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Abstract

Modeling multivariate stochastic volatility (MSV) can be challenging, particularly

when both variances and covariances are time-varying. In this paper, we address these

challenges by introducing a new MSV model based on the generalized Fisher trans-

formation of Archakov and Hansen (2021). Our model is highly flexible and ensures

that the variance-covariance matrix is always positive-definite. Moreover, our approach

separates the driving factors of volatilities and correlations. To conduct Bayesian anal-

ysis of the model, we use a Particle Gibbs Ancestor Sampling (PGAS) method, which

facilitates Bayesian model comparison. We also extend our MSV model to cover the

leverage effect in volatilities and the threshold effect in correlations. Our simulation

studies demonstrate that the proposed method performs well for the MSV model. Fur-

thermore, empirical studies based on exchange-rate returns and equity returns show

that our MSV model outperforms alternative specifications in both in-sample and out-

of-sample performances. Overall, our novel MSV model and inferential method offer a

more reliable and flexible framework for modeling time-varying variances and covari-

ances of financial assets.
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1 Introduction

The characterization of the dynamic behavior of return volatility is crucial for asset pricing,

portfolio allocation, and risk management. Univariate volatility models have been exten-

sively studied in the literature since the seminal paper by Engle (1982). These models can

be broadly categorized into two types: GARCH-based and stochastic volatility (SV) models.

In recent decades, there has been a growing focus on multivariate financial data analysis.

It is now widely recognized that analyzing asset returns individually is insufficient, and the

dependence structure among assets must be taken into account. To address this, a plethora

of multivariate extensions to univariate GARCH and SV models have been proposed and

applied in practice. Multivariate GARCH (MGARCH) models have been extensively re-

viewed in Bauwens et al. (2006), while multivariate SV (MSV) models have been reviewed

in Asai et al. (2006). These multivariate models enable us to capture the co-movements of

volatilities and correlations among multiple assets, providing a more accurate representation

of the underlying dependence structure. The development of multivariate models has signif-

icantly improved our understanding of asset return dynamics and has important practical

implications for financial risk management and investment strategies.

The first multivariate stochastic volatility (MSV) model, proposed by Harvey et al.

(1994), is an extension of the constant conditional correlation (CCC) model in multivariate

GARCH (MGARCH). In this basic setup, each asset’s volatility is modeled by a univariate

stochastic volatility process, while the correlation matrix among all assets remains constant

over time. However, this assumption is rather restrictive. Subsequent efforts have been

devoted to relaxing this assumption in the literature of MSV. For instance, Yu and Meyer

(2006) proposed a model that mirrors the dynamic conditional correlation (DCC) model

of Engle (2002) in MGARCH. The DCC-based model allows for time-varying correlation

among assets while still assuming that each asset’s volatility follows a univariate stochas-

tic volatility process. Another parametrization based on DCC can be found in Asai and

McAleer (2009b). Other studies have proposed even more flexible models that allow for

both time-varying volatilities and correlations among assets.



In this paper, we propose a new MSV model that builds upon a recently developed pa-

rameterization of the correlation matrix. This parameterization, first introduced in Archakov

and Hansen (2021), is a generalization of the well-known Fisher z-transformation from the

bivariate case to the multivariate case. It has been successfully used in other models, such

as the multivariate realized GARCH model of Archakov et al. (2020) and the dynamic con-

ditional score model of Hafner and Wang (2021). Recent empirical evidence in Bucci et al.

(2022) shows that this parameterization provides more accurate forecasts of the realized

covariance matrix than other existing methods.

Our new MSV model allows the underlying latent variables that determine the correla-

tions among assets to have an unrestricted domain because the correlation matrix is always

valid by construction. In addition, the shocks to the volatility dynamics and the correlation

dynamics are fully separated in our model. This is an appealing feature, as in practice, these

two types of shocks may be determined by completely distinct factors. Finally, our model

is invariant to the reordering of assets, which eliminates the need for an ex-ante ordering of

assets. All of these features indicate that our model is highly flexible and imposes a minimal

level of ex-ante restrictions.

The importance of accommodating asymmetric effects in both GARCH and SV literature

has long been recognized. For equity returns, it has been emphasized that bad news has a

greater impact on future volatility than good news, known as the leverage effect. This has

been incorporated in several existing MSV models, such as Asai and McAleer (2006) and

Asai and McAleer (2009a). Recently, it has been observed that the degree of co-movement

among stocks responds differently to good and bad news, with realized correlations between

stock returns tending to be higher when stock prices are falling, and lower when there is

a surge in stock prices. This phenomenon has been studied in Gorgi and Koopman (2021)

using a novel threshold beta observation-driven model and in Cappiello et al. (2006) using a

generalized asymmetric DCC-GARCH model.1

To allow for asymmetric effects across multiple assets in an MSV model, Ishihara et al.

(2016) and Asai et al. (2022) propose to consider the lower-diagonal elements of the matrix

logarithm of the covariance matrix and assume that the return vector is correlated with

modeled variables, which they call cross-leverage. However, this approach is inconsistent

with the original idea of leverage effect since their latent variables are generated by complex

nonlinear transformations of the covariance matrix and correspond to both volatility and

correlation. As argued in Asai et al. (2006), leverage should refer only to the negative

correlations between the current return and future volatility.

1Asymmetry in realized correlations and DCC-GARCH models has also been studied in Audrino and
Corsi (2010) and Audrino and Trojani (2011) using a tree-structured threshold approach.
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To address this issue, in this paper, we propose an extension of our baseline MSV model

that explicitly and independently accounts for asymmetric effects in volatility and correla-

tion. Specifically, we assume that the volatility variable of a stock is correlated with its own

return, consistent with the leverage effect, and impose a threshold structure for correlation

variables. Following Gorgi and Koopman (2021), we use lagged S&P 500 returns as the

threshold variable for correlations. To the best of our knowledge, the proposed model is

the first MSV model that explicitly and independently accounts for asymmetric effects in

correlations.

In this paper, we propose a Bayesian approach to estimate our new MSV model. Unlike

the majority of the existing Bayesian MSV literature, which relies on standard Markov chain

Monte Carlo (MCMC) algorithms, we use a recently developed Particle MCMC (PMCMC)

algorithm. PMCMC algorithms have become increasingly popular since the seminal paper

by Andrieu et al. (2010) and have been applied to a wide range of fields. While theoretically

applicable to a broad class of models, the practical performance of PMCMC algorithms

depends on various factors and requires careful examination. In our case, we choose the

Particle Gibbs Ancestor Sampling (PGAS) method proposed by Lindsten et al. (2014). This

method is a modified version of the Particle Gibbs (PG) Sampler and has been shown to

have improved mixing properties even with a small number of particles. We present extensive

simulation results to justify our choice of estimation strategy and provide useful guidance

for empirical applications. Our approach strikes a balance between estimation accuracy and

computational cost, making it an attractive option for practitioners.

Our MSV models, unfortunately, face limitations in scalability, as estimating them with

a moderately large number of assets is not feasible. This is to be expected, as our model is

highly flexible, allowing for time-varying volatilities, correlations, and covariances, while also

ensuring the positive-definiteness of the variance-covariance matrix. Nonetheless, estimating

our low-dimensional MSV model can still provide valuable insights into important features

of data with a low dimension, which can in turn guide the selection of more restrictive MSV

models for high-dimensional data. For instance, our estimation of a three-dimensional MSV

model reveals the critical importance of allowing pairwise correlation coefficient sequences to

have different levels of persistence. Therefore, a reasonable and more restrictive MSV model

for high-dimensional data should also retain this feature.

The rest of the paper is organized as follows. In Section 2, we provide a selective literature

review on MSV models, introduce the new parametrization of correlation matrix and present

our new model. In Section 3, we introduce the estimation and inferential method based on

PGAS algorithm. Simulation and empirical studies are provided in Section 4 and Section 5,

respectively. Section 6 concludes. Additional technical details can be found in the Appendix.
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Throughout the paper, we let diag(A) denote the column vector formed by the diagonal

elements of a square matrix A or the diagonal matrix whose diagonal elements are elements

in A if A is a column vector;2 vech(A) denote the p(p + 1)/2 × 1 column-vector obtained

by vectorizing only the lower triangular part of a p-dimensional matrix A (including the

diagonal elements); vecl(A) denote the p(p − 1)/2 × 1 column-vector containing all lower

off-diagonal elements of A (excluding the diagonal elements); Ip denote a p-dimensional

identity matrix, 1p denote a p-dimensional column vector of ones. We use I(x) to denote

the indicator function such that I(x) = 1 if x ≥ 0 and I(x) = 0 otherwise.

2 New Multivariate Stochastic Volatility Model

In this section, we will provide a brief overview of existing MSV models, with a focus on

the parametrization of the covariance matrix. We will then introduce the generalized Fisher

transformation (GFT), a novel technique proposed in Archakov and Hansen (2021), and

review its application to MSV models. Finally, we will propose a new MSV model that

utilizes the GFT.

2.1 Review of existing MSV models

The existing literature on multivariate stochastic volatility (MSV) models is vast, with nu-

merous studies proposing different modeling approaches and estimation techniques. Two

comprehensive reviews of this area of research up to a certain point in time are Asai et al.

(2006) and Chib et al. (2009). These reviews discuss various estimation techniques and meth-

ods for model comparison and provide an overview of the earlier studies in the literature.

In this section, we focus on the models proposed over the last decade, which have aimed to

address the challenge of ensuring the positive-definiteness of the variance-covariance matrix.

We provide a critical review of these recent models and their parametrizations.3

The basic structure of the MSV model is

rt|Ct ∼ N(0, Ct),

where rt is a vector of q asset returns. We aim at characterizing the dynamics of its variance-

covariance matrix Ct. Clearly, Ct must be symmetric and positive-definite for all t. Different

2If A is a square matrix, diag(diag(A)) is a diagonal matrix whose diagonal elements are the diagonal
elements in A.

3We do not review models based on the factor structure in this review, as our new model is based on
direct modeling of the variance-covariance matrix.
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models rely on different techniques to ensure this positive-definiteness. Broadly speaking,

we can categorize the MSV models into two groups. In the first group, a model is directly

built for Ct. In the second group, a variance-covariance decomposition is first carried out

and then each component in the decomposition is modeled separately.

Within the first group of models, four methods have been considered. The first method is

based on the matrix exponential. For example, Ishihara et al. (2016) and Asai et al. (2022)

assume that

Ct = exp(Ht/2),

and propose to model vech(Ht) as vector autoregressive (VAR) process. By the definition

of the matrix exponential, Ct is guaranteed to be positive-definite. The major drawback

of this model is that the relationship between latent variables and the original volatili-

ties/correlations is highly nonlinear and hence, hard to interpret.

