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Abstract

This online supplement has five sections. Section A collects together technical
lemmas that are used for membership estimation in the first stage. Section B col-
lects the lemmas needed for post-clustering panel estimation and the bubble detec-
tion methods, specifically the post-clustering panel ¢- and J-tests. Section C collects
results and proofs for selecting the number of groups. Section D overviews experi-
mental designs and reports simulation findings. Section E contains tables.

We provide technical proofs for clustering, estimation and tests of the proposed two-
stage grouping procedure. Throughout the supplement notations are the same as in the
main paper. The technical lemmas given in the following sections play central roles in
the proofs of the main theorems in the paper.

A Proofs for Stage 1: Recursive k-means Clustering

For any individual i € Z,, let g; := g; (¢*) denote the membership estimator of g generated
by the recursive k-means clustering algorithm. Note that ¢ (:: (’c"i,’c';,...,?éo)) is the first-
stage estimator of the distancing parameter vector c.

To establish uniform consistency of the recursive k-means clustering algorithm, we
first show consistency of ¢* in terms of the Hausdorff distance, which measures how far
two compact subsets in a metric space are separated from each other, defined by
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where a:= (ay,4a,,...,ac0) and b := (by, by, ..., bgo).



Lemma A.1 If Assumptions 1 and 2 hold, then,

sup T (logT)*|Qur(c,8) - Qur(c,d)| = 0,(1),
(c,0)eCg0xAs0

where
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i= t=1
with Yir = Zthl ;721571, and p; and 5? defined as in the main paper,

Proof of Lemma A.1: The difference between the two objective functions Q\HT (+,-) and

@n (+,-) can be measured as
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Based on the assumption of latent membership, we have
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Therefore, by Phillips and Magdalinos (2007) and Phillips and Durlauf (1986), we have
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where p~ =1+ e 9/T7. By applying a similar argument to 1 Y- Lyl Vi t—1U;Ci, We

can show that
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foranyj=1,2,.., GO. Finally, based on equations (1) and (2),
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by the rate restriction in Assumption 2. Therefore,

sup  T% (log T)*|Qur(c,6) — Qur(c,8)| = 0, (1)
(C,é)ECGQ XAGO

This concludes the proof. m

Lemma A.2 Suppose Assumptions 1 and 2 hold. Then, when (n,T) — oo,
diy (c°,T) =0, (T (log T)™®).

Moreover, there exists a permutation T : {1, 2,...G0} — {1, 2,..., GO}, such that

T7 (log T)* ?;(7) - c?

—p 0.

If we relabel T by setting t(j) = j, then
[6 = || = 0, (T (log T)™*).
Proof of Lemma A.2: By Lemma A.1,
Qur (€,8) = Qur (€,8) + 0, (T (log T)"®)
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< anT (CO, 60) +0, (T_47’ (log T)fs)
= Qur (CO, 60) +0, (T747’ (log T)‘s).

Because Q,7(c,d) is minimized at ¢ = ¢® and § = §°, we have
Qur(@,8) = Qur (c°,8°) = 0, (T™* (log T)®).
Then, for any c,
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As a result,
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> T [ Zy Z%t 1( )] [%Z iﬁt—l(ﬂ(;’)‘@y (7)
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The first term of (7) is bounded away from zero since

_ZT Zylt 1

under the joint asymptotic scheme (1, T) — oo and Ic]Q - c9| >¢ > 0 for any j # j. Therefore,

J
the first term of (7) is nonzero. Due to (5) and (6), the second term of (7) and the term
(8) are both 0,(1). Therefore, we have 7(j) = () with probability approaching one. We
note that asymptotically 7 is not only an ‘onto’ mapping but also ‘one-to-one’ mapping.

Hence, 7 has an inverse denoted as 7! and
i, (p]‘ - p;) (p " p~) = ér,;;%o(prl(;) - ph) =0p (T (logT)™%),
where the last equality is due to (5) and (6). Then
2
: 0_ = _ -4y -8
ma (i (o 5) = (7 g T1), g

Combining the results (5) and (9), we show equation (3). Then the proof is completed. m
In the rest of the Online Supplement, we always relabel ¢ by setting © (7) =j. For any
n >0, we define NV, , g;(¢”), and 5 by

Nyi={eeConi |0 =gl <n vj=1,2,..6%), (10)

T o 2
&i(©): i=arg_ {glnGo};[it—?},t_leXP[T—]y]] :

—

6:=(81(6),8(C),.. 8 (C)),
where we treat the scaling parameter y as given a priori.
Lemma A.3 Suppose Assumptions 1 and 2 hold. Then, for any fixed M > 0,
(i) if ) >0,
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(i) ifc? =0,

P (log, (T))” >M
et T2V 1T ( )
(iii) if ) <0,
1| 1
52%3‘“[? ) Fis-1 T 2M)Z"(z)~

Proof of Lemma A.3: We use the standard decomposition
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(i) If ¢? > 0, fix an arbitrary M > 0 and we have
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For the first term of (12), by the Markov inequality, we have
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i€, (ﬁ?) TY (plow)

where K denotes a positive constant (a notation that recurs in later derivations) and the
asymptotic negligibility in (13) is due to the dominance of the exponential rate. For the
second term in (11), by the Markov inequality,
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with the dominance of the exponential rate. Based on (13) and (14), when E? >0,

(ii) If E? =0, for any M > 0, the following decomposition applies

log2 2 4 log2
nriré%z(Pr[ th i1 | > M <nl’ll’é%i(Pr BT Zylt Uiy >_
log a M
+n111;%>l<Pr[ 2 [Z{ Vit 1)[t_ Mzt) >7]
(ii.1) Since y;o = 0 with E? =0, we have
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(A.1) (A.2)
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For terms (A.1) and (A.2), we have

(log, T =l (log T)ZF-(I) L
Pl’( 22—72 Ze 22—_7,ZZ(€i,O_€i,t—1)eit
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Letz;; = (sz uis) ejirand Fi ;1 =0 {¢€;1-1,€j4-2,...} be the sigma-field generated by {e; ;_1,€; t_2,...}.
Although {z;;} is a martingale sequence as [E(z;|% ;1) = 0, the exponential inequality

(log, T T (t-1
2 Z[ uis]eit
1

t=1 \s=

(Freedman, 1975) is not directly applicable to {z;;}. Applying the following decomposi-
tion to z;;, we get
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t=
log, T)* F; (1) & log, T)’ F; (1) & log, ) F; (1) y
:( g2T2)—;/Z ;Z“t+(‘(;Zlﬁz—l)ﬁ;zzit_(gzjl“2—)—7/z;m(zzit|ﬁt—l):

— 1_3 —
where zy;; = zj1;; — B[z ;41 Fi 111, 22ir = zigLir, 1iy = Wzl < dy1), dyr = n2T%, and 1;; =
1-1;;. Hence,
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T 2 T
(10g2 (long) M
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P (10g2 g F
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Let V;r = Zthl IE(Zizt|~E,t—1), v,r = VnT?. By Holder’s inequality and Jensen’s inequality,
we have

T 2 T
w(vh) | Blai)| 1) e
t=1 t=1
T T
<T) E(z4)=0|T) £#|=0(T%),
t=1 t=1

As IE{ZlitU';,tfl} = IE{Zitlit _E[zitlit|ﬁ,t71]|ﬁ,t71} = IE[Zitlitu:zt,tfl] - IE[ZitlitU';,tfl] =0,
the exponential inequality of Freedman (1975) can be applied and leads to
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(log, T)? M
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0(nT4v;%)

(16)

=o0(1).
Moreover,
nmaxPr (log, T) iz > — < nmaxPr(maX |zif| > d
i€Z, ST — 2t i€l lst<t 't T
< >
nTrlrg,fg%Pr(lzztl dut)
< ﬂmax max IE(|Z |* 1{|z;;| = d })
d4 ieT, 1<t< it it nT
nT3
=ol—|=0,(1),
(%)= o)
5.
where the rate restrictions —L— T > n? logn and 2 L ni logn are guaranteed by
log, T (log, T)
Assumption 2. Similarly, we can show that
T
(log, T)2 M
”rl_fé%zd’r[w Fz‘(l);m(z2it|]:i,t—l) 217 =o(1).
Combining the above results in (15) (16) and (17), we have
T
(log, T)2 M
nriré%i(Pr[ T2y i(l);zit ZZ =o0(1)
For (A.3), we have
T (-1
(log, T)"Fi (1)
ZTZ_), : Z Zezs (ez t-1 ezt)
t=1 \s=1
T-1 T
(log, T)“F; (1)
- 2T2_7 l €is Z (el . t)
s=1 t=s+1
log, TPEW S
- 27— is\Ci,s 1, T
=7 s=1
-1 T-1
(log, T) Fi(1)| 5~ (log, T)*F; (1) Z.e =
- T2-7 is |Ci,s T2-7 is |©i,T
s=1 s=1
(A.3.1) (A.3.2)
For the term (A.3.2), by the Markov inequality, we have
T-1
(log, T)* Fi (1) M
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2
256 (log, T)* E|F; (1) (L} €is)€i,T|
< nmax
ieT, T4-2y M2
256 (log, T =
< M x nmaxF2 €js
T42y M2 i€, —
n(log, T)4
=0 W :0(1), (19)
where the rate restriction TH; 7 > n is ensured by Assumption 2. For the term (A.3.1),
08>

it follows that

(long) 1(1)[T_16 ]g
2_ is |Ci,s
= s=1
- T-1
(log, T)’F; (1) &, g2~ . (log,T)?F;(1) 2\~
-k (¢°) Fi (1) S (efs—(ao) )Fi(l)
s=1 s=1
(A.3.1.1) (A.3.1.2)
log, T)’F; (1) &= ~
( ngz)_yl ezs(els_Pi(l)ezs)
s=1
(A.3.1.3)

log, T) Fi(1) —T_ 2~
(ngTzzy _’91;11 (O.O) Fl(l)

As nmaxiez, e T

2
< nmmaxiey, (log, 7)° |F; (1 )|( 0)2 |fi(1)| :O(n(long) ),
we then have
T 1

(1082

~ 48

nmaxPr
i€Z,

M] =0, (20)

