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Proof of Theorem 3.1.1 when m > 2

For the limit of the space, the main paper proves the results in Theorem 3.1.1
for the case where m = 2. We now complete the proof for the case where m > 2.

In any subsample period from n1 = ⌊nr1⌋ ∈ T to n2 = ⌊nr2⌋ ∈ T , pt =
pnc

+ δ (t− nc)
m
+ εt are generated by a polynomial trend model. Without loss

of generality, we give the proof for the case where n1 = nc = ⌊nrc⌋. The same
approach can be applied to the case where n1 > nc.

Let ns = n2 − n1 and
∑

=
∑n2

n1+3. Define g (t) = δ (t− nc)
m

with m > 2.
For any t ≥ n1 + 3, it has

∆g (t) = δm (t− nc − 1)
m−1

+ δ
m (m− 1)

2
(t− nc − 1)

m−2
+O

(
(t− nc)

m−3
)
,

and

∆2g (t) = ∆g (t)−∆g (t− 1) = δm (m− 1) (t− nc − 2)
m−2

+O
(
(t− nc)

m−3
)
.

We can further get
∆2pt = ∆2g (t) + ∆2εt,

which leads to

pt = pt−1 +∆pt−1 + ωt with ωt = ∆2g (t) + ∆2εt.

Hence, the centered LS estimators of the parameters in the AR(2) regression as
the Model (1.2) in the main paper take the form of α̌r2

r1

β̌r2
r1 − 1

ψ̌r2
r1 − 1

 =

∑ 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

−1  ∑
ωt∑

pt−1ωt∑
∆pt−1ωt

 .
Since m > 2, as n→ ∞, it has

n−(m−1)
s

∑
ωt = n−(m−1)

s

∑
∆2g (t) + op (1)

p→ δm,

n−(2m−1)
s

∑
pt−1ωt

= n−(2m−1)
s δ2m (m− 1)

∑
(t− nc − 1)

m
(t− nc − 2)

m−2
+ op (1)

p→ m (m− 1)

2m− 1
δ2,

n−2(m−1)
s

∑
∆pt−1ωt = n−2(m−1)

s δ2m2 (m− 1)
∑

(t− nc − 2)
2m−3

+ op (1)

p→ m2

2
δ2.
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Therefore, we getn
−(m−1)
s 0 0

0 n
−(2m−1)
s 0

0 0 n
−2(m−1)
s


 ∑

ωt∑
pt−1ωt∑
∆pt−1ωt

 p→

 δm
m(m−1)
2m−1 δ2

m2

2 δ
2

 .
From pt = pnc + δ (t− nc)

m
+ εt, it can be easily proved that, as n→ ∞,

n−(m+1)
s

∑
pt−1

p→ δ/ (m+ 1) , n−(2m+1)
s

∑
p2t−1

p→ δ2/ (2m+ 1) ,

n−m
s

∑
∆pt−1

p→ δ, n−(2m−1)
s

∑
(∆pt−1)

2 p→ δ2m2/ (2m− 1) ,

n−2m
s

∑
pt−1∆pt−1

= n−2m
s δ2m

∑
(t− nc − 1)

m
(t− nc − 2)

m−1
+ op (1)

p→ δ2/2.

With the normalization matrices

C =

n−m+2
s 0 0
0 n2s 0
0 0 ns

 and G =

n
(m−1)
s 0 0

0 n
(2m−1)
s 0

0 0 n
2(m−1)
s

 ,

the following limiting results can be proved:

C

 ∑
1

∑
pt−1

∑
∆pt−1∑

pt−1

∑
p2t−1

∑
pt−1∆pt−1∑

∆pt−1

∑n
t=3 pt−1∆pt−1

∑
(∆pt−1)

2

−1

G

=

 n−1
s

∑
1 n−m−1

s

∑
pt−1 n−m

s

∑
∆pt−1

n−m−1
s

∑
pt−1 n−2m−1

s

∑
p2t−1 n−2m

s

∑
pt−1∆pt−1

n−m
s

∑
∆pt−1 n−2m

s

∑
pt−1∆pt−1 n−2m+1

s

∑
(∆pt−1)

2

−1

p→

 1 δ/ (m+ 1) δ
δ/ (m+ 1) δ2/ (2m+ 1) δ2/2

δ δ2/2 δ2m2/ (2m− 1)

−1

.

Consequently, it is obtained thatn−m+2
s 0 0
0 n2s 0
0 0 ns

 α̌r2
r1

β̌r2
r1 − 1

ψ̌r2
r1 − 1

 p→

 1 δ/ (m+ 1) δ
δ/ (m+ 1) δ2/ (2m+ 1) δ2/2

δ δ2/2 δ2m2/ (2m− 1)

−1  δm

δ2m(m−1)
2m−1

δ2m2/2

 ,
which leads to

n2s
(
β̌r2
r1 − 1

) p→ −m (2m+ 1) (m+ 1) (m− 2)

(2m− 1) (m− 1)
as n→ ∞.