The second method utilizes the well-known Cholesky decomposition. For instance, Lopes

et al. (2010) propose to decompose Ct as

Ct = AtHtA
′
t,

where Ht is a diagonal matrix and At is a lower triangular matrix, and then model all the

nonzero elements in At and Ht as the autoregressive process. Similarly, Nakajima (2017),

Shirota et al. (2017) and Zaharieva et al. (2020) also use this decomposition to set up their

MSV models. As a well-known problem in the VAR literature, in the Cholesky decom-

position, order matters. That is, the resulting variance-covariance matrix depends on the

ordering of assets. This dependence is highly undesirable as the performance of the model

depends on the ordering. Moreover, the dynamics of the volatilities and the correlations are

not separated.

The third method takes advantage of the Wishart distribution, whose support includes

only positive-definite matrices. This approach is considered in Gouriéroux et al. (2009),

where a Wishart autoregressive (AR) process is used. Specifically, they assume that

Ct =
m∑
i=1

xitx
′
it,

xit = Axi,t−1 + εit and εit ∼ N(0,Σ),

where (m,A,Σ) are unknown parameters. Alternatively, one can also model Ct using the
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inverse Wishart as in Philipov and Glickman (2006). In this case, we have

C−1t |v, C−1t−1 ∼ Wishart

(
v,

1

v
(A1/2)(C−1t−1)

d(A1/2)′
)
,

where (v, d, A) are unknown parameters. Clearly, the dynamics of the volatilities and the

correlations are not separated.

Dellaportas et al. (2023) point out that Wishart-based MSV models are not able to scale

well with p, the number of assets, as the computational complexity is O(p3). In view of this

drawback, they propose a new MSV model assuming Gaussian latent processes for functions

of the eigenvalues and rotation angles of Ct. In particular, spectral decomposition implies

that

Ct = PtΛtP
′
t ,

where Λt is a diagonal matrix of eigenvalues and Pt is the eigenvector matrices. They further

decompose Pt as a product of p(p−1)/2 rotation matrices, whose elements are modeled after

transformation. This parameterization leads to O(p2) complexity and thus more scalable.

Nevertheless, the modeled variables in this setup are still hard to interpret.

Models in the second group treat the volatilities and the correlation matrix separately and

is amenable to easy interpretation of driving factors of volatilities and correlations. Consider

the following decomposition

Ct = V
1/2
t RtV

1/2
t ,

where Vt is a diagonal matrix collecting all the variances, and Rt is the correlation matrix.

By construction, the diagonal elements of Rt are ones and the off-diagonal elements of Rt

are pair-wise correlation coefficients. For our purpose, the major difference in model designs

among models in this group lies in how Rt is parameterized. The critical issue in this setup

is to ensure Rt is a valid correlation matrix, such as the positive-definiteness, symmetry, all

the diagonal elements being one, all the off-diagonal elements taking values in [−1, 1]. The

first and the simplest model in this fashion is the constant correlation MSV in Harvey et al.

(1994), where

Rt = R, for all t. (1)

A similar assumption is made in Chan et al. (2006), Asai and McAleer (2006), and Ishihara

and Omori (2012). In these models, the dynamic movement of correlations is not allowed.

Although the assumption makes statistical inference simple, it is too restrictive for modeling

financial time series.

To allow for time-varying correlations, Asai and McAleer (2009b) consider two model
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specifications, both motivated by DCC. The idea is to write the correlation matrix as

Rt = Q̃−1t QtQ̃
−1
t ,

where Q̃t = (diag(diag(Qt))
1/2. By construction, all diagonal elements of Rt are ones and Rt

is a valid correlation matrix as long as Qt is symmetric positive-definite. The two existing

Wishart distribution-based models for Qt are

Qt+1 = (1− φ)Q̄+ φQt + Ξt, where Ξt ∼ Wishart(k,Λ),

and

Q−1t+1|k,Q−1t ∼ Wishart

(
k,

1

k
Q
−φ/2
t ΛQ

−φ/2
t

)
,

where the unknown parameters are k, φ,Λ. Asai and McAleer (2009b) argue that the second

one is preferred.

Inspired by the dynamic equicorrelation (DECO) model of Engle and Kelly (2012),

Kurose and Omori (2016) propose to model Rt as

Rt = (1− ρt)I + ρtJ,

where I is an identity matrix, and J is a square matrix with all elements being ones. To ensure

that ρt is within (−1, 1), Kurose and Omori (2016) model the Fisher z-transformation of ρt

as an autoregressive process. As in the model of Yamauchi and Omori (2020), a lower bound

for ρt is needed to guarantee the positive-definiteness of Rt. This lower bound approaches

zero as the number of assets goes to infinity.

Following Yu and Meyer (2006), Yamauchi and Omori (2020) propose to model the

pairwise correlations by the Fisher z-transformation. That is, letting Rt = {ρij,t} and

gij,t =
1

2
log

1 + ρij,t
1− ρij,t

:= F (ρij,t) , (2)

they assume that gij,t follows a random walk for any i 6= j. By construction, |ρij,t| < 1.

When p = 2, that is, only two returns are modeled, this transformation ensures the positive-

definiteness of Rt. However, if p > 2, this element-wise operation does not guarantee the

positive-definiteness of Rt. Yamauchi and Omori (2020) further derive algebraic bounds

for ρij,t that ensure the positive-definiteness of Rt. The bounds for one particular ρij,t are

conditional on all other elements in Rt. Therefore, the restriction is well suited for the

single-move Gibbs sampling technique, but hard to be implemented by other estimation
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methods.

2.2 Generalized Fisher transformation of correlation matrix

When the correlation coefficient between two random variables, say ρ, is to be modeled, an es-

sential constraint is that its value must be within the interval (−1, 1). To avoid the complex-

ity introduced by this constraint in modeling, one can instead model Fisher z-transformation

of ρ, defined by F (ρ) in (2). It is easy to show that ρ = F−1(g) = exp(g)−1
exp(g)+1

∈ (−1, 1) for any

g ∈ (−∞,∞). Therefore, one can impose any structure on F (ρ) and transform it back to

obtain ρ without worrying about the validity of the resulting correlation coefficient. This

idea was first introduced to the MSV literature in Yu and Meyer (2006) when the number of

assets is two. Unfortunately, it is acknowledged by Yu and Meyer (2006) that this approach

“is not easy to be generalized into higher dimension situations”. In particular, a pairwise

transformation applied to each entry in a high-dimensional correlation matrix, though seems

to be natural, is not a valid choice as it fails to ensure the positive-definiteness of the resulting

correlation matrix in general.

Clearly, it is desirable to obtain a valid high-dimensional extension to the Fisher z-

transformation. This is the exact contribution made in Archakov and Hansen (2021). To fix

the idea, let R be a valid p-dimensional correlation matrix and G = logR =
∑∞

k=1
(−1)k(R−I)k

k
.

Note that the convergence of the infinite summation and hence, the existence ofG are ensured

by the fact that R is a correlation matrix. Furthermore, let q = vecl(G). In summary,

the Fisher z-transformation of C is defined by the mapping q = vecl(logR). One of key

theoretical contributions of Archakov and Hansen (2021) is to show that that this mapping

is one-to-one. Thus, given any p(p−1)
2

-dimensional vector q, there exists a unique and valid

p-dimensional correlation matrix R. Although the inverse mapping from q to R does not

have a closed-form expression when p > 2, R can be obtained numerically from q using an

iterative algorithm as shown in Archakov and Hansen (2021).

When p = 2, Archakov and Hansen (2021) show that the above-defined transformation

reduces to Fisher z-transformation. The new transformation retains the advantages of Fisher

z-transformation and enjoy some additional desirable properties. First and foremost, it is

very flexible in the sense that when modeling q, we do not need to impose any algebraic

constraint. This suggests that we can consider any reasonable dynamics for q without wor-

rying about the positive-definiteness of the resulting correlation matrix. Second, compared

with original elements in R, the distribution of elements in q is often closer to Gaussian

due to the use of log transformation. Hence, it is reasonable to model elements of q via a

Gaussian process. Third, this transformation is invariant to ordering of variables. This is in
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sharp contrast to that based on the Cholesky decomposition. Fourth, although elements of q

depend on R in a nonlinear way, many interesting properties in R carry over to G = log(R),

including the equicorrelation structure and the block-equicorrelation structure; see Archakov

et al. (2020). For the sake of notational simplicity, in the rest of the paper, we refer to the

mapping vecl(log(·)) as F (·) and its inverse as F−1(·).

2.3 MSV-GFT model

To introduce our new MSV model, let rt = (r1t, ..., rpt)
′ denote the p × 1 vector of asset

returns and ht = (h1t, ..., hpt)
′ the vector of latent log-volatilities of these returns at time t.

Let Vt = exp (diag(ht)). Let qt = (q1t, ..., qdt)
′ denote the vector of latent variables at time

t that underlie all the correlation coefficients in Rt, where d = p(p−1)
2

. In particular, qt is

connected to Rt through the transformation detailed in Section 2.2. Our basic MSV model,

which we refer to as MSV-GFT, is given by

rt = V
1/2
t εt, εt ∼ N(0, Rt), (3a)

Vt = exp (diag(ht)) , (3b)

qt = F (Rt), (3c)

ht+1 = µh + Φh(ht − µh) + ηht, ηht ∼ N(0,Σh), (3d)

qt+1 = µq + Φq(qt − µq) + ηqt, ηqt ∼ N(0,Σq), (3e)

h0 ∼ N
(
µh, (Ip − Φ2

h)
−1Σh

)
, q0 ∼ N

(
µq, (Id − Φ2

q)
−1Σq

)
, (3f)

where εt = (ε1t, ..., εpt)
′, ηht = (ηh1t, ..., ηhpt)

′, ηqt = (ηq1t, ..., ηqdt)
′, µh = (µh1, ..., µhp)

′, µq =

(µq1, ..., µqd)
′, Φh = diag((φh1, ..., φhp)

′), Φq = diag((φq1, ..., φqd)
′), and t = 1, ..., T . It is

assumed that εt, ηht and ηqt are independent. This implies that no leverage (neither self-

leverage or cross-leverage) effect is allowed. It also implies that the shocks to the volatility

dynamics (i.e. ηht) are completely separated from those to the correlation dynamics (i.e.

ηqt). To reduce the number of parameters, we further assume that Σh = diag((σ2
h1, ..., σ

2
hp)
′)

and Σq = diag((σ2
q1, ..., σ

2
qd)
′).

