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Abstract

The sales of fashion products are influenced by uncertain and heterogeneous demands, neces-
sitating predictive analytics to consider multiple explanatory variables and address the chal-
lenge of model uncertainty, which has been overlooked in prior research. To illustrate our solu-
tion, we first propose a novel forecasting estimator, which is characterized by provable optimal
weighted forecasts and a collection of sub-model forecasts with various model specifications.
We then validate our method empirically with store-level sales observations of a well-known
international footwear brand, as an example of how a retailer can enhance its sales forecasts
and improve promotion decisions after controlling model uncertainty. In a predictive anal-
ysis, the results show that controlling for model uncertainty between various predictors and
store sales can produce more accurate forecasts of sales. With our proposed estimator, we also
demonstrate the heterogeneity of promotion strategy importance for store with high and low
previous sales. The additional analysis reveals that combo promotions have the most signif-
icant impact, and suggests adjusting the frequencies of gift and combo promotions to boost
store sales. However, caution is advised when implementing both gift and combo promotions
together to mitigate cannibalization effects.
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1 Introduction

Due to short product life cycles and long manufacturing lead times, a sound forecasting strategy

can truly add value to the fashion industry by improving inventory planning and helping market-

ing teams tailor effective promotional activities. This is especially relevant for store sales propelled

by the endeavors of sales associates. However, practitioners in the industry often grapple with

uncertain and heterogeneous demands, which makes sales forecasting and promotion evaluation

particularly challenging. As highlighted by Liu et al. (2013), fashion product sales—including

apparel, shoes, and beauty items—are heavily influenced by various factors, such as seasonality,

fashion trends, weather, sales promotions, and macroeconomic conditions. Therefore, predictive

analytics must consider many and varied explanatory variables, which inevitably leads to the

issue of model uncertainty.

There exists a number of research studies on sales prediction for the fashion products.1 Con-

ventional approaches involve statistical methods such as ARIMA, moving average, weighted av-

erage, and exponential smoothing (Box et al., 2015). To capture highly irregular patterns in sales

data, artificial intelligence (AI) methods like fuzzy models, artificial neural networks (ANN), evo-

lutionary neural networks (ENN), and extreme learning machines (ELM) have been introduced.

These AI techniques have demonstrated higher accuracy than statistical models (Frank et al., 2003;

Au et al., 2008; Sun et al., 2008), albeit at the expense of increased computational time and resource

requirements. Recently, many researchers have discovered the advantages of utilizing hybrid

methods, which combine AI schemes with statistical models or grey models, in order to strike a

balance between efficiency and effectiveness in forecasting tasks (Wong and Guo, 2010; Ni and

Fan, 2011; Yesil et al., 2012). Although prior work has extensively explored complex and non-

linear relationships between series, none have explicitly addressed the issue of model specification

uncertainty.

In this paper, we propose a new type of forecasting approach, which combines off-the-shelf

machine learning algorithms with provable optimal weighted forecasts. In particular, machine

learning techniques can be employed to generate a collection of forecasts based on various sub-

models, which are constructed through the full permutation of all potential predictors. We then

1The survey paper by Liu et al. (2013) reviews the evolution of analytical methods over the last 15 years, spanning
statistical techniques, artificial intelligence models, and hybrid methods. In another review article, Beheshti-Kashi et al.
(2015) extend their survey to new product forecasting and the predictive value of user-generated contents, in addition
to the topic of fashion product sales.
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create a weighted average of these forecasts to predict the response variable, where the weights

are selected to minimize the Mallows-type criteria, grounded in the frequentist model averaging

literature. To prove the optimality of model weights, it is only necessary for the predictions stem-

ming from any input vector to be a weighted average of observations in response variables. These

weights depend on the input vector and the training set, possibly involving a nonlinear relation-

ship. As a result, our framework is sufficiently versatile to accommodate many widely-used ma-

chine learning techniques. From the above discussion, it is evident that our approach effectively

mitigates the issue of model uncertainty while preserving the nonlinearity between data.

Our approach sheds new light on the forecast combination literature, which was pioneered

by Barnard (1963), Reid (1968), and Bates and Granger (1969). In these works, forecasts from

sub-models were primarily generated in a parametric setting.2 In contrast, our proposed hybrid

approach addresses model specification uncertainty by leveraging a comprehensive set of sub-

model predictions possibly generated through machine learning techniques. Additionally, our

approach contributes to the ensemble method from the machine learning literature. Traditionally,

an ensemble learning approach aims to enhance predictive accuracy through flexible aggregation

schemes that group forecasts from candidate learning algorithms.3 To the best of our knowledge,

there is limited discussion on the statistical properties of related grouping techniques in the lit-

erature. Drawing from the model averaging literature, our framework can provide a provably

optimal combination scheme for machine learning forecasts under reasonable technical assump-

tions.

In light of the prevalent use of least squares support vector regression (LSSVR) in business

practices, we proceed to assess the effectiveness of our proposed hybrid approach in conjunction

with LSSVR. Through Monte Carlo exercises, we initially demonstrate that our proposed hybrid

approach consistently outperforms other competitive estimators, particularly in cases involving

heteroskedasticity and smaller sample sizes. Utilizing actual weekly data from stores across China

of a renowned footwear brand, we aim to examine sales forecasting and evaluate promotion strate-

gies. Our analysis is primarily centered on two sales responses - the weekly count of effective cus-

2Excellent reviews of forecast combination techniques can be found in Clemen (1989), Hoeting et al. (1999), Tim-
mermann (2006), and Elliott and Timmermann (2016). Numerous successful applications of forecast combinations in
economics and finance have been documented in the literature; see, for instance, Rapach et al. (2010), Elliott et al. (2013),
and Genre et al. (2013).

3See Sagi and Rokach (2018) and Dong et al. (2020) for recent literature reviews. Notably, to address potential mis-
specifications in the consumer choice model, Feng et al. (2022) introduced a novel operational data analytics framework
to estimate a generalized consumer choice model using data.
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tomers and weekly sales revenues. We try to explore the predictors that significantly impact sales

forecasts for the upcoming week, which include previous sales records, one-week-ahead district-

level weather forecasts, and the weekly frequencies of implementing three promotion strategies,

namely gift, combo, and discount promotions. In the predictive analysis with alternative forecast-

ing approaches, we evaluate 15 candidate estimators, ranging from linear estimators, recursive

partitioning estimators, support vector regressions, to our hybrid approaches (also referred to as

averaging LSSVR in the sequel).

Our results first underscore the value of forecasting methods that can address both model un-

certainty and nonlinearity, especially within the context of statistical learning algorithms. With

smaller sample sizes, our proposed Mallows averaging LSSVR manifests the best performance for

the two sales responses, irrespective of the evaluation criteria used. The predictive analysis re-

veals additional gains of 5.4% to 7% in forecast accuracy from our proposed approach, compared

to the best-performing forecasting estimator that neglects model uncertainty. Despite being out-

performed by the averaging LSSVR, other tree-based algorithms and SVR-type methods in our

exercise generally showcase superior performance over the least squares (LS) estimator, the aver-

aging predictive model averaging (PMA) estimator, and various penalization methods. Further-

more, the exercise confirms the benefits of optimally chosen combination weights. For example,

the simple averaging LSSVR with Gaussian kernel (denoted as LSSVRSA
G ) is outperformed by Mal-

lows averaging LSSVR and even some machine learning algorithms without averaging, such as

the LSSVR with Gaussian kernel or random forecast.

Second, we leverage a machine learning-based tool known as the variable importance score

to evaluate the significance of three promotional strategies in predicting future sales. Our find-

ings reveal a noticeable contrast between the significance rankings from our hybrid estimator and

those from the linear panel regression. The frequencies of gift and combo promotions prove more

crucial under our proposed estimator, whereas the panel regression highlights the advertised dis-

count rate and the number of combo promotions as more influential. An in-depth analysis of

predictor significance, categorized by low and high previous week’s store sales, suggests that the

variation in rankings could be attributed to store heterogeneity. For stores with lower previous

sales, promotions like advertised discounts and gifts play a more vital role in sales predictions,

and store-specific dummies also emerge as important predictors. In contrast, for stores with higher

previous sales, gift and combo promotions rank behind past sales records in terms of predictive
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importance, and store-specific dummies are almost absent from the top 10 predictor list.

Finally, to provide guidance on the sales policy adjustment, we examine the marginal effects

of those promotion predictors on the next week sales responses. This analysis is conducted via av-

eraging LSSVR and incorporates the partial dependence (PD) plots proposed by Friedman (2001).

In the case of using three promotion strategies separately, our findings reveal that combo promo-

tions yield the largest marginal effect compared to gift and discount promotions, reaching peaks

of 487.39 for the number of effective customers and 219.76 (in thousands of RMB) for sales rev-

enues. These peak effects are observed at implementation frequencies of 240 and 210 respectively.

Our finding also suggests that the ideal frequencies of gift promotions are 230 for the number of

effective customers and 170 for sales revenues. In comparison to the actual statistics, our analy-

sis indicates that there is a need to increase the number of combo promotions and decrease the

number of gift promotions at the store level. Further analysis on the joint implementation of any

two promotion strategies also highlights that store managers should be aware of cannibalization

effects from using multiple promotion vehicles simultaneously. For instance, our study reveals

that when gift and combo promotions are employed together, the most effective number of gift

promotions decreases to 50 for customer visits and 100 for sales revenues, and the most effective

number of combo promotions is 250 for both sales responses.

Therefore, our work is also related to the evolving literature on the modeling of promotion

effects on sales. Typically, with econometric or choice models, the effects of sales promotions have

been studied extensively in marketing or economics, where the main efforts are oriented toward

the decomposed and dynamic effects of price promotions on grocery goods sales.4 In contrast,

our analysis employs statistical learning approaches to examine sales responses to both price and

non-price promotions for a specific fashion retailer.

Our analysis also adds to the stream of works on evaluating or optimizing promotions to sup-

port retailers’ strategic planning. One such study conducted by Mulhern and Leone (1991) strives

to assess the profitability of discounts, taking into account the effects of substitution and com-

plementarity between product categories. Much of the literature on optimizing promotions deals
4For instance, Foekens et al. (1998) use store-level scanner data to construct dynamic econometric models on sales

through relating price-promotion parameters to timing and depth of past price discounts. In the same vein, Van
Heerde et al. (2004) propose store-level regression models to decompose the sales promotion bump into cross-brand
effects, cross-period effects and category-expansion effects. Price discount experiments are conducted by Anderson and
Simester (2004) to gather household data on durable goods purchases and the opposite long-run effects for new and
established customers are further revealed. While there has been limited research on non-price promotions, notable
exceptions include the study by Heilman et al. (2002) on the surprise coupon. Blattberg and Scott (1994) provides a
comprehensive review on sales promotions for interested readers.
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with the challenges of price promotion. For example, Ferreira et al. (2016) present an efficient

algorithm designed to solve a multi-product price optimization problem for an online fashion re-

tailer.5 In their study, Baardman et al. (2019) introduce a model that addresses the scheduling of

promotion vehicles as a nonlinear bipartite matching-type problem, with the objective of maxi-

mizing profits. To our knowledge, there is a paucity of research comprehensively evaluating an

assortment of promotions from a sales forecasting perspective, particularly within the realm of

fashion retailing.

This paper is organized as follows. Section 2 briefly reviews existing methods, including con-

ventional forecasting methods based on statistical models, forecast combinations applied to con-

ventional models, and some well-known machine learning approaches. Section 3 introduces our

new averaging machine learning framework. We acknowledge that the proposed framework is

subject to a specific condition and discuss how widely-adopted machine learning approaches sat-

isfy such condition in Section 3.3. We establish the asymptotic optimality of the proposed method

in Section 4. Section 5 describes the data. Section 6 presents the value of our approach in sales

forecasting and provides promotional insights for researchers and managers. Section 7 concludes.

The Appendix provides additional details on the theoretical proofs, a more detailed review of

competitor forecasting estimators, simulation results, and supplementary empirical results.

2 Empirical Techniques for Forecasting

In the context of sales forecasting, let xit be one of p primary predictors (or explanatory variables)

for i = 1, ..., p and t = 1, ..., T, and yt be the response variable of interest at period t.6 The objective

is to predict the future values of yt with the information from a random sample of {yt, Xt}T
t=1,

where Xt = [1, x1t, ..., xpt]>. Before introducing our proposed framework, we first review some

existent forecasting approaches.

5In a related study, Caro and Gallien (2012) explore a pricing optimization issue involving clearance items for Zara,
a well-known Spanish apparel retailer. Utilizing data from fast-moving consumer goods, Cohen et al. (2017) address a
price promotion optimization problem.

6 Forecasting sales has always been a major topic in the marketing and operations management literature, where
regression-style models are commonly applied. For example, the influential work by Cooper et al. (1999) used the log of
total units sold for each store as the dependent variable, while a variety of 67 promotion-event variables were included
as predictors in the forecasting regression. Cohen et al. (2022) showed how to use data aggregation and clustering to
improve retailer’s demand prediction.
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2.1 Linear Regressions

Linear regressions are used conventionally in the related literature as the benchmark.7 The mod-

eling process starts by considering a linear parametric form for the data generation process (DGP)

of yt as

yt = X>t β + et. (1)

The error term is given by et. Assuming the values of Xt+h is known at time t, the h-period-ahead

forecast of yT+h, denoted by ŷT+h, can be expressed as

ŷT+h = β̂0 +
p

∑
i=1

β̂ixi,T+h = X>T+h β̂, (2)

where β̂ = [β̂0, β̂1, ..., β̂p]> is an estimate of β. If β is estimated by the unrestricted least squares

(LS) estimator, denoted as β̂LS, it can be expressed as β̂LS = (X>X)−1X>y, where X = [X1, ..., XT]
>

and y = [y1, ..., yT]
>.

In the case of sales forecasting, the number of available predictors p is usually large and a

significant subset of predictors is not that valuable in predicting the response variable.8 Con-

sequently, the out-of-sample performance of LS can be sometimes unsatisfactory. One possible

solution is the penalized regression, which is capable of selecting effective predictors in order to

improve forecast accuracy. The widely-applied penalized estimators include the ridge regression,

the least absolute shrinkage selective operator (LASSO) and the elastic net. Further details of the

above three estimators are described in Appendix B.1.

Alternatively, model averaging techniques can be used for enhancing predictive accuracy,

where practitioners may have a group of plausible models and choose to combat model uncer-

tainty by obtaining a weighted average of forecasts. Formally, assume that analysts approxi-

mate the DGP in Equation (1) with a sequence of MT candidate models, which are defined by

y = X(m)β(m) + e(m) = µ(m) + e(m) for m = 1, ..., MT and µ(m) = X(m)β(m). The selected pre-

dictors in the mth candidate model form the T × p(m) matrix X(m), which is a subset of X with

7 The linear multinomial logit model is adopted in Cui and Curry (2005) as the reference method for predicting
consumer choices. To conduct sales forecasts in clothing industry, prior work such as Thomassey (2010) and Wong and
Guo (2010) employ well-known linear models represented by Holt Winters model (Winters, 1960), ARIMA and AR(p)
models.

8 Utilizing such high dimensional data for periodic predictive analyses can be inefficient or sometimes infeasible
for business practices. In an analysis of retail store-level sales forecasting, Ma et al. (2016) pointed out that the number
of candidate explanatory variables can approach tens of thousands if accounting for both intra- and inter-category
promotion interactions. The problem of dimensionality must be dealt with methods like penalized estimators.
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p(m) ≤ (p + 1). Define the variable w = [w(1), ..., w(MT)]
> as a weight vector in the unit simplex in

RMT ,

W ≡
{

w ∈ [0, 1]MT :
MT

∑
m=1

w(m) = 1

}
, (3)

where w(m) is the mth component of w.

For model averaging, the key issue is how to assign the weights to each candidate model. Nu-

merous optimization procedures have been developed by econometricians to tackle this.9 Among

them, the prediction model averaging (PMA) estimator is shown to perform impressively in out-

of-sample experiments (Lehrer and Xie, 2017, Lehrer and Xie, 2022). Thus, it is chosen as our

reference model averaging technique in the sequel. The PMA method estimates w by

ŵ = arg min
w∈W

‖y− P(w)y‖2 + 2σ̂2(w)p(w),

where P(w) ≡ ∑MT
m=1 w(m)P(m) with P(m) being the projection matrix of X(m), p(w) ≡ ∑MT

m=1 w(m)p(m)

is the effective number of parameters, and σ̂2(w) = ‖y− P(w)y‖2 /(n − p(w)) is the averaged

variance. The averaged forecast of yT+h from PMA is given by X>T+h β̂(ŵ), where

β̂(ŵ) =
MT

∑
m=1

ŵ(m)Γ(m) β̂(m),

with Γ(m) = (X>X)−1X>X(m) being a (p + 1) × p(m) binary matrix. Matrix Γ(m) functions as a

transformation matrix that expands a p(m) × 1 vector β̂(m) to a size of p× 1 by inserting zeroes.

2.2 Tree-type Machine Learning

In the literature of predicting product demands, there is ample evidence of implementing tree-

type learning methods.10 Therefore, we also include tree-type learning methods as the second

9Many studies have investigated questions like the choice of candidate models and weights. For example, Bates and
Granger (1969) suggested to select the weights to be inversely related to estimated forecast error variances. Buckland
et al. (1997) advocated choosing the weights using the Akaike Information Criteria (AIC) of all the competing models.
Somewhat surprisingly, an empirically highly successful strategy is the simple averaging scheme, which assigns an
equal weight to each candidate model; see Rapach et al. (2010), Elliott et al. (2013), and Claeskens et al. (2016). Non-
equal weights estimated by the least squares model averaging has also become a popular choice in practice. The
pioneering work is the Mallows model averaging (MMA) of Hansen (2007). Other model averaging methods include
but are not limited to the jackknife model averaging (JMA) of Hansen and Racine (2012), the prediction model averaging
(PMA) of Xie (2015), and the heteroskedasticity prediction model averaging (HPMA) of Zhao et al. (2016), among others.
Feng et al. (2020) demonstrated that least square model averaging can also be regarded as a penalized LS regression.

10 For the apparel and fashion industry investigated in our empirical exercise, prior works have also utilized tree-
type methods mostly as demand forecasting tools of sales items with similar features. For instance, Ferreira et al. (2016)
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batch of forecasting approaches. Without a linear restriction for yt, decision trees presume

yt = f (Xt) + et, (4)

where the function f (·) can be nonlinear or even nonparametric.

There exist many algorithms to build decision trees. The building block is regression tree (RT)

proposed by Breiman et al. (1984). Starting from the original data (the root node), all possible

binary splits of the values for each predictor are considered and the “best split” is determined

by a chosen criterion, for example, the reduction in the sum of squared residuals (SSR). Such

a partitioning process can be conducted iteratively until it reaches a predetermined boundary.

Many modeling parameters need to be decided or calculated ex ante.11 Data in the terminal nodes

(also called tree leaves) are considered to be homogeneous, hence a simple average of all the

observations yl at final leaf l is used as the fitted value. To make predictions based on XT+h, we

simply drop XT+h down the tree and obtain the corresponding fitted value at terminal node l as

the forecast ŷT+h.