Hence, ns
(
β̌r2
r1 − 1

)
= op (1)

p→ 0, as n→ ∞.
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Next, we develop the limit of the DF t statistic t
(
β̌r2
r1

)
. Note that ět =

pt−α̌r2
r1−β̌

r2
r1 pt−1−ψ̌r2

r1∆pt−1 and pt = pt−1+∆pt−1+ωt with ωt = ∆2g (t)+∆2εt.
Thus, the first-order condition of the LS regression leads to∑

ě2t =
∑

ětpt =
∑

ětωt.

Applying the fact of ωt = δm (m− 1) (t− nc − 2)
m−2

+O
(
(t− nc)

m−3
)
+∆2εt,

as n→ ∞, it has

n−(2m−3)
s

∑
ě2t

= n−(2m−3)
s

∑(
pt − α̌r2

r1 − β̌r2
r1 pt−1 − ψ̌r2

r1∆pt−1

)
ωt

= n−(2m−3)
s

∑(
ωt − α̌r2

r1 −
(
β̌r2
r1 − 1

)
pt−1 −

(
ψ̌r2
r1 − 1

)
∆pt−1

)
ωt

= n−(2m−3)
s

∑
ω2
t −

(
n−m+2
s α̌r2

r1 n2s
(
β̌r2
r1 − 1

)
ns

(
ψ̌r2
r1 − 1

)) n
−(m−1)
s

∑
ωt

n
−(2m−1)
s

∑
pt−1ωt

n
−(2m−2)
s

∑
∆pt−1ωt


= Op (1) ,

where the last equation comes from the fact that

n−(2m−3)
s

∑
ω2
t = n−(2m−3)

s

∑
δ2m2 (m− 1)

2
(t− nc − 2)

2m−4
+ op (1)

= δ2
m2 (m− 1)

2

2m− 3
+ op (1) ,

and the limiting results for
(
α̌r2
r1

(
β̌r2
r1 − 1

) (
ψ̌r2
r1 − 1

))
developed earlier. Con-

sequently, it is obtained that

n5s
[
se

(
β̌r2
r1

)]2
=

(
0 n2s 0

)∑ 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

−1  0

n
(2m−1)
s

0

 ∑
ě2t

n
(2m−4)
s (ns − 5)

=
(
0 1 0

)
C

∑ 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

−1

G

0
1
0

 ∑
ě2t

n
(2m−4)
s (ns − 5)

= Op (1) as n→ ∞.

Together with the fact of n2s
(
β̌r2
r1 − 1

) p→ −m(2m+1)(m+1)(m−2)
(2m−1)(m−1) < 0, as n→ ∞,

we have

t
(
β̌r2
r1

)
=
n2s

(
β̌r2
r1 − 1

)
n
5/2
s se

(
β̌r2
r1

)√ns p→ −∞.
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Proof of Theorem 3.1.3

To prove the results in this part of the theorem, we only need to show that,
when n1 = nc and n2 = n, it has (n2 − n1)

(
β̌r2
r1 − 1

)
→ ∞ and t

(
β̌r2
r1

)
=(

β̌r2
r1 − 1

)
/se

(
β̌r2
r1

)
→ ∞ as n → ∞. From nc to n, {pt} are generated by a

mildly explosive process as pt = ρne
pt−1+εt with ρne

= 1+γ/nθe and ne = n−nc.
For any t > nc + 2, it has

∆pt−1 = pt−1 − ρ−1
ne

(pt−1 − εt−1) =
γ

nθeρne

pt−1 + ρ−1
ne
εt−1.

Phillips and Magdalinos (2007b) showed that pn = Op

(
ρne
ne
n
θ/2
e

)
as ne → ∞.

Thus, the first term in the above equation dominates the second term when
t is large. As a result, Model (1.2) encounters the problem of perfect multi-
collinearity asymptotically.

To address the problem of asymptotic perfect multi-collinearity, we consider
the transformed regression of

pt = α̌∗,r2
r1 + β̌∗,r2

r1 pt−1 + ψ̌∗,r2
r1

(
ρ−1
ne
ut−1

)
+ ě∗t , (A.1)

whose centered LS estimators have the following relationship with the centered
LS estimators of the proposed regression model (1.2): α̌r2

r1 − 0

β̌r2
r1 − ρne

ψ̌r2
r1 − 0

 = D′

 α̌∗,r2
r1 − 0

β̌∗,r2
r1 − ρne

ψ̌∗,r2
r1 − 0

 with D =

1 0 0
0 1 0
0 − γ

nθ
eρne

1

 ,

which leads to

β̌r2
r1 − ρne =

(
β̌∗,r2
r1 − ρne

)
− γ

nθeρne

(
ψ̌∗,r2
r1 − 0

)
.