In MSV-GFT, ht is a p-dimensional latent variable that determines the volatilities via

the exponential transformation and qt is a d-dimensional latent variable that determines the

correlation coefficients via the F transformation. Elements of two types of latent variables

are assumed to follow independent AR(1) processes.

It is important to note that in the MSV-GFT model, persistence in elements of {qt}
can be heterogeneous across pairs. This is in sharp contrast to models based on the idea
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of DCC or the Wishart autoregression, where persistence of all the correlation sequences is

assumed to be the same. While the ‘equi-persistence’ makes the model more parsimonious,

the empirical validity of this assumption has to be verified. To empirically examine the

importance of heterogeneity in persistence in elements of qt, we will also consider a restricted

model, referred to as MSV-GFT-eq, where we assume φq1 = · · · = φqd.

2.4 MSV-GFT model with asymmetric effects

To incorporate asymmetric effect in volatility into SV models, various specifications have

been proposed. So et al. (2002), for example, consider a threshold stochastic volatility

model in which log-volatility is assumed to follow a threshold autoregressive process with an

exogenous trigger variable. A multivariate extension of this model is proposed in So and Choi

(2008). Another popular specification, considered in for example Asai and McAleer (2006), is

to impose a negative correlation between the return of a stock and its future volatility. Smith

(2009) compares abovementioned two specifications and finds out that negative correlation

assumption does a better job of capturing asymmetry. It is also argued in Yu (2005) that this

assumption leads to a correct timing and clearer interpretation of leverage effect in volatility.

We hence also employ this specification in the current paper. In particular, we assume the

leverage effect as following(
εt

ηht

)
∼ N

((
0

0

)
,

(
Rt R

1
2
t ΩΣ

1
2
h

Σ
1
2
hΩR

1
2
t Σh

))
, (3g)

where Ω = diag(ρ) and ρ = (ρ1, ..., ρp)
′. The model defined by equations (3a)-(3g) will be

referred to as MSVL-GFT.

As for asymmetric effect in correlations, we follow Gorgi and Koopman (2021) to impose

a threshold autoregressive structure. The transition dynamics of correlation variables is

modified to switch between two regimes determined by the sign of lagged market return, in

the similar spirit of So et al. (2002). Specifically, we replace the equation (3e) with

qt+1 = µstq + Φ(qt − µstq ) + ηqt, (3e′)

where µstq = µq + γµI(rspt < 0), γµ = (γµ1 , ...γµd)
′ and rspt denotes the return of S&P 500 at

time t. It is well known in the literature that there is increased correlation during the bear

market; see Longin and Solnik (2001) and Campbell et al. (2002). Hence, γµ is expected to

be positive. In the rest of paper, we refer to the model defined by equations (3a)-(3d), (3e′)

and (3f)-(3g) as MSVLA-GFT.
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3 Inference of MSV-GFT and MSVLA-GFT Model

Due to the difficulty of evaluating the likelihood function, the literature on MSV models

relies on Bayesian methods to carry out statistical inference. To fix some notations, let r =

(r′1, ..., r
′
T )′, rsp =

(
rsp0 , ..., r

sp
T−1
)′

, h = (h′1, ..., h
′
T )′, q = (q′1, ..., q

′
T )′, x = (h′, q′)′ := (x′1, ..., x

′
T )′

so that xt = (h′t, q
′
t)
′. Vector x contains all latent variables and vector xt contains all latent

variables at period t. We use x1:t to denote (x′1, ..., x
′
t)
′ for any t = 1, · · · , T , θ denote the

set of parameters in the model, and p(r|θ) denote the likelihood function of the model.

3.1 Review of standard Bayesian methods for MSV models

Unlike univariate and multivariate GARCH, which can be estimated straightforwardly by

the frequentist maximum likelihood (ML) method, SV models are particularly challenging

in terms of likelihood-based estimation and inference. The difficulty mainly arises from the

high-dimensional latent variables involved in SV models. To be more specific, to obtain the

likelihood function of SV models, one needs to integrate out the latent variables from the

joint probability density of the observables and the latent variables, that is,

p(r|θ) =

∫
p(r, x|θ)dz =

∫
p(r|h, q,θ)p(h|θ)p(q|θ)dhdq.

Unfortunately, such an integration, being ((p+ d)× T )-dimensional, does not have the ana-

lytical solution.

In the context of MSV models, there is an extra difficulty with the ML method. MSV

models involve a large number of parameters (i.e. the dimension of θ is large). The ML

method requires numerical maximization of log p(r|θ) over θ. This often imposes a numerical

challenge.

To deal with these two complications, the literature on MSV studies rely on Bayesian

methods to conduct statistical inference. A popular choice is standard MCMC methods

which conduct the Bayesian posterior analysis based on p(r|θ, x) which is more tractable

than p(r|θ). In particular, standard MCMC methods consists of alternately updating the

component of x conditional on θ and θ conditional on x. A single-move MCMC method

draws a single element of x at a time while a multiple-move MCMC method draws a block

of elements of x at a time.

Standard MCMC algorithms have been applied to estimate MSV models in the liter-

ature. Yu and Meyer (2006) use the single-move algorithm to estimate several bivariate

MSV models. Yamauchi and Omori (2020) use the single-move algorithm to estimate the

pairwise-Fisher-transformation-based MSV model. However, the single-move algorithm is
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well known to be inefficient, as it generates highly autocorrelated Markov chains, suggesting

a vast amount of random draws are required to achieve a satisfactory accuracy of estimation.

To improve efficiency, Ishihara and Omori (2012), Ishihara et al. (2016), Kurose and

Omori (2016) have resorted to the multi-move algorithms to estimate different MSV models.

These studies are built on some earlier works by De Jong and Shephard (1995), Pitt and

Shephard (1999), Kim et al. (1998), and Watanabe and Omori (2004) in the univariate time

series context. The multi-move samplers often require the second-order approximation to

the target distribution. In general the derivation of the approximation is model dependent,

making a generic multi-move algorithm not possible.

When latent variables of various degree of persistence co-exist in a model, the single-

move sampler and the multi-move sampler may be combined. This idea is exploited in Asai

and McAleer (2009b) where the multi-move sampler is applied to the latent variables that

determine volatilities and the single-move sampler is applied to the latent variables that

determine the correlations.

While standard MCMC algorithms can draw random samples from p(θ, x|r), additional

efforts are needed to compute the likelihood p(r|θ) and the marginal likelihood p(r) of the

model. The marginal likelihood is an important quantity for model comparison.

3.2 Gibbs sampler based on particle filter

In this paper, instead of using above-mentioned standard MCMC techniques, we apply a

PMCMC method known as PG, due to Andrieu et al. (2010), to estimate the proposed MSV

model.4 The intuition is to construct a high-dimensional efficient Markov kernel for latent

processes using the particle filter.

3.2.1 Introduction to PG approach

Consider a general state-space model given by

rt|xt = x, θ ∼ f(·|x, θ),

xt+1|xt = x, θ ∼ g(·|x, θ), and x1 ∼ µθ(·).

where f(·|x, θ) is the measurement density, g(·|x, θ) is the transition probability density and

µθ(·) is the initial density.

4Another PMCMC method potentially applicable here is Particle Metropolis-Hasting. See Xu and Jasra
(2019) for its application in MSV model with constant correlation matrix and cross-leverage. It is not chosen,
however, as it requires an accurate estimation of the likelihood and hence a very large number of particles.
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To sample from p(θ, x1:T |y1:T ), a Gibbs sampler draws alternately from the two conditional

densities, p(θ|x1:T , r1:T ) and p(x1:T |r1:T , θ). PG draws random samples from p(x1:T |r1:T , θ)
based on the particle filter, which is applicable as long as the measurement density f(·|x, θ)
can be numerically evaluated and the transition density g(·|x, θ) can be simulated.5

The particle filter combines importance sampling and Monte Carlo simulations to approx-

imate the target distribution. The key idea is to represent the distribution by a set of random

samples with the corresponding weights and calculate the quantity of interest based on these

samples and weights. Let {x(i)1:t, w
(i)
t }Ni=1 be a random measure, where {x(i)1:t, i = 1, ..., N} is a

set of support points and {w(i)
t , i = 1, ..., N} are the associated weights. Each point is called

a particle, and N is the number of particles used. The approximate distribution can then

be written as

p̂θ(dx1:t|r1:t) =
N∑
i=1

w
(i)
t δx(i)1:t

(dx1:t),

where r1:t is similarly defined and δ(·) is the Dirac delta function. p̂θ is a discrete weighted

approximation to the target distribution pθ. Apparently, the accuracy of the approximation

can be improved if an increasing number of particles are included. Doing so, however, also

dramatically raises the computational burden.

To obtain the weights, one resorts to importance sampling. That is, one samples N times

from a candidate distribution, say qθ(x1:t|r1:t), and assign the weight

w
(i)
t ∝ pθ(x

(i)
1:t|r1:t)/qθ(x

(i)
1:t|r1:t)

to each sample drawn. In practice, it is hard, if not impossible, to pick up a proper

importance density for the joint distribution of x1:t conditional on the data when sam-

ple size is large. Hence, this approach usually proceeds in a sequential fashion. Specifi-

cally, the importance density is chosen to admit the factorization such that qθ(x1:t|r1:t) =

qθ(xt|xt−1, rt)qθ(x1:t−1|r1:t−1). For any existing weighted sample {x(i)1:t−1, w
(i)
1:t−1} that fol-

lows from pθ(x1:t−1|r1:t−1), we augment it with the new state x
(i)
t randomly drawn from

qθ(xt|xt−1, rt). The joint sample, (x
(i)
t−1, x

(i)
t ) is then a realization from the targeted joint

importance density. The corresponding weight for ith sample can easily be updated through

w̃
(i)
t ∝ w

(i)
t−1

fθ(yt|x
(i)
t )gθ(x

(i)
t |x

(i)
t−1)

qθ(x
(i)
t |x

(i)
t−1,yt)

, and normalized to be w
(i)
t = 1

N

∑N
i=1 w̃

(i)
t . An unavoidable

problem of this procedure, known as degeneracy, is that after a few iterations, only one

particle has a non-negligible weight, which means a large computational cost is spent on

5Despite its general applicability, when implementing particle filter for a particular model, many subtle
issues must be considered. These include how to choose a proper importance density, how many particles
to use, and whether a resampling step should be added. For a thorough discussion, see Arulampalam et al.
(2002) and Johansen and Doucet (2008).
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particles with almost no contribution. To alleviate this problem, a resampling step is neces-

sary. An important by-product of this filtering strategy is an approximation to pθ(r1:t|r1:t−1),
which has a simple formula p̂θ(r1:t|r1:t−1) = 1

N

∑N
i=1w

(i)
t . The likelihood can then be easily

obtained as p̂θ(r1:T ) = p̂θ(r1)
∏T

t=2 p̂θ(r1:t|r1:t−1).
One subtlety to note is that, to ensure the targeted joint density is indeed the invariant

distribution of a Markov chain, we have to modify the particle filter when applying PG.