As pointed out by Hastie et al. (2009), results from individual regression trees could be shaped

by idiosyncratic features of the data. This drawback could be alleviated by ensemble methods

that combine estimates from multiple models or trees. For example, bootstrap aggregating regres-

sion trees (also known as bagging or BAG) in Breiman (1996) first generates B bootstrap samples

{y(b)t , X(b)
t }T

t=1 for b = 1, ..., B from the original data, where the value of B must be predetermined.

Then trees are built on each bootstrap sample and relevant forecasts ŷ(b)T+h are obtained based on

XT+h. The variance of BAG forecasts can be large owing to the high correlation among trees. Such

an issue can be circumvented by random forest (RF) of Breiman (2001). RF differs from bagging

only in the set of predictors being evaluated in each tree. Random forests only take a random sub-

set of q predictors (without replacement and q < p) for each splitting procedure within each tree.

With both strategies, the final forecast is the simple average of forecasts from all the constructed

trees. In addition to bagging and random forest, we also include a least squares boosting (LSB)

algorithm (Hastie et al., 2009) in our exercise for comparison purposes. Appendix B.2 provides

report that regression trees with bagging consistently outperform the other regression models for predicting sales of
first-exposure fashion styles. With real data from French textile distributor, Thomassey and Fiordaliso (2006) provide
another example of using decisions trees to associate each future item with a prototype based on known descriptive
criteria.

11 These so-called tuning parameters or hyperparameters, usually contain a splitting criterion function, a minimum
number of samples at a leaf node, stopping rules, etc.
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additional details on the above tree-type learning strategies.

2.3 Support Vector Regression

Applications of support vector regression (SVR) and its affiliated algorithms also show high de-

grees of forecast accuracy without constructing tree structures.12 Formally, Drucker et al. (1996)

proposed that the SVR framework approximates f (Xt) in terms of a set of basis functions {hs(·)}S
s=1:

yt = f (Xt) + et ≈
S

∑
s=1

βshs(Xt) + et, (5)

where hs(·) is implicit and can be infinite-dimensional.13 Following Hastie et al. (2009, Chap-

ter 12), the intercept is ignored for simplicity. The coefficients β = [β1, · · · , βS]
> are estimated

through minimization of

L(β) =
T

∑
t=1

Vε (yt − f (Xt)) + λ
S

∑
s=1

β2
s , (6)

where the loss function is

Vε(r) =

 0 if |r| < ε,

|r| − ε otherwise.

The loss function Vε is called an ε-insensitive error measure that ignores errors of size less than ε.

As part of the loss function Vε, the parameter ε is usually predefined. On the other hand, λ is a

more traditional regularization parameter that can be selected by cross-validation.

Suykens and Vandewalle (1999) modified SVR which leads to solving a set of linear equations

under a squared loss function. The above method, known as LSSVR, considers a similar mini-

mization problem

L(β) =
T

∑
t=1

(yt − f (Xt))
2 + λ

S

∑
s=1

β2
s , (7)

where a squared loss function replaces Vε(·).
12 SVR has been implemented successfully in many business applications, particularly for those with few input

variables and observations. Cui and Curry (2005) are among the early ones to analyze pros and cons of using support
vector machine (SVM) for a variety of predictive tasks in marketing. SVR has also demonstrated high accuracy of
forecasting grocery sales during periods with promotions, e.g. (Liu et al., 2007; Ali et al., 2009; Di Pillo et al., 2016).
The recent paper of Kharfan et al. (2021) report SVM as the best performing approach for classification in a forecasting
experiment for newly launched seasonal products from a fashion retail company.

13Note that in practice, we do not need to know βs and the implicit function hs(·). The estimation process only
involves the kernel function K(x, Xt) ≡ ∑S

s=1 hs(x)hs(Xt). See Appendix B.3 for a more comprehensive description of
the estimation procedure.
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We construct Lagrangian equations for (6) and (7) and solve for optimal solutions. The estima-

tion functions for SVR and LSSVR take the following forms

SVR : f̂ (x) =
T

∑
t=1

(α̂∗t − α̂′t)K(x, Xt), (8)

LSSVR : f̂ (x) =
T

∑
t=1

α̂tK(x, Xt), (9)

for any given vector of inputs x. {α̂∗t }T
t=1 and {α̂′t}T

t=1 are the estimated Lagrangian multipliers for

SVR,14 {α̂t}T
t=1 are the estimated Lagrangian multipliers for LSSVR, and K(x, Xt) ≡ ∑S

s=1 hs(x)hs(Xt)

is a kernel function for any input vectors x and Xt. See Appendix B.3 for an extensive description

of SVR-related estimation procedures.

As Equations (8) and (9) imply, no explicit forms of the basis functions are demanded during

the estimation procedure. It is the kind of kernel functions that plays a crucial role in the estimation

process. In this paper, we focus on the following two kernels15

Linear : K(x, Xt) = x>Xt,

Gaussian : K(x, Xt) = exp
(
−‖x− Xt‖2

2σ2
x

)
,

where σ2
x is a hyperparameter. To conduct a thorough examination, we associate SVR and LSSVR

with each of the above two kernels. The associated estimators are denoted as SVRL, SVRG, LSSVRL,

and LSSVRG, respectively. Note that SVRL and LSSVRL follow a linear formulation as in (1), and

the corresponding basis function is explicit.

3 Averaging Machine Learning

Applications of statistical learning are gaining popularity in the literature on retail sales fore-

casting. As commented by Wong and Guo (2010), the fashion sales industry is characterized by

14 Note that additional Lagrangian multipliers are possibly required for SVR estimation, since the absolute values in
Vε(·) can be reformulated into two linear expressions.

15Another commonly used kernel is the polynomial kernel that takes the following form:

Polynomial : K(x, Xt) = (γ + x>Xt)
d.

However, results with the polynomial kernel are outperformed by the other two kernels both in our simulation experi-
ment and in empirical exercises. Therefore, the findings are omitted for brevity and are available upon request.
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uncertain customer demands and numerous driving factors. It is always desirable to have flex-

ible forecasting methods that can handle the issue of model uncertainty. Unfortunately, most of

the machine learning approaches in Section 2 do not account for this specification uncertainty.16

Inspired by the forecast combination literature, we propose a weighted forecast combination pro-

cedure that can combine forecasts generated by machine learning methods. Note that the group

of forecasts are based on various candidate models constructed from the full permutation of all

potential predictors. In this way, our method can largely mitigate the problem of model uncer-

tainty. The proposed method can be also regarded as an ensemble learning algorithm with model

weights estimated by Mallows-type criteria.

3.1 Simple Averaging Machine Learning

Since equal weighted forecasting is ubiquitous in the forecast combination literature, we decide

to include it as one of our reference methods. In concrete terms, an equal weight is assigned to

each forecast produced by a candidate model estimated with some machine learning algorithm.17

We denote this combination approach as simple averaging machine learning (SAML), which is

universal enough to fit most machine learning algorithms.

Suppose we have a set of MT forecasts, each of which sources from a candidate model with

its own selected predictors. Denote ŷT+h(m) as the h-step-ahead forecast of yT+h based on the mth

model. A simple average of forecasts ŷSA
T+h is given by

ŷSA
T+h =

1
MT

MT

∑
m=1

ŷT+h(m), (10)

where the superscript “SA” is the abbreviation for simple averaging.18 Clearly, the sound perfor-

mance of this approach hinges on proper forecast accuracy of each candidate model. However, if

16 Note that the RF and BAG methods naturally generate various model specifications during the sample drawing
and tree-growing procedure. However, the variable selection during the splitting process is purely random. Sometimes
this could yield some unexpected and confusing candidate model specifications. In the machine learning literature,
ensemble learning has been put forward to boost forecast accuracy through combining outcomes from multiple algo-
rithms. An important aspect of ensemble learning is the complete and valid quantification of model uncertainty (Liu
et al., 2019).

17 Similar to the setup in the subsequent framework, the set of candidate models is constructed from the full permu-
tation of all potential predictors.

18For instance, if we focus on LSSVR with a Gaussian kernel, a single prediction ŷT+h(m) can be computed from a
candidate model estimated by LSSVR with the considered predictors. The full permutation of all predictors creates a
group of potential model specifications, which later lead to a series of forecasts under LSSVR. Finally a simple average
of all the above forecasts can be used as the weighted forecast of the response variable in this case.
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a subset of candidate models generates fairly poor forecasts, simple averaging may fail to deliver

satisfactory out-of-sample results. This postulation is sustained by the following simulation and

our empirical findings.

3.2 Mallows-type Averaging Machine Learning

In an insightful paper by Ullah and Wang (2013), they argue that in a nonparametric setting one

can still apply Mallows criterion to obtain the frequentist model averaging weights. The ensuing

predictions correspond to each observation of the response variable by a mapping matrix.19 In

this paper, we extend their findings and propose condition C.1, under which the optimal weights

can be obtained for aggregating forecasts of candidate models by a particular machine learning

algorithm. We further prove that the asymptotic optimal weights are generated through minimiz-

ing the Mallows-type criterion. This new method is denoted as Mallows-type averaging machine

learning (MAML).

Condition C.1 Given the formulation of yt as in (4), the prediction based on any input vector x must

satisfy the following form

f̂ (x) = P(x, X)y, (11)

where y is the vector of the response variable yt and X is the matrix of all predictors. The form of P(x, X) is

explicit.

Condition C.1 genuinely requires that the prediction based on any input vector x are a weighted

average of obervations in y with the weights depending on both x and X in a possibly nonlinear

manner.20 Therefore, this condition does not necessarily apply to all the machine learning algo-

rithms. However, it can be shown that there are many econometric methods fulfilling this con-

dition.21An illustration of this finding with LSSVR is provided in Section 3.3. More importantly,

19Interested readers may refer to pages 166-168 of their paper for the concrete form of this particular matrix and the
related discussion.

20 Note that the input vector x can be a subvector of the matrix X that acts as the training set here. In this case, the
prediction f̂ (x) is actually an in-sample estimate. In other cases, x may not be retrieved from X, which results in an
out-of-sample prediction.

21In a recent working paper by Ding et al. (2022), they provide a comprehensive demonstration on the explicit forms
of the mapping matrix as in Equation (11) for many prevalent econometric approaches. Their list includes the OLS
estimator, model selection, least squares model averaging, penalized methods, ridge regression, LASSO regression and
LSSVR.
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with the functional form in (11), we can further derive a proof of asymptotic optimality of the

Mallows averaging LSSVR in Section 4.

Let us assume that the mth candidate model implies the following relationship between yt and

X(m)
t

yt = f (X(m)
t ) + e(m)

t ,

where the p(m) × 1 vector X(m)
t is a subset of Xt that includes the selected predictors, and the

superscript (m) indicates predictors associated with the mth submodel. Let X(m) be the matrix of

X(m)
t for all t. We define ŷ(m) = f̂(m) = P(m)y as the prediction of y for all t by the mth candidate

model, where P(m) is a T × T matrix with the tth row being P(X(m)
t , X(m)) for all m = 1, ..., MT.

Suppose the weight vector w satisfy w ∈ W , where the set W is defined in (3). The weighted

average prediction f̂ (w) can be written as

f̂ (w) =
MT

∑
m=1

w(m) f̂(m) = P(w)y,

where P(w) = ∑MT
m=1 w(m)P(m) and w(m) is the weight for the mth candidate model.

Inspired by Hansen (2007), we propose to estimate the weight vector w by minimizing either

of the following Mallows-type criteria, under the restriction of w ∈ W and various assumptions

on the error term variance:

C1(w) = ‖y− P(w)y‖2 + 2σ2
T

∑
t=1

Ptt(w), (12)

C2(w) = ‖y− P(w)y‖2 + 2
T

∑
t=1

σ2
t Ptt(w), (13)

where Ptt(w) is the tth diagonal term in P(w), σ2 is the true error term variance under homoskedas-

ticity, and σ2
t is the tth true error term variance under heteroskedasticity.

Since criteria (12) and (13) include infeasible terms σ2 and σ2
t , we consider the alternative fea-

sible criteria C′1(w) and C′2(w) in practice:

C′1(w) = ‖y− P(w)y‖2 + 2σ̂2(w)
T

∑
t=1

Ptt(w), (14)

C′2(w) = ‖y− P(w)y‖2 + 2
T

∑
t=1

êt(w)2Ptt(w). (15)
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Criterion C′1 substitutes σ2 with the estimated variance of averaged residuals:

σ̂2(w) = ‖y− P(w)y‖2/T, (16)

whereas C′2 acknowledges heteroskedasticity by replacing σ2
t with êt(w)2, the square of each ele-

ment in the averaged residual vector ê(w). The averaged residual vector ê(w) is defined by

ê(w) =
MT

∑
m=1

w(m) ê
(m) = (I − P(w))y, (17)

where ê(m) is the residual vector for the mth candidate model.

Estimating w by minimizing C′1 or C′2 is a convex optimization process. Once ŵ is obtained

with observations t for t = 1, ..., T in the training set, the combined h-period ahead forecast of

yT+h is given by

ŷMA
T+h =

MT

∑
m=1

ŵ(m)ŷT+h(m), (18)

where the superscript “MA” stands for Mallows-type averaging and ŷT+h(m) is the prediction of

y at period T + h by the mth candidate model. Note that the optimal model weights generated in

this way are mostly unequal, unlike the even weights assigned by simple averaging.

3.3 An Illustration of Mallows Averaging LSSVR

Due to the wide adoption of LSSVR in business practices,22 we now move on to illustrate how

LSSVR by Suykens and Vandewalle (1999) can be embedded into the setting of Mallows-type

averaging machine learning. This is first verified technically by showing that any prediction from

LSSVR obeys Condition C.1.23

Formally, suppose H is a T × r implicit basis matrix where r > T and H = h(X). The coeffi-

cients β can be estimated by minimizing the following penalized LS criterion

C(β) = ‖y− Hβ‖2 + λ‖β‖2.

22See for instance, Yao et al. (2015) and Nazemi et al. (2018) use three variations of LSSVR to predict corporate bond
recovery rates. They document significant outperformance of LSSVR compared to traditional linear regressions.

23As argued by Lehrer and Xie (2022), the classical SVR is incompatible with the least squares model averaging
framework, because it solves an ε-intensive loss function.
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The solution, β̂, should satisfy the condition−H>(y−Hβ̂) + λβ̂ = 0 and the in-sample prediction

f̂ (X) is therefore given by

f̂ (X) = Hβ̂ =
(

HH> + λIT

)−1
HH>y ≡ PLSSVR(X)y, (19)

where IT is a T × T identity matrix and

PLSSVR(X) ≡
(

HH> + λIT

)−1
HH> (20)

is a T × T matrix. Note that the T × T matrix HH> is the kernel matrix with elements being

K(Xt, Xt′) ≡ ∑S
s=1 hs(Xt)hs(Xt′) for different t and t′. Equation (19) proves that although the basis

matrix is implicit, we can still obtain predictions complying with (11) in Condition C.1. This is

due to the fact that the kernel matrix is explicit. Note that the above derivation is based on the

no-intercept assumption following Hastie et al. (2009, Chapter 12). If an intercept is indispensable

in model specifications, Equation (19) still holds but with a more complicated form of PLSSVR(X).

A similar demonstration of this is provided in Appendix C.

The Mallows averaging LSSVR can then be conducted based on candidate models m for m =

1, ..., MT. The initial step is to construct the T× T matrix PLSSVR
(m) for each candidate model with the

chosen kernel and selected predictors.24 Although there is no restriction on the adopted kernel

function, we decide to concentrate on the Gaussian kernel for Mallows averaging LSSVR in the

empirical exercise, due to its sound performance. After collecting the set of {PLSSVR
(m) }MT

m=1, we can

compute the averaging projection matrix P(w) and plug it into Mallows criterion C′1(w) or C′2(w).

The optimal w can then be estimated through a convex optimization under C′1(w) and C′2(w), re-

spectively. Finally, the combined forecasts can be obtained based on Equation (18). For notational

convenience, Mallows averaging LSSVR with Gaussian kernels under homoskedasticity and het-

eroskedasticity are denoted as LSSVRMA
G1 and LSSVRMA

G2 , respectively. The estimation algorithm

for Mallows averaging LSSVR is delineated in Box 1 to explain the whole procedure.

24With a linear kernel, the LSSVR method actually follows a linear formulation, which is equivalent to the Ridge
regression discussed in Appendix B.1.
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Box 1. Algorithm for Mallows Averaging LSSVR

1. For each candidate model m = 1, ..., MT with selected predictors X(m),

(a) obtain the T × T kernel matrix H(m)H>(m) with elements like

K(X(m)
t , X(m)

t′ ) ≡
S

∑
s=1

hs(X(m)
t )hs(X(m)

t′ )

for various t and t′;a

(b) estimate the projection matrix PLSSVR(X(m)) as in Equation (20).

2. Construct the averaging projection matrix function with the unknown vector w

P(w) =
MT

∑
m=1

w(m)P
LSSVR(X(m))

and plug it into criterion C′1(w) defined in (14) or criterion C′2(w) defined in (15).

(a) For C′1(w): construct the σ̂2(w) term following Equation (16).

(b) For C′2(w): construct the ê(w) term following Equation (17).

3. Estimate w by minimizing C′1(w) or C′2(w) under the constraint w ∈ W , whereW is defined

in Equation (3).

(a) Estimating w is a standard convex optimization process.b

4. Once ŵ is obtained, the h-period-ahead forecast by Mallows averaging LSSVR is

ŷMA
T+h =

MT

∑
m=1

ŵ(m) ŷT+h(m),

where ŷT+h(m) denotes the LSSVR forecast of yT+h by the mth candidate model.

aThe tuning parameters can either be predetermined or estimated.
bWe mainly use the generic MATLAB function fmincon as the optimizer in our exercises. Other

convex optimizers should work equally well.

4 Asymptotic Optimality of MAML

In this section, we first prove the asymptotic optimality of MAML under both homoskedastic and

heteroskedastic error terms. We then verify that LSSVR comply with the conditions required for

the proof so that it can achieve asymptotic optimality under Mallows averaging. It should be

borne in mind that the proposed theorems can be applied to other machine learning algorithms,

as long as relevent technical conditions are fulfilled.
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To clarify some notations, suppose µt = f (Xt), µ = (µ1, . . . , µT) and µ̂(w) = P(w)y. The

following averaged squared error risk function is defined as

LT(w) ≡ ‖µ̂(w)− µ‖2, (21)

which measures the sum of squared biases between the true µ and its model averaging estimate

µ̂(w). Let the expected value of the risk function be RT(w) = E{LT(w)} and its infimum be

ξT = in fw∈WRT(w). The asymptotic optimality of MAML is achieved in the sense that the esti-

mated risk in (21) achieves the lowest possible value asymptotically. To facilitate the later proof

of Theorem 1 under homoskedasticity, we initially enumerate some necessary conditions. Please

note that these conditions are reliant on the assumption of T approaching infinity.

Condition C.2 et is conditionally homoskedastic and E(e4
t |Xt) ≤ υ < ∞ almost surely for t = 1, . . . , T,

where υ is a positive constant.