5:1

2
where the rate restriction 0 T % > nis ensured by Assumption 2. Note that IE( ( 0) |Fi -1 ) =
08,
0 for all ¢. By the Markov inequality, we have

T 1
nriré%fpr[ (1082 L (e L )E(l) > 2/1—8]
2
n(log, T)* -
= MZTi 7y maxE| SZ( ) i(l)]
1 T
:o[—”(;igy) ):ou), (1)

T3—2y
log, T)4

where the rate restriction > n is assured by Assumption 2. Similarly, by the
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Holder and Jensen inequalities, we have

T-1
(log, T)* F; (1) - = M
nr}gfl’r[ #Zleis(ei,s—ﬂ(l)ei,s) > 5| =), (22)
S=
with the rate restriction (1T3-2TV)4 > n assured by Assumption 2. Therefore, combining the
08>

results in (19) (20) (21) and (22), we have

2 T t—1
nr;ggxl’r{ (logQ;)_yP’(l)Z[Zezs)(ez t-1~ €it) >%)=o(1>. (23)
" t=1 \s=1

For (A.4), we have the decomposition

T
(log, T’ & — .
—Tzz_y Z(ei,o —€it-1) (€521 — €1 t)
t=1
T
(log, T)2~ ~ = (log2T)2 —~ —_ -
=—=—¢€0(€i0—€r1)-—=——) €+ 1(€1-€i1).
72— 1,0( 1,0 l,T) 72— z,t—l( i,t—1 z,t)
r—r = t=1
(A4.1) e

For (A.4.1), applying the Markov inequality, we have

(log T)2~ _ M
nrl_xéezler( 22_7, €i,0(€i0—€i,1) T
256 -n(log, T)* )
S iy MaE(E (G -&r)*) =0 (D), (24)
and
T
(log, T’ -~ ~ | M
”I}é%fpf[ ﬁ L €i-1 (€1 —€ip)| > 6l= o(1), (25)
where the rate restrictions —L— ; > n and T ; > n are assured by Assumption 2.
(log2 T) (log2 T)

Combining (24) and (25), we have

log, T)> o _  _ — — M
”riré%fpr( (7%%;/) ;(ei,o —€i1-1) (€51 —€ip)| > g) =o(1). (26)
Finally, based on the results in (18) (23) and (26), we have
log, T)? &
”52%3‘“[ .= D it 2 —] =o(1) (27)
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(ii.2) For the demeaning term, the following decomposition applies

T T
(log, T)2 M
”rfé%fpr[ T3 ;yi't‘l ;”” =72
T T T
(long)2 M 1 IM
< Pr| —=—~ . . > —, o < —
_nriré%)l( r[ 3y ;%,t 1 ;uzt =72 Ty ;y:,t 1 B
T
1 M
MI}éaIfPr[Ti—y ;yi't‘l = V7]
log, T)? | & V2M 1 |o V2M
< nmaxPr ( g23 ) Zu” > +nmaxPr| — Z%‘t—l > .
i€Z, Ti — ’ 2 i€Z, Ti7V = ’ 2
(A.5) (A.6)
For (A.5), by the Beveridge-Nelson decomposition, we have
T T
Z”it:Fz’(l)Zeit"'a,O—a,T:
t=1 t=1
and hence,
log, T)? V2M
nmaxpr[w i,t Z 2 ]
ieZ, T3z 1
T 2
(log, T)? V2M (log, T)"\—  _ V2M
Sml?é%zd)f(# Fi(l);ei,t > 1 +n1}é%>l<Pr ;%|e,-lo—€ij|2 T |
(A.5.1) (A.5.2)

For the term (A.5.1), by the exponential inequality of Freedman (1975), we have

(long)2 a V2M
Pr| ——=—|F;(1 it = =o(1), 2
nmax r[ o |Fi >;em >~ |=o() (28)

where the rate restrictions L4 > y/nlogn and Lz > ni logn are ensured by As-
(log, T) (log, T)
sumption 2. For the term (A.5.2), by the Markov inequality, we have

(—(long ‘/iﬂ]:ou),

)2
3 |€i,o - €i,T| 2
4

nmaxPr
i€z,

(29)

3
T2

with the rate restriction > n assured by Assumption 2. For the term (A.6), by the

log, T)4
Beveridge-Nelson decomposition (Phillips and Solo, 1992), we prove a more restrictive
case
T
(log, T)? V2M
P E ii-1] 2
nrg%f r[ T%‘V L Vit-1 b




T-1( T
log, T V
<11r.naxPr[(0gg2 ) F; (1 (Z 1]615 > iM)
i€l Ta7 s=0 \t=s+1
(A.6.1)
T-1( T
(log, T)? ] V2M
+nmaxPr > 1|(€s-1—€i4)| = ,
(A.6.2)

where ;o = 0. For the term (A.6.1), by the exponential inequality (Freedman, 1975), we
have

1 T 1 Irsws
nmaxPr ( ng €is| = 2M =o0(1), (30)
i€Z, v e 4
! Tx s:O t=s+1
3
where the rate restrictions (IZg 7 > ynlogn and (o8 T)2 > ni logn follow by Assump-
2 82

tion 2. For (A.6.2), by the Markov inequality, we have

2

T-1( T
n?é%fPr((kf% ;’[tgll)(a’s_l_a'S) > \/i_M]:o(l), (31)
where the rate restriction (T)gi;y4 > n follows by Assumption 2. Therefore, based on
(28)-(31), we have
log, T) o
nri’r;%z(Pr[ = [Z%t 1][;1«!1 t] ] o(1). (32)

At last, by (27) and (32), we have

(log, (
T22 Y 1uzt

maxPr
ieZ,

>M)_o( )

(iii) When E? <0, for any M > 0, the demeaned numerator similarly decomposes as

1
Pr| = M
miréaz,),( r[T > ]
T
<nmaxPr[ Zylt 1Uie| > ]+nrlré%xPr[T2 [Zylt 1](;M1t] ) (33)

whose asymptotic negligibility follows by the Markov inequality and the exponential
inequality (Freedman, 1975). The details are given in the proof of Lemma A.3 of the
Online Supplement to Liu et al. (2022). m
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Lemma A.4 Suppose that Assumptions 1 and 2 hold, then,

o e ~ _ o2
(i) 1fc? >0 and My > %maxidn(w?) ,
ow

max Pr !
X
i€, (p?)z T2V (IOgT)

— 2
(ii) ifE? =0and M, > maX;er, (6?) ,

maxPr| ——
i€l log2

2
(iii) if €9 < 0 and M > 22ena(Tu)

Clow

_)_

riré%fpr[irlw Zylt 1|1=M ]:"(
Proof of Lemma A.4: (i) If E? > 0, we decompose ()TZ—)/
p
Ly
nmaxPr 72, > M,
i _0\2T i,t—1
< \(9F)" T (log 7Y
< nmaxPr ! iy? > &
T e, (5?)2T sz(IOgT)z = )
T 2 =
1 M,
+nmaxPr o > =
i€l (50)2 T27+1 (log T)* [Z%'t ] 2
1
< nmaxPr 2T1 Vz'zo Z%
<o 222(p?)7 T7 (log T)? 10
(C.1)
+nmaxPr 2T1 (vir—Eyir)= =
2 (@) g T 1O
(C.2)
T —
1 M
+ nmaxPr Vi1 > —
i 2T-1 i,t—1%"it
i€Z, E?(E?) TV (10gT)2 ; 10
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T
1 M
+nmaxPr > Zuft > 1_1
| 22 (p9)” T (log T) |1 0
(C.4)
1 a M,
+nm%xPr ot Tyl +2pl Wi Zylt 1+ 2u; Zu” > 10
e\ 22 (7)Y (log T)? =1 =1
(C.5)
T 2
1 M,
+nmaxPr Vi - ] > —
? 2T 1,t—1
(C.6)
1 M
+ nmaxPr |IEy§T|ZT1 .

; 2T
< 2 (p])” T (10gT)?

(C.7)
For (C.4), by the Markov inequality, we have
i Vi . 10-E(L (1))

= b () (p?)” T7 (log T)? M,
nT

nT7
:OTE%X —o\2T 5 =0 T loa T)2
n (pl ) TV (log T) (plow) ( 0g )

nr_n%xPr 5T
&Ly 25?(5?) T7 (log T)?

=o0(1), (34)

where the asymptotic negligibility is assured by the dominance of the exponential rates.
For the term (C.1), we have

! M 10Ey?
f’lm%XPr T 5 12,0|21_01 Snm%x - yz,() —
i€Z, 2c? (5?) T? (log T) i€, 2( )(pl) T? (log T) (Ml)
n n
=0 =0 ~o(1), (35)
I () T7 (10g T)? (1ow)>T T7 (log T)?

where the exponential rates leads to asymptotic negligibility. Lemma A.3 proves the
validity of (C.3) under Assumptions 1 and 2. For the term (C.2), by the exponential
inequality for x? variates (Laurent and Massart, 2000), we have




with constant K > 0, since

2 2 2
Pr(gtanT (v7r —Eplr) = 2M7Ey?y + ZMT)
2 2 [ 2
<T f?éxr Pr((yilT - IE%’,T) > \2M7Ey; + + 2MT)
2 2 2
2y’ J2M7Ey?
=T max Pr (yl’T yl’T) > 2My L

S e e e ) T e )

with Mt =K - (5?)2T T7 (log T)?. Therefore,

1 1
nmaxPr (y.Z ~Ey? )Z— =0. (36)
; 2T T T
<2 () T gy T T 1O
For term (C.6), as E? is a postive constant, it is equivalent to show
T 2 =
1 M,
nmax Pr Vit-1| =2 —
; 2T i,t—1
<\ (er) T (1ogT)2[; ] °
T 3c)M
1 i1
< nm%xPr T . Zy,-,t_ > 3
FELn (51-) Tz (logT) | =1
T-1 T M
1 14 Tt i1 3¢ M
Snriré%xPr T - — ((p?) —l)uit+Z(p?) Yio ZT
© | (P?) T2 (logT) | € S t=1
T-1 \J3¢M
1 o\t ¢ vl
<mmaxPr| ) (p7) wir| 2
L | T (log T) |
1 i( O)tfl \/ 35?[\7[1
+ nmaxPr Pi vio|Z2 ————
; T i !
i€z, (5?) T)/+% (IOgT) =) 12
T-1 [320 M
1 3CZ'M1
+nriré%xl’r T Zu” T
" c; (pi) 2(logT) |t=1
P Ly M )=o) (37)
=nmaxPr| ———— p;) uy|=2——|+o(l)=0(1),
<L (@) (logT) |V 6

by the dominance of the exponential rates, the Markov inequality, the rate restriction

{300 M, "

<0
12 (T3+7’ (log T)?