Note that α̌∗,r2
r1 − 0

β̌∗,r2
r1 − ρne

ψ̌∗,r2
r1 − 0

 =

∑ 1 pt−1 ρ−1
ne
ut−1

pt−1 p2t−1 pt−1

(
ρ−1
ne
εt−1

)(
ρ−1
ne
εt−1

)
pt−1

(
ρ−1
ne
εt−1

) (
ρ−1
ne
εt−1

)2
−1  ∑

εt∑
pt−1εt∑(

ρ−1
ne
εt−1

)
εt


where

∑
=

∑n
t=nc+2. Phillips and Magdalinos (2007b) proved that

n−2θ
e ρ−2ne

ne

∑
p2t−1 ⇒ η2

4γ2
and n−θ

e ρ−ne
ne

∑
pt−1εt ⇒

ηξ

2γ
,

where η and ξ are two independent standard normal variates. We then have

n−θ
e ρ−ne

ne

∑
pt−1

(
ρ−1
ne
εt−1

)
= n−θ

e ρ−ne
ne

(∑
pt−2εt−1 + ρ−1

ne

∑
εt−2εt−1

)
= n−θ

e ρ−ne
ne

(∑
pt−1εt + pncεnc+1 − pn−1εn + ρ−1

ne

∑
εt−2εt−1

)
= n−θ

e ρ−ne
ne

∑
pt−1εt + op (1) ⇒

ηξ

2γ
.
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Together with the result in Wang and Yu (2016) that n
−3θ/2
e ρ−ne

ne

∑
pt−1 ⇒

η
γ
√
2γ
, we can have

Ψ−1

 ∑
εt∑

pt−1εt∑(
ρ−1
ne
εt−1

)
εt

 ⇒

 σW (1)
ηξ/ (2γ)

0

 with Ψ =

n1/2e 0 0
0 nθeρ

ne
ne

0
0 0 ne

 ,

n1/2e 0 0
0 nθeρ

ne
ne

0
0 0 1

∑ 1 pt−1 ρ−1
ne
εt−1

pt−1 p2t−1 pt−1

(
ρ−1
ne
εt−1

)(
ρ−1
ne
εt−1

)
pt−1

(
ρ−1
ne
εt−1

) (
ρ−1
ne
εt−1

)2
−1

Ψ

⇒

1 0 σW (1)
0 η2/

(
4γ2

)
ηξ/ (2γ)

0 0 σ2

−1

.

Consequently, it hasn1/2e 0 0
0 nθeρ

ne
ne

0
0 0 1

 α̌∗,r2
r1 − 0

β̌∗,r2
r1 − ρne

ψ̌∗,r2
r1 − 0

 ⇒

1 0 σW (1)
0 η2/

(
4γ2

)
ηξ/ (2γ)

0 0 σ2

−1  σW (1)
ηξ/ (2γ)

0

 ,

which leads to

nθeρ
ne
ne

(
β̌∗,r2
r1 − ρne

)
⇒ 2γ

ξ

η
and ψ̌∗,r2

r1

p→ 0.

We thus have

ne
(
β̌r2
r1 − 1

)
= ne

(
β̌r2
r1 − ρne

)
+ ne (ρne

− 1)

= ne
(
β̌∗,r2
r1 − ρne

)
− neγ

nθeρne

(
ψ̌∗,r2
r1 − 0

)
+ ne (ρne

− 1)

= ne
(
β̌∗,r2
r1 − ρne

)
− neγ

nθeρne

(
ψ̌∗,r2
r1 − 0

)
+ ne

γ

nθe

= ne
(
β̌∗,r2
r1 − ρne

)
+
neγ

nθe

(
1− ρ−1

ne
ψ̌∗,r2
r1

) p→ +∞,

where the last limit comes from the fact that

ne
(
β̌∗,r2
r1 − ρne

)
= Op

(
ne

nθeρne

)
= op (1) and 1− ρ−1

ne
ψ̌∗,r2
r1

p→ 1.

To prove the limit of t
(
β̌r2
r1

)
=

(
β̌r2
r1 − 1

)
/se

(
β̌r2
r1

)
, we first study the limit

of se
(
β̌r2
r1

)
. It is easy to prove that

1

ne

∑
ě2t =

1

ne

∑[
pt − α̌r2

r1 − β̌r2
r1 pt−1 − ψ̌r2

r1∆pt−1

]2
=

1

ne

∑[
pt − α̌∗,r2

r1 − β̌∗,r2
r1 pt−1 − ψ̌∗,r2

r1

(
ρ−1
ne
εt−1

)]2
=

1

ne

∑
(ě∗t )

2
.
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Given that the true DGP of pt is covered by the transformed regression model
(6.11) and that the LS estimates of the parameters are consistent, it can be
shown that

1

ne

∑
(ě∗t )

2
=

1

ne

∑
ε2t + op (1)

p→ σ2.