Condition C.3 maxm trace(P(m)) = O(T1/2).

Condition C.4 There exists a positive constant c0 such that for all m, s ∈ {1, . . . , MT},

trace(P(m)P
>
(m)) ≥ c0 > 0 and trace(P(m)P

>
(s)) ≥ 0

almost surely.

Condition C.5 There exists a positive constant c1 such that for all m ∈ {1, . . . , MT},

ζmax(P(m)P
>
(m)) ≤ c1,

almost surely, where ζmax(B) denotes the largest singular value of a matrix B.

Condition C.6 There exists a positive constant c2 such that for all m, j ∈ {1, . . . , MT},

trace(P2
(m)) ≤ c2trace(P>(m)P(m)) (22)

and

trace(P>(j)P(m)P
>
(j)P(m)) ≤ c2trace(P>(m)P(m)) (23)
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almost surely.

Condition C.7 M2
Tξ−1

T → 0 almost surely.

Among all the above conditions, Condition C.2 establishes the boundedness of the conditional

moments. Condition C.7 restricts the increasing rate of the number of candidate models MT rel-

ative to the minimum averaging risk ξT. Early, Zhang (2021) proposed similar conditions, which

can be traced back to their precedents in Hansen (2007) and Wan et al. (2010). Conditions C.2 and

C.7 in our paper are less restrictive and more interpretable than their previous counterparts.

Conditions C.3-C.6 are high-level assumptions that restrict the trace or the largest singular

value of mutual products of P(m) for m = 1, . . . , MT. These conditions are less interpretable but

are required for proving Theorem 1. As shown in Corollary 3, these high level assumptions can

be replaced with more comprehensible conditions when we study the asymptotic optimality for

specific machine learning methods; for example, Mallows averaging LSSVR. For now, general

cases are considered to establish the asymptotic optimality of Mallows-type averaging machine

learning methods in Theorems 1 and 2.

We then continue to discuss additional conditions for the proof of Theorem 2 in the case of

heteroskedastic error terms.

Condition C.8 E(e4
t |Xt) ≤ υ < ∞ almost surely for t = 1, . . . , T, where υ is a positive constant.

Condition C.9 maxm maxt ι
(m)
tt = O(T−1/2) almost surely, where ι

(m)
tt is the tth diagonal element of P(m).

Similar to Condition C.2, Condition C.8 establishes the boundedness of the conditional mo-

ments under heteroskedasticity, while Condition C.9 is a replacement of Condition C.3 and con-

centrates on the the diagonal elements of P(m). Comparable assumptions can be found out in

many works, see Condition (A.9) of Hansen and Racine (2012) and Assumption 4 of Zhang (2021)

for instance. Moreover, Li (1987) and Andrews (1991) employed the condition ι
(m)
tt ≤ c?kmaxT−1

where c? is a positive constant and kmax is the largest number of predictors in candidate models.

Obviously, when kmax = O(T1/2), their condition implies our Condition C.9.

We now define the estimated weight vectors for criteria C1(w), C2(w), C′1(w), and C′2(w) as

w̃ = arg min
w∈W

C1(w) , w̃′ = arg min
w∈W

C′1(w),
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w = arg min
w∈W

C2(w) , w′ = arg min
w∈W

C′2(w).

Theorem 1 is proposed to formally state the asymptotic optimality of the MAML estimator under

homoskedastic error terms, while Theorem 2 works similarly concerning heteroskedasticity.

Theorem 1 Assume Conditions C.1-C.7 hold. Then, as T → ∞,

LT(w̃)

in f w∈WLT(w)

p→ 1 (24)

and

LT(w̃′)
in f w∈WLT(w)

p→ 1. (25)

Theorem 2 Assume Conditions C.1, C.4-C.9 hold. Then, as T → ∞,

LT(w)

in f w∈WLT(w)

p→ 1 (26)

and

LT(w′)
in f w∈WLT(w)

p→ 1. (27)

Complete proofs of Theorems 1 and 2 are presented in Appendix A.

To formally show the asymptotic optimality of Mallows averaging LSSVR, we then verify Con-

ditions C.2 to C.9 for LSSVR under various kernels in Corollary 3. The most complicated case is

discussed at first, where the estimated weight vector is obtained under the feasible heteroskedas-

tic criterion w′ = arg minw∈W C′2(w). The asymptotic optimality of Mallows averaging LSSVR

under other scenarios is a straightforward induction from Corollary 3.

Define H(m) as the basis matrix for the mth candidate model underlying the LSSVR framework.

Based on the conclusions of Theorem 2, we present the following corollary that establishes the

asymptotic optimality of the Mallows averaging LSSVR.

Corollary 3 Given a fixed λ, if there exists a positive constant υ such that

E(e4
t |Xt) ≤ υ < ∞, t = 1, . . . , T, (28)
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almost surely,

ξ−1
T M2

T = o(1), (29)

almost surely, and

E(T−1H>(m)H(m)) ≥ c > 0, (30)

where E(B) denotes the smallest eigenvalue of a matrix B, then, as T → ∞,

LT(w′)
in f w∈WLT(w)

p→ 1. (31)

The Mallows averaging LSSVR is therefore asymptotically optimal.

A detailed proof of Corollary 3 is provided in Appendix A.3. Note that Conditions (28) and (29)

are identical to Conditions C.8 and C.7, respectively. Condition (30) assumes that the basis matrix

H(m) has a reasonably good behavior. A similar condition can be found in the model selection

literature, for example, see Zou and Zhang (2009). They imposed the following condition on the

covariate matrix of X(m) such that

E(T−1X>(m)X(m)) ≥ c > 0. (32)

In contrast to (32), Condition (30) is more general and makes (32) as a special case. For the LSSVR

estimation with a linear kernel, Condition (30) becomes equivalent to (32) so that we can directly

employ the covariate matrix of predictors rather than the basis matrix in the calculation process.

To further evaluate how the proposed framework performs, a Monte Carlo simulation exper-

iment is carried out in Appendix D. The findings reassure that our proposed approach shows a

dominant prediction performance relative to many competitive methods.

5 Data Description

We collected the weekly sales observations from stores across China of a famous footwear brand

between July 5, 2021 (the 27th week of the year 2021) and March 25, 2022 (the 12th week of the
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year 2022).25 The data source from 35 stores across China with location details in Appendix E.

Our data is an unbalanced panel consisting of 35 stores and 38 weeks. After data cleaning, our

sample contains 1,168 observations. We mainly focus on two response variables at the store level:

the weekly number of effective customers who make in-store purchases and the weekly sales

revenue. The number of effective customers is a direct indicator reflecting the store-level traffic

and the sales revenue is a crucial gauge of a store’s profitability.

In our analysis, we also examine the predictors that affect future sales, which are characterized

by previous sales records, one-week-ahead district-level weather forecasts and promotion activi-

ties.26 Summary statistics are presented in Table 1. Panel A consists of three historical sales-related

predictors: the number of effective customers, the units of products sold and the sales revenues

from the previous week. A holiday dummy variable is also included that specifies if the upcoming

week coincides with any important holiday.27 On a weekly basis, an average store in our sample

earns about 32 thousand RMB and attracts 72 customers. Panel B summarizes the one-week-ahead

weather forecasts averaged over time and across stores.28 The weather elements we use include

the forecasted minimum (TempMin), maximum (TempMax) and average temperatures (TempAvg),

the forecasted average (PRCPAvg) and maximum precipitations (PRCPMax).

The key question to be addressed here is how various promotion strategies contribute to store

sales. With assistance of the brand Headquarter in China, we roughly categorize the weekly pro-

motion activities into the three main types of promotion strategies:

(i) Promotion gift: Free gifts can be handed out by the stores to customers with purchases of

certain items.

(ii) Promotion combo: Stores can offer product bundles that customers can purchase at a specific

discount price compared to individual purchases.

25No major COVID-19 related quarantine policies were issued during this period for the cities where the stores are
located.

26Together under the constraint of available data, we collect the predictors following several salient works in the sales
forecasting literature (see for example, Cooper et al., 1999, Pauwels et al., 2002, Beheshti-Kashi et al., 2015 and Ferreira
et al., 2016).

27In this paper, important holidays in China refer to the Mid-Autumn Festival (from September 13, 2021 to September
19, 2021), National Day (from September 27, 2021 to October 3, 2021), New Year (from December 27, 2021 to January 2,
2022), and the Spring Festival (from January 31, 2022 to February 6, 2022).

28The recent literature has revealed that weather significantly impacts sales of apparel and sporting goods. For
example, after analyzing the data from a large European apparel retailer, de Albéniz and Belkaid (2021) find that
rain and temperature have differential effects on foot traffic and successful sales of seasonal items. With the U.S.
data, Roth Tran (2022) also uncovers that weather has significant persistent effects on sales, which may increase sales
volatility.
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(iii) Promotion discount: Reductions to various degrees on the total payment amount can be

granted to purchases on a tiered fashion.

Strictly speaking, these strategies are available to all the stores at all time. However, after consult-

ing with store managers, we find out that it is usually up to shop assistants to advise the customers

on which promotion strategies to use, as the customers may not be fully aware of all the options.

In addition, one purchase can involve the concurrent use of multiple promotions if applicable. For

example, one may purchase product combos and items with free gifts at the same time.

To further illustrate the details, a gift item is usually an accessory or a tag-along that values

much less than the main item. Promotion combo always involves buying a bundle of items to-

gether, where the promotion item is not an accessory and is restrictive to be of the same type

as the purchased item (possibly with varying colors or sizes). Both gift and combo promotions

are constrained to certain items decided by the store managers, which leaves the customers with

limited choices. Promotion discount on the other hand is more flexible. Although the discount

percentages are tiered by the total amount of purchase, there are usually no constraints on the

applicable items. Please refer to Appendix F for an in-depth exploration of the data source and

the strategies employed for promotions.

We counted the weekly implementation of each promotion strategy at each store and con-

structed three corresponding promotion predictors PGi f t, PCombo, and PDiscount. Since percentages

of promotion discount have direct impacts on store revenues, we also compute the promotion

“off-rate” (in decimals) for each store by comparing the calculated revenue under original prices

with the actual revenue under discounted prices:

Off-rate = 1− Revenue after Promotion
Revenue before Promotion

∈ [0, 1).

The off-rate therefore measures the revenue loss induced by discounts. Common sense tells us

that a higher off-rate is supposed to attract more customers.29 To further capture the influence

from consumer expectations, we incorporate advertised discount rates (Ad. Discount) measured

29The marketing literature documents that the long-run effects of promotion on sales may be more complex, which
usually work through mechanisms such as forward buying, selection, customer learning and increased deal sensitivity.
Using data on durable goods, Anderson and Simester (2004) find that deeper price discounts boost future purchases
from first-time customers, while they work in the opposite way on established customers. The findings based on
packaged goods reveal that consumers become more price and promotion sensitive over time because of frequent
promotions (Mela et al., 1997).

23



in decimals as the last promotion predictor, which provides store-by-store information about the

upcoming discounts for the next week.

As implied in Panel C of Table 1, the discount promotion (PDiscount) is the most frequently

offered promotion averaging 26.32 times per week. The gift promotion (PGi f t) is the next in the

ranking with an average of 14.80 times per week. The combo strategy is the least applied promo-

tion with a mean of 8.13 times each week. The minimum values for three promotions are all zeros,

implying that some store at certain period did not initiate any promotion. The mean off-rate is

14.31% with a maximum of 73.27%. In contrast, the mean (26.08%) and the median (30%) of the

advertised discount rates are much higher.

Table 1: Summary Statistics
Predictor Mean Median Maximum Minimum Std. Dev. Skewness Kurtosis

Panel A: Previous Sales
lag(Customer) 71.9366 42.0000 891.0000 1.0000 91.0936 3.7673 23.5356
lag(Unit) (in thousands) 0.3471 0.1955 4.0200 0.0000 0.4515 3.4833 19.5301
lag(Revenue) (in thousands of RMB) 31.6695 16.7515 388.8820 0.0000 44.1079 3.7405 21.9786
Holiday 0.1858 0.0000 1.0000 0.0000 0.3891 1.6158 3.6107

Panel B: Weather Forecast
TempMin 45.3100 41.8000 79.9000 -10.3000 18.7927 0.0242 2.2282
TempMax 72.7527 69.8000 105.8000 28.2000 16.7334 0.0271 1.9510
TempAvg 58.0601 54.6500 89.2000 11.4000 17.0308 0.0722 2.0922
PRCPAvg 12.4449 0.0814 99.9900 0.0000 24.6330 1.9418 5.5802
PRCPMax 25.7124 0.4050 99.9900 0.0000 43.3014 1.1327 2.2845

Panel C: Promotion Activities
PGi f t 14.7997 2.0000 567.0000 0.0000 50.6769 6.6348 54.3578
PCombo 8.1318 5.0000 73.0000 0.0000 9.7679 2.8853 13.5832
PDiscount 26.3185 12.0000 603.0000 0.0000 46.1139 5.6446 51.7779
Off-rate 0.1431 0.1422 0.7327 0.0000 0.1175 0.6543 3.6295
Ad. Discount 0.2608 0.3000 0.6580 0.0000 0.1466 -0.1372 3.4371

Notes. This table reports summary statistics of all the predictors for store-level sales. The temperature (Temp) is measured
in the Fahrenheit scale and the cap of precipitation (PRCP) is set to a level of 99.99mm. Lag(Customer), lag(Unit) and
lag(Revenue) respectively denote the number of effective customers, the units of products sold and the sales revenues from
the previous week. Among them, revenues are measured in thousands of RMB and units are measured in thousands.

6 Empirical Exercise

In this section, we conduct an empirical analysis using store-level observations described in Sec-

tion 5. We first run a conventional panel regression on the number of effective customers and

sales revenues. Then the empirical evidence demonstrating nonlinearity between the response

variables and the predictors is presented. In the next step, we conduct an out-of-sample compar-

ison using 13 estimators commonly encountered in the literature and two averaging algorithms

proposed in Section 3. Finally, we rank the predictors to understand their relative importance and

24



quantify the marginal effects of various promotions on the two sales responses with the proposed

algorithms.

6.1 In-Sample Estimation

We conduct a linear panel regression on the full sample with an explicit control of store-level and

holiday fixed effects. The estimation results are reported in Table 2. As it can be seen, the historical

sales predictors in Panel A are all significantly positive for explaining effective customer visits and

sales revenues next week, with the only exception of negative impacts from lagged sales units.

The results here also reveal positive serial correlations of the two response variables. Our results

in Panel B support the literature that weather prominently affects the customer behavior and sales

of apparel products.30 Extremely high temperature and heavy rain both cause significant declines

in effective customers, whereas warmer average temperature encourages customers to visit and

make purchases. As for sales revenues, average temperature has a clearly positive impact, of

about $642.7 per degree. The impact of rain (PRCPMax) is marginally negative (-$49.2 per mm).

Generally speaking, effective customers and sales are mainly driven by temperature, so that more

warmer days increase the sales probability of footwear products.

The marginal effects of three promotion strategies are displayed in Panel C of Table 2.31 The

number of gift promotion (PGi f t) and the off-rate are insignificant for explaining customer visits

and store revenues next week. The number of combo promotion (PCombo) and advertised discount

rates (Ad.Discount) are significantly positive, with combo promotion manifesting larger impacts

on both customer visits and store revenues. In contrast, promotion by discount (PDiscount) is sig-

nificantly negative at 1% level.

The signs of three promotion strategies are in agreement with the related literature. Among

them, PDiscount is the most straightforward type of price promotion, with which customers are

tempted to make more purchases in order to obtain higher discount rates. Such kind of promotions

30de Albéniz and Belkaid (2021) conduct a study with daily observations of casual apparel sales from 13 European
markets. Similar to ours, they also find that average temperature matters the most for sales conversions and rain plays
a negative role for customer visits. In the same vein, Roth Tran (2022) also conclude that extreme heat events lead to
significant declines in sales of a U.S. apparel and sporting good brand.

31To verify the causality between promotion predictors and sales responses, we conduct a quasi-experimental analy-
sis in Appendix G. The signs of the estimated treatment effects on the two response variables are compatible with the
results of the fixed effect regression shown in Table 2. This sustains the subsequent marginal effect analysis of three
promotion predictors.
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Table 2: Estimates of Panel Regression
Predictor # of Customers Sales Revenue

(in thousands)

Panel A: Previous Sales
lag(Customer) 0.9693∗∗∗ 0.2222∗∗∗

(0.1015) (0.0571)
lag(Unit) -103.7215∗∗∗ -41.9062∗∗∗

(20.2131) (12.8212)
lag(Revenue) 0.5827∗∗ 0.6819∗∗∗

(0.2789) (0.2107)
Holiday 12.7230∗∗∗ 5.4595∗∗∗

(3.2034) (1.9937)

Panel B:Weather Forecast
TempMin -0.4654 -0.2254

(0.3238) (0.1577)
TempMax -0.6349∗∗∗ -0.1209

(0.2270) (0.1188)
TempAvg 1.7400∗∗∗ 0.6427∗∗

(0.5676) (0.2852)
PRCPAvg 0.0965 0.0441

(0.0726) (0.0379)
PRCPMax -0.1091∗∗ -0.0492∗

(0.0454) (0.0252)

Panel C: Promotion Activities
PGi f t 0.0514 0.0396

(0.0777) (0.0460)
PCombo 0.6526∗∗∗ 0.4836∗∗∗

(0.2382) (0.1754)
PDiscount -0.3114∗∗∗ -0.1724∗∗∗

(0.0573) (0.0331)
Off Rate -36.2748 -16.9878

(23.8213) (13.6894)
Ad. Discount 39.9540∗∗∗ 18.2193∗∗∗

(11.2342) (5.1909)

Panel D: Goodness-of-Fit
R̄2 0.7311 0.7250
Adj. R2 0.7195 0.7132

Notes. This table reports coefficient estimates and relevant statistics for a panel re-
gression with fixed effects on the sales data. Numbers in parentheses represent the
heteroskedasticity-robust standard errors. Superscripts *, **, *** indicate that the as-
sociated coefficients are significant at levels of 10%, 5%, and 1%, respectively. The
centered R2 and the adjusted R2 values are further reported in the last two rows.

can lead to the so called ‘post-promotion’ dips on next week’s sales and store traffic.32 On the

other hand, PCombo has the potential to prompt the customers to make another purchase in close

proximity to the one primed by the combo.33 The gift promotion in our case is relatively ineffective

to boost the store sales for the next week. This result is anticipated, since free gifts only strengthen

32Other papers in the marketing literature use data of household goods, and have reached the same conclusion that
the post-promotion effect on sales is usually negative, through the channels of selection (Neslin and Shoemaker, 1989)
or forward buy (Krishna 1992, 1994). Blattberg and Scott (1994) also find out that forward buying is more prevalent for
durable goods.

33This can occur due to two possible scenarios: either not all the items in the combo are desired by the customers
or some products in the combo stimulate purchases for items cognitively related to the one primed by the combo.
Interested readers can refer to Heilman et al. (2002) for a study on the surprise coupon, which functions in a similar
manner as the promotion combo.
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the current purchase intention of main products (Gilbert and Jackaria, 2002).