Specifically, one particle trajectory must be specified a priori to serve as a reference. This

modified version is known in the literature as conditional particle filter. The intuition is that

this particular path can guide the simulated particles to move within a relevant region of the

state space. See Theorem 5 of Andrieu et al. (2010) for more details.

3.2.2 Advantages of PG

As a PMCMC method, PG enjoys a few desirable properties compared with standard MCMC

methods. First, relative to the single-move sampler, a significant improvement can be

achieved in terms of efficiency by PG.

Second, unlike the multi-move samplers that are model dependent, PG requires a minimal

modification across different models, as long as they could be cast into a state-space form.

Third, as said before, an important by-product of the filtering strategy is to evaluation

of the likelihood p(r|θ). Once p(r|θ) is known, the marginal likelihood p(r) can also be

calculated easily. Two popular approaches have been used in practice to compare competing

Bayesian models. The first one is based on the Bayes factor and the second one on the

Deviance Information Criterion (DIC).6 The computation of the Bayes factor requires p(r)

while the computation of DIC requires p(r|θ). Hence, model comparison is straightforward

in PG.

3.2.3 Particle Gibbs with ancestor sampling

As noted in Lindsten et al. (2014) and Chopin and Singh (2015), the mixing of the Markov

kernel induced by PG can be rather slow when there is path degeneracy. For the high-

dimensional problem, such as the one we consider in this paper, path degeneracy is inevitable.

6When comparing two candidate models (nested or non-nested), the log marginal likelihood of the first
model minus that of the second model leads to the log Bayes factor (BF); see Kass and Raftery (1995).
According to the well-known Jeffreys’ table, when the log BF less than 1.6, the first model is barely worth
mentioning. When the log BF takes a value in (1.6, 3.3) (or (3.3, 5.0) or (5.0, 6.6) or (6.6,+∞)) , there is
substantial (or strong or very strong or decisive) evidence to support the first model. DIC is a Bayesian
version of AIC with the aim of favouring models that are likely to make good predictions; see Spiegelhalter
et al. (2002) and Li et al. (2020). The smaller DIC, the better the model. Jeffreys’ table can be used to
interpret the difference between one half of the DIC value of the second model and that of the first model.
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To overcome this problem, Lindsten et al. (2014) propose to use an additional step called

ancestor sampling in PG. The PGAS algorithm enjoys fast mixing of the Markov kernel

even only a seemingly small number of particles are used in the underlying SMC. Informally,

in the original PG, when degeneracy occurs, the particle system collapses toward the cho-

sen reference trajectory. Whereas, in the PGAS, it degenerates toward something entirely

different. As a consequence, the update rates of latent variables are much higher with the

additional ancestor sampling step. Therefore, the mixing is much faster.7 This approach

has also been used in Gong and Stoffer (2021) for efficient fitting of stochastic volatility.

They show that, for univariate SV model, PGAS algorithm mixes well enough with only 20

particles.

For our purpose, a fast mixing under a small number of particles is highly desirable, as

our likelihood function contains a component that has no closed-form solution and thus must

be computed numerically. Although the cost for one-time computation is relatively low, it

soon becomes infeasible when a vast number of particles are included in the system. Indeed,

for MCMC with S iterations, if the sample size is T and N particles are used, F−1(·) must

be evaluated S × T ×N times. As S and T are usually quite large in practice, we can gain

a lot in terms of computational efficiency by using the PGAS algorithm. In summary, we

believe that PGAS is a suitable estimation tool given our model setup. Its performance will

be further examined in simulation in Section 4.

3.3 Bayesian analysis of MSV-GFT and MSVLA-GFT

3.3.1 Inference of MSV-GFT

We now present the Bayesian analysis of our MSV-GFT model. The first step is to specify

the prior distributions of all the parameters θ = (µh, µq, φh, φq, σ
2
h, σ

2
q )
′. In this regard, our

specification follows those adopted in Kim et al. (1998). For µh and µq, we assume indepen-

dent multivariate normal distributions. The persistence parameters φh and φq are assumed

to have Beta priors. The prior distribution of σh and σq are chosen to be inverse gamma. In

summary, for i = 1, ..., p and j = 1, ..., d, we choose the following prior distributions:

� µhi ∼ N(mµ0, s
2
µ0) and µqj ∼ N(mµ0, s

2
µ0);

�
φhi+1

2
∼ Beta(a, b) and

φqj+1

2
∼ Beta(a, b);

� σ2
hi ∼ IG(nm0

2
, dm0

2
) and σ2

qj ∼ IG(nm0

2
, dm0

2
),

7Lindsten et al. (2014) also show that for a state-space model, PGAS is probabilistically equivalent to
the particle Gibbs sampler with a backward smoothing step under certain conditions.
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where mµ0, s
2
µ0, a, b, nm0, dm0 are hyperparameters.

To carry out the inference, we implement a Gibbs sampler with four blocks. In the

following, we use θ/α to denote the parameters θ excluding α. The algorithm proceeds as:

1. Initialize h, q and θ.

2. Draw h, q|r, θ.

3. Draw µh, µq|r, h, q, θ/(µh,µq).

4. Draw φh, φq|r, h, q, θ/(φh,φq).

5. Draw σ2
h, σ

2
q |r, h, q, θ/(σ2

h,σ
2
q )

.

Iteration over steps 2-5 consists of a complete sweep of MCMC sampler. We apply PGAS

introduced in Section 3.2 to sample the latent variables h and q given all the observations

r and one particular set of parameter values. The detailed description of the algorithm is

presented in Appendix A. On the other hand, from the joint posterior density, it is straight-

forward to sample each element in θ given one realization of latent processes h and q. The

details are provided in Appendix B.1.

3.3.2 Inference of MSVLA-GFT

We now present the Bayesian analysis of our MSVLA-GFT model. It is an extension of

MSV-GFT model with additional p+d parameters, including the leverage effect of volatilities

Ω = diag((ρ1, ..., ρp)
′) and asymmetric effect of correlations γµ = (γµ1 , ...γµqd)

′.We set prior

distributions following Yu (2005) and So et al. (2002). We choose the uniform prior on (−1, 1)

for the leverage effects while normal priors for the threshold parameters. In summary, for

i = 1, ..., p and j = 1, .., d, we choose the following prior distribution:

� ρi ∼ U(−1, 1) and γµj ∼ N(mγ0, s
2
γ0)

where mγ0 and s2γ0 are hyper-parameters.

Redefining θ = (µh, µq, φh, φq, σ
2
h, σ

2
q , ρ, γµ)′, we implement a Gibbs sampler with six

blocks. The algorithm proceeds as:

1. Initialize h, q and θ.

2. Draw h, q|r, θ, rsp.

3. Draw µh|r, h, q, θ/(µh).

4. Draw φh, φq|r, h, q, θ/(φh,φq).
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5. Draw σ2
h, σ

2
q |r, h, q, θ/(σ2

h,σ
2
q )

.

6. Draw ρ|r, h, θ/(ρ).

7. Draw µq, γµ|q, rsp, θ/(γµ,µq).

Iteration over steps 2-7 consists of a complete sweep of MCMC sampler. The algorithm is

similar to the one in Section 3.3.1. The differences lie in that we apply PGAS to sample

the latent variable given the additional information rsp, and we sample the parameters of

asymmetric effects in the step 6 and 7. The details are provided in Appendix B.2.

4 Simulation Studies

To investigate the performance of our estimation procedure, we conduct some simulation

exercises in this section. Our simulation design is frequentist in nature as we fix the param-

eters at their true values and generate data from the same data generating process with 100

repetitions. We use the posterior mean as a point estimator for all the parameters. Since the

true values are known, we are thus able to calculate bias (defined as the difference between

the true values and the average value of posterior means) and the standard deviation.8

To evaluate the sampling efficiency, following Kim et al. (1998), we calculate the average

inefficiency factor (IF), which is defined as the variance of sample mean from MCMC sam-

pling divided by that from a hypothetical sampler which draws independent samples. The

variance of MCMC sample mean is the square of numerical standard error estimated by

NSE = 1 +
2BM

BM − 1

BM∑
i=1

K

(
i

BM

)
ρ̂(i),

where ρ̂(i) is estimated autocorrelation at lag i, BM is the bandwidth and K(·) is the Parzen

kernel. We choose the bandwidth BM to be 1000. A smaller IF indicates a better mixing of

the Markov chain and thereby a higher sampling efficiency.

Our data generating process is MSVLA-GFT model with p = 3. There are 24 parameters

in the model, whose true values are given by:

1. µh1 = µh2 = µh3 = 0.3 and µq1 = µq2 = µq3 = 0.7,

2. φh1 = φh2 = φh3 = 0.9 and φq1 = φq2 = φq3 = 0.8,

3. σ2
h1 = σ2

h2 = σ2
h3 = 0.05 and σ2

q1 = σ2
q2 = σ2

q3 = 0.05.

8Here, the standard deviation refers to the variation across replications, rather than the numerical
standard error of MCMC sampler introduced below.
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4. ρ1 = ρ2 = ρ3 = −0.5 and γµ1 = γµ2 = γµ3 = −0.2.

All the simulation results reported in this section is based on 5000 MCMC iterations,

among which the first 1000 samples are discarded as burn-in period.9 We consider three

different sample sizes, namely T = 500, T = 1000 and T = 2000, as well as three numbers

of particles, namely N = 50, N = 100 and N = 200. It is worthwhile to mention that, the

simulated data used across different particle numbers for given sample size are the same,

while it changes when the sample size increases. As three h’s and q’s in our setup are

symmetric, we only report the results for h1 and q1. The results for other latent processes

are similar and hence omitted.

The estimation results for µh1, φh1, σ
2
h1,ρ1, µq1, φq1, σ

2
q1, γµ1 including the average values

of posterior means, standard deviations and IFs across replications, are reported in Table 1.

It can be seen that even for a small sample size such as 500 and a relatively small number of

particles such as 50, the posterior means for both µh1 and µq1 are reasonably close to their

respective true values, although there is an downward bias for µh and a upward bias for

µq1. Nevertheless, as expected, the standard deviations for both µh1 and µq1 decrease as T

increases. On the other hand, an increasing number of particles can reduce bias substantially.