Note that

n2θe
[
0 1 0

] ∑ 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

−1 01
0


= n2θe

[
0 1 0

]
D′

∑D

 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

D′

−1

D

01
0


= n2θe

[
0 1 − γ

nθ
eρne

]∑ 1 pt−1 ρ−1
ne
εt−1

pt−1 p2t−1 pt−1

(
ρ−1
ne
εt−1

)(
ρ−1
ne
εt−1

)
pt−1

(
ρ−1
ne
εt−1

) (
ρ−1
ne
εt−1

)2
−1  0

1
− γ

nθ
eρne


= n2θe

[
0 1 − γ

nθ
eρne

]n−1/2
e 0 0
0 n−θ

e ρ−ne
ne

0
0 0 1



1 0 σW (1)
0 η2/

(
4γ2

)
ηξ/ (2γ)

0 0 σ2

−1

+ op (1)


×

n−1/2
e 0 0
0 n−θ

e ρ−ne
ne

0
0 0 n−1

e

 0
1

− γ
nθ
eρne


= n2θe

[
0 n−θ

e ρ−ne
ne

− c
nθ
eρne

]
1 0 σW (1)
0 η2/

(
4γ2

)
ηξ/ (2γ)

0 0 σ2

−1

+ op (1)


 0
n−θ
e ρ−ne

ne

− γ

n1+θ
e ρne



=
[
0 ρ−ne

ne
− γ

ρne

]
1 0 σW (1)
0 η2/

(
4γ2

)
ηξ/ (2γ)

0 0 σ2

−1

+ op (1)


 0
ρ−ne
ne

− γ
neρne


p→

[
0 0 −γ

]1 0 σW (1)
0 η2/

(
4γ2

)
ηξ/ (2γ)

0 0 σ2

−1 00
0

 = 0.

We then have

n2θe
[
se

(
β̌r2
r1

)]2
= n2θe

[
0 1 0

] ∑ 1 pt−1 ∆pt−1

pt−1 p2t−1 pt−1∆pt−1

∆pt−1 pt−1∆pt−1 (∆pt−1)
2

−1 01
0

 ∑
ě2t

ne − 4

p→ 0.

Therefore, as n→ ∞,

t
(
β̌r2
r1

)
=

β̌r2
r1 − 1

se
(
β̌r2
r1

) =
nθe

(
β̌r2
r1 − 1

)
nθese

(
β̌r2
r1

) =
nθe

(
β̌r2
r1 − ρne

)
+ nθe (ρne

− 1)

nθese
(
β̌r2
r1

) p→ +∞.

The proof is completed.
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Tests based on AR(k) regression

In this subsection we extend our results for the AR(2) regression reported in
the main paper to the AR(k) case with k > 2:

pt = α+ βpt−1 +

k−1∑
i=1

ψi∆pt−i + εt, t = 1, ..., n. (A.2)

Let β̌ denote the LS estimate of β. We will show that both the DF coefficient-
based test and the DF t-test can distinguish successfully between the polynomial
trend model and the explosive AR model. In other words, they are robust to
polynomial trend. For simplicity, we only develop the asymptotics of the test
statistics in full sample analysis. The results for subsample analysis in the
context of models with a structural break can be obtained similarly.

It is well-known in the literature that, if the true DGP of pt is an AR
model with the lag length smaller or equal to k and the errors {εt} being an iid
sequence, then under the null hypothesis of unit root, as n→ ∞,

n
(
β̌ − 1

)
⇒

∫
W̃ (s) dW (s)∫ [
W̃ (s)

]2
ds

and t
(
β̌
)
⇒

∫
W̃ (s) dW (s){∫ [
W̃ (s)

]2
ds

}1/2
(A.3)

where
∫
=

∫ 1

0
and

W̃ (s) :=W (s)−
∫
W (t) dt.

Theorem 1 below develops the large sample theory of n
(
β̌ − 1

)
and t

(
β̌
)
,

when {pt} is generated entirely from a mildly explosive AR(1) model or from a
polynomial trend model.

Theorem 1 Assume the AR(k) model (A.2) with k > 2 is estimated by LS.
(a) If the true DGP of pt is a mildly explosive process, that is, pt = ρnpt−1 + εt
with ρn = 1 + γ/nθ, γ > 0, and θ ∈ (0, 1), then, as n→ ∞,

n
(
β̌ − 1

) p→ +∞ and t
(
β̌
) p→ +∞.

(b) If the true DGP is pt = α+ δtm + εt with m ≥ 2. When k ≥ m, as n→ ∞,
it has,

n
(
β̌ − 1

) p→ 0 and t
(
β̌
)
= Op

(
n−1/2

)
p→ 0.