6.2 Nonlinearity

The results from the panel regressions in Section 6.1 provide mean estimates across all the stores.

The linearity assumption behind may be too restrictive to describe the actual relationship between

the predictors and the response variables. Moreover, these estimates ignore the obvious hetero-

geneity across the stores. To motivate the application of machine learning and our proposed ap-

proaches, it is helpful to show that the assumption of a linear and additive relationship between

yt and Xt = [x1t, ..., xpt]> is too strong.34

To do so, it begins with considering a fully nonparametric function that relates yt to Xt. How-

ever, if the hypothetical relationship was imposed, one would face the curse of dimensionality be-

cause of the overwhelming 48 predictors. Therefore, we instead consider a partially linear model

yt = Z>1t β + g(Z2t) + et, (33)

where Z1t is a k × 1 vector, β is the associated k × 1 coefficient vector, Z2t is a q × 1 vector (i.e.,

q = p− k), g(·) is an infeasible, possibly nonlinear function, and et is the error term.

To make the dimensionality manageable, a small q shall be used. Following Li and Racine

(2007), an infeasible estimator of β by LS is described by

β̃ =

(
T

∑
t=1

Z̃1tZ̃T
1t

)−1 T

∑
t=1

Z̃1tỹt, (34)

where Z̃1t = Z1t −E(Z1t|Z2t) and ỹt = yt −E(yt|Z2t).

In practice, the conditional expectations in (34) can be consistently estimated using the kernel

method:

ŷt ≡ Ê(yt|Z2t) = T−1
T

∑
j=1

ytKh(Z2t, Z2j)
/

f̂ (Z2t),

Ẑ1t ≡ Ê(Z1t|Z2t) = T−1
T

∑
j=1

Z1jKh(Z2t, Z2j)
/

f̂ (Z2t),

34This is in the spirit of work by Gutierrez et al. (2008) which clearly show that neural network models generally
perform better than the traditional time series methods at forecasting lumpy demands from a Mexican electronics
distributor.
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where f̂ (Z2t) = T−1 ∑T
j=1 Kh(Z2t, Z2j), Kh(Z2t, Z2j) = ∏

q
s=1 h−1

s k
(

Z2ts−Z2js
hs

)
with k(·) being the

kernel function and hs being the bandwidth for the sth element in Z2t.

The presence of the random denominator f̂ (Z2t) can cause some technical difficulties when

deriving the asymptotic distribution of the feasible estimator β. We consider a simple approach

that trims out observations of which the denominator is small and such a feasible estimator of β

is defined by

β̂ =

(
T

∑
t=1

(Z1t − Ẑ1t)(Z1t − Ẑ1t)
>
)−1 T

∑
t=1

(Z1t − Ẑ1t)(yt − ŷt)It

(
f̂ (Z2t) ≥ b

)
, (35)

where It(·) is an indicator function that equals one if the input argument is true and zero other-

wise. The trimming parameter b = bn > 0 and satisfies bn → 0 asymptotically. Once β̂ is obtained

and the condition Z2t = z holds, the nonparametric components can be estimated consistently by

ĝ(z) =
∑T

j=1(yt − Z>1t β̂)Kh(z, Z2t)

∑T
j=1 Kh(z, Z2t)

. (36)

We next concentrate on showing the nonparametric relationship between the response vari-

ables and the three promotion strategies. The other variables are deemed linear as in Equation

(33). The Gaussian kernel is chosen with the optimal bandwidth ĥz = 1.06σ̂zT−1/(q+4) for each

component of Z2t. We consider a full combination of any two promotion strategies (i.e. q = 2) as

the predictors for g(Z2t) so as to generate a range of surface plots for each response variable.

The estimated g(Z2t) is plotted in Figure 1. The two columns of the subplots correspond to each

response variable indicated in the subtitles. Each subplot suggests that the relationship between

the sales response variable and the selected promotion predictors is obviously nonlinear. The

above exercise confirms that it is inadequate to use a linear model, at least in our sample. This

finding calls for the adoption of nonlinear estimators such as machine learning algorithms or our

proposed estimators. For comparison, we still include several conventional estimators with linear

formulations in the empirical exercise.

6.3 Forecasting Exercise

In this section, we consider predicting the number of effective customers and sales revenues with

the predictors defined in Section 5. Table 3 outlines 15 forecasting estimators used in the exercise.
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Figure 1: Evidence Illustrating Nonlinearity between Sales Response and Promotion Strategies

Notes. This figure presents the surface plots for nonparametric components of the partially linear model in (33). Panels
(a), (c) and (e) describe the relationship between the number of effective customers and a full combination of any two
promotion variables; Panels (b), (d) and (f) provide similar plots for the sales revenues.
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Table 3: List of Estimators Evaluated in the Forecasting Exercise
Method Abbreviation Detailed Description
Panel A: Linear Estimators
LS Unrestricted ordinary least squares estimator.
LASSO The least absolute shrinkage selective operator by Tibshirani (1996).
RIDGE The ridge estimator.
EN The elastic net by Zou and Hastie (2005).
PMA The prediction model averaging method by Xie (2015).

Panel B: Tree-type Algorithms
RT Regression tree by Breiman et al. (1984).
LSB Least squares regression boosting of Hastie et al. (2009, Chapter 10).
BAG Bootstrap aggregation tree by Breiman (1996).
RF Random forest by Breiman (2001).

Panel C: SVR-type Methods
SVRL Support vector regression of Drucker et al. (1996) with linear kernel.
SVRG Support vector regression of Drucker et al. (1996) with Gaussian kernel.
LSSVRG Least squares support vector regression of Suykens and Vandewalle (1999) with Gaussian kernel.

Panel D: Averaging LSSVR
LSSVRSA

G Simple averaging LSSVR with Gaussian kernel discussed in Section 3.
LSSVRMA

G1 Mallows-type averaging LSSVR with Gaussian kernel under homoskedasticity.
LSSVRMA

G2 Mallows-type averaging LSSVR with Gaussian kernel under heteroskedasticity.

Notes. The abbreviation for each estimator is listed in the first column of each panel of Table 3. The second column of each panel provides
a brief description of the estimator and more details are presented in Appendix B.

We conduct a rolling window forecasting exercise with window length (WL) of 20 weeks. We

use the data from all the stores as the training set to train our estimators and predict the sales for

each store one-week-ahead.35 The performance of most learning techniques depend on tuning

parameters. In practice, these tuning parameters can be either predetermined (see for example,

our simulation experiment in Appendix D) or estimated. The latter approach usually relies on re-

sampling techniques like cross-validation (CV), which is far more computationally intensive than

the former. Bergmeir et al. (2018) argued that the standard five-fold CV is valid in autoregressive

models with uncorrelated errors. Unless otherwise indicated, results in the sequel are produced

based on tuning parameters set by five-fold CV via grid search. We have also tried three-fold CV

and ten-fold CV, and the findings are qualitatively intact. Principal tuning parameters and their

ranges for grid search (if there are any) are listed below:

1. The regularization parameter λ ∈ {0, 0.01, 0.02, ..., 100} for LASSO, RIDGE, EN, SVR-type,

and averaging LSSVR ;

2. The mixing parameter α ∈ {0.1, 0.5, 0.9} for EN;

35Conducting an individual store-level prediction analysis is impractical in our case due to the limited number of
observations available per store, with a maximum of only 38 observations.
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3. The minimum leaf size spans from 1 to 10 for all the tree-type algorithms;

4. The number of learning cycles is set to B = 100 for all the ensemble methods;

5. The number of selected predictors for RF is picked from {bp/4c, bp/3c, bp/2c};

6. The hyperparameter σ2
x ∈ {0.1, 0.2, ..., 100} for the Gaussian kernel.

Note that both BAG and RF do not require five-fold CV to select optimal values for their tuning

parameters. Since BAG and RF rely on the bootstrap resampling process, we use only a fraction of

total observations each time we draw a bootstrap sample. The rest of the observations are called

the out-of-bag (OOB) observations, which act as an ideal test set to evaluate the constructed tree

and choose optimal tuning parameters. See Appendix B.2 for a detailed discussion.

Another important issue for the proposed averaging LSSVR is the number of potential models

in the candidate model set. The conventional approach to construct the model set is to employ a

full combination of all the p predictors, which yields a large number of 248 candidate models in our

case. To reduce the computational burden, we designate the predictors of previous sales and the

store-wise dummy variables for each candidate model. The predictors of previous sales are central

to explaining the two responses and the store-wise dummy variables are vital for describing the

store-wise heterogeneous effects. The above step reduces the total number of candidate models

considerably from 248 to 29 (512).

Inspired by Yuan and Yang (2005), we further perform the below model screening process on

the 512 candidate models. Each candidate model is evaluated by the following criterion:

C(s) = ‖y− P(s)y‖2 + 2σ̂2
(s)

T

∑
t=1

P(s)
tt ,

for s = 1, ..., 512, where P(s) stands for the projection matrix P(x, X) of the sth candidate model,

σ̂2
(s) is the variance of estimated error terms, and P(s)

tt represents the tth diagonal term in P(s). The

candidate models are then ranked according to the values of C(s) in ascending order and the top

M models are selected. The value of M is set to be M = 12 in our exercise.36

The results on prediction comparison for the two response variables are reported in Table 4.37

36We have also tried alternative values of M larger than 12 and found that the results are almost identical but with
longer computational time.

37Note that we additionally compare the out-of-sample accuracy of the pooling LS regression with that of individual
store-wise LS regressions in Appendix H.1. The forecast accuracy of the pooling regression is much higher in all cases.
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Our proposed Mallows averaging LSSVR (LSSVRMA
G1 or LSSVRMA

G2 ) yields the best performance

whether evaluated by SDFE or MAFE for both response variables. The LSSVRMA
G1 seems to out-

perform LSSVRMA
G2 by a small margin in three out of the four cases. The LSSVRG approach and

RF offer the second best performance if assessed by SDFE, where LSSVRG performs almost as

well as RF. Accounting for model uncertainty leads to gains of 5.4% to 7% between LSSVRG and

the best performing Mallows averaging LSSVR. It is also interesting to see that the naive averag-

ing LSSVRSA
G is dominated by some machine learning algorithms without averaging, for example

LSSVRG or RF. The above finding confirms that even in the applications with machine learning

algorithms, asymptotically optimal model weights are still valuable for improving prediction ac-

curacy.

Table 4: Prediction Comparison for Sales Response Variables
Method SDFE MAFE

# of customers Sales Revenue # of customers Sales Revenue
Panel A: Linear Estimators
LS 33.3456 15.9741 19.2915 9.1839
LASSO 33.4121 16.2313 17.5141 8.4573
Ridge 56.2600 25.2084 40.6904 17.2078
EN 32.0415 16.2797 17.3296 8.4586
PMA 33.1692 15.6923 18.9601 8.9257

Panel B: Tree-type Algorithms
RT 33.3738 14.5412 18.8833 8.3124
LSB 34.3734 15.4653 22.2613 9.4349
BAG 30.7845 14.4747 16.8696 7.7437
RF 29.8302 14.1460 16.6494 7.6539

Panel C: SVR-type Methods
SVRL 31.4006 14.9748 16.6136 7.6861
SVRG 43.5639 20.3372 29.6473 13.7660
LSSVRG 29.3678 14.2863 17.3527 8.1551

Panel D: Averaging LSSVR
LSSVRSA

G 29.5084 14.4194 16.8030 7.7404
LSSVRMA

G1 27.1913 13.5177 16.4139 7.6265
LSSVRMA

G2 27.2540 13.5205 16.5322 7.6230

Notes. The results of the prediction exercise for the two sales responses are reported in
this table. A full description of each estimator in the first column is provided in Table
3. The risks of the forecasting exercise are evaluated by SDFE and MAFE presented
in the left and right panels, respectively. Bold numbers denote the estimator with the
lowest risk and thus the best performance in that column of the table.

Although outperformed by averaging LSSVR, other tree-based algorithms and SVR-type meth-

ods in our exercise mostly manifest dominating performance over the LS estimator, the averaging

PMA estimator and penalization methods, with the sole exception of LSB and SVRG. The ap-

proaches such as bagging and RF bear the feature of ensemble learning and noticeably exceed

other tree-based algorithms and conventional support vector regressions. Taking these findings

together, we conclude that there are obvious improvements from using averaging machine learn-
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ing approaches that can simultaneously accommodate nonlinearity and model specification un-

certainty.

6.4 Relative Importance of Predictors

The managerial practice calls for an interpretable understanding of how the predictors correlate

with the sales response variables and a further identification of which predictors weigh more in

conducting forecasts. To offer valuable insights for refining promotional policies, our analysis

specifically concentrates on the predictors associated with promotions. Following the empirical

strategy in Lehrer and Xie (2022), we evaluate the relative importance of a specific predictor by

measuring the loss in accuracy if that particular predictor is excluded from the model. Such ex-

clusion can be approximated by a random permutation of the predictor which aims to destroy the

correlation between the predictor and the response variable.

Taking RF as an example, we grow each tree with its respective randomly drawn bootstrap

sample. The observations that are excluded from the bootstrap sample are called the Out-of-Bag

sample (OOB), which becomes the perfect evaluation set since the related observations do not take

part in the training process. For a given predictor, we first randomly permute it in the OOB sample

that generates the modified OOB sample. Then the gap between prediction errors of the tree on

the modified OOB sample and the untouched OOB sample is calculated. This process is reiterated

for each tree and each predictor so that the average of these gaps in prediction errors across all

OOB samples is computed. The averaged gap provides an estimate of the overall decrease in

accuracy that the permutation of removing a specific predictor induces. Therefore it acts as the

variable importance score for each predictor by which we can rank its relative importance. The

most crucial predictors are the ones yielding the highest scores.38 The detailed computational

algorithm is delineated in Box 2. In the main exercise, we employ the regular bootstrap method

and set B = 1000.39

38See Ishwaran (2007) for a theoretical argument of tree-based variable importance measures.
39We also consider the moving block bootstrap method formulated by Künsch (1989) as an alternative resampling

method that draws blocks of observations in order to preserve the chronological order at the store-level in our data.
Table A4 reveals that the findings by regular and block bootstrap methods are quite similar. See Appendix H for
additional details.
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Box 2. Algorithm for Computing Variable Importance Score

1. Take a random sample of size T with replacement from the data (bootstrapping).a

2. Train the forecasting strategy using the bootstrap sample and obtain the OOB sample.

3. Apply the trained strategy to the OOB sample and obtain the SDFE, denoted as SDFE0.

4. For predictor i = 1, ..., p,

(a) randomly permute the predictor i in the OOB sample;

(b) apply the trained strategy to the modified OOB sample and compute the SDFEi;

(c) calculate the associated gapi by gapi = SDFEi − SDFE0.

5. Repeat steps 1 to 4 for B times and calculate the Scorei for each predictor i by

Scorei =
1
B

B

∑
b=1

gapi
b,

where gapi
b is the estimated gap for the predictor i with the bth bootstrap sample.

6. Rank the predictors by Scorei. The most important predictor yields the highest score.

aThe alternative approach is the moving block bootstrap that resamples blocks of observations
instead of individual observations.

Table 5: Top 10 Most Important Predictors by Three Forecasting Estimators
Ranking # of Customers Sales Revenue # of Customers Sales Revenue # of Customers Sales Revenue

Random Forest LSSVRG LSSVRMA
G1

1 lag(Customer) lag(Revenue) lag(Revenue) lag(Revenue) lag(Revenue) lag(Revenue)
2 lag(Revenue) lag(Customer) lag(Unit) lag(Unit) lag(Customer) lag(Unit)
3 TempAvg TempAvg lag(Customer) lag(Customer) lag(Unit) lag(Customer)
4 TempMax lag(Unit) PGi f t PCombo PGi f t PCombo
5 lag(Unit) PGi f t PCombo PGi f t PCombo PGi f t
6 PGi f t TempMax TempAvg TempMax TempMax TempMax
7 Holiday TempMin TempMin Off Rate TempAvg TempAvg
8 TempMin Off Rate TempMax TempAvg PDiscount Off Rate
9 Off Rate PCombo Off Rate TempMin Off Rate PDiscount
10 PCombo Holiday PDiscount PDiscount TempMin TempMin

Note. This table reports the ranking of the 10 most important predictors for the number of effective customers and sales
revenues by three better-performing estimators.

As RF, LSSVRG, and LSSVRMA
G1 demonstrate promising performance in the forecasting exercise,

we decide to compute variable importance scores based on each of these three estimators. The

top 10 most important predictors under each estimator are listed in Table 5. We find that the

top 10 most important predictors selected by RF, LSSVRG, and LSSVRMA
G1 are nearly the same,

which cover three groups of predictors summarized in Table 1: previous sales, weather forecast,

and promotion activities. However, different forecasting estimators produce slightly different

rankings of predictor importance. All three estimators consider the previous sales variables to
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be the most critical group. This aligns with the finding from the panel regression that all previous

sales predictors are significantly positive.

The second group of crucial predictors differs slightly across the three estimators. With RF,

we find that the weather-related predictors are crucial for forecasting the sales responses, partic-

ularly for predicting the number of effective customers. With LSSVRG and LSSVRMA
G1 , promotion

activities such as gifts and combos are a bit more valuable to predict customer visits and revenues

than weather factors. There is a marked contrast between the ranking of promotion predictors

by the three estimators and the outcomes from the panel regression. For the results with LSSVRG

and LSSVRMA
G1 , we observe that the frequencies of gift (PGi f t) and combo (PCombo) promotions are

among the top 5 predictors for the two responses, where PGi f t may play a bigger role for the ef-

fective customers and PCombo matters more for explaining sales revenues. Even with RF, these

two promotion predictors are among the top 10 important predictors. Advertised discount rate

does not belong to the top 10 important predictors. However, if judged by coefficient magnitudes

from the panel regression, combo promotions and advertised discount rates seem to have higher

predictive power.

To provide further motivations for the findings above, we next examine if there is any vari-

ation in the predictor significance across the entire distribution of sales responses. The rationale

behind this analysis stems from the hypothesis that promotions of varying types may yield di-

verse effects on stores possessing dissimilar characteristics. For each sales response, we divide

the store-level data into two portions by the median of lagged sales response variables (i.e., the

median of lag(Customer) for # of customers and the median of lag(Revenue) for sales revenue). In

this manner, we categorize the data into two groups: those exhibiting low sales performance from

the previous week and those displaying high sales performance from the same period.

Table 6 reports the ranking outcomes for low and high previous sales measures, respectively.

On average, we notice that promotions such as advertised discount rates and gifts are more critical

for stores with low previous sales. Moreover, we find that store-wise dummy variables are also

among the top 10 principal predictors for stores with low previous sales. This discovery suggests

the possibility that the distribution of sales responses may be associated with underlying store

attributes, thereby emphasizing the necessity to account for store-specific heterogeneity in our

analysis. On the other hand, the predictor ranking for stores with high previous sales in Panel B

is quite similar to those in Table 5. Promotion predictors become less important than the previous
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sales and store-wise dummy variables almost disappear from the list. In summary, the aforemen-

tioned analysis indicates that promotional strategies, such as advertised discounts and gifts, play

a pivotal role in predicting sales for stores with low prior sales. However, the importance of such

promotions diminishes for stores that have demonstrated high previous sales.