For example, when the sample size is 2000, the bias for µh1 reduces from 0.009 to 0.005 if

200 particles are used instead of 50. A similar improvement applies to µq1. However, an

increasing number of particles has no effect on the standard deviation.

Meanwhile, the persistence parameters φh1 and φq1 can be estimated accurately, even with

500 observations and 50 particles. The estimates have very small biases and low standard

deviations. When 200 particles are used, the bias almost completely vanishes. Substantial

downward biases are observed for σ2
h1 and σ2

q1 when 50 particles are used. This bias is

insensitive to the number of observations. Fortunately, it can be improved by using more

particles. When N=200, the bias becomes much smaller, although it seems that a larger

number of particles are necessary to completely remove this bias.

In line with Jacquier et al. (2004), we find a downward bias in leverage effect ρ1. The

bias becomes smaller when we increase the number of particles or the sample size T . For

threshold effect on correlation, there exists a downward bias when the sample size is small,

inducing an upward bias in γµ. This bias shrinks when the sample size increases, but it is

insensitive to the number of particles.

Finally, the IFs do not vary much as we change either the sample size or the number

of particles. Consistent with earlier studies, the IF is the lowest for µ’s and the highest for

σ2’s. Compared with the traditional single-move or multi-move Gibbs sampler (for example,

9Plot of autocorrelation function suggests that the MCMC sampling has already converged after 1000
iterations.
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see Kim et al. (1998)), our new PGAS sampler enjoys a much better mixing property. In

summary, the simulation results confirm that our chosen approach works well for the model

considered in our study. In light of the good performance, 200 particles are used for the

empirical applications reported later in the paper.

As additional evidence to support the proposed method, Figure 1 and 2 plot the filtered

hs and qs, together with their 95% credible intervals and true values. In all cases, the filtered

values are close to the respective true values.

5 Empirical Studies

As illustrations, we consider two empirical applications of our proposed MSV models in this

section. The first application is concerned with exchange rate data and we focus on the

in-sample effect of allowing each correlations to have different persistence. In the second

application, we consider stock return data and examine both the in-sample fit and the out-

of-sample forecasting performance when the asymmetric effects are allowed in the model.

5.1 Weekly foreign exchange rates

In the first empirical study, we use data that contains 1406 weekly mean-corrected log-

returns of Euro, Pound sterling, and Swiss franc exchange rates (i.e. p = 3), all against the

US dollar.10 The sampling period is from January 13, 1993 to December 25, 2019 and the

dynamics of these three sequences are plotted in Figure 3. These series are expected to be

correlated, as the underlying economies are closely connected. Indeed, the Panel 1 of Table 2

presents the summary statistics and it can be seen that all series are stationary with sample

correlations range from 0.521 to 0.809.

For comparison, four candidate models are considered:

1. MSV-GFT.

2. MSV-GFT-eq.

3. MSV-Chol. This is a model based on Cholesky decomposition proposed by Lopes et al.

10The data were obtained from the Sauder School of Business at the University of British Columbia via
http://fx.sauder.ubc.ca/data.html.

20

http://fx.sauder.ubc.ca/data.html


(2010). The specification is as follows:11

rt = H−1t V
1
2
t εt, εt ∼ N(0, Ip),

Vt = diag((exph1,t , ..., exphp,t)′),

Ht =



1 0 . . . 0

−h?1,t 1 . . . 0

−h?2,t −h?3,t 1 . . .
...

. . . . . .
...

. . . . . . −h?p(p−1)
2

,t
1


,

hi,t+1 = µhi + φhi(hi,t − µhi) + ηhi,t , ηhi,t ∼ N(0, σ2
hi), i = 1, ..., p,

h?j,t+1 = µh?i + φh?j(h
?
j,t − µh?j) + ηh?j,t , ηh?j,t ∼ N(0, σ2

h?j
), j = 1, ..., p(p−1)

2
,

where εt, ηhi,t and ηh?j,t are mutually independent for all i, j and t.

4. MSV-DCC. This is the model proposed in Asai and McAleer (2009b), where a DCC-

type structure with a Wishart transition dynamics is used to characterize the movement

of correlation matrix. It is defined as

rt = V
1/2
t εt, εt ∼ N(0, Rt),

Vt = exp (diag(ht)) ,

ht+1 = µh + Φh(ht − µh) + ηht, ηht ∼ N(0,Σh),

Rt = Q̃−1t QtQ̃
−1
t ,

Q−1t+1|k,Q−1t ∼ Wishart
(
k, 1

k
Q
−φ/2
t ΛQ

−φ/2
t

)
,

Λ =


a11 . . . a1p
...

. . .
...

ap1 . . . app

 ,

(4)

where Q̃t = (diag(diag(Qt))
1/2,Φh = diag((φh1, ..., φhp)

′), Σh = diag((σ2
h1, ..., σ

2
hp)
′) and

k, φ, aij are all scalars for i = 1, .., p and j = 1, .., p. It is also assumed that Qt, ηht

and εt are mutually independent for all t.

It is important to note that all candidate models except for MSV-Chol share the same

parametrization of the volatility dynamics. The key difference among these models is in the

way how the correlation dynamics is specified. We report the posterior statistics of param-

eters in all four models, including the posterior means, the posterior standard deviations,

and the 95% credible intervals. Also reported are the IFs for all parameters as well as the

11When estimating MSV-Chol model, we arbitrarily choose the order Euro, Pound Sterling and Swiss
franc.
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log marginal likelihood and DIC values for all models. The number of particles is set at 200.

We obtain 20000 MCMC samples after a 2000 burn-in period.

Tables 3 reports the posterior statistics of the parameters related to volatilities.12 The

posterior means and posterior standard deviations of all the parameters related to volatility

are largely in line with existing literature. In particular, all log volatility sequences have a

very high level of persistence, with the autoregressive root close to but smaller than 1 for all

assets. The IFs are all reasonably small, suggesting the MCMC draws mix well.

Table 4 reports the posterior statistics of the parameters related to correlations. Figure

4 plots the posterior mean of correlation in MSV-GFT. First and foremost, the posterior

means of φq are (0.834, 0.946, 0.97) in MSV-GFT, suggesting a great deal of heterogeneity

in the level of persistency in the elements of qt. This finding is in sharp contrast to the

implication in the MSV-GFT model with equi-persistence where φq1 = φq2 = φq3. By forcing

φq1 = φq2 = φq3 in this model, we obtain the posterior mean of 0.969 for φq, which is very

large and close to the posterior mean of φq3, the largest in MSV-GFT. Second, the posterior

means of σ2
qi for i = 1, 2, 3 in MSV-GFT and of σ2

q1 in MSV-GFT with equi-persistence are

significantly different from zero, suggesting time-varying correlation coefficients.

In order to assess whether the flexibility in MSV-GFT leads to any improvement in in-

sample statistical performance, we compare the log marginal likelihoods and DIC values of

all four models. The results are presented in the last two rows of Table 4. Based on the

log marginal likelihood and DIC, both MSV-GFT and MSV-Chol outperform MSV-GFT-eq

and MSV-DCC, providing compelling evidence in favor of MSV-GFT and MSV-Chol, which

aligns with the findings in Bucci et al. (2022).

It is worth noting that although MSV-Chol exhibits a higher log marginal likelihood

value than MSV-GFT, MSV-GFT demonstrates the lowest DIC value. Furthermore, despite

MSV-DCC and MSV-GFT-eq utilizing a single parameter to control the persistent level of

correlations, MSV-GFT-eq displays a higher log marginal likelihood value and a lower DIC

value compared to MSV-DCC.

5.2 Daily equity returns

In the second empirical study, we conduct a comparative analysis of the proposed model

against several existing models, evaluating their performance in both in-sample and out-of-

sample forecasting. The analysis focuses on daily demeaned close-to-close log-returns of three

stocks, namely DuPont (DD), Exxon Mobil (XOM), and 3M Company (MMM).13 Our full

sample period is from January 4, 2014 to December 31, 2020 with the sample size T = 1761.

12Note that hi,t in MSV-Chol model is not the volatility of ith asset when i > 1.
13The data were obtained from Yahoo Finance via https://finance.yahoo.com/.
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The dynamics of these three log-return sequences are plotted in Figure 5 and Panel 2 of

Table 2 presents the summary statistics. Note that all three sample pairwise correlations are

between 0.5 and 0.6.

For comparison, the following three categories of model specifications are considered

1. MSV models

(a) MSV-CC defined by (3a)-(3d) and (1).

(b) MSV-GFT.

(c) MSV-GFT-eq.

(d) MSV-DCC.

2. MSVL models

(a) MSVL-CC. This is MSV-CC model with leverage effect defined in (3g).

(b) MSVL-GFT.

(c) MSVL-GFT-eq. This is MSVL-GFT model with equi-persistency restriction.

(d) MSVL-DCC. This is the model defined by equations (4) with additional assump-

tion (3g).

3. MSVLA-GFT model.

Since it is not clear what is the best way to incorporate the leverage effects in the context

of the MSV-Chol specification, we decide not to include any MSV-Chol-based model in

the comparative analysis. For the implementation of Bayesian estimation, we draw 20000

MCMC samples and discard first 2000 as the burn-in period.

We first conduct the full sample analysis for stock return data. Figure 6 plots the posterior

mean of correlation in MSVLA-GFT. Tables 5 and 6 report the posterior statistics of the

parameters related to volatilities and asymmetric effects respectively. It can be seen that

the leverage effect ρ is always significantly negative, consistent with the findings in the

existing literature. More importantly, in line with our expectation, the asymmetric effects

in correlations are all positive, though insignificant at the 5% level in some cases.

Table 7 reports the posterior statistics of the parameters related to correlations as well as

the log marginal likelihood and DIC values for all models.14 The following three conclusions

14To save the space, we do not report the in-sample estimation results for MSV-CC and MSVL-CC model
in Table 7. The DIC for these two models are 22906 and 22863 respectively. The log marginal likelihood
are -11466 and -11442 respectively. It can be seen that MSVL-CC has a better in-sample performance than
MSV-CC, and both of them are worse than other candidate models.
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can be made from this table. First and foremost, MSVLA-GFT and MSVL-GFT provide

the best in-sample fit among all models. While MSVL-GFT has the highest log likelihood

value, MSVLA-GFT has the lowest DIC value. This finding indicates that the incorporation

of leverage effects and/or asymmetric effects indeed improves the in-sample performance.

Second, it is noteworthy that MSVL-GFT-eq performs clearly worse than MSVL-GFT model,

suggesting that imposing homogeneity among correlations would significantly reduce the

goodness of in-sample fit. Thirdly, MSVL-DCC model is least favorable among all candidates,

worse than MSV-GFT model without leverage and MSVL-GFT model with equi-persistency.