(c) If the true DGP is pt = θ + δtm + ut with m ≥ 2. When 2 < k < m, as
n→ ∞, it has,

n
(
β̌ − 1

) p→ 0

and
t
(
β̌
)
= Op

(√
n
)
→ −∞ as long as lim

n→∞
nk

(
β̌ − 1

)
< 0.
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According to Part (a) of Theorem 1, when the true DGP of pt is a mildly
explosive process, the right-tailed unit root tests, obtained based on the AR(k)
regression in (A.2) with k > 2, can find evidence of explosiveness. According to
Part (b)-(c) of Theorem 1, when the true DGP of pt has a polynomial trend with
m ≥ 2, the right-tailed unit root tests, obtained based on the AR(k) regression
in (A.2) with k > 2, do not find evidence of explosiveness. This is because

n
(
β̌ − 1

) p→ 0 and t
(
β̌
)
converges to zero or diverges to minus infinity, both less

than the CV of the corresponding null asymptotic distribution. Consequently,
we can claim that both the coefficient-based test and the t test can distinguish
between the polynomial trend model and the explosive AR model.

For Part (c) of Theorem 1, in general, the value of limn→∞ nk
(
β̌ − 1

)
varies

with k and m. We conjecture that the sign of limn→∞ nk
(
β̌ − 1

)
is always

negative. For the special case where k = 2 and m > k, the proof of Theorem
3.1.1 given above has proved that limn→∞ nk

(
β̌ − 1

)
< 0, and hence, t

(
β̌
)
→

−∞.
We now prove Theorem 1. Part (a) is easier to prove. Note that in the

proof of Theorem 3.1.3 in the main paper, the results of n
(
β̌ − 1

) p→ +∞ and

t(β̌) → +∞ have been proved for the case of k = 2. By taking the same
procedure, the results for k > 2 can be proved directly.

We then prove Part (b). For the case where m ≤ k, the process pt =
θ + δtm + ut can be represented as an AR(k) regression given in (A.2) with
proper choice of the AR coefficients and the setup of the regression errors. For
example, if m = 2, pt can be rewritten as

pt = 2δ + pt−1 +∆pt−1 +∆2ut,

which is covered by the AR(k) regression given in (A.2) with k ≥ 2. According
to Theorem 3.1.1 in the main paper, when k = 2, we have t

(
β̌
)
= Op

(
n−1/2

)
as n→ ∞. By taking the same procedure, the result of t

(
β̌
)
= Op

(
n−1/2

)
can

be proved for general values of m and k with m = k.
We now consider the case where m < k. In the following, we take m = 2

and k = 3 as an example to carry out the proof. The result for other cases of
m < k can be obtained by taking the same approach.

When k = 3, Model (A.2) becomes

pt = α+ βpt−1 + ψ1∆pt−1 + ψ2∆pt−2 + ϵt.

Hence, the above regression with
(
α β ψ1 ψ2

)
=

(
2δ 1 1 0

)
and ϵt =

∆2εt gives the true DGP of pt. However, the regression confronts with the
problem of asymptotic multicollinearity as

∆pt−1 = 2δt− 3δ +∆εt−1 = O (t) and ∆pt−2 = 2δt− 5δ +∆εt−2 = O (t) .

To get the asymptotics of the LS estimators
(
α̌ β̌ ψ̌1 ψ̌2

)
, we consider an

alternative regression:

pt = α̌∗ + β̌∗pt−1 + ψ̌∗
1∆pt−1 + ψ̌∗

2∆
2εt−1 + ě∗t . (A.4)
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Using the fact of ∆pt−1 −∆pt−2 = 2δ +∆2εt−1, it is easily obtained that
α̌− 2δ

β̌ − 1

ψ̌1 − 1

ψ̌2 − 0

 =M


α̌∗ − 2δ

β̌∗ − 1

ψ̌∗
1 − 1

ψ̌∗
2 − 0

 with M :=


1 0 0 −2δ
0 1 0 0
0 0 1 1
0 0 0 −1

 .

By using the large sample properties of the quadratic trend model as obtained
in the proof of Theorem 3.1.1 in the main paper, it is easy to get that

n 0 0 0
0 nm+1 0 0
0 0 nm 0
0 0 0 1



α̌∗ − 2δ

β̌∗ − 1

ψ̌∗
1 − 1

ψ̌∗
2 − 0

 = Op (1) ,

which leads to the result of

β̌ − 1 = β̌∗ − 1 = Op

(
n−m−1

)
as n→ ∞.