Table 6: Heterogeneity in the Relative Importance of Predictors
Ranking # of Customers Sales Revenue # of Customers Sales Revenue # of Customers Sales Revenue

Random Forest LSSVRG LSSVRMA
G1

Panel A: Low Sales Measure from Last Week
1 Ad. Discount Ad. Discount lag(Customer) TempMax lag(Customer) lag(Customer)
2 lag(Customer) lag(Revenue) PGi f t lag(Customer) PGi f t lag(Revenue)
3 TempAvg TempMax TempMax lag(Revenue) Holiday TempMax
4 TempMax lag(Customer) Ad. Discount lag(Unit) TempMax Ad. Discount
5 Holiday lag(Unit) store13 store17 lag(Unit) lag(Unit)
6 lag(Revenue) TempAvg lag(Unit) Ad. Discount store13 PGi f t
7 TempMin TempMin store21 store13 Ad. Discount store13
8 lag(Unit) Off Rate Holiday PGi f t store21 store23
9 Off Rate Holiday store31 Holiday store18 store21
10 PDiscount PRCPAvg store18 store15 store31 TempAvg

Panel B: High Sales Measure from Last Week
1 lag(Customer) lag(Revenue) lag(Revenue) lag(Revenue) lag(Revenue) lag(Revenue)
2 lag(Revenue) lag(Customer) lag(Unit) lag(Unit) lag(Unit) lag(Unit)
3 TempAvg PGi f t lag(Customer) lag(Customer) lag(Customer) lag(Customer)
4 TempMax lag(Unit) PGi f t PCombo PGi f t PCombo
5 PGi f t TempAvg TempAvg TempMax PCombo PGi f t
6 Holiday TempMax PCombo PGi f t TempMax TempMax
7 lag(Unit) TempMin Off Rate Off Rate TempAvg Off Rate
8 TempMin Off Rate TempMin TempAvg Off Rate TempAvg
9 Off Rate Holiday TempMax TempMin PDiscount PDiscount
10 PCombo PCombo PDiscount PDiscount store27 TempMin

Note. With RF, LSSVRG and LSSVRMA
G1 , this table presents the top 10 most important predictors for effective customers and

sales revenues in each subsample. Results for the low and high sales measures from last week are reported in Panels A and
B, respectively.

6.5 Marginal Effects of Promotion Predictors

Evaluating the incremental impacts of various promotions and adjusting sales strategies accord-

ingly is a critical issue of interest to management boards. Meanwhile, understanding and visu-

alizing the role of each predictor for the predicted response is of paramount importance in many

supervised learning applications (Apley and Zhu, 2020). In the linear regressions, the marginal

effects of promotion predictors on the two sales responses can be readily captured by coefficient

estimates, as shown in Table 2. However, the coefficients are mean estimates that ignore het-

erogeneity and possible nonlinearity between the predictors and the response variables. In this

section, using the partial dependence (PD) plots by Friedman (2001), we demonstrate the marginal

effects of promotion predictors with averaging LSSVR.

The PD plot reveals the dependence between the target response and a set of input features
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of interest, marginalizing over the values of all other input features. Let XS be the set of input

features of interest and XC be its complement. The partial dependence of the response function f

at a point xS is defined as:

pdXS(xS) ≡ EXC [ f (xS, XC)] =
∫

f (xS, xC)p(xC)dxC ≈
1
T

T

∑
i=1

f (xS, x(i)C ),

where f (xS, XC) is the response function for a given sample, of which the values are defined by

xs and xC for the respective features in XS and XC, and x(i)C is the value of the ith sample for the

features in XC.

For each value of xS, calculating the PD requires a full pass over the whole dataset, which

can be computationally intensive. In our exercise, we first calculate the PD of each promotion

predictor on the two sales responses using LSSVRMA
G as the response function. For a specific xS,

its value is presumed to range from 0 to 500, increasing in increments of d = 10.40 The PD plots

of the three promotion predictors on the two sales responses are presented in Figure 2. The two

subplots correspond to the two sales responses, respectively. In each subplot, the horizontal and

vertical axes represent the value ranges of promotion predictors and the estimated partial effects,

respectively. The marginal effects of PGi f t, PCombo, and PDiscount are indicated by the dash-dotted

line, the dashed line, and the solid line, respectively.

The marginal effects of three promotion predictors by LSSVRMA
G1 display notable dynamics

across the spectrum of promotional frequencies. Several interesting findings are worth stressing.

First, the marginal effects of combo promotions consistently surpass those of the other two pro-

motion strategies, regardless of the sales responses involved. The peak marginal effect for the

number of customers reaches 487.39, while for sales revenues, it tops at 219.76. These peak effects

occur at implementation frequencies of 240 and 210, respectively. Second, the marginal effects of

gift promotions encompass a more limited scope and occasionally become negative (for instance,

within the range of [40, 125] for the number of customers and [−30, 52] for sales revenues). The

optimal frequencies of gift promotions are 230 for the number of customers and 170 for sales

revenues. In stark contrast to the panel regression findings, the marginal effects of discount pro-

motions consistently exhibit positive and increasing trends for both sales responses. However,

their impacts are not as pronounced as gift promotions within the initial ranges of implementa-

40Note that the promotion predictors in our data are all non-negative integers. The range of xS considered in this
exercise is consistent with statistics of actual data.
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Figure 2: PD Plots of Individual Promotion Predictors on Sales Responses by LSSVRMA
G1
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Notes. This figure plots the estimated PD between each promotion predictor (PGi f t, PCombo, and PDiscount) and each
sales response (the number of effective customers and sales revenues) by LSSVRMA

G1 . The horizontal and vertical axes
represent the ranges of promotion predictors and the estimated partial effects, respectively.

tion frequencies (ranging from 0 to 350 times for the number of customers and from 0 to 250 times

for sales revenues). Beyond these thresholds, the marginal effects of discounts exceed those of gift

promotions.

In order to examine the combined effects of various promotions, we delve deeper into the

interactive marginal effects of different promotional strategies. Since there are three promotion

strategies, we plot the PD estimates based on the following three combinations: (i) (Gift, Combo),

(ii) (Gift, Discount), and (iii) (Combo, Discount). For each pair of promotion predictors, we eval-

uate a range of their values within [0, ..., 500] using increments of d = 50 to manage the compu-

tational load effectively. Figure 3 presents the surface plots based on the three pairs of promotion

predictors and the response function by LSSVRMA
G1 . The three columns represent the plots for each

pair of promotion strategies and the two rows correspond to the results for each response variable.

In each subplot, the three axes represent the ranges of two promotion predictors and the estimated

interactive PD, respectively.

The interactive partial dependence (PD) plots clearly illustrate that, when promotional strate-

gies are jointly employed, the most effective implementation frequencies linked to peak marginal

effects can be identified in certain instances. As the effective number of gift promotion is 50 for

the number of customers and 100 for sales revenues, the effective number of combo promotions
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Figure 3: Interactive PD Plots of Promotion Combinations on Sales Responses

Notes. This figure presents the estimated interactive PD between each pair of promotions ((Gift, Combo), (Combo,
Discount), and (Gift, Discount)) and each of the two sales responses (the number of effective customers and the sales
revenue). The estimates are calculated using the LSSVRMA

G1 estimator.
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is observed to be 250 for both response metrics. Deviating from this combo promotion number

would reduce its impact and also counteract the benefits of gift promotions. This finding diverges

somewhat from the other two promotion pairings. The remaining subplots indicate that it is con-

sistently advantageous to elevate the implementation number of discount promotion when it is

combined with either combo or gift promotions at their respective optimal frequencies.

The analysis above yields several valuable recommendations and managerial insights when

associated with statistics in Table 1. First, store managers should consider designing more combo

promotions, as the statistics suggest that even the maximum value of combo promotions at certain

stores amounts to only 73 times, which is significantly lower than the estimated optimal frequen-

cies for combo promotions. Second, the statistics indicate that some stores may be overusing

gift promotions, as the maximum number of gift promotions in the sample is 567, considerably

higher than the most effective frequencies suggested by the analysis. Lastly, our analysis under-

scores that store managers should be cognizant of potential cannibalization effects resulting from

the concurrent use of multiple promotional vehicles.41 For the joint implementation of gift and

combo promotions, the most effective frequencies of gift promotions are decreased for both sales

responses, while the most effective number for combo promotions is marginally increased for both

sales responses. In contrast, when involving discounts with other promotion types, they can be

applied at their individual best frequencies without impacting one another.

7 Conclusion

As documented by Liu et al. (2013), the sales of fashion products, including apparel, shoes, and

beauty items, are greatly influenced by multiple factors, such as seasonality, fashion trends, weather,

sales promotions, and macroeconomic conditions. Hence, predictive analytics must take into ac-

count a diverse range of explanatory variables, which inherently introduces the challenge of model

uncertainty. Despite extensive research into complex and non-linear relationships between fash-

ion sales series, the issue of model specification uncertainty has not been sufficiently addressed in

previous studies.

41Cannibalization in marketing also refers to a reduction in sales volume, sales revenue, or market share of one
product as a result of the introduction of a new product by the same producer. This effect has been studied and
quantified in the literature. For more details on the measurement of this effect, please refer to Van Heerde et al. (2004)
and McColl et al. (2020) for the cases of grocery sales.
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To add to the relevant literature, we invent a new type of averaging forecasting estimator,

which is characterized by provable optimal weighted forecasts and an array of submodel predic-

tions generated by machine learning algorithms. Noted that the set of sub-models are constructed

through the full permutation of all potential predictors. We present a rigorous proof that demon-

strates the optimality of our model weights, under the condition that the predictions derived from

any input vector can be mathematically expressed as a weighted average of observations in the re-

sponse variables. Thereby our method demonstrates sufficient versatility to fit various commonly

used machine learning techniques, offering the advantages of mitigating model uncertainty and

simultaneously accommodating nonlinearity in the data.

Embedding LSSVR into our averaging estimator, we study empirically how our approach con-

tributes to sales forecasting and promotion evaluation in a fashion retailor setting, where the sales

associates’ choices of promotional strategies drive the store sales. Using weekly store-level data

tracking all the 35 stores in China for an internationally renowned footwear brand, we primarily

examine two sales responses-the weekly number of effective customers and the weekly sales rev-

enues, and three promotional predictors-gift, combo and discount promotions in our analysis. In

our evaluation, we assess a comprehensive set of 15 competitive forecasting approaches, including

linear estimators, recursive partitioning estimators, support vector regressions and the proposed

averaging LSSVR.

We find that our proposed averaging LSSVR achieves superior forecast accuracy for the two

sales responses, surpassing other top-performing forecasting estimators that do not account for

model uncertainty. The improvement in forecast accuracy ranges from 5.4% to 7% in comparison.

The exercise further confirms the value of optimal combination weights, demonstrating that av-

eraging LSSVR and certain machine learning algorithms without averaging, such as LSSVR with

Gaussian kernel or random forecast, outperform simple averaging LSSVR with Gaussian kernel.

Based on our averaging LSSVR estimator, we investigate the significance of three promotion

predictors in impacting store sales for the upcoming week. Our study uncovers contrasting sig-

nificance rankings between our averaging estimator and the linear panel regression, with gift and

combo promotions showing greater significance in our hybrid approach while the panel regres-

sion emphasizes the importance of advertised discount rate and combo promotions. An further

analysis of predictor significance based on sub-samples of low and high previous week’s store

sales indicates that store heterogeneity may contribute to the variation in rankings.
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We conduct an additional exercise to measure the marginal effects of three promotion predic-

tors. The results highlight that combo promotions have the most significant impact, with peak

effects observed at implementation frequencies of 240 and 210 for the effective customer visits

and sales revenues, respectively. Our finding also suggests that the ideal frequencies of gift pro-

motions are 230 for the number of effective customers and 170 for sales revenues. In comparison to

the actual predictor statistics, our analysis indicates that there is a need to increase the number of

combo promotions and decrease the number of gift promotions at the store level. However, when

considering the joint implementation of gift and combo promotions, caution is advised because of

cannibalization effects. In such cases, it is advisable to decrease the number of gift promotions to

50 for customer visits and 100 for sales revenues, while slightly increasing the number of combo

promotions to 250.

There are several avenues to explore for future research. Firstly, further investigations could be

conducted to examine the applicability and effectiveness of the proposed averaging estimator in

other retail settings and industries. This would help validate its versatility and robustness across

various contexts. Additionally, a more in-depth analysis could be undertaken to understand the

underlying mechanisms that drive the impact of various promotional strategies on sales. Fur-

thermore, considering the evolving nature of the fashion industry and the emergence of new pro-

motional approaches (such as influencer marketing and social media campaigns), future research

could integrate these novel strategies into the forecasting and promotion evaluation framework.

Overall, these future research directions would contribute to enhancing the accuracy and effec-

tiveness of sales forecasting and promotion decision-making in the fashion retail industry.
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APPENDIX

A Related Proofs

In this section, we provide complete proofs on the two theorems and Corollary 3 presented in the
main text. We start with some necessary lemmas.

A.1 Necessary Lemmas

We first show some lemmas that are essential for proving the theorems and propositions in the
main text.

Lemma 1 (Rao, 1973) For a p× p positive-definite and symmetric matrix U and a p-dimensional vector
u,

sup
z

(z>u)2

z>Uz
= u>U−1u. (A1)

Lemma 2 (Zhang, 2021) Assume that E(et) = 0 and E(e4
t ) exists. Let σ2 = E(e2

t ) and κ = E(e4
t )− 3σ4.

For any two T × T square matrices O1 and O2,

E(e>O1ee>O2e) = σ4
{

trace(O1)trace(O2) + trace
(

O1O2 + O>1 O2

)}
+κ × trace(O1 ∗O2), (A2)

where ∗ denotes the Hadamard product, that is, the ijth component of O1 ∗O2 equals the product of the ijth

components of O1 and O2.

Lemma 3 (Zhang, 2010; Gao et al., 2019) Let

w̃ = argminw∈W {LT(w) + aT(w) + bT} ,

where aT(w) is a term related to w and bT is a term unrelated to w. If

sup
w∈W
|aT(w)|/RT(w) = op(1), sup

w∈W
|RT(w)− LT(w)|/RT(w) = op(1),

and there exists a constant c and a positive integer T∗ so that when T ≥ T∗, in f w∈WRT(w) ≥ c > 0
almost surely, then LT(w̃)/in f w∈WLT(w)→ 1 in probability.

Lemma 4 (Zhang, 2021) For any T1 × T2 matrices B1 and B2,

ζmax(B1B2) ≤ ζmax(B1)ζmax(B2), (A3)

and

ζmax(B1 + B2) ≤ ζmax(B1) + ζmax(B2). (A4)
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A.2 Proofs of Theorems

Building upon the foundational lemmas presented in Appendix A.1, we proceed to provide com-
prehensive proofs for Theorems 1 and 2. While the proofs presented below draw inspiration from
the work of Zhang (2021), which primarily delves into least squares estimation, our own contribu-
tion surpasses these confines. Our method’s enhanced generality empowers its application across
diverse contexts and complexities.

Proof of Theorem 1. Let A(w) = IT − P(w). Under Condition C.2, we have that

RT(w) = E{LT(w)|X} = E{‖µ̂(w)− µ‖2|X} = E{‖P(w)y− µ‖2|X}

= E{‖P(w)µ− µ + P(w)e‖2|X} = ‖A(w)µ‖2 + σ2trace
{

P(w)P(w)T
}

. (A5)

It can be seen that

C1(w)− LT(w) = ‖µ̂(w)− y‖2 + 2σ2trace{P(w)} − ‖µ̂(w)− µ‖2

= 2e>A(w)µ + 2σ2trace{P(w)} − 2e>P(w)e + ‖e‖2,

where the last term is unrelated to w, and

RT(w)− LT(w) = ‖A(w)µ‖2 + σ2trace
{

P(w)P(w)T
}
− ‖µ̂(w)− µ‖2

= 2e>P(w)>A(w)µ + σ2trace{P(w)P(w)>} − e>P(w)>P(w)e.

In addition, Condition C.7 implies that there exists a constant c and a positive integer T∗ so that
when T ≥ T∗, ξT ≥ c > 0 almost surely. Hence from Lemma 3, if we intend to prove Theorem 1,
it is sufficient to verify that

sup
w∈W
|e>A(w)µ|/RT(w) = op(1), (A6)

sup
w∈W
|e>P(w)>A(w)µ|/RT(w) = op(1), (A7)

sup
w∈W
|σ2trace{P(w)} − e>P(w)e|/RT(w) = op(1), (A8)

sup
w∈W
|σ2trace{P(w)>P(w)} − e>P(w)>P(w)e|/RT(w) = op(1). (A9)

For convenience, in all the proofs we assume Xt to be non-stochastic instead of stochastic. This
alternative assumption will not invalidate our proof, because all of our technical assumptions
concerning Xt hold almost surely.

Proof of (A6): Let A(m) = IT − P(m) and Φ = (µ>A>(m)A(s)µ)MT×MT , which indicates the msth

component of Φ is µ>A>(m)A(s)µ, GT×MT = (A(1)µ, . . . , A(MT)µ), Ψ =
{

σ2trace(P(m)P>(s))
}

MT×MT
,

and
Ψ0 = σ2diag(trace(P(1)P

>
(1)), . . . , trace(P(MT)P

>
(MT)

)).

Therefore Φ = G>G. For any w ∈ W ,

w>Ψ0w ≤ w>Ψw, (A10)

because wm ≥ 0, ws ≥ 0 for any m, s ∈ {1, . . . , MT} and trace(P(m)P>(s)) ≥ 0 by Condition C.4. In
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addition, (A5) implies

RT(w) = E‖P(w)µ− µ + P(w)e‖2

= ‖A(w)µ‖2 + σ2trace
{

P(w)P(w)T
}

= w>(Φ + Ψ)w
≥ w>(Φ + Ψ0)w, (A11)

where the last step is from (A10). We also have

Φ + Ψ0 > 0, (A12)

because Φ = G>G and Ψ0 > 0 by Condition C.4. Let ρ = (e>A(1)µ, . . . , e>A(MT)µ)
>. It is straight-

forward to demonstrate that

E(ρ) = 0 (A13)

and

var(ρ) = E(ρρ>) = E
{
(e>A(m)µµ>A(s)e)MT×MT

}
= σ2Φ. (A14)

It can be seen that

sup
w∈W

(e>A(w)µ)2

R2
T(w)

= sup
w∈W

(∑MT
m=1 wme>A(m)µ)

2

R2
T(w)

= sup
w∈W

(w>ρ)2

R2
T(w)

≤ sup
w∈W

(w>ρ)2

w>(Φ + Ψ0)w
sup
w∈W

1
RT(w)

≤ ξ−1
T ρ>(Φ + Ψ0)

−1ρ, (A15)

where the third step is from (A11) and the last step is from (A12) and Lemma 1. By Markov
Inequality, we can infer that for any δ > 0,

Pr
{

ξ−1
T ρ>(Φ + Ψ0)

−1ρ > δ
}

≤ δ−1ξ−1
T E

{
ρ>(Φ + Ψ0)

−1ρ
}

= δ−1ξ−1
T σ2trace

{
(Φ + Ψ0)

−1Φ
}

≤ δ−1ξ−1
T σ2trace

{
(Φ + Ψ0)

−1Φ + Ψ1/2
0 (Φ + Ψ0)

−1Ψ1/2
0

}
= δ−1ξ−1

T σ2MT, (A16)

where the second step is from (A13) and (A14). Combining (A15), (A16) and Condition C.7, we
obtain (A6).