T'=7 > n and the following results:

T
> (7)) v

t=1

=

1
nmaxPr T -
i€T, (5?) T7*2 (log T)

):0(1);



and

T-1 \J3¢M,
P >
mlré%:( ' logT tZ' pl ult 6
F\2
KIE( (pl ) uit) ,
< nmax 5 =0|=——=
i€, M; T (log T) T'-7(logT)

where K denotes some constant value,

T-1 » 2 11 o
E|) (o)) uit] ~) (p?) TFZ(1)Ee, =O(T7),

t=1 t=1

due to the Beveridge-Nelson decomposition (Phillips and Solo, 1992). For the term (C.5),
we have

T T ~
1
nmax Pr Ty +2up° Y i1 + 24 E | >
2T i 11 1 1 i
el | 2 (p?) T7 (log T)? ; =1 10
1 M
<nmaxPr| 1Ttz 5
<E 2 (p])” T (l0gT)
T ~
1 M
+ nmaxPr 2u; E Vi1 2 ==
i 2T-1 1 1,
T = () R e ol = 20
T ~
1 M,
+ nmaxPr 2u; Y upy| > ——
i 2T 1 it
b 2@ (p})" T (logT)? 2
1 M
<nmaxlr| T ik 3—5]
el | 2¢0 (5?) T7 (log T)
T-1 ~
1 _o\~t Ml
+ nmaxPr 2],1 (po) Up| > —
i 2 T-1 1 i i
e 2(@) (7F) togT)? 2 0
T-1 ~
1 M
+ nmaxPr 2u; E Ui >
i 2 2T-1 1 1
Lo @) ()7 egT? | = 0
T —~
1 _n\t-1 M]
+ nmax Pr 2pu; E (p‘?) vio| = —
i 2 2T-1 1 i 1
e 2(@) (7)) (logT) | = 60
T o~
1 M
+nmaxPr 7T 2pi ) w275 [=o(D), (38)
i€Z, 259(5?) TV(logT)2 t=1
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by the Markov inequality and the dominance of the exponential rates over the polyno-
mial rate. For the term (C.7), since

_0 2T 1 (50)2
E 2 N 1 (pz) _0 2 i ,
22 (5?)” — 22 (5?)2T TV (5?)2—1 (@)~ 4(5?)2
if M, > maX;er, ( 0)2, we have
luw
1 M|
T 220 (7?)" 77 (log T)ZIE%Z'T ) >

Combining the results of (34)—(39) and Lemma A.3, we can show that

T
Zyl,t—l

(ii) If EI-O =0, by Lemma A.3 of Huang et al. (2021),

maxPr L
X
i€Z, (5?)2 T2V (logT)

— 1
ZM] :0(—).
n

limﬁl—lfo(Tz(logz Zylt 1] ( +g)(5?)2,

t=

for any ¢ > 0. Therefore,

T
lim sup [T2 oz T) Zf ] ( )(5?)2’ Viel,.

T—c0
. 5 ] 0

(iii) If E? < 0, the following decomposition can be applied to the sample moment:

With the above uniform upper bound, it follows that

Zyltl

t=1

nmaxPr| ————
i€Z, T2 ( log2

~ _o0\2
where M, > max;ez, (a)?) .

T
~2 —
”ff;%“’f{—m ) T ZMs]
! t=1
L M - M
2 3 2 3
Sm}é%chr[ - OT ;IEuit > T]+nrz_r£z<1’r[ T+ Zylt 1= Z'OT ZIEuit > T)
(D.1) (D.2)

18



T 2
1 M3
+ nrilgxPr[—Tzﬂ/ [Z?i,t—l] > 3 ]
n t:1

(D.3)

The asymptotic negligiblity of (D.1), (D.2) and (D.3) is similarly proved using the Markov
inequality and exponential inequality (Freedman, 1975). The details are given in the
proof of Lemma A.4 of the Online Supplement to Liu et al. (2022). Combining the above
results, we have

Zylt 1

and E? < 0. The proof is then complete. m

T1+)/

nmaxPr
i€z,

2M3] = 0(1)1

— o (39
with My > 22Nenl(T).
Lemma A.5 Suppose Assumptions 1 and 2 hold.

J— 2
=0 1 —0
(i) IfCl- >0and0<M1 Smmmidn (a)l) ,

_ 70 ’
(ii) If 2 = 0 and 0 < M, < minjez, ‘o),

maxPr

(log, T)2
iel,

— —0 )2
(”1) Ifz? <0and0< M3 _mm’ezﬂ( lu) ,

8cup

|27 7 )=o)

Proof of Lemma A.5: The proof of Lemma A.5(iii) follows that of Lemma A.4(iii). For
(ii), if E? =0, by Lemma A.3 of Huang et al. (2021),

maxPr T
i€T,, Ty

T —0)\2
. [og, TV | (wl. ) -
llmTlEEO[T ;,yi,t—l 2 12 » Vi= 1,2,..,,1/1_
Therefore,
(log, T)2 By —
nrzyé%xPr T2 | SMp|=0, Vi=1,2
! =1




The proof of Lemma A.5 (i) follows that of Lemma A.4 (i), the iterated logarithm law
for quadratic forms of martingales (Fernholz and Teicher, 1980; Donsker and Varadhan,
1977), and the fact that

f =— E f E
nf pZr = max (Bylr—yir)+ inf Byl

<k 7 tog 7+ (1) 7]

by Lemma 1 of Laurent and Massart (2000) and Donsker and Varadhan (1977, Formula
(4.6)), which justifies the liminf for the quadratic form of martingales. The proof is then
complete. m

Lemma A.6 Suppose Assumptions 1 and 2 hold. Let 1 = O(Ty ;

oo,

1 " ) Then, when (n,T) —

v (o 0 1
sup — 1igi(c)=g =0 (—),
ceN, n ; { ! 1 } P\y
where N, is defined in (10).

Proof of Lemma A.6: By the definition of g;(-), we have

T

T
1{gi(c) ]}<1{Zyzt—i7i,t1p] Z%t Yi,1-10g0) }
=1

t=1
forany j=1,2,.., GY. Note that

n

G°
—Z GO=gl)=) Y 1gl=jj1E =)
=
GO1 n 0 T o T
< . ;Zl{gi :t]}l{Z(yit_yi,t—lP] nylt Vit 1Pg }

j=1 i=1 =1
GY 1 n

=) 2 %o
j=1 i=1

where Z;j(c) = 1{g? # j}1{¥. L, Gt~ 91-10)> < L1 Bt~ Pir-10g0)?}, pj = 1+ ¢;/T7 and
P =1+ cg_o/TV. We intend to bound Z;;(c) for all c € j\/,7 by the arguments that are free
of parameter c. Therefore, for any i € Z,,,

T T
Zij(c) < fa'Xl{Z(iit_?i,t—lpj Zyzt Yi,t-107) }
=1
_ o 5 0 om (o
—m,axl{ it- (P] P])(2}’i,t—lp}f+2uit_yi,t—1(Pj+pj))50}-
t
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Define

. Y B (pr- Pj)(zﬁ,t—lp}g+ 2~ G (P + pj))
L S 0_ V(25 . p04 27 — T 0, 0
Y i-1Yit-1 P‘~ Pi J\Yi, t—le"‘ Uit —Yir-1 Pj~+(7j
< 2Z p] yzt luzt 2Z P~_P] ylt luzt
N Y1 P (P}-‘— o) (@?,t—lp}r— Vi1 (P}-‘+ Pj))

T —~ 0_ 0 =~ 0_ =~ 0 0
—Li=1 Vi1 (P]* Pj )(2y1,t—lpj~ Vit-1 (PT+ Pj ))

= HlT +H2Tl
where Hyr := 22?:1(07_ 0;)Vi,t-1Uir — 2y L 1( —P; )91 lult' and

YT (PT‘ Pj)(27i,t—1p}9_ Vi1 (PTJF Pj))

Hyp = . o\ ) S
Zt:l yl,t—l P]~ p] yl,t—lp:j‘ yl,t—l p,]_+ p]

By compactness of the parameter space and the definition of 7,

T
22 p] Yit-14is — 22 _p] )Vi 11| <

t=1

s

T
E t—1 Uit
=1

where B; is a constant independent of 1y and T. For H,7, we have, with B, as a constant
independent of 7 and T,

Y1 T P] P])(2yi,t—1p}9—’%,t—1(P}’prj))
~ Lot it 1( —pﬁ’)(%,t_lp?—%,t_l (p§+ p}’))

T
=2 Z%%tfl
Zyzt 1

Combining the above results, we obtain

Zij( <max1{Z}J1t1 (2%t 1P~+2”zt %,t—l(P}’”LpJ'))SO}

1#] =1

T
<max1{Z}ilt 1(P~_P])(2yzt 1P~+2”zt Vii— 1(P~+p] ))

J#] t=1
Zylt lult Zyzt 1 }
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1( o2 2
oper-ef=ei o)) 09 =oF o} (of))
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Since

T T 2
~ 0_,0\[r 0_~ 0. 0\\_\§ 0_ 0
Z}’i,t—l (P]-_ P; )(2Z/i,t—1pj~— Vit-1 (P}-”r Pj )) = ;yi,tl (P]-~ P; ) ’

}.

t=1
we define
—r?le{(p"p]) Zylt 1+2(p~—p])Zz)zt Vi < 2o Zyzt VT + 220 Z%t |
Consequently, we can bound Z;;(c) by SUP e v, Zij(c) < Zij. Then it follows that
1 & &
sup — Z gilc ¢gz 5 = Zzij-
CEN — n i=1 i=1

In the following, we intend to bound the clustering error in three cases: Case I (CJQ > 0),
Case I (c],g =0), Case III (cJQ <0).
Casel (c}(l> 0): For any j,j =1,2,..,G% and gio = 7, we have

Pr(Z;j=1)

gZPr ( ~—p]) Zylf 1+2( ~—p])Zy,t 11 < 77 Z?zt 11| + TVW Zyzt 1]
i#i
>0
]

T
SZPI 2(0%—0?)Zﬁ,t—1ﬁ;t5 ( _P]) Zylt 1+Ty’7
=1

pa Zyzt1”1t+T7,77 Z%m]

J#i

c?>0

0_ .0 o oV (.0\T o\2T o\2T

N T [ A et o
< Pr|2 Vip-1Uip < — M+ 1 LM,

ol I = (log T)? (log T)? (logT)

c?>0

(logT) — (log T)?