Next, we consider the limit of the sum of squared regression errors of (A.2).
As n→ ∞:

n−1
n∑

t=1

(ět)
2

= n−1
n∑

t=1

(
pt − α̌− β̌pt−1 − ψ̌1∆pt−1 − ψ̌2∆pt−2

)2
= n−1

n∑
t=1

(
pt − α̌∗ − β̌∗pt−1 − ψ̌∗

1∆pt−1 − ψ̌∗
2∆

2εt−1

)2
= Op (1) .

Moreover,[
se

(
β̌
)]2

=
(
0 1 0 0

)
n∑

t=1


1

pt−1

∆pt−1

∆pt−2

(
1 pt−1 ∆pt−1 ∆pt−2

)
−1 

0
1
0
0

 ∑n
t=1 (ět)

2

n

=
(
0 1 0 0

)
M


n∑

t=1


1

pt−1

∆pt−1

∆2εt−1

(
1 pt−1 ∆pt−1 ∆2εt−1

)
−1

M ′


0
1
0
0

 ∑n
t=1 (ět)

2

n

= Op

(
n−(2m+1)

)
.

Finally, we get

t
(
β̌
)
=

β̌ − 1

se
(
β̌
) = n−1/2 n

m+1
(
β̌ − 1

)
nm+1/2se

(
β̌
) = Op

(
n−1/2

)
.
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We now prove Part (c). For the case where m > k, the process pt = θ +
δtm + ut cannot be represented as an AR(k) regression with stationary errors,
no matter how the AR coefficients are chosen. Theorem 3.1.1 in the main paper
has given the asymptotic theory of the test statistics when m > k and k = 2. In
the following, we use the case of k = 3 as an example to show that the results
can be extended to the case where k take any values less than m.

When k = 3, the AR(k) regression of (A.2) has the representation as

pt = α+ βpt−1 + ψ1∆pt−1 + ψ2∆pt−2 + εt

= α+ βpt−1 + (ψ1 + ψ2)∆pt−1 − ψ2∆
2pt−1 + εt

= α∗ + β∗yt−1 + ψ∗
1∆pt−1 + ψ∗

2∆
2pt−1 + εt.

Whereas, the polynomial trend process has the representation as

pt = θ + δtm + ut = θ + δ

 m∑
j=0

Cj
m (t− 1)

m−j

+ ut

= pt−1 + δ

 m∑
j=1

Cj
m (t− 1)

m−j

+∆ut

= pt−1 +∆pt−1 + δ

 m∑
j=1

Cj
m

m−j∑
i=1

Ci
m−j (t− 2)

m−j−i

+∆2ut

= pt−1 +∆pt−1 +∆2pt−1 + δ

 m∑
j=1

Cj
m

m−j∑
i=1

Ci
m−j

m−j∑
τ=1

Cτ
m−j−i (t− 3)

m−j−i−τ

+∆3ut

= pt−1 +∆pt−1 +∆2pt−1 +Op

(
tm−3

)
,

where the fourth and fifth equalities come from the following two equations,
respectively,

∆pt = δ

 m∑
j=1

Cj
m (t− 1)

m−j

+∆ut = δ

 m∑
j=1

Cj
m

m−j∑
i=0

Ci
m−j (t− 2)

m−j−i

+∆ut

= ∆pt−1 + δ

 m∑
j=1

Cj
m

m−j∑
i=1

Ci
m−j (t− 2)

m−j−i

+∆2ut,
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and

∆2pt = δ

 m∑
j=1

Cj
m

m−j∑
i=1

Ci
m−j (t− 2)

m−j−i

+∆2ut

= δ

 m∑
j=1

Cj
m

m−j∑
i=1

Ci
m−j

m−j∑
τ=0

Cτ
m−j−i (t− 3)

m−j−i−τ

+∆2ut

= ∆2pt−1 + δ

 m∑
j=1

Cj
m

m−j∑
i=1

Ci
m−j

m−j∑
τ=1

Cτ
m−j−i (t− 3)

m−j−i−τ

+∆3ut.

Therefore, as long as m > 3, the process pt cannot be represented as an AR(3)
model with stationary errors. This makes the sum of squared regression errors
have the following limit:

n−2(m−k)−1
n∑

t=1

(ět)
2
= Op (1) .

To study the asymptotic behavior of β̌ from the AR(3) regression, instead of
the original regression

pt = α̌+ β̌pt−1 + ψ̌1∆pt−1 + ψ̌2∆pt−2 + ět,

we consider the transformed regression

pt = α̌∗ + β̌∗pt−1 + ψ̌∗
1∆pt−1 + ψ̌∗

2∆
2pt−1 + ě∗t ,

to avoid the multicollinearity problem. The following relationship is easy to get
α̌− 0

β̌ − 1

ψ̌1 − 1

ψ̌2 − 0

 = D


α̌∗ − 0

β̌∗ − 1

ψ̌∗
1 − 1

ψ̌∗
2 − 0

 with D :=


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 −1

 .