Proof of (A7): First, we have that

E(G>P>(m)e) = 0, (A17)
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and

var(G>P>(m)e) = E(G>P>(m)ee>P(m)G) = σ2trace(P(m)GG>P>(m)). (A18)

It can be seen that {
sup
w∈W

|e>P(w)>A(w)µ|
RT(w)

}2

=

 sup
w∈W

|∑MT
m=1 wme>P>(m)A(w)µ|

RT(w)


2

≤
{

sup
w∈W

∑MT
m=1 wm|e>P(m)A(w)µ|

RT(w)

}2

≤
{

sup
m

sup
w∈W

|e>P>(m)A(w)µ|
RT(w)

}2

= sup
m

sup
w∈W

(e>P>(m)Gw)2

R2
T(w)

≤ sup
m

sup
w∈W

(e>P>(m)Gw)2

w>(Φ + Ψ0)w
sup
w∈W

1
RT(w)

≤ ξ−1
T sup

m
e>P>(m)G(Φ + Ψ0)

−1G>P(m)e, (A19)

where the third step is from ∑MT
m=1 wm = 1 and wm ≥ 0, the fifth step is from (A11), and the last

step is from (A12) and Lemma 1. By Markov Inequality, we can prove that for any δ > 0,

Pr
{

ξ−1
T sup

m
e>P>(m)G(Φ + Ψ0)

−1G>P(m)e > δ

}
≤ ∑MT

m=1 Pr
{

ξ−1
T e>P>(m)G(Φ + Ψ0)

−1G>P(m)e > δ
}

≤ ∑MT

m=1 δ−1ξ−1
T E

{
e>P>(m)G(Φ + Ψ0)

−1G>P(m)e
}

= ∑MT

m=1 δ−1ξ−1
T σ2trace

{
P>(m)G(Φ + Ψ0)

−1G>P(m)

}
= ∑MT

m=1 δ−1ξ−1
T σ2trace

{
(Φ + Ψ0)

−1/2G>P(m)P
>
(m)G(Φ + Ψ0)

−1/2
}

≤ ∑MT

m=1 δ−1ξ−1
T σ2ζmax(P(m)P

>
(m))trace

{
(Φ + Ψ0)

−1/2G>G(Φ + Ψ0)
−1/2

}
≤ max

m
ζmax(P(m)P

>
(m))∑MT

m=1 δ−1ξ−1
T σ2trace

{
(Φ + Ψ0)

−1/2Φ(Φ + Ψ0)
−1/2

}
≤ max

m
ζmax(P(m)P

>
(m))∑MT

m=1 δ−1ξ−1
T MTσ2

= max
m

ζmax(P(m)P
>
(m))δ

−1ξ−1
T M2

Tσ2, (A20)

where the third step is from (A17)-(A18) and the sixth step is from that G>G = Φ. Combining
(A19), (A20) and Conditions C.7 and C.5, we obtain (A7).
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Proof of (A8): Let τ = {σ2trace(P(1)) − e>P(1)e, . . . , σ2trace(P(MT)) − e>P(MT)e}
>. Then we have

that

E(τ) = 0, (A21)

and

var(τ) = E(ττ>)

= E

[{
(σ2trace(P(m))− e>P(m)e)(σ

2trace(P(s))− e>P(s)e)
}

MT×MT

]
= E

[{
e>P(m)ee>P(s)e− σ4trace(P(m))trace(P(s))

}
MT×MT

]
=

{
σ4trace(P(m)P(s) + P>(m)P(s)) + κtrace(P(m) ∗ P(s))

}
MT×MT

, (A22)

where the last step is from Lemma 2. To derive (A22), we also rely on Condition C.2, particularly
for the steps regarding κ.42 Moreover, we can show that

sup
w∈W

{
σ2trace{P(w)} − e>P(w)e

}2

R2
T(w)

= sup
w∈W

(w>τ)2

R2
T(w)

≤ ξ−1
T sup

w∈W

(w>τ)2

w>Ψ0w

≤ ξ−1
T τ>Ψ−1

0 τ, (A23)

where the second step is from (A11) and the last step is from Lemma 1. By Markov Inequality, we
show that for any δ > 0,

Pr
{

ξ−1
T τ>Ψ−1

0 τ > δ
}

≤ δ−1ξ−1
T E(τ>Ψ−1

0 τ)

= δ−1ξ−1
T trace

[
Ψ−1

0

{
σ4trace(P(m)P(s) + P>(m)P(s)) + κtrace(P(m) ∗ P(s))

}
MT×MT

]
= δ−1ξ−1

T trace
[
Ψ−1

0 diag
{

σ4trace(P2
(m) + P>(m)P(m)) + κtrace(P(m) ∗ P(m)); m = 1, . . . , MT

}]
≤ δ−1ξ−1

T trace
[
Ψ−1

0 diag
{

σ4trace(P>(m)P(m)) + (σ4 + κ)trace(P2
(m)); m = 1, . . . , MT

}]
= σ2δ−1ξ−1

T trace
[
Ψ−1

0 Ψ0

]
+ (σ4 + κ)δ−1ξ−1

T trace
[
Ψ−1

0 diag
{

trace(P2
(m)); m = 1, . . . , MT

}]
= O(ξ−1

T MT), (A24)

where diag {bm; m = 1, . . . , MT} denotes a diagonal matrix with the mth component being bm, the
second step is from (A21) and (A22), the fourth step is derived from the fact that Ψ−1

0 is a diagonal
matrix, and the fifth step is established owing to the finding that for any square matrix O,

trace(O ∗O) ≤ trace(O>O). (A25)

42For the sake of brevity, we do not repeatedly list Condition C.2 here or elsewhere in the Appendix when it is
utilized.
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Combining (A23), (A24) and Condition C.7, we obtain (A8).

Proof of (A9): For j ∈ {1, . . . , MT}, let

ν(j) = (σ2trace(P>(j)P(1))− e>P>(j)P(1)e, . . . , σ2trace(P>(j)P(MT))− e>P>(j)P(MT)e)
>.

Thus we have that

E(ν(j)) = 0, (A26)

and

var(ν(j))

= E(ν(j)ν
>
(j))

= E

[{
(σ2trace(P>(j)P(m))− e>P>(j)P(m)e)(σ

2trace(P>(j)P(s))− e>P>(j)P(s)e)
}

MT×MT

]
= E

[{
e>P>(j)P(m)ee>P>(j)P(s)e− σ4trace(P>(j)P(m))trace(P>(j)P(s))

}
MT×MT

]
=

[
σ4trace(P>(j)P(m)P

>
(j)P(s)) + σ4trace(P>(m)P(j)P

>
(j)P(s))

+κtrace
{
(P>(j)P(m)) ∗ (P>(j)P(s))

}]
MT×MT

, (A27)

where the last step is from Lemma 2. By Condition C.5, we can infer

trace(P>(m)P(j)P
>
(j)P(m)) ≤ ζmax(P(j)P

>
(j))trace(P>(m)P(m)) ≤ c1trace(P>(m)P(m)). (A28)

It is seen that {
sup
w∈W

|σ2trace{P(w)>P(w)} − e>P(w)>P(w)e|
RT(w)

}2

=

 sup
w∈W

|∑MT
j=1 wjσ

2trace{P>(j)P(w)} −∑MT
j=1 wje>P>(j)P(w)e|

RT(w)


2

≤

 sup
w∈W

∑MT
j=1 wj|σ2trace{P>(j)P(w)} − e>P>(j)P(w)e|

RT(w)


2

≤
{

sup
j

sup
w∈W

|σ2trace{P>(j)P(w)} − e>P>(j)P(w)e|
RT(w)

}2

= sup
j

sup
w∈W

{
σ2trace{P>(j)P(w)} − e>P>(j)P(w)e

}2

R2
T(w)

= sup
j

sup
w∈W

(
w>ν(j)

)2

R2
T(w)
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≤ ξ−1
T sup

j
sup
w∈W

(w>ν(j))
2

w>Ψ0w

≤ ξ−1
T sup

j
ν>(j)Ψ

−1
0 ν(j)

≤ ξ−1
T

MT

∑
j=1

ν>(j)Ψ
−1
0 ν(j), (A29)

where the sixth step is from (A11) and the seventh step is from Lemma 1. By Markov Inequality,
it is clear that for any δ > 0,

Pr
{

ξ−1
T ∑MT

j=1 ν>(j)Ψ
−1
0 ν(j) > δ

}
≤ δ−1ξ−1

T ∑MT

j=1 E
{

ν>(j)Ψ
−1
0 ν(j)

}
= δ−1ξ−1

T ∑MT

j=1 trace
[
Ψ−1

0

{
σ4trace(P>(j)P(m)P

>
(j)P(s)) + σ4trace(P>(m)P(j)P

>
(j)P(s))

+κtrace((P>(j)P(m)) ∗ (P>(j)P(s)))
}

MT×MT

]
= δ−1ξ−1

T σ4 ∑MT

j=1 trace
[
Ψ−1

0 diag
{

trace(P>(j)P(m)P
>
(j)P(m))

+trace(P>(m)P(j)P
>
(j)P(m)); m = 1, . . . , MT

}]
+δ−1ξ−1

T κ ∑MT

j=1 trace
[
Ψ−1

0 diag
{

trace((P>(j)P(m)) ∗ (P>(j)P(m))); m = 1, . . . , MT

}]
= δ−1ξ−1

T σ4 ∑MT

j=1 trace
[
Ψ−1

0 diag
{

trace(P>(j)P(m)P
>
(j)P(m))

+trace(P>(m)P(j)P
>
(j)P(m)); m = 1, . . . , MT

}]
+δ−1ξ−1

T κ ∑MT

j=1 trace
[
Ψ−1

0 diag
{

trace(P>(m)P(j)P
>
(j)P(m)); m = 1, . . . , MT

}]
≤ δ−1ξ−1

T (c2 + c1)σ
4 ∑MT

j=1 trace
[
Ψ−1

0 Ψ0σ−2
]
+ δ−1ξ−1

T κc1 ∑MT

j=1 trace
[
Ψ−1

0 Ψ0σ−2
]

= δ−1ξ−1
T M2

T(σ
4(c1 + c2) + c1κ)σ−2, (A30)

where the second step is from (A26)-(A27), the fourth step is from (A25), and the fifth step is from
(A28) and Condition C.6. Based on (A29), (A30) and Condition C.7, we can prove (A9). So far we
have established (A6)-(A9), which are sufficient for validating Equation (24) in Theorem 1.

It is seen that
C′1(w) = C1(w) + 2trace{P(w)}(σ̂2(w)− σ2).

Therefore from Lemma 3, in order to prove (25), we only need to verify that

sup
w∈W

|trace{P(w)}{σ̂2(w)− σ2}|
RT(w)

= op(1). (A31)

Drawing from Section 2.3.4 of Zhang (2010), we imply that

sup
w∈W

|trace{P(w)}{σ̂2(w)− σ2}|
RT(w)
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= sup
w∈W

|trace{P(w)}{‖A(w)y‖2/T − σ2}|
RT(w)

= sup
w∈W

|trace{P(w)}{‖µ̂(w)− µ‖2 + 2µ>A>(w)e− 2e>P(w)e + ‖e‖2 − Tσ2}|
TRT(w)

≤ sup
w∈W

LT(w)

RT(w)
sup
w∈W

|trace{P(w)}|
T

+ sup
w∈W

2
∣∣µ>A>(w)e

∣∣
RT(w)

sup
w∈W

|trace{P(w)}|
T

+

∣∣‖e‖2 − σ2T
∣∣

T1/2 sup
w∈W

1
RT(w)

sup
w∈W

|trace{P(w)}|
T1/2

+ sup
w∈W

2
∣∣e>P(w)e− σ2trace{P(w)}

∣∣
RT(w)

sup
w∈W

|trace{P(w)}|
T

+2σ2 sup
w∈W

1
RT(w)

sup
w∈W

trace2{P(w)}
T

. (A32)

By Condition C.2, we have that ∣∣‖e‖2 − σ2T
∣∣

T1/2 = Op(1). (A33)

Hence, (A31) can be obtained from the previous proofs and Conditions C.3 and C.7. The above
discussion concludes the proof of Theorem 1.

Proof of Theorem 2. Since the error term e in this case is assumed to be heteroskedastic with a
covariance matrix Ω, the transformed e∗ = Ω−1/2e is known to be homoskedastic. Incorporating
the above transformation with the proof of Theorem 1, we have that

sup
w∈W

∣∣C2(w)− LT(w)− ‖e‖2
∣∣

RT(w)
= op(1) and sup

w∈W

|RT(w)− LT(w)|
RT(w)

= op(1). (A34)

Equation (26) is thus proved.

It is seen that

C′2(w) = C2(w) + 2trace{P(w)Ω̂(w)} − 2trace{P(w)Ω}.

Hence from Lemma 3, in order to prove (27), we are only left to verify that

sup
w∈W

[|trace{P(w)Ω̂(w)} − trace{P(w)Ω}|/RT(w)] = op(1). (A35)

Let Q(m) = diag(ι(m)
11 , . . . , ι

(m)
TT ) and Q(w) = ∑MT

m=1 wmQ(m). Then we have that

sup
w∈W

[|trace{P(w)Ω̂(w)} − trace{P(w)Ω}|/RT(w)]

= sup
w∈W

[|{y− P(w)y}>Q(w){y− P(w)y} − trace{Q(w)Ω}|/RT(w)]

= sup
w∈W

[|{e + µ− P(w)y}>Q(w){e + µ− P(w)y} − trace{Q(w)Ω}|/RT(w)]
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≤ sup
w∈W

[|e>Q(w)e− trace{Q(w)Ω}|/RT(w)] + 2 sup
w∈W

[|e>Q(w){P(w)y− µ}|/RT(w)]

+ sup
w∈W

[|{P(w)y− µ}>Q(w){P(w)y− µ}|/RT(w)]

≤ sup
w∈W

[|e>Q(w)e− trace{Q(w)Ω}|/RT(w)] + 2 sup
w∈W

[|e>Q(w){P(w)µ− µ}|/RT(w)]

+2 sup
w∈W

[|e>Q(w)P(w)e− trace{Q(w)P(w)Ω}|/RT(w)]

+2 sup
w∈W

[|trace{Q(w)P(w)Ω}|/RT(w)]

+ sup
w∈W

[|{P(w)y− µ}>Q(w){P(w)y− µ}|/RT(w)]

≡ Ξ1 + 2Ξ2 + 2Ξ3 + 2Ξ4 + Ξ5. (A36)

Define ι = maxm maxt ι
(m)
tt . Using Conditions C.5 and C.8, Chebyshev’s inequality and Theorem 2

of Whittle (1960), we obtain that, for any δ > 0,

Pr(Ξ1 > δ) ≤ ∑MT

m=1 Pr[|e>Q(m)e− trace(Q(m)Ω)| > δξT]

≤ δ−2ξ−2
T ∑MT

m=1 E{e>Q(m)e− trace(Q(m)Ω)}2

= O
{

ξ−2
T ∑MT

m=1 trace{Ω1/2Q(m)ΩQ(m)Ω
1/2}

}
= O

{
ξ−2

T ζmax
2(Ω)Tι2MT

}
= O(ξ−2

T MT ι2T), (A37)

and

Pr(Ξ3 > δ) ≤ ∑MT

m=1 Pr{|e>Q(m)P(m)e− trace(Q(m)P(m)Ω)| > δξT}

≤ δ−2ξ−2
T ∑MT

m=1 E[e>Q(m)P(m)e− trace(Q(m)P(m)Ω)]2

= O
{

ξ−2
T ∑MT

m=1 trace{Ω1/2Q(m)P(m)ΩP>(m)Q(m)Ω
1/2}

}
= O

{
ξ−2

T ζmax
2(Ω)Tι2MT max

1≤m≤MT
ζmax(P(m)P

>
(m))

}
= O(ξ−2

T Tι2MT max
1≤m≤MT

ζmax(P(m)P
>
(m)))

= O(ξ−2
T Tι2MT). (A38)

It follows from (A37)-(A38) and Condition C.9 that Ξ1 + Ξ3 = op(1). From Condition C.8 and the
second part of (A34), we have

Ξ2 ≤ sup
w∈W
{‖e‖2ι2‖P(w)µ− µ‖2/R2

T(w)}1/2

≤ ‖e‖ιξ−1/2
T = O(T1/2ξ−1/2

T ι),

Ξ4 ≤ ξ−1
T ιζmax(Ω) sup

w∈W
[trace{P(w)}]

≤ ξ−1
T ιζmax(Ω) sup

m
{trace(P(m))}
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= O(ξ−1
T ι sup

m
{trace(P(m))})

= O(ξ−1
T ι2T), (A39)

and

Ξ5 ≤ ι sup
w∈W

[{P(w)y− µ}>{P(w)y− µ}/RT(w)]

= ι sup
w∈W

[LT(w)/RT(w)] = O(ι). (A40)

Moreover, by Conditions C.7 and C.9, we see that Ξ2 + Ξ4 + Ξ5 = op(1). Hence (A35) is proved.
This completes the proof of Theorem 2.

A.3 Proof of Corollary 3

In this section, we present the proof of Corollary 3.

Proof of Corollary 3. It is seen that PLSSVR
(m) is symmetric and non-negative definite,

ζmax(PLSSVR
(m) ) = ζmax{H(H>H + λIT)

−1H>} ≤ 1, (A41)

and

trace(PLSSVR
(m)

>
PLSSVR
(m) )

= trace{H(m)(H>(m)H(m) + λIT)
−1H>(m)H(m)(H>(m)H(m) + λIT)

−1H>(m)}

= trace{(H>(m)H(m) + λIT)
−1H>(m)H(m)(H>(m)H(m) + λIT)

−1H>(m)H(m)}

= trace{(Ψ(m)K(m)Ψ
>
(m) + λIT)

−1Ψ(m)K(m)Ψ
>
(m)(Ψ(m)K(m)Ψ

>
(m) + λIT)

−1

×Ψ(m)K(m)Ψ
>
(m)}

= trace{(K(m) + λIT)
−1K(m)(K(m) + λIT)

−1K(m)}
= trace{(K(m) + λIT)

−1K(m)(K(m) + λIT)
−1K(m)}

= ∑n
i=1 K2

(m),i(K(m),i + λ)−2, (A42)

where K(m) and Ψ(m) are diagonal matrices containing eigenvalues of H>(m)H(m) and the matri-

ces are combined by eigenvectors of H>(m)H(m). From Condition (30), we have that there exists a
positive constant c such that

∑n
i=1 K2

(m),i(K(m),i + λ)−2 ≥ c > 0. (A43)

Then, by Theorem 2, Equation (A42) and Equation (A43), Corollary 3 holds.