+ ZPr — ‘;;T - 2 <M |+ ZPr ) g2T > M,

i, \(p!) 1= . \(eF)

c%>0 c%>0

= (e )2 T? (logT)

c2>0
]
2 0\T

. I (¢) (Pf) 2T 2T

5 ) Pt e () (60) " tog T2y
< Pr|2— U < — M + k8 M; +B,T? [p log T)" nM
L Ty;;%let (bgTy 1 (bgTV ﬂ vl 2 P] (log T)"nM;
j#j, =
c%>0
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T
(log T)? . — (log T)?

+ZPI f—TZ}’iz,H <M, +ZP1’ =5 Z%t 1Uig| = M,y

i (pg) T2y =1 7=, (pﬁl) T7 It=

c]~>0 J C}Q>O ]

1 d _

+ ) Prl—pn Y |z M| (40)

i, (939) T2 (log T) 1=

c2>0
j

By Lemmas A.3, A.4 and A.5, the second, third, and fourth terms in (40) are all 0( ) We
(¢’ M1 (¢)*M,

2(B,T7 (logT)*M,+B,M,)" 4(B,T7(log T)*M,+B, M, )"

Thus, it follows that

can bound 7 by For instance, we can set 1§ =

¢(lo T 2T 2T 2T _
ZP [ g Zyzt 14 < —(¢) (P]g) M, +(Bl)(P]2) My + By T7 (P]g) (logT)411M1]
J#i
c2>0
]
(log T)? y

= ZPr 2—2szzt 1T <= (¢)> My + ByiMy + By T7 (log T)* M

7 TV(p]) =1

C%>O

¢(log T)? )2M

< ZPI g Zylt luzt !

i TV(p )

c](_l>0 ]

(log T)? ¢M, 1

< ~Z{Pr — 7 Zy,t 1 Uit = 1 :O(Z)' (41)

%], TV(p ) t=1

c](,l>0 ]
The last equality is due to Lemma A.3 and the fact that G is a finite value.

Case I (c](‘)~ =0): Forany j,j=1,2,..,G° and gl.o = 7, we have
PI‘(ZZ']' = 1)

5 T T B, T T

= ZPT[(P}Q_P?) Z?ft—l +2(P?~_P?)Z%t 11 < TVﬂ Z%t 1 Uit + Z ]

7=, t=1 t=1 t=1 =1

6]9:0

T T

< ZPr[Z(c]g—c?)Ty Z@Vlt 10 < —( cr—c; ) Zylt | +(B1) Ty Z%,t—l%t

T2, t=1 t=1

c](,l:O
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+BzT7/T]
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E Vit
=1
2 2

T 2
T _ T
0_NTrN % ~.<—(9~— Q) —— M, +(B M
SZPr[z(% N LT s8] o B

=0
]
_ log, T v, _ —
+ By T (log, T)> M, ) + Zpr[% V2,1 < Mz]
et =1
c](,l:O
log2
+ZPr iy > M, |+ ZPT T21 Zyztlz
4 7 (logz 1" fi=
C](,)~:0 CT—
(lo iy
< ZPr[ ]{;227/ Z%t 11 < —(€)> My + (By)M, + B, T7 (log, T) ’7M2]
]'Oif:
c==0
]
log2 log, T)
Y e Dw 1§M2]+Zpr[ 5T "
j#j, ]i]
2=0 c2=0
] j
R e | ®
]'~¢j, ng t=1
CJQ:O
(©)°M,

Similarly, we can bound # by setting n = ) Therefore, we have

4(BZTV(log2 T)*M,+B, M,

2(e-d)) o (G-9 T myr > ) =
Pr — %,t_lffits 5 M2+ 21’]M2+BzT +7(10g2 T) I’IMZ
}; ™ ; (log, T) (log, T)
=0
]
T
log, T — L — —
< Pr[2c'( ngz_y) Vi1 < —(¢)° My + (By) 1M, + By T7 (log, T)* 1M,
i =1
=0
]
T 25
2¢(log, T)? —(¢)" M,
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j#i. t=1
c](,l:O
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log, T — ¢M 1
< E Pr[ T227’ L Vit-1Ujy ZTz]:o(;). (43)
]i] -
=0
]

The last equality is due to Lemma A.3.

Case III (C}Q< 0): Forany j,j =1,2,...,G% and gl.o = j, we have

T

E Vit-1Uit

t=1

Z(C}Q—c?)TVZylt 11U < ( T ) Zylt 1+ (B1)T7y

t=1

— ]

|
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2M3]

+ ZPr Ty Z%t . SM3)+ ZPr(%

L L
c?~<0 c]9<0

+ZPI T1+y Zylt 1

< ZPr( Zy” 11 < —(¢)* M3+ (B 1)’7M3+32TV’7M3]
i
C~<0

+Zpr(m Y, 1<M3]+~ZPr(%

izl J*)
C~<O c]‘,l<0

ORISR

]7:]
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j

ZMS]

T
E Vit—1Ujt
=1

21\713].
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(€)*M;

——2 "3 ____and then
4(B,TYM;+B, M)

We can bound # by ( (€)M Setn =

2(B,TYM3+B, M)

pr[zc Z%t 11 < —(¢€) M3+(31)77M3+B2T7/77M3)

]¢]
c2<0
j

SR ERURELLY

] ]
%<0
j

< ZPr[

J#s
c2<0
j

lult
n

CM3] o(l). (44)

The last equality is due to Lemma A.3.
Combining the results in (41), (43) and (44), we obtain Pr (Z’j = 1) = o(%), which in
turn implies that

]_ n = n
s 13 1fgi0 <40 }_ ZZIEZH Zzpr =)
CEN j=1 i= j=1i=1
:GO(GO—l)o(l):o(l), (45)
n n
where 1 = O ———7= ). Weak convergence holds due to the Markov inequality and (45).
(logT) TV

The proof of Lemma A.6 is then complete. m

To establish uniform consistency of the recursive k-means clustering algorithm, we
first define the following sequences of events

—

=% = jlg = j} and Fj; := {g? # jig = jj (46)

for any j =1,2,..,G% and i € Z,,. Let E] uT i= Ulego ;i and F] uT '= Uzeg F . Uniform
consistency of the clustering algorithm is shown in the following lemma.

Lemma A.7 (Uniform Consistency of Clustering) Let Assumption 1 and 2 hold. When (n,T) —

00,
(i) Pr(U]G:Ol E\j,nT) < Z]G:Ol Pr (E\]’,nT) —0;
(ii) Pr(USZ, Fyur) < 27 Pr(Fjur) = 0.

Proof of Lemma A.7: To establish the uniform consistency of the recursive k-means
clustering algorithm, we bound the clustering error as

G G°
Pr[UE\j,nT]SZPr(E\j,nT Z Z Pr ]1
j=1 j=1 j=1ieg’(j
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It then follows that

GO
0 — 0
Z‘ Z Pr(E]1)< nrlréaIxIEI{gl( )# &'} SﬂIiTé%nXPf”gi(C )= &; | > 0}
=1 i€G(j)
<nrlré%z<f;1AI[)Pr |gl gl-o > 0} +n1r<r]13>é0Pr{|c]—c |>17}
=0(1)+n max Pr{c—c|>17}_0( ), (47)
1<j<G°

where the last step is due to the Markov inequality, equation (4) in Lemma A.1 and
Assumption 2. The above derivations prove Lemma A.7(i). For Lemma A.7(ii), we can
follow the proof of Theorem 2.2 (ii) in Su et al. (2016). This completes the proof. m

B Proofs for Stage 2: Post-clustering Estimation and Testing

We need the following lemma that shows the consistency of the variance and covariance

2

estimates (I)j , ijz and /‘j, which are essential for inference to ensure that the test statistics

are properly centred and scaled.

Lemma B.1 Suppose Assumptions 1 and 2 hold. When (n, T) — oo,

v2

wj —>p( j j
2 2

v?2 0 -2 0

0; —W(“J’) » 0 *p(“j) ’

v‘ 0 A‘

Xj—=p A% A=, A7,

forany j=1,2,..,G® with c? > 0.

Proof of Lemma B.1: Details are given in the proof of Lemma B.1 of the Online Supple-
ment to Liu et al. (2022).

Lemma B.2 Suppose Assumptions 1 and 2 hold. Then, for any j € G°, when (n, T) — oo,

e 0)2
T2 Z Zylt 1 ch - (48)

i€Go(j
(w}))2 |
n; sz p] )27 zegZO' Z%t 1 . ZC? , zfc? > 0;

TWZDM Y e <o
]

ieG(j
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Proof of Lemma B.2: For this proof, we assume ng = j with j = 1,2,..,G° For the
denominator of the panel within estimator pj, three cases remain to be discussed: (i) the
unit root group (c]Q = 0); (ii) the explosive groups (c;-) > 0); and (iii) the stationary groups
(c}) <0).

First, when c? =0,

1
T%"" ! Z f r)dr ”3‘”113[0 B2 (r)dr, (49)

zego zegﬂ

where B; ( fo s)ds and B;(-) is the limit Brownian motion associated with
partial sums of the Uiy Standard calculations lead to

f ()dr—f EB? (r dr—f J (s))drds
:(w?)zf rdr - (w J f rAS) drds—( ) (50)

Combining (49) and (50), we have

T

02
n~1T2 Z Z?’zt 17p (wé) ’ (51)

] iegO(j) t=1

0 2
under (n,T).,, — oo. Due to the fact that llmn —o0 77 Zlego IEJO B2 ydr = (—) < oo and

in view of the sequential limit (49), equation (51) also holds under the joint asymptotlc
scheme (1, T) — oo (Phillips and Moon, 1999, Theorem 1).

