̂)

∂θ′
(θ − θ̂) +

1

2
(θ − θ̂)′

∂2 ln p(y, θ̃)

∂θ∂θ′
(θ − θ̂)

= ln p(y|θ̂) + 0 +Op(n
−1)Op(n)Op(n

−1) = ln p(y|θ̂) +Op(n
−1), (6.23)

where θ̃ is an intermediate value between θ and θ̂. Furthermore, for the prior distribution,

again using the Taylor expansion, we can also get that

ln p(θ) = ln p(θ̂) +
∂ ln p(θ̂)

∂θ′
(θ − θ̂) +

1

2
(θ − θ̂)′

∂2 ln p(θ̃)

∂θ∂θ′
(θ − θ̂)

= ln p(θ̂) +Op(1)Op(n
−1) +Op(n

−1)Op(1)Op(n
−1) = ln p(θ̂) +Op(n

−1). (6.24)

From Equations (6.23) and (6.24), we have

2Dc(y) = 2 ln p(y,θ)− q +Op(n
−1)

= 2
[
ln p(y|θ) + ln p(θ)

]
− q +Op(n

−1)

= 2
[
ln p(y|θ̂) + ln p(θ̂)

]
− q +Op(n

−1)

= 2 ln p(y, θ̂)− q +Op(n
−1). (6.25)

Similar to the above derivation, according to Equations (6.9) and (6.25), we have

Dc(y,ϑ0) =

∫
[ln p(y,ψ,ϑ0)]p(ψ|y,ϑ0)dψ

=

∫
[ln p(y,ψ|ϑ0) + ln p(ϑ0)] p(ψ|y,ϑ0)dψ
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=

∫
[ln p(y,ψ|ϑ0)]p(ψ|y,ϑ0)dψ + ln p(ϑ0)

= ln p(y, ψ̂m0|ϑ0) + ln p(ϑ0)− qψ
2

+Op(n
−1)

= ln p(y, ψ̂m0|ϑ0) + ln p(ϑ0)− qψ
2

+Op(n
−1). (6.26)

From Equations (6.25) and (6.26), we can show that

PLR1 = 2 [Dc(y)−Dc(y,ϑ0)]

= PLR2− qϑ +Op(n
−1)

= 2
[
ln p(y|θ̂) + ln p(θ̂)

]
− q +Op(n

−1)− 2
[
ln p(y, ψ̂0|ϑ0) + ln p(ϑ0)− qψ

2
+Op(n

−1)
]

= 2
[
ln p(y|θ̂) + ln p(θ̂)

]
− 2

[
ln p(y|ψ̂0,ϑ0) + ln p(ψ̂0|ϑ0) + ln p(ϑ0))

]
− qϑ +Op(n

−1)

= 2
[
ln p(y|θ̂) + ln p(θ̂)

]
− 2

[
ln p(y|ψ̂0,ϑ0) + ln p(ψ̂0,ϑ0)

]
− qϑ +Op(n

−1)

= 2
[
ln p(y|θ̂) + ln p(θ̂)

]
− 2

[
ln p(y|θ̂0) + ln p(θ̂0)

]
− qϑ +Op(n

−1)

= 2
[
ln p(y|θ̂)− ln p(y|θ̂0)

]
+ 2

[
ln p(θ̂)− ln p(θ̂0)

]
− qϑ +Op(n

−1)

= LR + 2
[
ln p(θ̂)− ln p(θ̂0)

]
− qϑ +Op(n

−1). (6.27)

Under H0, based on the ML theory, we have θ̂0 = θ∗n +Op(n
− 1

2 ) and θ̂ = θ∗n +Op(n
− 1

2 )

such that θ̂ − θ̂0 = Op(n
− 1

2 ). Hence, using the Taylor expansion, we can also get that

ln p(θ̂0) = ln p(θ̂) +
∂ ln p(θ̂)

∂θ′
(θ̂0 − θ̂) +

1

2
(θ̂0 − θ̂)′

∂2 ln p(θ̃0)

∂θ∂θ′
(θ̂0 − θ̂)

= ln p(θ̂) +Op(1)Op(n
− 1

2 ) +Op(n
− 1

2 )Op(1)Op(n
− 1

2 ) = ln p(θ̂) +Op(n
− 1

2 ), (6.28)

where θ̃0 is an intermediate value between θ̂ and θ̂0.

From Equations (6.27) and (6.28), under H0, it is easy to show that

PLR1 = 2 [Dc(y)−Dc(y,ϑ0)] = PLR2− qϑ +Op(n
−1)

= LR + 2
[
ln p(θ̂)− ln p(θ̂0)

]
− qϑ +Op(n

−1) = LR− qϑ +Op(n
− 1

2 ). (6.29)

Under the local alternative hypothesis of ϑ∗n = ϑ0 + δ√
n
, based on the ML theory (see

e.g. Proposition 4.2 in Lee, 2005), we have θ̂0 = θ∗n+Op(n
− 1

2 ) and θ̂ = θ∗n+Op(n
− 1

2 ). Hence,

θ̂ − θ̂0 = Op(n
− 1

2 ). Naturally, Equation (6.29) holds.
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