58



B Further Details on Prediction Estimators

In this section, we complement the discussion in Section 2 and provide additional details on the
considered forecasting estimators, which are also employed as competitive methods in the fore-
casting exercise. We first review the penalized regression that combines penalty terms with loss
functions in a linear framework. We then discuss four commonly employed tree-structured mod-
eling techniques. Since SVR and LSSVR are closely related to our advocated Mallows-type aver-
aging learning, we further show the details about formulation and estimation of SVR and LSSVR
in the last subsection.

B.1 Penalized Regression

If we combine a mathematical penalty term with the loss function to be optimized,43 this brings
about the so-called penalized regression which has led to a wide range of applications. Two popu-
lar proposals have been made in the literature about how to control the complexity of fitted values
through penalty terms:

1. Constrain the sum of absolute values of regression coefficients to be less than some constant
C (sometimes called an L1-penalty); and

2. Constrain the sum of squared regression coefficients to be less than some constant C (some-
times called an L2-penalty).

In this subsection, we briefly review three widely-applied penalized regressions: ridge regression,
the least absolute shrinkage selective operator (LASSO), and the elastic net under the customary
setting of C = 0.

Ridge regression imposes a constraint on the sum of squared non-intercept coefficients (also
known as L2-penalty), that is,

β̂∗ = arg min
β∗

 T

∑
t=1

(
yt − β0 −

p

∑
i=1

βixit

)2

+ λ
p

∑
i=1

β2
i

 ,

where β∗ = [β1, ..., βp]> does not include β0 and λ is a tuning parameter that determines the
severity of penalty. In practice, we either predetermine λ or compute it via certain validation
algorithm (for example, five-fold cross-validation).

It follows that the ridge regression estimator is

β̂∗ =
(

X>∗ X∗ + λI
)−1

X>∗ y, (A44)

43The penalty imposing greater losses as a mean function becomes more complicated. For greater complexity to
be accepted, the fit must be improved by a degree larger than the penalty. Therefore greater complexity has to be
worth it. Strategies designed to control the magnitude of coefficients through penalty terms are also called shrinkage
or regularization.
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where I is a p × p identity matrix. Note that the matrix X∗ is formed by the original regressor
matrix X dropping the column of ones for the intercept and β0 is estimated separately.44 Once β̂∗
is obtained, the intercept β̂0 is simply the mean of the vector y−X∗ β̂∗. Define the ridge coefficient
vector as β̂Ridge = [β̂0, β̂>∗ ]

>. The forecast of yt can be given following Equation (2) from the main
text by replacing β̂ with β̂Ridge. That said, the forecast of yT+h is simply ŷT+h = X>T+h β̂Ridge.

The ridge regression reduces the mean squared error through a trade-off between the predic-
tion bias and the variance. With non-zero λ, the estimator (A44) is clearly biased. However, the
reduced variance of the ridge estimates often results in a smaller mean square error than that of
the least-squares estimates.

If one adopts the L1-penalty by restricting the sum of absolute values of the non-intercept co-
efficients, the corresponding regression procedure is known as LASSO (Tibshirani, 1996). Similar
to the ridge regression, LASSO minimizes the following penalized residual sum of squares:

β̂∗ = arg min
β∗

 T

∑
t=1

(
yt − β0 −

p

∑
i=1

βixit

)2

+ λ
p

∑
i=1
|βi|

 .

Unlike ridge regression, the LASSO penalty leads to a nonlinear estimator for β̂∗ without an an-
alytical expression. A numerical method via the quadratic programming is needed in this case.
Once we estimate β̂∗, the intercept term β̂0 can be computed in the same fashion as in ridge re-
gression. The LASSO coefficients is denoted as β̂LASSO. The forecast of yT+h is straightforward:
ŷT+h = X>T+h β̂LASSO.

For the LASSO regression, λ is also a tuning parameter, which could yield the usual least
squares estimates with λ equal to zero. As the value of λ increases, the regression coefficients are
shrunk towards zero. The LASSO regression is capable of shrinking coefficients to exactly zero
without setting λ = ∞. Therefore, it can be used as a variable selection tool in practice. This
concept is illustrated geometrically in James et al. (2017).

Zou and Hastie (2005) pointed out that the LASSO solution paths are unstable when predictors
are highly correlated. If there is a group of variables with strong correlations, LASSO is indifferent
among various predictor sets. To overcome such limitation, the elastic net is proposed by Zou and
Hastie (2005) as an improved version of LASSO. The elastic net is a mixture of ridge regression
and LASSO carrying the below penalty

λ

[
(1− α)

p

∑
t=1

β2
t + α

p

∑
t=1
|βt|
]

, (A45)

where α ∈ [0, 1] is called the mixing parameter and λ has the usual interpretation as in ridge and
LASSO regressions. The L1-penalty in (A45) implements variable selection, and the L2-penalty
brings the grouping effect and stabilizes the L1 solution path. The elastic net includes LASSO and
ridge as its special cases when α = 1 and α = 0, respectively.

44By default, the coefficient vector β̂∗ is computed after standardizing all the predictors to have a mean zero and a
standard deviation of one. The model does not include a constant term, and consequently X∗ should not contain a
column of ones.
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B.2 Tree-Structured Learning Methods

This section provides additional descriptions about four major tree-structured learning algorithms
used in our exercise. The first method is termed regression tree (RT) proposed by Breiman et al.
(1984).45 Suppose we collect a standard data set {yt, Xt}T

t=1. Starting from the original data (i.e.,
the root node), the trick for researchers in applying RT is to find the best split where two stages
of searches are usually undertaken. At the first stage, for each predictor all possible binary splits
of the predictor values are considered and the best split is determined afterwards.46 With the
best split of each predictor, the best split overall is determined at the second stage, which acts as
the winning split to separate the data. Now there are two partitions of the original data. Such
partitioning process can be implemented in a recursive fashion until we reach a pre-determined
boundary. There are many tuning parameters (also called hyperparameters in the machine learn-
ing literature) that need to be decided or calculated beforehand such as the splitting criterion
function, the minimum leaf size, the stopping rule, etc.

Data in the terminal nodes (also known as tree leaves) are considered as homogeneous, hence
a simple average of the observations of yl within tree leaf l is used as the fitted value. If there are
L tree leaves in total, ∪L

l=1yl is equivalent to the original data y, and ∑L
l=1 Tl = T with Tl being the

number of observations in tree leaf l. To make predictions based on XT+h, we simply drop XT+h
down the tree and end up with a specific tree leaf l. The prediction, ŷT+h, is measured by ȳt∈l , a
simple average of the associated observations of the dependent variable at final leaf l.

We next consider bootstrap aggregating decision trees or bagging developed by Breiman (1996).
In contrast to the RT method, the bagging (BAG) method involves a training process where the
level of training (cycles of learning) is predetermined. The BAG algorithm is summarized as:

1. Take a random sample of size T with replacement (that is, bootstrapping) from the original
data. Iteration of the bootstrapping process for B times generates B new training sets. Denote
the collection of B bootstrap samples as {y(b)t , X(b)

t }T
t=1 for b = 1, ..., B.

2. Construct a regression tree based on {y(b)t , X(b)
t }T

t=1.

3. Use the regression tree to make the prediction ŷ(b)T+h based on XT+h.

4. Repeat steps (1) to (3) for B times and obtain ŷ(b)T+h for each b.

5. Take a simple average of the B forecasts ŷT+h = 1
B ∑B

b=1 ŷ(b)T+h as the final forecast.

Besides the conventional tuning parameters for constructing a tree, we also need to determine
the value of B for bagging. In most cases, the more bootstrap samples in the training process,

45Note that the full name of the method is Classification and Regression Trees (CART), of which classification mostly
deals with categorical responses of non-numeric symbols and texts, whereas regression trees concentrate purely on
quantitative response variables. Given the numerical nature of our study, we only utilize the regression tree part of
CART.

46A best split is determined by improvement of a given criterion function, for example, the reduction of SSR. A simple
regression of {yt, Xt}T

t=1 will yield a sum of squared residuals, SSR0. Suppose we can split the original sample into two
sub-samples such that T = T1 + T2. The RT method finds the best split of a sample in terms of minimizing the sum of
squared residuals (SSR) from the sample partitioning. That is, the aggregated SSR values computed from regressions
with each sub-sample should obey the relationship: SSR1 + SSR2 ≤ SSR0.
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the better the forecast accuracy. However, a large number of bootstrap samples also imply longer
computational time. A balance needs to be reached between accuracy and time constraints.

Random forest (RF) by Breiman (2001) can be regarded as a modification of bagging that re-
duces the possibility of yielding correlated trees. Similar to bagging, RF also constructs B new
trees with bootstrap samples generated from the original data set. But for RF, as each tree is built,
we take a random sample (without replacement) of q predictors out of the total p (q < p) predic-
tors before each splitting. The default value for q is set to b1/3qc. Such a process is repeated for
each node. Briefly speaking, if q = p, RF is equivalent to BAG. Eventually, we end up with B trees
just as bagging and the final RF forecast is calculated as the simple average of forecasts over all
the generated trees.

Both BAG and RF rely on the bootstrap resampling process. Asymptotically, we exploit only
63.2% (1− 1/e ≈ 63.2%) of the unique observations of {yt, Xt}T

t=1 with some repeated observa-
tions. The remaining observations are called out-of-bag (OOB) observations, which become an
ideal test set to evaluate the constructed tree. For each input observation, denoted as Xi, we can
find the prediction ŷ(b)i from each bootstrap sample b which does not contain Xi. Theoretically, the
number of such predictions should be around 0.37B. We average these predictions to obtain the
OOB averaged prediction ŷoob

i . The assessment of bagging and RF performance is based on the
OOB error, calculated as yi − ŷoob

i . Finally, we compute its SDFE as our benchmark

SDFE =

√√√√ 1
T

T

∑
i=1

(yi − ŷoob
i )2

to evaluate all the observations and select optimal values for the tuning parameters (e.g., mini-
mum tree leaf size).

The RF method can respond to highly local features of the data, since it depends on a very
flexible fitting procedure. This flexibility sometimes comes with a risk of overfitting the data.
Therefore boosting is employed as the fourth tree-structured learning method in our paper, which
usually serves as a popular alternative ensemble method to random forests. Boosting works by
sequentially assigning more weights to the residuals from the prediction of previously grown
trees to create the new tree. After a large number of trials, boosting gradually improves its local
prediction in areas where it shows poor performance previously. As described in Hastie et al.
(2009, Chapter 10), boosting combines the outputs of many weak fitting functions to produce a
powerful committee. Boosted trees are typically shallow, with the maximum depth of variable
interactions often set to be less than 4 or 5.

In this paper, we consider a simple least squares boosting (LSB) that fits RT ensembles. In line
with Hastie et al. (2009, Chapter 10), the LSB method applies a new learning RT at each step to
the difference between the observed response and the aggregated prediction of all RT previously
grown.47 More formally, boosting fits an additive basis function expansion that takes the below
form

f (X) =
K

∑
k=1

δkb(X; γk),

where b(X; γ) ∈ R are usually simple functions of the multivariate argument X, featured by a
set of parameters γ = (γ1, . . . , γk) for a total of K trees. The associated expansion coefficients are

47Many of the boosting methods are designed for classification issues. See, AdaBoost.M1 by Freund and Schapire
(1997) for example.
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captured by δk for k = 1, 2, ..., K. The above models are fit by minimizing a loss function averaged
over the training set,

min
{δk ,γk}K

1

T

∑
t=1

L

(
yt,

K

∑
k=1

δkb(xt; γk)

)
. (A46)

For the LSB method, the loss function is represented by squared error loss,

L
(
y, f (X)

)
=
(
y− f (X)

)2. (A47)

B.3 SVR-type Learning Algorithms

Another popular machine learning method that responds to local characteristics of the data is
support vector regression (SVR) introduced by Drucker et al. (1996). SVR can be regarded as a re-
gression extension of support vector machine (SVM) to consider real-valued outcome variables.48

The SVR framework considers the nonlinear formulation (4) from the main text and approximates
the nonlinear regression function f (Xt) with a set of basis function {hs(Xt)}S

s=1:

yt = f (Xt) + et =
S

∑
s=1

βshs(Xt) + et = β>h(Xt) + et, (A48)

where β = [β1, · · · , βS]
> and h(·) : Rp → RS is a set of basis functions on Xt.49 Note that the set

of basis functions can be infinite-dimensional. That is, S can go to infinity, and we do not (need to)
know the explicit form of the basis functions.

We estimate the coefficients β through the minimization of

L(β) =
T

∑
t=1

Ve (yt − f (Xt)) + λ
S

∑
s=1

β2
s , (A49)

where the loss function

Vε(r) =
{

0 if |r| < ε
|r| − ε otherwise

is called an ε-insensitive error measure that ignores errors of size less than ε. As part of the loss
function Vε, the parameter ε is usually predetermined. On the other hand, λ is a more traditional
regularization parameter that can be estimated by cross-validation.

The minimization problem in (A49) can be modified into

min
β,ξ,ξ∗

J(β, ξ, ξ∗) = λβ>β +
T

∑
t=1

(ξt + ξ∗t ),

such that
yt − β>h(Xt) ≤ e + ξt, β>h(Xt)− yt ≤ e + ξ∗t , ξt, ξ∗t ≥ 0

48SVM is a supervised learning algorithm that analyzes data for classification applications. The theoretical back-
ground is provided in Vapnik (1996). As pointed out by Lehrer and Xie (2022), SVM permits complex nonlinear rela-
tionships through transforming the original data into a high dimensional space via a predetermined mapping scheme.

49Following Hastie et al. (2009, Chapter 12), we ignore the intercept for simplicity. In practice, this is usually achieved
by first standardizing the data for estimation, and then converting the data back for forecasting.
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for t = 1, ..., T, where ξt and ξ∗t are non-negative slack variables that are chosen to satisfy the above
conditions. The Lagrangian for this problem is

L(β, ξ, ξ∗; α′, α∗, η′, η∗) = λβ>β +
T

∑
t=1

(ξt + ξ∗t )−
T

∑
t=1

α′t(e + ξt − yt + β>h(Xt))

−
T

∑
t=1

α∗t (e + ξ∗t + yt − β>h(Xt))−
T

∑
t=1

(η′tξ
′
t + η∗t ξ∗t )

with positive Lagrangian multipliers α′t, α∗t , η′t, η∗t ≥ 0. Take the first order condition and substitute
all the parameters in terms of α′ and α∗. The dual problem of the above Lagrangian can be written
as

min
α′t,α

∗
t

ε
T

∑
t=1

(α̂∗t + α̂′t)−
T

∑
t=1

yt(α̂
∗
t − α̂′t) +

T

∑
t,t′=1

(α̂∗t − α̂′t)(α̂
∗
t′ − α̂′t′)h(Xt)

>h(Xt′), (A50)

subject to the constraints

0 ≤ α̂∗t , α̂′t ≤
1

2λ
,

T

∑
t=1

(α̂∗t − α̂′t) = 0, α̂′tα̂
∗
t = 0,

for all t = 1, . . . , T. The non-zero values of α̂∗t − α̂′t are usually treated as the support vector.

Define K(Xt, Xt′) = h(Xt)>h(Xt′) ≡ ∑S
s=1 hs(Xt)hs(Xt′) as a kernel function for any input

vectors Xt and Xt′ . The solution of Equation (A49) takes the form

f̂ (x) =
T

∑
t=1

(α̂∗t − α̂′t)K(x, Xt), (A51)

for any input vector x, where α̂∗t and α̂′t are the solutions of Equation (A50).

As Equations (A50) and (A51) indicate, no explicit form of the basis function is needed in the
calculation process. It is the kernel function that plays a crucial role SVR estimation. In practice,
the kernel function is usually predetermined. Common choices of kernel functions are presented
below:

Linear : K(x, Xt) = x>Xt,

Gaussian : K(x, Xt) = exp
(
−‖x− Xt‖2

2σ2
x

)
,

Polynomial : K(x, Xt) = (γ + x>Xt)
d,

where σ2
x , γ, and d are the hyperparameters that can be tuned via cross-validation.

Suykens and Vandewalle (1999) proposed a modification to the classic SVM which leads to
solving a set of linear equations under a least-square loss function, henceforth LS SVM. In gen-
eral, the LS SVM is more computationally efficient than the classic SVM and is capable of dealing
with large dataset with high dimensionality. The LS SVM can be implemented to solve for both
classification and regression estimation (see Suykens et al. (2002) for an extension to regression
applications). In this paper, we mainly focus on LS SVM for regression (LSSVR). Similar to the

64



minimization problem in (A49), the LSSVR considers minimizing

C(β) =
T

∑
t=1

(yt − f (Xt))
2 + λ

S

∑
s=1

β2
s . (A52)

Compared to the classic SVR formulation, a squared loss function is taken for the error variables in
(A52) for LSSVR. In fact, the problem in (A52) can be regarded as a nonparametric ridge regression
function formulated in the feature space.

We can construct the Lagrangian equation based on (A52)

L(β, α) = C(β)−
T

∑
t=1

αt

(
β>h(Xt)− yt

)
,

where α = [α1, ..., αT]
> are Lagrange multipliers for LSSVR, which can be substituted for β. We

solve for α and obtain α̂ = (HH> + γIT)
−1y, where H = h(X) is the implicit basis matrix and

HH> is the T× T kernel matrix with the {tt′th} element being K(Xt, Xt′) as in (A51). The resulting
LSSVR model for estimation is described by

f̂ (x) =
T

∑
t=1

α̂tK(x, Xt),

where α̂t is the estimated Lagrangian multiplier and K(·, ·) is the predetermined kernel function
that can be linear, Gaussian, or polynomial. Note that when K(·, ·) is linear, the LSSVR estimate is
identical to the ridge regression discussed in Appendix B.1.

C Derivation of PLSSVR(X) with Intercept Terms

In line with De Brabanter et al. (2011), if the formulation of LSSVR includes an intercept term β0
such that

yt = f (Xt) + et = β0 +
S

∑
s=1

βshs(Xt) + et for t = 1, ..., T, (A53)

the optimization problem in LSSVR considers

min
β

L(β) =
T

∑
t=1

(yt − f (Xt))
2 + λ

S

∑
s=1

β2
s

subject to (A53), where β = [β0, ..., βS]
> = [β0, β>∗ ]

>. We can construct the following Lagrangian
equation

L(β, α) = L(β)−
T

∑
t=1

αt

(
β0 +

S

∑
s=1

βshs(Xt)− yt

)
,

where α = [α1, ..., αT]
> are Lagrange multipliers.

Taking the first-order conditions for optimization and substitute for β∗, we obtain the follow-
ing solution [

0 ι>

ι HH> + λIT

] [
β̂0
α̂

]
=

[
0
y

]
, (A54)
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where ι = [1, ..., 1]>, H is the implicit basis matrix, and HH> is the T × T kernel matrix with the
{tt′th} element being the kernel function K(Xt, Xt′). For simplicity, we define

Ω ≡ (HH> + λIT)
−1

and solve for β̂0 and α̂ from (A54) such that

α̂ = Ω(y− β̂0ι)

β̂0 = ι>Ωy
/

ι>Ωι.