Second, when c? >0,

ZZ%H:% ZZ%H Z(T'?i—l)

1
”j(P?) ” idem nj(6]) T2 e (e T i
1 1
( )2T 2y Z Z%t 1+ 0p (Tl V)
3y

T i€Go(j
T
sincey; ;| = %Zstl Vis—1=0p ((p]O) T= ) Therefore, it follows that

Q 2
) Zym Y (xz) ’HZ"% (Zio) . (52)

2T
”j(P?) T2 icg 2n; g j

seq

0’20
] C]

W0 0)?
where (Y* X*) ~ /\/'(Ole,dzag(( ]) () )) Due to the fact that

2
1 2 1 (wQ)
1i § E(x*) = — | :
5‘102c§)n] St (x7) 29| 2! =



and in view of the sequential limit in (52), the following joint convergence result holds:
2
0
1 =, 1 [ («])
2T it=1 7P 50| 50
ni(p0) T idgny =1 267 (2

under (n, T) — oo.
Finally, when c](.) <0,

T”V Z Z?zt 1= T1+y Z Zyzt 1 W Z (T'Z_}izfl)

i€Go(j i€Go(j i€G(j)
T1+7 Z Zyzt 1+O (Tl )
ieGO(j

sincey; | =+ Yo vie1= O, (TV_% ) Therefore, under the sequential asymptotic scheme,
the leading term of the denominator

T—oo 1 j j
A Yo T s e
]

i€Go(j J iego(j) j

Due to the fact that

2
] (“’?)
lim — > E = < 00,
nj—00 n —ZCQ
zego ]

and in view of the sequential limit (53), the following joint convergence result holds:
( °)2
n; T1+7’ zegZO' Zylt 1 0”7
under (1, T) — oo. This completes the proof. m

Lemma B.3 Suppose Assumptions 1 and 2 hold. Then, for any j € G°, when (n, T) — oo,

(w )4
[yltlu,t—/\ +—]:>/\f fc?:O; (54)
IEQO
1 Sl (w}))4 0o Q.
T p] le; ;yi,t_luit =>N 0,4((:;))2 , 1fcj > 0; (55)
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4
1 ! g (wo)
1y Zyztluzt ]TTy = N|0 ,
wij 2 iego(] ) t=1

where

— Z m; r, and m; 7 = Z(p?)h_l IE(Fevit“i,tfh)'

zego h=1

Proof of Lemma B.3: For this proof, we assume that g’ = j with j = 1,2

..., G. First we
discuss the unit root case (CJQ =0). When T — oo and n is fixed, we have

1690 t=1
T 1 ! ! (“’0)2
=) J B;(r)dB; (r) (J B; (r)dr)B, (1)+—2
VI g [0 0 2
Z (N1 ;= Ny, (56)
nj =
i€G0(j)
in which
1 1 (0}
Nli: J; Bz-(r)dBi(r), N2i = (J;) Bi(T)dT)Bi(l)— B .
Note that EN; ; = EN,; = 0. When T — oo followed by n — oo, we have
1

n—o00
v (N1,i=Ny;) "= N (0, ENZ; +ENZ, - 2EN; ;N ;)
] i€Go(j)

()’
=, N|0, 1’2 , (57)

where (57) holds in view of the following facts:

(a) EN?; = ),

4
(b) IENZZ,i — 7(0)?) .
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Based on (a) (b) and (c), whose calculations are given in the Online Supplement to Liu
et al. (2022), the validity of (54) is confirmed under sequential asymptotics (1, T),,, —
co. Checking the sufficient conditions then assures joint convergence limit theory using
the results in Phillips and Moon (1999), whose full derivations are given in the same
reference. Joint weak convergence (54) then follows irrespective of the divergence rates
of n,T — oo.

Second, for the group of explosive roots (c? >0),

\/_TV P] T Z Zylt 1uzt

iegl(j) t=1

\/_TV p] Z Zylt 1Uit (58)

iegO(j) t=1

T—ooo 1
— Y*X* 59
= w4 (7 (59)
2 2
noe ol (w]()) (“’?)
’ 26;.) 2C§-)

’

T
where (58) holds from the fact thaty,, ; = OP(T%_1 (p]Q) ) and T'7Y > n by virtue of

20 2 ([ Joint con-

vergence is verified by checking the sufficient conditions of Phillips and Moon (1999)
and the details follow those of the unit root case. So when (1, T) — oo, we have the joint

/ 0 2 )0 2
Assumption 2, and (59) holds since (YZ.*,XZ’.*) ~ N(02x1,dlﬂg{(w ) (@) })

convergence

fe )2 ()
\/_Ty p] T Z Z}’zt 10 => N[0, ——— 220

iegl(j) t=1 j

Last, for the group of stationary roots (c? < 0),

J
Z Zyl t— 1uzt

\/_] 7 €GO

:;w Z Z})zt 1Uit = ——— 1 Z ?i,—lﬁi

VT2 ieghj VIT'E i)

1 —_~ —_—~
= 1y Z Z%t 1 €1t+€i,t—1_€it)+0p(1)

VT2 iegu;

= %Z Z%t 1€t \/—TW Z ViT€iT
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where ;1% |Zi€g0(]~)}/iT€iT| < Tl%supiego(j) |yiT|supi€go(]~) l€iT|= O, (\/?) Since T'77 >

VT

n from Assumption 2, and Zthl Vii-1 =0, (TV%) and Zthl uiy = O, (\/T), we have

Zyz =0 (1),

\/_] = i€g0(j

By Phillips and Magdalinos (2007),
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Thus, under the sequential limit (n,

)seq oo, we have

0
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Joint convergence is verified by following the same procedure as the unit root case. Joint

MH

(”ita‘t - /\?) +0p(1)

convergence of the numerator of the stationary groups is then established and the proof
is complete. m
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C Proofs for the Estimation of the Group Numbers

Lemma C.1 Suppose Assumptions 1 and 2 hold. Let (n,T) — co. When (i) y > 0 and E? >0
or (ii) y = 0, we have

min inf &2 > o2, with probability approaching 1, 60
2o 5o a6~ %0 p y app g (60)
and
) 2
AT (61)

where 002 is defined in equation (29) of the main paper,

EG: nTZ Z Z%t Vi-105 ( )),

J=lieG(j,G) t=

and 3(G) (:: (:g\iG),:géG),...,ﬁc))) is the vectorized membership estimate, assuming there are G

groups'.

Proof of Lemma C.1: To show equation (60) it is sufficient to show

inf GVEG > o¢, with probability approaching 1, (62)

3(G)eAg )
for all G < G°. The above relationship (62) holds since the true number of groups, G°,
is finite. Without losing generality, we discuss the case in which G = G’ —d and d = 1.
Treatment for the case d > 2 is similar to the case 4 =1 and is omitted.

When the minimum value of c%z(G) is attained, the individuals of G groups are cor-
rectly clustered to their true membership, and the individuals of the remaining group,
namely the individuals for the j*-th true group, are wrongly allocated to the group whose
group-specific distance parameter c}(_l is close to the group-specific parameter of these in-

dividuals, c?*. Without losing generality we assume j < G and still call the union of the
j-th and j*-th true groups as the j-th estimated group of the G-group partition.
Therefore, {g(],G)} and {Q(j,GO)}

from these (G — 1) common groups, the remaining group in {Q(], G)}1<]_<G is the union of

By the consistency of the post-clustering

share (G — 1) common groups. Apart

1<j<G 1<j<G°

the two remaining groups in {Q (]' GO)}

1<j<GY”
estimates, we have

x2 x2
%6~ %6
1 & T 1 G° T )
ﬁz Zyzt yztlp] _ﬁz Z Zyzt yltlp] ))
j=lieg(j,G) t=1 i=lieg(j,Go) t=1

1(5]- (G) can follow the definition given either in (12) or in (21) of the main paper.
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where the asymptotic equivalence holds by the consistency of the post-clustering esti-
mates ﬁj(GO) and ¢; (G). When (i) ¢ ¢)>0and y €(0,1) for alli € Z,

T ] ) Op(T'2)  if )=
nT]; leg(;;o ; G)~(G°)) ~a op((p;?*)ZTTfl) if ¢>0 ’
or when (ii) y = 0,
Q>0 if c;l<0
LY T SAealel~]  om e
j=1.j"i€6(j,G°) ¢ Op((p;l) T‘l) if ¢>0

in which Q is a positive constant. Then equation (60) holds. Moreover, equation (61)
holds due to the consistency of k-means clustering and post-clustering estimates:

g’ nTZ )3 ZV” i165(G nTZZA”

]lleg]GO i=1 t=

—p 03, (63)

where the last line (63) holds due to equation (29) of the main paper. The proof is now
complete. m

Proof of Theorem 4.4: Details are given in the Proof of Theorem 4.4 of the Online
Supplement to Liu et al. (2022).

D Simulation Studies

We designed several numerical experiments to check the finite sample performance of
the procedures developed above. These include: the group number estimate in (26) of
the main paper; the membership estimate generated by the recursive k-means clustering
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algorithm in (8) of the main paper; the post-clustering estimates in (12) of the main
paper; and the size and power performances of the proposed tests in (17) of the main
paper.

The following model setup was used to generate the simulated data: the individ-
ual fixed effects p; L. T~1N(0,0.1); the error process u;; = Ou;; 1 + €;; with (i) seri-
ally correlated errors (6 = 0.5, €;; Ld. N (0,0.01)) or (ii) martingale differences (6 = 0,
€t HLd (0,0.01)); sample sizes n = 30, 60, 90, 120, 150, and T =100, 150, 200, 250, 350,
450, 550; and group number G° = 3 (i.e., three groups) with 7} : 71 : 713 = % : % : % or
G° =2 (i.e., two groups) with 7t; : 71, = % : % The following parameter settings for ¢ and
¥ were considered:

(-15,-8,-1,0.6) for DGP 0
(c(l), cg, cg,y) ={ (1, 0,-6,0.6) for DGP1, (64)
(1,0.2,-6,0.6) for DGP 2

and
(c,¢3,7)=(-1,1,0.6) for DGP 3. (65)

In all DGPs we set the distance parameters c, rate scaling parameter y, group division 0o,
and error process u;; to approximate the fitted parameters in the empirical results of the
housing and equity markets in Section 6 of the main paper. The explosive root signals are
often weak in the empirical data, so group-specific parameters in the explosive groups
are set with smaller values (i.e., c;) = 0.2 or 1); and near-unit root behavior is present in
all markets, so the unit root group is considered in most DGPs. Since model misspec-
ifications can lead to invalid clustering and inference, we investigate cases where there
are either three groups (G°=3) or two groups (G° = 2). Specifically, DGP 0 is designed
to reveal the downward bias of IC in the panel clustering model of all mildly stationary
groups. DGPs 1-3 are designed to assess the accuracy of the hybrid model specification
procedure, the consistency of the recursive k-means clustering algorithm, and the power
improvement of the panel inference procedures.