Given the facts of yt−1 = O (tm), ∆yt−1 = O
(
tm−1

)
, ∆2yt−2 = O

(
tm−2

)
, and

ě∗t = O
(
tm−3

)
, together with the property of limn→∞ n−s+1

n∑
t=1

ts = 1/ (s+ 1),

it can be proved that, as n→ ∞,
n−m+k

nk

nk−1

nk−2



α̌∗ − 0

β̌∗ − 1

ψ̌∗
1 − 1

ψ̌∗
2 − 0

 p→ a vector of constants,

where the limit depends on the values of m, k, and δ. Consequently, it has

nk
(
β̌ − 1

)
= nk

(
β̌∗ − 1

)
= a constant + op (1) , as n→ ∞.
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Next, consider the limit of the standard error of β̌, which is[
se

(
β̌
)]2

=
(
0 1 0 0

)
n∑

t=1


1

pt−1

∆pt−1

∆pt−2

(
1 pt−1 ∆pt−1 ∆pt−2

)
−1 

0
1
0
0

 ∑n
t=1 (ět)

2

n

=
(
0 1 0 0

)
D


n∑

t=1


1

pt−1

∆pt−1

∆2ut−1

(
1 pt−1 ∆pt−1 ∆2ut−1

)
−1

D′


0

n2(m−k)

0
0

 ∑n
t=1 (ět)

2

n2(m−k)n

= Op

(
n−(2k+1)

)
.

Finally, it is obtained that

t
(
β̌
)
=

β̌ − 1

se
(
β̌
) = n1/2

nk
(
β̌ − 1

)
nk+1/2se

(
β̌
) = Op

(
n1/2

)
.

More Simulation Results

Assume the data is generated from the following structural break model:

pt =

{
pt−1 + εt if t ∈ N ≡ [1, nc]

pnc
+ δ (t− nc)

m
+ εt if t ∈ T ≡ (nc, n]

, (A.5)

where δ ̸= 0, m ≥ 1, {εt} an independent and identically distributed (iid)
sequence with mean zero and finite variance (denoted σ2), and E

(
ε4t
)
<∞.

In the main paper, we report simulation results of the four tests (DF coefficient-
based test, DF t test, GSADFc test, and GSADFt test) based on AR(1) and
AR(2) regressions when m = 2. We now report simulation results when m = 3
and m = 1.

Table 1 reports the simulation results when the AR(1) model is fitted to
the data simulated from Model (A.5) with m = 3 (i.e. cubic trend). As in the
quadratic trend model, the two full-sample tests and the two subsample tests
always lead to spurious explosiveness.

Table 2 reports the simulation results when the AR(2) model is fitted to the
data simulated from Model (A.5) with m = 3. In sharp contrast with the case
when the AR(1) model is fitted, the two full-sample tests based on the AR(2)
model never suggests explosiveness. While the GSADFc and GSADFt tests
sometimes still suggest explosiveness, the probability of spurious detection when
the AR(2) model is fitted is much smaller than the case when the AR(1) model is
fitted. Comparing the finite performance of the GSADFc and GSADFt tests,
the GSADFt test appears to perform better.

Table 3 reports the simulation results when the AR(1) model is fitted to the
data simulated from Model (A.5) with m = 1 (i.e. linear trend). When data
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Table 1: Statistical results when the AR(1) model is fitted to the data simulated
from Model (A.5) with m = 3 and rc = 0.5.

δ 0.5 1 0.5 1
Effective sample size 20 20 50 50
Mean of estimated β 1.1661 1.1661 1.0639 1.0639
Mean of c-stat 3.1550 3.1550 3.1289 3.1289
% rejection of H0 by c-stat 1.0000 1.0000 1.0000 1.0000
Mean of t-stat 24.6749 24.6933 40.5855 40.5867
% rejection of H0 by t-stat 1.0000 1.0000 1.0000 1.0000
Effective sample size 40 40 100 100
Mean of GSADFc 25.0760 32.1382 43.0405 54.9475
% rejection of H0 by GSADFc 1.0000 1.0000 1.0000 1.0000
Mean of GSADFt 32.4304 32.3770 69.9372 69.9607
% rejection of H0 by GSADFt 1.0000 1.0000 1.0000 1.0000

Note: Calculations are based on 1,000 replications when the AR(1) model is fitted to

the simulated sample path. For the DF coefficient-based and DF t statistics, the

simulated sample is from the polynomial trend model with n = 20, 50. For the

GSADFc and GSADFt statistics, the simulated sample is from the model that

switches from the random walk to the polynomial trend with n = 40, r0 = 0.3 and

n = 100, r0 = 0.2.