We then conduct an out-of-sample forecast comparison. The forecast period is from

January 2, 2020 to December 31, 2020, consisting of 252 trading days. A rolling window

approach with a fixed in-sample size is adopted to obtain one-step-ahead forecasts. For each

out-of-sample trading day (say t), the one-step-ahead forecast of the covariance matrix Ct|t−1

is generated by the posterior mean of Ct conditional on observations in past four years (1006

days). The forecast of the covariance matrix is used to construct a global minimum variance

(GMV) portfolio. According to Markowitz (1952), the GMV portfolio is optimal as it has the

smallest variance among all portfolios on the efficient frontier. At period t− 1, we construct

the GMV portfolio with the optimal weights wt = (w1t, ..., wpt),
15 where

wt =
Ĉ−1t|t−11p

1′pĈ
−1
t|t−11p

, (5)

and the optimal portfolio return at time t is then

Rp
t = w′trt. (6)

In addition to the MSV models discussed earlier, we also consider a portfolio with equal

weights as a benchmark, which is frequently used in practice. To enable a fair comparison

across models, we assume that all stocks have equal expected returns and focus solely on the

variance of the portfolio. Specifically, we measure the portfolio variance by computing the

average squared return over out-of-sample periods. For the sake of presentation, we report

the average squared return of each strategy relative to that of equal-weight portfolio. The

results are reported in Table 8.

Upon analysis, we note that the equal-weight portfolio exhibits a significantly larger

variance across all instances. Additionally, our findings demonstrate that the MSVL mod-

els consistently outperform their MSV counterparts. Surprisingly, the MSVL-GFT model

generates the smallest average squared return, despite being less flexible compared to the

15We assume negative weights are allowed so that short-sells are possible.
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MSVLA-GFT model. This observation aligns with the fact that the leverage effect remains

significant in-sample, while the threshold effect in correlations can be inconsequential in cer-

tain cases. It also suggests that simplicity and parsimony can sometimes offer advantages

when constructing the optimal portfolio.

Furthermore, the DCC-based MSV models exhibit the poorest performance, even under-

performing the most restrictive models utilizing a constant correlation matrix. In conclusion,

we establish that MSV models based on GFT, incorporating the leverage effect and/or the

asymmetry effect, provide more reliable outcomes for out-of-sample portfolio construction.

6 Conclusion

We present a new approach to modeling multivariate stochastic volatility in this paper. Our

approach uses a generalized version of Fisher’s z-transformation to dynamically characterize

the correlation structure in a highly flexible manner. One key advantage of our model is that

it can automatically generate a positive-definite correlation matrix, while also completely

separating the driving forces underlying volatilities and correlations. We go a step further

and extend the model to incorporate both the leverage effect in volatility and the threshold

effect in correlation.

Unlike many existing studies that rely on standard methods for Bayesian inference, we

employ a Gibbs sampler with particle filter to perform the inference for our model. Through

simulation, we demonstrate that our approach works well for our model. Overall, our pro-

posed model offers a powerful and flexible tool for capturing the complex dynamics of mul-

tivariate stochastic volatility in financial markets.

Our empirical results show that this flexible way of modeling multivariate stochastic

volatility lead to better in-sample fit to exchange rate volatilities. Moreover, when incor-

porating the leverage effect and the threshold effect in the new model specification, we can

improve the in-sample and out-of-sample forecasting performances over many existing mod-

els.

While our proposed model demonstrates promising properties, there is still room for

further improvement. For example, we have not yet incorporated realized measures in our

analysis. This additional data source may significantly improve the statistical efficiency of

our model.

Another important future direction is to address the challenge of handling a large pa-

rameter space when analyzing a large pool of assets simultaneously. As the computational

burden of implementing the model increases exponentially with the number of assets, it may

become impractical to use the model without modifications. To address this issue, we may
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need to make certain assumptions, such as imposing (block) equi-correlation or latent factor

structures.
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Appendices

A Details of PGAS algorithm

Consider a state-space model in the form of equation 3.2.1 and 3.2.1. The output of a PGAS

algorithm is a random draw from the joint smoothing distribution pθ(x1:T |r1:t), conditional

on one particular set of parameter values. In the following, we will omit parameters in all

densities with an understanding that they depend on a same θ. The input of this algorithm,

except for θ, is a reference trajctory of x1:T , which is a sample from last MCMC iteration.

Let’s denote that reference trajctory by x′1:T . Then, the algorithm proceeds as following:

� Draw x
(i)
1 from q1(x1|y1), for i = 1, 2, ..., N − 1.

� Set x
(N)
1 = x′1.

� Set w
(i)
1 = f(y1|x(i)1 )/q1(x

(i)
1 |y1), for i = 1, 2, ..., N .

� For t = 2 to T , do the following:

– Generate {x̃(i)1:t−1}N−1i=1 by sampling with replacement N − 1 times from {x(i)1:t−1}Ni=1

with probabilities proportional to the importance weights {w(i)
t−1}Ni=1.

– Draw J from {1, 2, ..., N} with probabilities proportional to w
(i)
t−1g(x′t|x

(i)
t−1) and

then set x̃
(N)
1:t−1 = x

(J)
1:t−1.

– Simulate x
(i)
t from qt(xt|x̃(i)t−1, yt), for i = 1, 2, ..., N − 1.

– Set x
(N)
t = x′t.

– Set x
(i)
i:t = (x̃

(i)
1:t−1, x

(i)
t )

– Set weight to be w
(i)
t = f(yt|x(i)t )g(x

(i)
t |x̃

(i)
t−1)/qt(x

(i)
t |x̃

(i)
t−1, yt), for i = 1, 2, ..., N .

� Draw k from {1, 2, ..., N} with probabilities proportional to w
(i)
T and return x∗1:T = x

(k)
1:T .

Note that this procedure is very similar to the original PG sampler. The major modifi-

cation is in drawing J , where a new index is drawn and thus the N th trajectory may not be

the reference one from last iteration. In the conditional PG, on the contrary, we fix the last

particle to follow the input trajectory x′1:T . It’s also worth mentioning that the probability

of drawing J depends on g(x′t|x
(i)
t−1) and x′t is drawn in the last iteration conditional on all

observations r1:t. Therefore, this step makes the algorithm more like a smoothing instead of

filtering.
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B Details of Sampling Model Parameters

B.1 Sampling Parameters of MSV-GFT

The joint posterior distribution can be written as

p(θ, h, q|r) ∝ p(r|θ, h, q)p(θ, h, q)

= f(r|h, q)gθ(h)gθ(q)π(θ)

= f(r1|h1, q1)gθ(h1)gθ(q1)
T∏
t=2

[f(rt|ht, qt)gθ(ht|ht−1)gθ(qt|qt−1)] π(θ)

=
T∏
t=1

[(
p∑
i=1

hit

)
|Rt|−1/2 exp

[
−1

2
r′t(V

1/2
t RtV

1/2
t )−1rt

]]
(7)

×
T∏
t=2

p∏
i=1

[
(σ2

hi)
−1/2 exp

(
− 1

2σ2
hi

(hit+1 − µhi − φhi(hit − µhi))2
)]

×
T∏
t=2

d∏
j=1

[
(σ2

qj)
−1/2 exp

(
− 1

2σ2
qj

(qjt+1 − µqj − φqj(qjt − µqj))2
)]

×
p∏
i=1

(
σ2
hi

1− φ2
hi

)−1/2
exp

(
− (hi1 − µh1)2

2σ2
hi/(1− φ2

hi)

)

×
d∏
j=1

(
σ2
qj

1− φ2
qj

)−1/2
exp

(
− (qj1 − µq1)2

2σ2
qj/(1− φ2

qj)

)
π(θ).

To sample from the posterior distribution of parameters conditional on the realization of

latent variables, we can do the following:

1. We can directly sample from the full conditional distribution of µhi and µqi which a

normal distribution. For i = 1, ..., p and j = 1, ..., d,

µhi|r, h, q, θ/µhi ∼ N
(
m̃hµ, s̃

2
hµ

)
and µqj|r, h, q, θ/µqj ∼ N

(
m̃qµ, s̃

2
qµ

)
(8)

where

m̃hµ = s̃2hµ

{
1− φ2

hi

σ2
hi

hi1 +
1− φhi
σ2
hi

T−1∑
t=1

(hit+1 − φhihit)

}
,

m̃qµ = s̃2qµ

{
1− φ2

qj

σ2
qj

qj1 +
1− φqj
σ2
qj

T−1∑
t=1

(qjt+1 − φqjqjt)

}
,

and

s̃2hµ = σ2
hi

[
(T − 1)(1− φhi)2 + (1− φhi)2

]−1
,
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s̃2qµ = σ2
qj

[
(T − 1)(1− φqj)2 + (1− φqj)2

]−1
.

2. To draw random samples from the full conditional distribution of φhi and φqi, one can

resort to the Metropolis-Hasting sampler. Since

log p(φhi|y, h, q, θ/φhi) ∝ log p(hi|φhi, θ/φhi) + log π(φhi) (9)

= log π(φhi)−
(hi1 − µhi)2(1− φ2

hi)

2σ2
hi

+
1

2
log(1 + φ2

hi)

−
∑T−1

t=1 [(hit+1 − µhi)− φhi(hit − µhi)]2

2σ2
hi

,

we draw φ∗hi from the proposal normal density N
(
φ̂hi, Vφhi

)
, where

φ̂hi =

∑T−1
t=1 (hit+1 − µhi)(hit − µhi)∑T−1

t=1 (hit − µhi)2
,

is the ordinary least square estimator of φhi given hi and

Vφhi = σ2
hi

[
T−1∑
t=1

(hit − µhi)2
]−1

.

Then, the draw is accepted with probability min
[
1, exp

{
g(φ∗hi)/g(φ

(i−1)
hi )

}]
, where

φ
(i−1)
hi is the sample from last MCMC iteration and

g(φhi) = log π(φhi)−
(hi1 − µhi)2(1− φ2

hi)

2σ2
hi

+
1

2
log(1 + φ2

hi).

φqi can be treated in the same fashion.

3. Similar to the case for µ, due to the conjugacy, draws of σ2
hi can come from an inverse

gamma distribution. For i = 1, ..., p and j = 1, ..., d,

σ2
hi|y, h, q, θ/σ2

hi
∼ IG

(
ñm
2
,
d̃hm

2

)
and σ2

qj|y, h, q, θ/σ2
qj
∼ IG

(
ñm
2
,
d̃qm
2

)
, (10)

where ñm = nm0 + T and

d̃hm = dm0 + (hi1 − µhi)2(1− φ2
hi) +

T−1∑
t=1

[(hit+1 − µhi)− φhi(hit − µhi)]2 ,
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d̃qm = dm0 + (qj1 − µqj)2(1− φ2
qj) +

T−1∑
t=1

[(qjt+1 − µqj)− φqj(qjt − µqj)]2 .