Figure 1 plots both the empirical density and the sample average of the signal-to-
noise ratio (SNR) for each group in DGPs 1-3. The SNR is measured by the ratio of the
sample variance of (1 + %)?i,t—l to the sample variance of u;; with sample sizes n = 60,
T =100 and g; = j obtained from the simulated sample paths. For all DGPs the SNR of
the mildly explosive group is far greater than the SNR of the unit root group, which in
turn is much larger than the SNR of the mildly stationary group. These results, which
are also evident in Table 1, are to be expected in view of the different divergence rates

2T
(Op (TZV’1 (p?) ), O, (T) and O, (T?), respectively) of the SNRs in these groups. This
heterogeneity in rates across groups facilitates recovery of the latent group structure by

the recursive k-means clustering algorithm and the overall performance in selection is
strengthened in the panel regressions because of cross section averaging within groups.

[Insert Figure 1 Here]
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To explore the advantages of the post-clustering panel tests, we make comparisons
with the behavior of the usual semiparametric time series test statistics (Phillips, 1987;
Phillips and Perron, 1988):

1)

TS
—~TS T\
(pi ~1=; ) VDir ~T5 T-i-TS
PP t-test = 73 , PP J-test=T|p, —-1- Dir | (66)
o, ,

1

=TS . . _ . . .

in which p;  is the time series estimate of p? defined in (3) of the main paper, the long
: : =TS . , =T5)\?2 =TS

run covariance estimate A; and long run variance estimate (wi ) arebasedonp; ,and

the sample moment D; 1 := Zthr E'Zt—r- Under the null hypothesis H, : E? = 0, it follows

from standard theory that

1
W,(r)dW;
fo — , PP J-test = Jy — ") (r),

o] uor

PP t-test >

(67)

where the W; (-) are standard Brownian motions and W;( Jo

According to the pivotal distributions of the panel ¢- and ] tests under the null hy-
pothesis, the right-tailed 95% critical value is 1.64. For the PP t- and J-tests, the right-
tailed 95% critical values are set at —0.07 and —0.13, respectively (e.g., Tables B.5-B.6
in Hamilton (1994)). Bandwidths are selected based on simulated performance in the
mixed-root panel model’. The bandwidth for the long run variance estimates in (14)
and (15) of the main paper is set at L = [ T%3| and the bandwidth for the variance esti-
mate in (16) of the main paper was set at L = | T%!|. In addition, the bandwidth for the
long run variance and covariance components of the time series statistics in (66) is set as
| T%3 . These bandwidth choices are all consistent with the rate restrictions in the theory
development. The number of replications was 1,000 in all experiments.

i Correlated errors (0 = 0.5)

The performance of the group number estimate G is first considered. The penalty &1
of IC is (nT)™®% and the upper bound G,y is 5. The critical value of the Hausman
test is set as cv,r = (1+5log(nT))x 2(6) and G = (Gpax — G +1). Tables 2-5 report the
empirical frequency of G in (26) of the main paper. As T increases, the performance
of the estimator G steadily improves, so that when T is larger than 350 G successfully
identifies the true GY with only small errors involving overestimation, revealing evidence
of its consistency in estimating the true number of groups. By comparison the downward
bias of IC is evident in nearly every case, corroborating the asymptotic theory.

[Insert Tables 2-5 Here]

2In future research, cross-validation (CV) methods could also be employed, as in Phillips et al. (2017).
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Next, we check the performance of the recursive k-means clustering algorithm and
the post-clustering estimate while assuming the true group number G° is known. Tables
6—8 report the clustering error (CE), root mean squared error (RMSE), and bias of the
post-clustering estimates. The CE is defined as

GO
2L Y afmeel)
)

j=1ieg(j

The RMSE is the square root of the sample moment of the squared differences between
the post-clustering estimates and the true values. The bias is the averaged differences
between the post-clustering estimates and the true values. For comparison we also report
the CE, RMSE, and bias of the oracle estimates where it is assumed that the true group
membership 6° is known.

[Insert Tables 6-8 Here]

According to Tables 6-8, the CE decreases to zero as T increases. The RMSE and bias
of the oracle estimates are smaller than those of the post-clustering estimates. For the
post-clustering estimates of the nonstationary groups, the magnitude of the RMSE and
bias also generally decreases when T — oco. For all DGPs, the difference between the
oracle and the post-clustering estimates is negligible when T > 150. The diminishing
differences suggest asymptotic equivalence between these two sets of estimates. This
property is due to the uniform consistency of the recursive k-means clustering algorithm,
as shown in the theory development.

Based on the estimated membership 6, the performance of the post-clustering panel
t and ] tests for detecting explosive roots is analyzed and compared with the time series
counterparts. The nominal levels are all set at 5%, accompanied by the right-tail 95%
critical values of the standard normal distribution and standard unit root limit distri-
butions. We obtain the empirical rejection rates of the PP t and ] tests when n = 1 and
the empirical rejection rates of the post-clustering panel ¢ and ] tests when n > 1, as pre-

sented in Table 9. If the distancing parameter c;) is zero, as in the null hypothesis, the

empirical rejection rate is the empirical size. If the relevant c? is nonzero, the empirical
rejection rate is defined as empirical power.

[Insert Table 9 Here]

Evidently the size distortion of both panel tests is small when n > 60 and T > 150,
although size distortion of the panel tests is slightly larger than that of the time series
counterparts. This is unsurprising as the asymptotics require the use of cross section
central limit theory, which inevitably introduces approximation errors in finite samples,
particularly small samples that arise in group subsamples. This loss is counterbalanced
by a substantial improvement in the power of the panel tests over the time series tests.
For instance, when c;) = 0.2 (the corresponding p? is 1.0126, 1.0099 and 1.0083 when T =
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100,150,200, which are empirically plausible values based on our empirical work), the
power performances of the post-clustering panel tests are much larger than those of the
time series tests. If T = 100, the post-clustering panel t-test raises the power of the time
series t-test from 0.175 to 0.599 when n; = 10, to 0.807 when n; = 20, and to 0.917 when
nj = 30. The post-clustering panel ¢ test with T = 100 has substantially greater power
than the time series t test with T = 200 (0.917 versus 0.382). Moreover, it is interesting
to note that the panel f test has greater power than the panel J-test that is based on the
estimated membership, corroborating the different divergence rates in asymptotic theory
of Theorem 4.3 of the main paper under the mildly explosive alternative.

ii Uncorrelated errors (0 = 0)

First, the performance of the group number estimate G in (26) of the main paper is stud-
ied and its empirical frequency distribution is reported in Tables 10-12, for the case
of no error autocorrelation (60 = 0). We set that the IC penalty as «,7 = (nT)_O'3'5 and
Gmax = 5. The critical value of the Hausman test is set to cv,r = (1 + 5log (nT)) x> (6) and

G = (Gyax — G+ 1). As before, the IC procedure has a clear tendency to underestimate
the true number of groups G°, although the magnitude of the error rate declines as T
rises. The combined IC-Hausman procedure shows good performance in selecting the
true number of groups, with rapidly diminishing error rates as T increases.

[Insert Tables 10-12 Here]

Next, the performance of the recursive k-means clustering algorithm and the asso-
ciated post-clustering estimate is checked when 6 = 0 and the true number of groups
is known. Tables 14-16 report the CE, RMSE, and bias of the post-clustering estimates.
From Tables 14-16 it is clear that the difference between the oracle and post-clustering
estimates decreases as the sample size increases, corroborating the asymptotic equiva-
lence between these two sets of estimators under the joint convergence framework. It is
also evident that the CE with 6 = 0 is smaller than the value with 6 = 0.5, as expected.

[Insert Tables 14-16 Here]

Finally, Table 17 reports the empirical rejection rates of the PP t and ] tests when
n =1 (the time series case) and the empirical rejection rates of the corresponding post-
clustering panel tests when n > 1. The panel ¢ test has conservative size in finite samples,
whereas the panel ] test shows mild oversizing that diminishes as both n and T get larger.
Interestingly, both the time series t and ] tests are conservative when 6 = 0. As in the case
of no serial correlation, there is a substantial improvement in the power of the two post-
clustering panel tests over that of the time series tests. For instance, when C(z) = 0.2, an
empirically plausible value, the power of the panel test is much larger than that of the
two time series tests. For instance, if T = 100 the panel t test raises the power of the time
series t test from 0.0112 to 0.441 when nj = 10, to 0.712 when nj = 20, and to 0.878 when
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nj = 30; and the panel ¢ test with T = 100 has substantially greater power than the time
series t test with T = 200 (0.878 versus 0.292). These findings corroborate the power
enhancements introduced by cross section information and statistical averaging.