The resulting LSSVR model now has the form

f̂ (X) = HH>α̂ + β̂0ι

= HH>Ω(y− β̂0ι) + β̂0ι

= HH>Ωy + (ι− HH>Ωι)β̂0

=

(
HH>Ω +

(ι− HH>Ωι)ι>Ω
ι>Ωι

)
y,

= PLSSVR(X)y,

where

PLSSVR(X) ≡ HH>Ω +
(ι− HH>Ωι)ι>Ω

ι>Ωι
. (A55)

The no-intercept version of PLSSVR(X) in (20) can be rewritten as ΩHH>. Note that the T × T
matrix HH>Ω is symmetric, since

HH>(HH> + λIT)
−1 = HH>

(
(HH>)−1 − λ(HH>)−1(HH> + λIT)

−1
)

= IT − λ(HH> + λIT)
−1

following the Woodbury matrix identity. Therefore, the no-intercept version of PLSSVR(X) is a
special case of (A55) that excludes the second term on the right-hand-side of (A55).

D Monte Carlo Simulation

In this section, we conduct Monte Carlo simulation to evaluate the out-of-sample performance
of the proposed averaging machine learning methods relative to other competitive estimators.
Inspired by Lehrer and Xie (2022), we consider the true DGP of the response variable to follow the
below equation:

yt = sin(x1t) + cos(x2t) + et for t = 1, ..., T + 1.

Suppose that we have access to a set of p predictors Xt = [x1t, x2t, ..., xpt]> and therefore p− 2 of
them are redundant. The exact identification of p − 2 redundant variables is unknown to us as
what happens usually in reality. All the {xit}

p
i=1 follow xit ∼ i.i.d.N(0, 4) for i = 1, ..., p and the

error term et can draw from any of the following two distributions to create homoskedasticity and
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pure random heteroskedasticity

et ∼
{

N(0, 1) under homoskedasticity,
N(0, 0.05x2

1t + 0.01) under heteroskedasticity.

We generate the data for t = 1, ..., T + 1 and use T periods of the sample as the training set. Finally,
the forecasts of yT+1 are made based on the test set of XT+1 and the trained forecast methods.

Forecasts of yT+1 are calculated from the conventional learning methods and model averaging
learning methods: (1) LS; (2) LASSO; (3) RT; (4) BAG; (5) RF; (6) SVRL; (7) SVRG; (8) LSSVRG; (9)
LSSVRSA

G ; (10) LSSVRMA
G1 ; and (11) LSSVRMA

G2 .

In this experiment, we set p = 4. Alternative values of p have been tried and the results
remain the same qualitatively. To facilitate replication, the associated hyperparameters are set to
their default values.50 The major ones include and are not limited to:

1. The penalty coefficient is set to one for LASSO and SVR-type methods;

2. The minimum leaf size is set to one for all the tree-type methods;

3. The learning cycles are assumed to be 100 for all ensemble methods;

4. The number of selected predictors is set at bp/3c for the RF method;

5. σx = 1 for the Gaussian kernel;

6. Candidate model sets are constructed by a full combination of all the included predictors.

For each method, the number of replications is set to B = 1000 and a list of forecasts ŷ(b)T+1 are

compared with the actual y(b)T+1 for b = 1, ..., B. The forecasting performance is assessed by the
following two risks:

SDFE =

√√√√ 1
B

B

∑
b=1

e2
(b), MAFE =

1
B

B

∑
b=1
|e(b)|,

where e(b) = y(b)T+1 − ŷ(b)T+1 is the forecast error in the bth simulation.

Table A1 reports simulation results for T = 50 with the best result under each risk in boldface.
The first column reports competitive forecasting strategies, whereas the next two columns and
the last two columns correspond to the outcomes under homoskedasticity and heteroskedasticity,
respectively.

Several main findings are worth stressing. The least square estimates (henceforth, LS) of a
generalized unrestricted model with all the p predictors yield relatively high risks in general.
LASSO, SVRL and SVRG also display poor performance in this case. The performance of RT is
disappointing under homoskedasticity. In contrast, its accuracy is improved dramatically under
heteroskedasticity. The remaining learning algorithms (i.e., BAG, RF, LSSVRG and LSSVRSA

G ) per-
form much better than conventional regressions. Most importantly, we find out that the proposed
averaging methods (LSSVRMA

G1 and LSSVRMA
G2 ) always improve on its base method LSSVRG in

terms of yielding lower SDFE and MAFE. Under both homoskedasticity and heteroskedasticity,

50We also consider choosing the hyperparameters via five-fold cross-validation, which increases the total computa-
tional burden dramatically without qualitatively changing the outcomes. These results are available upon request.
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Table A1: Simulation Results on Risk Comparison for T = 50
Method Homoskedasticity Heteroskedasticity

SDFE MAFE SDFE MAFE
LS 1.4546 1.1620 1.2652 0.9903
LASSO 1.4069 1.1317 1.2382 0.9870
RT 1.5026 1.1940 1.1700 0.8758
BAG 1.2579 1.0005 1.0035 0.7503
RF 1.2540 1.0007 1.0155 0.7672
SVRL 1.5039 1.1947 1.3076 1.0062
SVRG 1.3820 1.1062 1.1888 0.9354
LSSVRG 1.2854 1.0264 1.0507 0.7977
LSSVRSA

G 1.2532 1.0001 1.0350 0.7997
LSSVRMA

G1 1.2423 0.9908 0.9418 0.6909
LSSVRMA

G2 1.2436 0.9918 0.9528 0.7011

Note: Bold numbers denote the method with the best perfor-
mance in that column of the table.

LSSVRMA
G1 has the best relative performance according to all criteria, although the performance of

its heteroskedasticity-robust version, LSSVRMA
G2 , is fairly close. Overall, we observe lower risks in

the heteroskedastic scenario.

On the other hand, LSSVRSA
G exhibits less impressive performance. This finding is not sur-

prising since the set of candidate strategies is constructed from the full permutation of all the
predictors without any prior screening. Obviously, candidate models that incorporate only the
irrelevant predictors, tend to generate unsatisfactory predictions. The use of equal weights in
LSSVRSA

G is unable to diminish the impact of poor forecasts and thus causes the efficiency loss.

We extend the above exercise with expanding training sample sizes of T = 50, 100, ..., 500. The
outcomes are plotted in Figure A1, in which panels (a) to (d) report the SDFE under homoskedas-
ticity, the MAFE under homoskedasticity, the SDFE under heteroskedasticity, and the MAFE under
heteroskedasticity, respectively. To avoid the figure being cluttered, we only present the results by
LS, LSSVRG, LSSVRSA

G , and LSSVRMA
G under C′1(w), which are captured by dotted, dash-dotted,

dashed, and solid lines, respectively. For presentation convenience, we standardize all results by
the risk of LS. The sample size is presented on the horizontal axis and the estimated relative risk
is displayed on the vertical axis.

The pattern in Figure A1 is consistent. The results by LS are deliberately fixed at one for all
T since it acts as the benchmark. The lines of risks by LSSVRG, LSSVRSA

G , and LSSVRMA
G are

all downward sloping indicating that their gains relative to LS strengthen as the sample size T
increases. LSSVRSA

G is outperformed by LSSVRG in most cases. In contrast, LSSVRMA
G is always

below LSSVRG in each subplot, which verifies the advantage of LSSVRMA
G as opposed to LSSVRG.

We also notice that the relative risks by LSSVRMA
G are lower under heteroskedasticity than those

under homoskedasticity.

It is also interesting to further investigate the improvement of MAML over its base method.
As a representative case, the comparison between LSSVRMA

G and LSSVRG is conducted through
the computed improvement ratio (IR)

IR =
rLSSVRG − rLSSVRMA

G

rLSSVRMA
G

× 100%, (A56)

where rLSSVRG and rLSSVRMA
G

denote the respective risks by LSSVRG and LSSVRMA
G . Results for
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Figure A1: Relative Performance with Varying Sample Sizes
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(a) SDFE under Homoskedasticity
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(b) MAFE under Homoskedasticity
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(c) SDFE under Heteroskedasticity
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(d) MAFE under Heteroskedasticity

Notes. The figure reports the SDFE and MAFE estimates of LSSVRG, LSSVRSA
G , and LSSVRMA

G relative to LS estimates
of a generalized unrestricted model with all the p predictors. Panels (a) and (b) present results for the

homoskedasticity scenario, while panels (c) and (d) present outcomes for the heteroskedasticity scenario.
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Figure A2: Improvement Ratio of LSSVRMA
G relative to LSSVRG
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(a) SDFE under Homoskedasticity

100 200 300 400 500

Training Sample Size

4

4.5

5

5.5

6

6.5

7

Im
pr

ov
em

en
t R

at
io

(b) MAFE under Homoskedasticity
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(c) SDFE under Heteroskedasticity

100 200 300 400 500

Training Sample Size

8

10

12

14

16

18

Im
pr

ov
em

en
t R

at
io

(d) MAFE under Heteroskedasticity

Notes. The figure reports the risk improvement ratios of LSSVRMA
G relative to LSSVRG. Panels (a) and (b) present

results for the homoskedasticity scenario, while panels (c) and (d) present results for the heteroskedasticity scenario.

T = 50, ..., 500 are depicted in Figure A2, where panels (a) to (b) correspond to the IR ratios under
homoskedasticity and panels (c) to (d) present the IR ratios under heterokedasticity. The hori-
zontal axis represents the training sample size and the vertical axis displays the estimated im-
provement ratio. The outcomes further confirm that there are benefits from the model averaging
estimators, with higher improvement ratios in the case of heteroskedasticity and smaller sample
sizes.
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E Locations of 35 Stores in China

Table A2 provides a complete list of 35 stores of the footwear brand and their locations in China
as of March 25, 2022, the end of our sample period. The city with the most number of stores is
Shanghai, with seven retail stores, which is about 20% of all the retail stores in China. All the
stores in Shanghai are evenly spread across six districts. Chongqing, Nanjing and Beijing are the
next three cities in the ranking, with a total number of 12 stores.

Table A2: Geographic Locations of 35 Stores
Number City District

1 Shanghai Qingpu
2 Guangzhou Zhuhai
3 Shenyang Hunnan
4 Shanghai Pudong
5 Xi’an Lintong
6 Nanjing Xixia
7 Nanjing Jiangning
8 Wuxi Wuxi
9 Nanjing Jiangning

10 Chongqing Jiulongpo
11 Xi’an Gaoxin
12 Shijiazhuang Luquan
13 Kunming Guandu
14 Chongqing Yubei
15 Chongqing Jiangbei
16 Shanghai Jing’an
17 Hefei Gaoxin
18 Beijing Chaoyang
19 Tianjin Wuqing
20 Shanghai Pudong
21 Wuhan Huangpo
22 Beijing Chaoyang
23 Xianyang Weicheng
24 Shanghai Putuo
25 Hangzhou Yuhang
26 Beijing Dongcheng
27 Chengdu Pixian
28 Nanjing Xuanwu
29 Chongqing Bishan
30 Chongqing Beibu
31 Hangzhou Qianjiang
32 Shanghai Yangpu
33 Shanghai Xuhui
34 Chengdu Jinjiang
35 Guangzhou Tianhe
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F Comprehensive Overview of Data Source and Promotion Strategies

Our study focuses on analyzing weekly sales data from Crocs Retail, LLC (China) between July 5,
2021, and March 25, 2022, comprising 35 stores and 38 weeks. The dataset, after cleaning, contains
1,168 observations. The primary variables of interest are the weekly number of effective in-store
customers and the corresponding sales revenue at the store level. We explore factors affecting
future sales, including past sales records, one-week-ahead weather forecasts at the district level,
and different promotion activities. We categorize promotion strategies as (i) promotion gifts, (ii)
promotion combos, and (iii) promotion discounts. While these strategies are available to all stores,
shop assistants guide customers on their options, and multiple promotions can be used concur-
rently in a single purchase. The main objective is to understand the impact of various promotion
strategies on Crocs store-level sales.

For concreteness, the four plots in Figure A3 exemplify the three promotion strategies. A gift
item is usually an accessory or a tag-along that values much less than the main item. As shown in
Figure A3(a), the four Jibbitz are free gifts with purchase of the clogs. Promotion combo always
involves buying a bundle of items together like the five Jibbitz in Figure A3(b). The “buy one
get one free” promotion in Figure A3(d) gives another example of promotion combo, where the
promotion item is not an accessory and is restrictive to be of the same type as the purchased item
(possibly with varying colors or sizes). Both gift and combo promotions are constrained to certain
items decided by the store managers, which leaves the customers with limited choices. Promotion
discount on the other hand is more flexible. Although the discount percentages are tiered by the
total amount of purchase as displayed in Figure A3(c), there are usually no constraints on the
applicable items.

Figure A3: Illustration of Promotion Strategies
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G Quasi-Experimental Analysis of Three Promotion Predictors

In this section, we explore causality between three promotion predictors and two sales response
variables using quasi-experiments derived from the original dataset. We begin by forming treated
groups that consist of observations simultaneously implementing all three promotion strategies:
Gift, Combo, and Discount. We then construct three untreated groups for each individual promo-
tion strategy: Gift, Combo, and Discount. Each untreated group consists of entries that have never
implemented a particular promotion strategy, but still have the history of utilizing the other two
strategies. The above approach allows us to control for the influence of other promotion strate-
gies and enables a more accurate measurement of the treatment effect from the target promotion
strategy.

Due to the inherent nature of the original sample, we can treat these exercises as quasi-natural
experiments. The untreated groups for Gift, Combo, and Discount strategies comprise 943, 707,
and 796 observations, respectively, and each corresponding treated group consists of 669 obser-
vations. In our analysis, we employ the fixed effect regression on each sample and present the
resultant treatment effect estimates in Table A3.

The outcomes imply that the estimated treatment effects on the two response variables, namely
the number of effective customers and sales revenue, indicate insignificance for the Gift promo-
tion. Conversely, they demonstrate significant positivity for the Combo promotion and significant
negativity for the Discount promotion at a 1% level of significance. These findings are consistent
with the results of the fixed effect regression shown in Table 2. In conclusion, the findings from this
exercise establish a causal relationship between the three promotion strategies and the two sales
responses, providing additional support for the subsequent evaluation of the marginal effects of
these promotion strategies.

Table A3: Treatment Effect Estimates from Fixed Effect Regressions
Gift Combo Discount

# of Customers Sales Revenue # of Customers Sales Revenue # of Customers Sales Revenue
Treatment Effect 0.0678 0.0623 1.2429∗∗∗ 0.7099∗∗∗ -0.2616∗∗∗ -0.1596∗∗∗

(0.0973) (0.0524) (0.2748) (0.1953) (0.0594) (0.0413)

Notes. This table presents treatment effect estimates obtained from a panel regression with fixed effects applied to the quasi-natural
experiments. The numbers in parentheses represent the heteroskedasticity-robust standard errors. Additionally, superscripts *, **,
and *** denote significance levels at 10%, 5%, and 1%, respectively, for the associated coefficients.
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H Additional Empirical Results

We also examine the effect of alternative bootstrap on the ranking of predictor importance. Con-
ventional bootstrap is usually executed on the cross-sectional data since it is unnecessary to con-
sider the chronological order for each store in our panel data. Here we consider the moving
block bootstrap formulated by Künsch (1989) as an alternative resampling method. Instead of
performing single-data resampling, Künsch (1989) advocated the idea of resampling blocks of ob-
servations at a time. By retaining the neighboring observations together within each block, the
dependence structure of the random variable at short lag distances is preserved. See Kreiss and
Lahiri (2012) for a detailed literature review.

We treat the store-wise data as blocks for the block bootstrap method. In total, we have 35
blocks corresponding to the 35 stores. Table A4 present the top 10 most important predictors
using two alternative bootstrap methods, where LSSVRMA

G1 is employed as the trained strategy.
Columns 2 to 4 replicate the results of LSSVRMA

G1 from Table 5 by the regular bootstrap. Findings
by block bootstrap are presented in Columns 4 to 5. The two response variables are listed in the
second row for regular bootstrap and block bootstrap, respectively.

As we can see, the results by block bootstrap are virtually identical to those by regular boot-
strap. The previous sales predictors are still highly important and the two promotion variables
PCombo and PGi f t remain to be more important than PDiscount like what demonstrated in Table 5.
The above finding confirms the robustness of our ranking to alternative bootstrap methods.

Table A4: Top 10 Most Important Predictors Using Alternative Bootstraps
Ranking Regular Bootstrap Block Bootstrap

# of Customers Sales Revenue # of Customers Sales Revenue
1 lag(Revenue) lag(Revenue) lag(Revenue) lag(Revenue)
2 lag(Customer) lag(Unit) lag(Customer) lag(Unit)
3 lag(Unit) lag(Customer) lag(Unit) lag(Customer)
4 PGi f t PCombo PCombo TempMax
5 PCombo PGi f t TempMax PCombo
6 TempMax TempMax PGi f t PGi f t
7 TempAvg TempAvg TempAvg TempAvg
8 PDiscount Off Rate Off Rate Off Rate
9 Off Rate PDiscount TempMin PDiscount

10 TempMin TempMin PDiscount TempMin

Notes: The above results are formed on LSSVRMA
G1 .
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H.1 Pooling Vs. Individual

In this section, we compare the out-of-sample performance of the pooling LS regression (denoted
as LSpool) with that of the store-wise individual LS regressions (denoted as LSindividual). The pooling
LS assumes that all the stores share common coefficients, whereas the individual LS models ac-
knowledge store heterogeneity by treating each store-wise subsamples independently but ignores
any possible correlation among the stores.

The forecasting exercise in the main text is replicated here. We use the first 20 weeks of data as
the training set and conduct one-week-ahead forecasts for each store. Note that for the individual
LS regressions, the (subsample of) training set is a simple time series. We calculate SDFE and
MAFE of the two approaches and present the results in Table A5. Results by LSpool are identical to
those from the main text.

Table A5: Forecasting Results of Sales Response Variables by Two LS Regressions
Method SDFE MAFE

# of customers Sales revenue # of customers Sales revenue
LSpool 33.3456 15.9741 19.2915 9.1839
LSindividual 451.3338 166.4492 82.9053 38.8010

Notes. The results of the prediction exercise for the two sales responses are reported
in this table. The risks of the forecasting exercise are evaluated by the SDFE and
MAFE presented in the left and right panels, respectively. Bold numbers denote the
estimator with the best performance in that column of the table.

As we can see, the forecasting accuracy by LSpool is much higher than LSindividual in all cases
which supports our regression setup that pools all the store-wise data together. This evidence
coincides with the findings by Ali et al. (2009) that data pooling always improves model perfor-
mance. This is understandable since the pooling regression improves the forecast accuracy of
individual store sales by utilizing information common to all the stores. On the one hand, the
poor performance of individual store-level regressions implies that ignoring the potential correla-
tion among the stores can be quite costly for forecasting accuracy. We also note that individual LS
regression may suffer from severe curse of dimensionality as the total number of observations is
always no larger than 20 for each time series model.
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