B.2 Sampling parameters of MSVLA-GFT

In the MSVLA-GFT model, the parameter θ = (µh, µq, φh, φq, σ
2
h, σ

2
q , σ

2
q , ρ, γµ)′, and the joint

posterior distribution can be written as

p(θ, h, q|r, rsp) ∝ p(r|θ, h, q, rsp)p(θ, h, q)

= f(r|h, q, rsp)gθ(h)gθ(q)π(θ)

= f(r1|h1, q1, rsp0 )gθ(h1)gθ(q1)
T∏
t=2

[f(rt|ht, qt, rsp)gθ(ht|ht−1)gθ(qt|qt−1)] π(θ)

=
T∏
t=1

[(
p∑
i=1

hit

)
|Rt|−1/2 exp

[
−1

2
r′t(V

1/2
t RtV

1/2
t )−1rt

]]

×
T∏
t=2

p∏
i=1

[
(σ2

hi(1− ρ2i ))−1/2 exp

(
− 1

2σ2
hi

(hit+1 − µhi − φhi(hit − µhi)− ρiσhizit)2
)]

×
T∏
t=2

d∏
j=1

[
(σ2

qj)
−1/2 exp

(
− 1

2σ2
qj

(
qjt+1 − µStqj − φqj(qjt − µ

St
qj )
)2)]

×
p∏
i=1

(
σ2
hi

1− φ2
hi

)−1/2
exp

(
− (hi1 − µh1)2

2σ2
hi/(1− φ2

hi)

)

×
d∏
j=1

(
σ2
qj

1− φ2
qj

)−1/2
exp

(
− (qj1 − µq1)2

2σ2
qj/(1− φ2

qj)

)
π(θ),

where zt = R
− 1

2
t V

− 1
2

t rt = (z1t, z2t.., zpt)
′ and µStqj = µqj + γµjI(rspt < 0). To sample from the

posterior distribution of parameters conditional on latent variables, we proceed as follows:

1. To draw the leverage effect ρ, note that the conditional distribution of ht+1|ht, rt, θ is

ht+1|ht, rt, qt, θ/(ρ)θ ∼ N(µh + φh(ht − µh)) + ΩΣ
1
2
h zt,Σh − ΩΣhΩ

′)

where Ω = diag(ρ). The posterior distribution of ρ is

f(ρ|h, r, q, θ/(ρ)) ∝
T−1∏
t=1

f(ht+1|ht, rt, qt, θ/(ρ))I(ρ ∈ (−1, 1)),

and we conduct a random walk Metropolis-Hasting sampler to draw ρ.
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2. In the MSVLA-GFT model, note that qjt follows a threshold model

qj(t+1) = (µqj + γµjI(rspt < 0))(1− φqj) + φqjqjt + ηqjt,

which can be expressed as a linear regression

Y = X

(
µqj

γµj

)
+

ηqjt
(1− φqj)

,

where

Y =

(
qj2 − φqjqj1
(1− φqj)

, ...,
qjT − φqjqj(T−1)

(1− φqj)

)′
,

and

X =

(
1 . . . 1

I(rsp1 < 0) . . . I(rspT−1 < 0).

)′
The joint prior distribution of µqj and γµj is(

µqj

γµj

)
∼ N(mµq,Σµq),

where

mµq =

(
mµ0

mγ0

)
,Σµq =

(
s2µ0 0

0 s2γ0

)
.

µqj and γµj are directly drawn from the conditional posterior distribution(
µqj

γµj

)
|q, rsp, θ/(γµ,µq) ∼ N(m̃µq, Σ̃µq), (11)

where

Σ̃−1µq =
(1− φqj)2(X ′X)

σ2
qj

+ Σ−1µq ,

and

m̃µq = Σ̃µq

(
σ2
qj

(1− φqj)2
X ′Y + Σ−1µqmµq

)
.
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Table 1: Simulation results for MSVLA-GFT

µh1 φh1 σ2
h1 ρ1 µq1 φq1 σ2

q1 γµ1
T N True Value 0.300 0.900 0.050 -0.500 0.700 0.900 0.050 -0.200

500 50 Mean 0.296 0.880 0.054 -0.265 0.739 0.848 0.066 -0.276
Std 0.150 0.062 0.031 0.111 0.550 0.068 0.032 1.106
IF 7.511 82.147 138.723 30.730 23.033 83.494 116.718 25.524

100 Mean 0.301 0.883 0.051 -0.319 0.742 0.845 0.067 -0.281
Std 0.149 0.059 0.029 0.121 0.579 0.070 0.033 1.155
IF 8.089 75.534 137.035 31.287 21.742 81.319 113.849 24.367

200 Mean 0.310 0.883 0.047 -0.363 0.742 0.846 0.067 -0.281
Std 0.151 0.063 0.028 0.134 0.673 0.070 0.033 1.303
IF 9.037 72.478 132.307 33.293 21.176 82.786 115.358 23.623

1000 50 Mean 0.289 0.873 0.062 -0.268 0.730 0.882 0.058 -0.246
Std 0.093 0.048 0.026 0.076 0.235 0.034 0.020 0.463
IF 8.624 113.888 167.414 22.627 20.230 75.074 114.397 22.951

100 Mean 0.295 0.871 0.058 -0.318 0.729 0.882 0.058 -0.246
Std 0.095 0.052 0.025 0.085 0.237 0.034 0.019 0.467
IF 10.534 97.360 145.374 29.718 18.837 73.355 110.717 21.484

200 Mean 0.301 0.872 0.053 -0.363 0.728 0.882 0.057 -0.242
Std 0.096 0.052 0.024 0.094 0.235 0.034 0.019 0.463
IF 11.339 95.164 154.379 41.072 19.194 69.665 104.743 21.627

2000 50 Mean 0.286 0.867 0.071 -0.286 0.703 0.888 0.055 -0.201
Std 0.061 0.035 0.021 0.052 0.162 0.023 0.013 0.315
IF 5.445 106.104 152.163 19.675 17.726 74.089 112.350 20.258

100 Mean 0.291 0.873 0.066 -0.337 0.704 0.887 0.055 -0.203
Std 0.061 0.033 0.020 0.056 0.162 0.023 0.013 0.314
IF 5.061 105.372 148.509 29.565 17.294 77.869 116.653 19.578

200 Mean 0.295 0.875 0.062 -0.377 0.704 0.888 0.055 -0.202
Std 0.061 0.033 0.019 0.061 0.162 0.023 0.013 0.316
IF 6.187 113.495 168.291 40.770 16.932 71.260 107.229 19.232

Notes: T is the number of observations for each asset. N is the number of particles used in PGAS. Mean is the average
value of posterior means across replications. Std is the standard error of the posterior means across replications. IF
is the average inefficiency factor across replications.
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Table 2: Descriptive statistics for the empirical applications

Panel 1: Exchange Rate Data
EUR/USD GBP/USD CHF/USD

Mean 0.002 0.005 -0.013
Variance 0.218 0.203 0.284
Skewness 0.014 0.844 -0.370
Kurtosis 4.447 7.993 8.084
Min -2.841 -1.654 -4.188
Max 1.904 3.649 3.340
JB 0.001 0.001 0.001

Sample Correlation
1.000
0.655 1.000
0.809 0.521 1.000

Panel 2: Stock Return Data
DD XOM MMM

Mean 0.000 -0.001 0.000
Variance 0.000 0.000 0.000
Skewness 0.143 -0.153 -0.887
Kurtosis 12.542 13.747 16.047
Min -0.142 -0.130 -0.139
Max 0.164 0.119 0.119
JB 0.001 0.001 0.001

Sample Correlation
1.000
0.588 1.000
0.576 0.553 1.000

Notes: The first panel reports the summary statistics for the weekly log-
returns of three exchange rates, namely Euro, Pound sterling and Swiss
frac, all against the U.S. dollar. The sample period is from January
13, 1993 to December 25, 2019. The second panel reports the summary
statistics for the daily log-returns of three equities, namely DuPont (DD),
Exxon Mobil (XOM) and 3M company (MMM). The sample period is
from January 13, 1993 to December 25, 2019. JB denotes the p-value of
the Jarque-Bera normality test.
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Table 3: Estimation results related to volatilities in candidate models
for the exchange rate data

MSV-GFT/MSV-GFT-eq/MSV-DCC MSV-chol
µh1 Mean -1.715 -1.722

Std 0.198 0.194
95%CI [-2.131,-1.325] [-2.120,-1.348]
IF 0.633 1.428

µh2 Mean -1.807 -2.567
Std 0.121 0.144
95%CI [-2.043,-1.562] [-2.838,-2.268]
IF 2.800 22.014

µh3 Mean -1.520 -3.803
Std 0.139 0.225
95%CI [-1.801,-1.249] [-4.247,-3.355]
IF 1.259 14.618

φh1 Mean 0.980 0.980
Std 0.009 0.009
95%CI [0.959,0.993] [0.960,0.993]
IF 122.683 80.229

φh2 Mean 0.953 0.950
Std 0.020 0.020
95%CI [0.905,0.982] [0.904,0.980]
IF 143.909 157.320

φh3 Mean 0.955 0.928
Std 0.016 0.019
95%CI [0.918,0.980] [0.886,0.959]
IF 94.723 101.658

σ2
h1 Mean 0.015 0.015

Std 0.006 0.006
95%CI [0.007,0.032] [0.007,0.028]
IF 215.786 176.734

σ2
h2 Mean 0.033 0.048

Std 0.015 0.020
95%CI [0.013,0.073] [0.021,0.097]
IF 185.510 212.597

σ2
h3 Mean 0.041 0.285

Std 0.013 0.076
95%CI [0.022,0.073] [0.172,0.473]
IF 156.210 182.924

Notes: Mean is the posterior mean. SD is the numerical standard errors of the
posterior means. 95% CI is constructed using the 2.5th and 97.5th percentiles of the
MCMC draws. IF is the inefficiency factor. The volatility-related parameters for
MSV-GFT, MSV-GFT-eq and MSV-DCC are the same as they are all estimated by
first fitting separate univariate SV models.