E Tables & Figures

[Insert Table 17 Here]

Table 1: SNRs for mildly explosive, unit root and mildly stationary groups

| DGP 1 DGP 2 DGP 2
c1(x10%)  ¢(x10%)  c3(x1) ¢ (x10%) cp(x10%) c3(x1)  c1(x10%)  cp(x1)
30 100 6.798 2.792  8.375  6.814 7.338  8.493  6.726 47.096
30 150 82.066  4.935 13.139 82.202  16.354 12.926 81.978 71.135
30 200 562.425  6.942 15426 562.771 28.344 15.426 559.628 85.447
60 100  6.595 2.859  8.881  6.606 7.458  8.623  6.693  47.220
60 150 81.352  5.009 13.496 81.506 16.580 13.088 81.527 71.234
60 200 562.555 6.974 15.686 563.078 28.350 15.584 561.495 85.547
90 100  6.668 2.852  9.026  6.676 7.434  8.642  6.724  47.204
90 150 81.778  5.077 13.408 81.935 16.816 13.155 82.117 71.359
90 200 565.714 7.013 15.754 566.288 28.469 15.641 561.739 85.688

Table 2: Empirical frequency of model selection under DGP 0 (6 = 0.5)

IC Estimator G Proposed Estimator G

n T |G=1 G=2 G=3 G=4 G=5|G=1 G=2 G=3 G=4 G=5
120 150 | .000 1.000 .000 .000 .000 | .000 .008 .980 .012  .000
120 250 | .000 1.000 .000 .000 .000 | .000 .005 .993 .001 .001
120 350 | .015 .985 .000 .000 .000 | .000 .004 .996 .000 .000
120 450 | .476 .524 .000 .000 .000 | .000 .004 .996 .000 .000
150 150 | .000 1.000 .000 .000 .000 | .000 .000 .992 .006 .002
150 250 | .000 1.000 .000 .000 .000 | .000 .000 .998 .001 .001
150 350 | .000 1.000 .000 .000 .000 | .000 .000 1.000 .000 .000
150 450 | .014 .986 .000 .000 .000 .000 .000 1.000 .000 .000

Table 3: Empirical frequency of model selection under DGP 1 (6 = 0.5)

IC Estimator G Proposed Estimator G

n T |G=1 G=2 G=3 G=4 G=5|G=1 G=2 G=3 G=4 G=5
120 150 | .000 .976 .024 .000 .000 .000 .000 726 .067 .207
120 250 | .000 .891 .109 .000 .000 .000 .000 .892 .041 .067
120 350 | .000 .774 .226 .000 .000 | .000 .000 .963 .011 .026
120 450 | .000 .610 .390 .000 .000 | .000 .000 .982 .008 .010
150 150 | .000 .994 .006 .000 .000 | .000 .000 .669 .085 .246
150 250 | .000 .931 .069 .000 .000 | .000 .000 .884 .037 .079
150 350 | .000 .829 .171 .000 .000 | .000 .000 .966 .008 .026
150 450 | .000 .671 .329  .000 .000 | .000 .000 .977 .010 .013
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Table 4: Empirical frequency of model selection under DGP 2 (6 = 0.5)

IC Estimator G Proposed Estimator G

n T G=1 G=2 G=3 G=4 G=5|G=1 G=2 G=3 G=4 G=5
120 150 | .000 .625 .375 .000 .000 .000 .000 743 .058 .199
120 250 | .000 .259 741 .000 .000 .000 .000 911 .023 .066
120 350 | .000 .091 .909 .000 .000 .000 .000 .957 .012 .031
120 450 | .000 .017 .983 .000 .000 .000 .000 .984 .006 .010
150 150 | .000 .700 .300 .000 .000 .000 .000 .678 .078 .244
150 250 | .000 271 729 .000 .000 .000 .000 914 .020 .066
150 350 | .000 .094 .906 .000 .000 .000 .000 .948 .017 .035
150 450 | .000 .017 .983 .000 .000 .000 .000 .984 .007 .009

Table 5: Empirical frequency of model selection under DGP 3 (6 = 0.5)
IC Estimator G Proposed Estimator G

n T G=1 G=2 G=3 G=4 G=5|G=1 G=2 G=3 G=4 G=5
120 150 | .000 1.000 .000 .000 .000 .000 .738 .003 .233 .026
120 250 | .000 1.000 .000 .000 .000 .000 .928 .000 .065 .007
120 350 | .000 1.000 .000 .000 .000 .000 967 .000 .032 .001
120 450 | .000 1.000 .000 .000 .000 .000 .986 .000 .014 .000
150 150 | .000 1.000 .000 .000 .000 .000 .703 .003 .248 .046
150 250 | .000 1.000 .000 .000 .000 .000 .904 .000 .093 .003
150 350 | .000 1.000 .000 .000 .000 .000 .957 .000 .042 .001
150 450 | .000 1.000 .000 .000 .000 .000 .988 .000 .012 .000

Table 6: Clustering and estimation by the two stage procedure under DGP 1 (6 = 0.5)

Group 1 Group 2 Group 3
T T CE Clustering Oracle Clustering Oracle Clustering Oracle
RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias
60 | 100 | .015| .003 -.002 | .003 -.002 | .180 -.164 | .175 -.160 | 3.600 3.596 | 3.568 3.565
60 | 150 | .007 | .001 -.001 | .001 -.001 | .154 -.142 | .151 -139 | 3.697 3.695| 3.680 3.678
60 | 200 | .004 | .000 -.000 | .000 -.000 | .138 -.128 | .138 -.127 | 3.747 3.745 | 3.739 3.737
90 | 100 | .014 | .003 -.002 | .003 -.002| .173 -163 | .168 -.158 | 3.603 3.600 | 3.569 3.567
90 | 150 | .007 | .001 -.001 | .001 -.001 | .148 -.140| .146 -.137 | 3.695 3.693 | 3.679 3.678
90 | 200 | .003 | .000 -.000 | .000 -.000| .134 -.127 | .133 -126 | 3.748 3.746 | 3.740 3.739
Table 7: Clustering and estimation by the two stage procedure under DGP 2 (6 = 0.5)
Group 1 Group 2 Group 3
T T CE Clustering Oracle Clustering Oracle Clustering Oracle
RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias
60 | 100 | .013 | .003 -.002 | .003 -.002 | .177 -168 | .174 -166 | 3.599 3.595 | 3.568 3.565
60 | 150 | .005 | .001 -.001 | .001 -.001 139 -133 | 138 -.132 | 3.697 3.694 | 3.680 3.678
60 | 200 | .003 | .000 -.000| .000 -.000 | .114 -109| .114 -109 | 3.748 3.745 | 3.739 3.737
90 | 100 | .012 | .003 -.002 | .003 -.002 | .172 -.166 | .170 -.164 | 3.601 3.597 | 3.569 3.567
90 | 150 | .005 | .001 -.001 | .001 -.001 | .134 -130 | .133 -129 | 3.699 3.697 | 3.679 3.678
90 | 200 | .003 | .000 -.000| .000 -.000| .110 -.107 | .110 -.107 | 3.749 3.748 | 3.740 3.739

Table 8: Clustering and estimation by the two stage procedure under DGP 3 (6 = 0.5)

Group 1 Group 2

T T CE Clustering Oracle Clustering Oracle

RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias
60 | 100 | .005 | .003 -.002 | .003 -.002| .562 .559 | .563 .560
60 | 150 | .002 | .001 -.001 | .001 -.001 | .586 .584 | .586 .584
60 | 200 | .001 | .000 -.000 | .000 -.000| .600 .598 | .600 .598
90 | 100 | .006 | .002 -.002 | .002 -.002| .575 .556 | .563 .561
90 | 150 | .002 | .001 -.001 | .001 -.001 | .587 .585| .587 .585
90 | 200 | .001 | .000 -.000 | .000 -.000| .600 .599 | .600 .599
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Table 9: Power of tests for detecting explosiveness (6 = 0.5)

DGP 1 DGP 2 DGP 3
" T c1=1 c, =0 cp=1 c; =0.1 c1=1 cr=-1
t-test J-test | t-test J-test | t-test J-test | t-test J-test | f-test J-test | f-test J-test
1 100 | .994 .994 .060 .059 .994 .994 175 175 - - - -
1 | 150 | .996 .996 .064 .066 .996 .996 .293 .297 - - - -
1 | 200 | .999 .999 .069 .069 .999 .999 .382 .382 - - - -
30 | 100 | 1.000 1.000 | .045 .047 | 1.000 1.000 | .599 .262 | 1.000 1.000 | .010 .226
30 | 150 | 1.000 1.000 | .062 .064 | 1.000 1.000 | .797 .441 | 1.000 1.000 | .006 .195
30 | 200 | 1.000 1.000 | .042 .041 | 1.000 1.000 | .920 .657 | 1.000 1.000 | .003 179
60 | 100 | 1.000 1.000 | .070 .057 | 1.000 1.000 | .807 .527 | 1.000 1.000 | .027 513
60 | 150 | 1.000 1.000 | .054 .057 | 1.000 1.000 | .961 .785 | 1.000 1.000 | .014 .454
60 | 200 | 1.000 1.000 | .058 .059 | 1.000 1.000 | .994 .951 | 1.000 1.000 | .005 473
90 | 100 | 1.000 1.000 | .082 .079 | 1.000 1.000 | .917 .705 | 1.000 1.000 | .089 .766
90 | 150 | 1.000 1.000 | .052 .053 | 1.000 1.000 | .992 .938 | 1.000 1.000 | .040 719
90 | 200 | 1.000 1.000 | .040 .042 | 1.000 1.000 | .999 .996 | 1.000 1.000 | .029 .734
Table 10: Empirical frequency of model selection under DGP 0 (6 = 0)
IC Estimator G Proposed Estimator G
n T |[G=1 G=2 G=3 G=4 G=5|G=1 G=2 G=3 G=4 G=5
120 150 | .000 1.000 .000 .000 .000 .000 .642 .286 .052 .020
120 250 | .000 1.000 .000 .000 .000 .000 .027 791 .037 .145
120 350 | .000 1.000 .000 .000 .000 .000 .000 .932 .016 .052
120 450 | .000 1.000 .000 .000 .000 .000 .000 .987 .004 .009
150 150 | .000 1.000 .000 .000 .000 .000 .454 .388 .090 .068
150 250 | .000 1.000 .000 .000 .000 .000 .006 .637 .042 .315
150 350 | .000 1.000 .000 .000 .000 .000 .000 .842 .015 .143
150 450 | .000 1.000 .000 .000 .000 .000 .000 972 .012 .016
Table 11: Empirical frequency of model selection under DGP 1 (6 = 0)
IC Estimator G Proposed Estimator G
n T G=1 G=2 G=3 G=4 G=5|G=1 G=2 G=3 G=4 G=5
120 150 | .000 .005 .995 .000 .000 .000 .000 797 .068 .135
120 250 | .000 .014 .986 .000 .000 .000 .001 .934 .023 .042
120 350 | .000 .023 977 .000 .000 .000 .002 .975 .009 .014
120 450 | .000 .033 967 .000 .000 .000 .002 .992 .002 .004
150 150 | .000 .000 1.000 .000 .000 .000 .000 .738 .072 .190
150 250 | .000 .000 1.000 .000 .000 .000 .000 .898 .029 .073
150 350 | .000 .000 1.000 .000 .000 .000 .000 972 .008 .020
150 450 | .000 .000 1.000 .000 .000 .000 .000 .992 .000 .008
Table 12: Empirical frequency of model selection under DGP 2 (6 = 0)
IC Estimator G Proposed Estimator G
n T |[G=1 G=2 G=3 G=4 G=5|G=1 G=2 G=3 G=4 G=5
120 150 | .000 .000 1.000 .000 .000 .000 .000 792 .082 126
120 250 | .000 .000 1.000 .000 .000 .000 .000 .861 .088 .051
120 350 | .000 .000 1.000 .000 .000 .000 .000 .834 119 .047
120 450 | .000 .000 1.000 .000 .000 .000 .000 .808 126 .066
150 150 | .000 .000 1.000 .000 .000 .000 .000 732 .098 .170
150 250 | .000 .000 1.000 .000 .000 .000 .000 .804 117 .079
150 350 | .000 .000 1.000 .000 .000 .000 .000 727 .186 .087
150 450 | .000 .000 1.000 .000 .000 .000 .000 .705 .185 .110
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Table 13: Empirical frequency of model selection under DGP 3 (6 = 0)