Table 2: Statistical results when the AR(2) model is fitted to the data simulated
from Model (A.5) with m = 3 and rc = 0.5.
δ 0.5 1 0.5 1
Effective sample size 20 20 50 50
Mean of estimated β 0.9798 0.9792 0.9966 0.9966
Mean of c-stat -0.3635 -0.3748 -0.1611 -0.1613
% rejection of H0 by c-stat 0.0000 0.0000 0.0000 0.0000
Mean of t-stat -4.3713 -7.1312 -13.5980 -15.5304
% rejection of H0 by t-stat 0.0000 0.0000 0.0000 0.0000
Effective sample size 40 40 100 100
Mean of GSADFc 14.8666 16.4577 16.6165 17.2657
% rejection of H0 by GSADFc 0.6540 0.6560 0.7650 0.7250
Mean of GSADFt 2.3301 1.9788 2.5469 2.0982
% rejection of H0 by GSADFt 0.3180 0.2350 0.4410 0.2950

Note: Calculations are based on 1,000 replications when the AR(2) model is fitted to

the simulated sample path. For the DF coefficient-based and DF t statistics, the

simulated sample is from the polynomial trend model with n = 20, 50. For the

GSADFc and GSADFt statistics, the simulated sample is from the model that

switches from the random walk to the polynomial trend with n = 40, r0 = 0.3 and

n = 100, r0 = 0.2.
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Table 3: Statistical results when the AR(1) model is fitted to the data simulated
from Model (A.5) with m = 1 and rc = 0.5.

δ 10 20 10 20
Effective sample size 20 20 50 50
Mean of estimated β 0.9997 0.9999 0.9999 1.0000
Mean of c-stat -0.0066 -0.0018 -0.0030 -0.0009
% rejection of H0 by c-stat 0.0000 0.0000 0.0000 0.0000
Mean of t-stat -0.0588 -0.0311 -0.0413 -0.0239
% rejection of H0 by t-stat 0.0140 0.0160 0.0030 0.0030
Effective sample size 40 40 100 100
Mean of GSADFc 13.1264 19.5242 19.1444 29.2403
% rejection of H0 by GSADFc 1.0000 1.0000 1.0000 1.0000
Mean of GSADFt 6.9567 7.1405 11.2694 11.7489
% rejection of H0 by GSADFt 1.0000 1.0000 1.0000 1.0000

Note: Calculations are based on 1,000 replications when the AR(1) model is fitted to

the simulated sample path. For the DF coefficient-based and DF t statistics, the

simulated sample is from the linear trend model with n = 20, 50. For the GSADFc

and GSADFt statistics, the simulated sample is from the model that switches from

the random walk to the linear trend with n = 40, r0 = 0.3 and n = 100, r0 = 0.2.

come entirely from the linear trend, the DF coefficient-based test and t test
never find evidence of explosiveness. However, when data come from a model
that switches from unit root to linear trend, both GSADFc and GSADFt
always find explosiveness. This finding is consistent with the asymptotic results
in Phillips and Shi (2019).

Table 4 reports the simulation results when the AR(2) model is fitted to
the data simulated from Model (A.5) with m = 1. When data come entirely
from the linear trend, the DF coefficient-based test and t test based on AR(2)
never find evidence of explosiveness, just like the case when AR(1) is fitted.
However, when data come from a model that switches from unit root to linear
trend, both GSADFc and GSADFt based on AR(2) often do not find evidence
explosiveness. The GSADFt test appears to have better power in finite samples
in distinguish between the explosive AR model and the model that switch from
unit root to linear trend.
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Table 4: Statistical results when the AR(2) model is fitted to the data simulated
from Model (A.5) with m = 1 and rc = 0.5.

δ 10 20 10 20
Effective sample size 20 20 50 50
Mean of estimated β 0.9998 0.9999 1.0000 1.0000
Mean of c-stat -0.0037 -0.0010 -0.0008 -0.0001
% rejection of H0 by c-stat 0.0000 0.0000 0.0000 0.0000
Mean of t-stat -0.0302 -0.0150 -0.0116 -0.0017
% rejection of H0 by t-stat 0.0320 0.0340 0.0090 0.0110
Effective sample size 40 40 100 100
Mean of GSADFc 9.3359 16.3638 9.3344 13.0955
% rejection of H0 by GSADFc 0.3350 0.4680 0.4350 0.4740
Mean of GSADFt 1.7612 1.5537 2.4709 1.6814
% rejection of H0 by GSADFt 0.0780 0.0640 0.2390 0.0710

Note: Calculations are based on 1,000 replications when the AR(2) model is fitted to

the simulated sample path. For the DF coefficient-based and DF t statistics, the

simulated sample is from the linear trend model with n = 20, 50. For the GSADFc

and GSADFt statistics, the simulated sample is from the model that switches from

the random walk to the linear trend with n = 40, r0 = 0.3 and n = 100, r0 = 0.2.
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