37



Table 4: Estimation results related to correlation and the log marginal likelihood and DIC
values in candidate models for the exchange rate data

MSV-GFT MSV-GFT-eq MSV-DCC MSV-chol
Mean µq1 0.706 0.708 k 0.780 µh?1 0.619
Std 0.026 0.041 0.024 0.022
95%CI [0.655,0.757] [0.624,0.790] [0.736,0.822] [0.576,0.663]
IF 13.426 2.558 650.111 12.462
Mean µq2 1.475 1.453 d 15.190 µh?2 0.973
Std 0.094 0.135 1.121 0.020
95%CI [1.285,1.654] [1.184,1.715] [13.299,17.360] [0.934,1.013]
IF 1.268 0.751 631.814 10.714
Mean µq3 0.475 0.478 a11 1.116 µh?3 -0.008
Std 0.083 0.072 0.030 0.021
95%CI [0.310,0.639] [0.334,0.618] [1.066,1.180] [-0.050,0.033]
IF 1.060 0.273 538.066 15.551
Mean φq1 0.834 0.969 a21 -0.132 φh?1 0.270
Std 0.098 0.006 0.019 0.113
95%CI [0.576,0.958] [0.957,0.980] [-0.171,-0.099] [0.046,0.484]
IF 156.889 65.441 511.181 57.978
Mean φq2 0.946 a22 -0.319 φh?2 0.355
Std 0.014 0.042 0.100
95%CI [0.916,0.970] [-0.403,-0.244] [0.166,0.548]
IF 41.715 605.758 61.688
Mean φq3 0.970 a31 1.027 φh?3 0.634
Std 0.012 0.012 0.106
95%CI [0.941,0.989] [1.004,1.052] [0.401,0.817]
IF 130.851 190.699 107.911
Mean σ2

q1 0.004 0.002 a32 -0.066 σ2
h?1 0.086

Std 0.002 0.001 0.011 0.015
95%CI [0.001,0.010] [0.001,0.003] [-0.088,-0.046] [0.058,0.117]
IF 343.509 163.838 232.215 51.744
Mean σ2

q2 0.030 0.023 a33 1.103 σ2
h?2 0.062

Std 0.007 0.005 0.026 0.009
95%CI [0.018,0.045] [0.015,0.033] [1.057,1.159] [0.045,0.080]
IF 86.546 70.013 519.844 56.377
Mean σ2

q3 0.006 0.006 σ2
h?3 0.023

Std 0.003 0.002 0.006
95%CI [0.003,0.013] [0.003,0.010] [0.012,0.035]
IF 209.150 127.976 94.640
DIC 2252.6 2378.1 2385.5 2258.3
log ML -1136.2 -1192.9 -1205.5 -1126.3

Notes: Mean is the posterior mean. SD is the numerical standard error of the posterior mean. 95% CI is
constructed using the 2.5th and 97.5th percentiles of the MCMC draws. IF is the inefficiency factor.
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Table 5: Estimation results related to volatility in candi-
date models for the stock return data

MSV models MSVL/MSVLA models
µh1 Mean 0.756 0.749

Std 0.119 0.112
95%CI [0.539,0.984] [0.536,0.975]
IF 9.992 10.383

µh2 Mean 0.367 0.372
Std 0.270 0.273
95%CI [-0.147,0.904] [-0.173,0.922]
IF 9.173 10.142

µh3 Mean -0.019 -0.014
Std 0.119 0.119
95%CI [-0.232,0.204] [-0.253,0.221]
IF 11.421 10.429

φh1 Mean 0.930 0.933
Std 0.017 0.014
95%CI [0.895,0.960] [0.905,0.961]
IF 154.326 85.370

φh2 Mean 0.984 0.985
Std 0.005 0.005
95%CI [0.972,0.993] [0.975,0.993]
IF 56.142 61.866

φh3 Mean 0.909 0.923
Std 0.022 0.016
95%CI [0.862,0.948] [0.890,0.952]
IF 146.975 97.037

σ2
h1 Mean 0.117 0.111

Std 0.030 0.022
95%CI [0.067,0.177] [0.068,0.152]
IF 201.737 137.497

σ2
h2 Mean 0.033 0.030

Std 0.009 0.006
95%CI [0.021,0.052] [0.019,0.043]
IF 106.621 153.344

σ2
h3 Mean 0.189 0.159

Std 0.049 0.032
95%CI [0.105,0.305] [0.100,0.223]
IF 181.958 135.422

Notes: Mean is the posterior mean. SD is the numerical standard
errors of the posterior means. 95% CI is constructed using the 2.5th
and 97.5th percentiles of the MCMC draws. IF is the inefficiency
factor.
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Table 6: Estimation results of leverage effect and asym-
metric effect in candidate models for the stock return
data

MSVL models MSVLA-GFT model
ρ1 Mean -0.293 -0.293

Std 0.046 0.046
95%CI [-0.381,-0.202] [-0.381,-0.202]

IF 58.136 58.136
ρ2 Mean -0.211 -0.211

Std 0.050 0.050
95%CI [-0.299,-0.108] [-0.299,-0.108]

IF 54.575 54.575
ρ3 Mean -0.171 -0.171

Std 0.047 0.047
95%CI [-0.265,-0.075] [-0.265,-0.075]

IF 42.360 42.360
γµ1 Mean 0.054

Std 0.104
95%CI [-0.145,0.262]

IF 42.599
γµ2 Mean 0.489

Std 0.268
95%CI [0.094,1.163]

IF 209.135
γµ3 Mean 0.401

Std 0.294
95%CI [-0.036,1.111]

IF 137.946

Notes: Mean is the posterior mean. SD is the numerical stan-
dard errors of the posterior means. 95% CI is constructed using
the 2.5th and 97.5th percentiles of the MCMC draws. IF is the
inefficiency factor.

40



Table 7: Estimation results related to correlation and the log marginal likelihood and DIC values in
candidate models for the stock return data

MSV-GFT MSVL-GFT MSVL-GFT-eq MSVLA-GFT MSVL-DCC
µq1 Mean 0.539 0.536 0.496 0.528 k 0.359

Std 0.032 0.030 0.057 0.057 0.040
95%CI [0.474,0.601] [0.478,0.596] [0.383,0.610] [0.414,0.637] [0.286,0.432]
IF 25.282 19.504 10.331 36.151 653.576

µq2 Mean 0.593 0.582 0.565 0.377 d 8.585
Std 0.040 0.040 0.068 0.134 0.531
95%CI [0.512,0.667] [0.503,0.659] [0.429,0.703] [0.058,0.576] [7.528,9.605]
IF 29.604 12.311 9.687 221.668 477.359

µq3 Mean 0.468 0.464 0.444 0.280 a11 1.245
Std 0.035 0.033 0.058 0.145 0.039
95%CI [0.396,0.535] [0.399,0.529] [0.326,0.559] [-0.060,0.503] [1.181,1.329]
IF 20.985 13.329 10.415 142.104 498.432

φq1 Mean 0.786 0.772 0.976 0.556 a21 -0.312
Std 0.070 0.064 0.005 0.107 0.031
95%CI [0.622,0.913] [0.614,0.862] [0.964,0.984] [0.329,0.769] [-0.380,-0.261]
IF 236.836 175.359 187.858 136.179 340.597

φq2 Mean 0.887 0.911 0.809 a22 -0.367
Std 0.062 0.030 0.104 0.036
95%CI [0.706,0.956] [0.834,0.955] [0.571,0.944] [-0.436,-0.298]
IF 397.421 190.867 443.146 426.523

φq3 Mean 0.875 0.877 0.841 a31 1.188
Std 0.068 0.036 0.104 0.032
95%CI [0.712,0.955] [0.796,0.934] [0.520,0.933] [1.133,1.254]
IF 478.995 139.680 393.311 474.705

σ2
q1 Mean 0.051 0.054 0.004 0.116 a32 -0.256

Std 0.021 0.018 0.001 0.029 0.027
95%CI [0.016,0.102] [0.031,0.100] [0.002,0.007] [0.055,0.174] [-0.308,-0.204]
IF 254.208 205.683 264.051 166.473 371.845

σ2
q2 Mean 0.026 0.019 0.005 0.048 a33 1.219

Std 0.019 0.007 0.002 0.031 0.036
95%CI [0.009,0.083] [0.009,0.038] [0.003,0.011] [0.010,0.122] [1.153,1.291]
IF 421.839 232.903 263.898 477.251 494.367

σ2
q3 Mean 0.020 0.020 0.004 0.026

Std 0.015 0.007 0.001 0.021
95%CI [0.006,0.059] [0.010,0.034] [0.002,0.007] [0.008,0.094]
IF 498.020 196.282 184.989 405.992

DIC 21290 21256 21298 21242 22261
log ML -10672 -10647 -10675 -10646 -11108

Notes: Mean is the posterior mean. SD is the numerical standard error of the posterior mean. 95% CI is constructed
using the 2.5th and 97.5th percentiles of the MCMC draws. IF is the inefficiency factor.
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Table 8: Model comparison based on out-of-sample portfolio construction

MSV models
MSV-CC MSV-GFT MSV-GFT-eq MSV-DCC

Squared Returns 0.897 0.888 0.896 0.902
MSVL models

MSVL-CC MSVL-GFT MSVL-GFT-eq MSVL-DCC
Squared Returns 0.867 0.852 0.854 0.869

MSVLA models
MSVLA-GFT

Squared Returns 0.854

Notes: Boldface indicates the smallest value. The performance of average squared returns is
relative to the equal-weight portfolio.
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Figure 1: True and filtered log-variances. This figure plots the true h (blue solid), the filtered h (black solid) and the 95%
credible intervals of the filtered h (red shaded area).
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Figure 2: True and filtered transformed-correlation-cofficients. This figure plots the true q (blue solid), the filtered q (black
solid) and the 95% credible intervals of the filtered q (red shaded area).
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Figure 3: Time series plots of exchange rates data. This figure plots the time series dynamics of the weekly log-returns of three
exchange rates, namely Euro, Pound sterling and Swiss frac, all against the US dollar. The sample period is from January 13,
1993 to December 25, 2019.
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Figure 4: Filtered pairwise correlations in exchange rate application. This figure plots the posterior mean of correlation sequences
filtered based on MSV-GFT model, using the weekly log-returns of three exchange rates, namely Euro, Pound sterling and Swiss
frac, all against the US dollar.
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Figure 5: Time series plots of stock returns data. This figure plots the time series dynamics of the daily log-returns of three
equities, namely DuPont (DD), Exxon Mobil (XOM) and 3M company (MMM). The sample period is from January 4, 2014 to
December 31, 2020.
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Figure 6: Filtered pairwise correlations in stock return application. This figure plots the posterior mean of correlation sequences
filtered based on MSVLA-GFT model, using the daily log-returns of three stocks equities, namely DuPont (DD), Exxon Mobil
(XOM) and 3M company (MMM).
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