IC Estimator G Proposed Estimator G

n T |G=1 G=2 G=3 G=4 G=5|G=1 G=2 G=3 G=4 G=5
120 150 | .000 1.000 .000 .000 .000 .000 .817 .000 173 .010
120 250 | .000 1.000 .000 .000 .000 .000 .949 .000 .050 .001
120 350 | .000 1.000 .000 .000 .000 .000 .986 .000 .013 .001
120 450 | .000 1.000 .000 .000 .000 | .000 .991 .000 .009 .000
150 150 | .000 1.000 .000 .000 .000 | .000 .791 .000 .194 .015
150 250 | .000 1.000 .000 .000 .000 | .000 .913 .000 .085 .002
150 350 | .000 1.000 .000 .000 .000 | .000 .971 .000 .029 .000
150 450 | .000 1.000 .000 .000 .000 | .000 .989 .000 .011 .000

Table 14: Clustering and estimation by the two stage procedure under DGP 1 (6 = 0)

Group 1 Group 2 Group 3
T T CE Clustering Oracle Clustering Oracle Clustering Oracle
RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias
60 | 100 | .011 | .003 -.002 | .003 -.002 | .477 -462| .476 -.461 | .384 -.220| .406 -.289
60 | 150 | .004 | .001 -.001 | .001 -.001 | .421 -.409 | .420 -.409| .352 -.215| .358 -.243
60 | 200 | .002 | .000 -.000 | .000 -.000 | .379 -369 | .379 -369 | .342 -211 | .341 -.224
90 | 100 | .011 | .003 -.002 | .003 -.002 | .466 -.457 | .467 -.458 | .352 -.212 | .379 -.288
90 | 150 | .004 | .001 -.001 | .001 -.001 | .408 -.400 | .408 -.400| .322 -.218 | .332 -.248
90 | 200 | .002 | .000 -.000| .000 -.000| .371 -364 | .372 -364 | .305 -.207 | .308 -.221
Table 15: Clustering and estimation by the two stage procedure under DGP 2 (6 = 0)
Group 1 Group 2 Group 3
T T CE Clustering Oracle Clustering Oracle Clustering Oracle
RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias
60 | 100 | .009 | .003 -.002 | .003 -.002 | .292 -.281 292 -.282 | .392  -.234| .406 -.289
60 | 150 | .003 | .001 -.001 | .001 -.001 | .221 -.214| .221 -214| .355 -.219 | .358 -.243
60 | 200 | .002 | .000 -.000| .000 -.000| .173 -.168 | .174 -.168 | .342 -214| .341 -.224
90 | 100 | .009 | .003 -.002 | .003 -.002 | .284 -278 | .285 -.278 | .356 -.226 | .379 -.288
90 | 150 | .003 | .001 -.001 | .001 -.001 211 -.207 | 212 -208 | .321 -.223 | .332 -.248
90 | 200 | .002 | .000 -.000| .000 -.000| .168 -.164| .168 -.164| .304 -.209| .308 -.221

Table 16: Clustering and estimation by the two stage procedure under DGP 3 (6 = 0)

Group 1 Group 2

T T CE Clustering Oracle Clustering Oracle

RMSE Bias | RMSE Bias | RMSE Bias | RMSE Bias
60 | 100 | .004 | .002 -.002| .002 -.002 | .416 -392| .414 -.392
60 | 150 | .001 .001 -.001 | .001 -.001| .346 -.324 | .345 -.323
60 | 200 | .001 .000  -.000 | .000 -.000| .306 -.284 | .305 -.284
90 | 100 | .005 | .002 -.002 | .002 -.002 | .404 -.388 | .403 -.388
90 | 150 | .001 | .001  -.001 | .001 -.001 .336 -.320 | .335 -.320
90 | 200 | .001 | .000 -.000| .000 -.000 | .297 -.283 | .297 -.282
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Table 17: Power of tests for detecting explosiveness (6 = 0)

DGP 1 DGP 2 DGP 3

n T C1:1 C2:0 C1:1 C2:0.1 C1:1 C2:—1

t-test J-test | t-test J-test | t-test J-test | f-test J-test | t-test [J-test | t-test [-test
1 100 | .992 .992 .025 .025 .992 .992 112 111 - - - -
1 150 | .996 .996 .022 .020 .996 .996 211 211 - - - -
1 200 | .999 .999 .027 .027 .999 .999 .292 .296 - - - -
30| 100 | 1.000 1.000 | .012 .062 | 1.000 1.000 | .441 .324 | 1.000 1.000 | .000 .098
30 | 150 | 1.000 1.000 | .020 .068 1.000 1.000 | .665 479 1.000 1.000 | .000 .087
30 | 200 | 1.000 1.000 | .010 .055 1.000 1.000 | .847 .689 | 1.000 1.000 | .000 .084
60 | 100 | 1.000 1.000 | .019 .093 1.000 1.000 | .712 .622 1.000 1.000 | .000 .238
60 | 150 | 1.000 1.000 | .017 .083 1.000 1.000 | .926 .826 1.000 1.000 | .000 179
60 | 200 | 1.000 1.000 | .012 .067 | 1.000 1.000 | .986 .964 | 1.000 1.000 | .000 .190
90 | 100 | 1.000 1.000 | .040 .129 | 1.000 1.000 | .878 .815 | 1.000 1.000 | .000 .389
90 | 150 | 1.000 1.000 | .015 .088 1.000 1.000 | .987 .960 | 1.000 1.000 | .000 311
90 | 200 | 1.000 1.000 | .005 .058 1.000 1.000 | .999 .998 1.000 1.000 | .000 .336

Table 18: Estimated group structure of the housing price indices in China

Group 1

beijing, xinlingol, chaoyang, wuludao, xuzhou, yangzhou, jiangyan,
taizhou, bengbu, zhangzhou, ningde, nanchang, jingdezhen, pingxi-
ang, xinyu, yichun, shangrao, fuzhou_jx, dezhou, zhumadian, changde,
guangzhou, shantou, luzhou, xining, Urumugqi, changji;

Group 2

xingtai, baoding, zhangjiakou, hohhot, baotou, shenyang, dandong,
changchun, songyuan, harbin, nanjing, yancheng, suqian, hangzhou,
shaoxing, hefei, anqing, xuancheng, jiujiang, zhengzhou, kaifeng, luoyang,
xinxiang, xuchang, luohe, nanyang, changsha, shenzhen, jiangmen, zhao-
qing, huizhou, shanwei, yangjiang, jieyang, nanning, haikou, chongqing,
deyang, leshan, nanchong, kunming, xi’an;

Group 3

tianjin, shijiazhuang, tangshan, ginhuangdao, langfang, dalian, anshan,
yingkou, tieling, shanghai, wuxi, changzhou, suzhou, nantong, lianyun-
gang, huai’an, zhenjiang, ningbo, wenzhou, jiaxing, huzhou, jinhua, wuhu,
huangshan, chuzhou, fuzhou, xiamen, jinan, gingdao, zaozhuang, rizhao,
foshan, heyuan, gingyuan, dongguan, zhongshan, chengdu, mianyang.

Table 19: Estimated group structure of the prices for the U.S. housing market

Group 1

Atlanta, Boston, Charlotte, Dallas, Miami, New York, Seattle ;

Group 2

Chicago, Detroit, Las Vegas, San Francisco .
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Table 20: Estimated group structure of the prices for S&P 500 stocks

Group1 ACN, ADBE, ADP, AMAT, AMZN, ATO, AVY, BDX, BK, BLK, BSX, CDNS,
CI, CMA, COST, CSCO, CTAS, DE, DGX, DPZ, EA, EQIX, ETFC, FDX, FIS,
FITB, GD, HAS, HBAN, HD, HIG, HON, IEX, INTC, INTU, JBHT, JKHY,
JNJ, JPM, KEY;

Group 2 APPLE, AEE, AEP, AES, AFL, AIG, AlZ, ALB, ALK, AMD, AMGN, APA,
APD, AXP, BAX, BIIB, BKR, BLL, BXP, C, CAG, CAT, CB, CCL, CE, CERN,
CHD, CHRW, CL, CME, CMI, CMS, CNP, COF, COP, CPB, CPRT, CSX,
CTSH, CTXS, CVS, CVX, DHR, DIS, DISH, DLR, DLTR, DOV, DRI, DTE,
DXC, EBAY, ED, EFX, EL, EMR, EOG, ES, ESS, ETN, ETR, EVRG, EW, EXC,
FFIV, FISV, FLIR, FLS, FRT, GILD, GIS, GL, GLW, GPN, GRMN, GS, HAL,
HES, HFC, HOG, HOLX, HRL, HSIC, HST, HSY, HWM, IDXX, IFF, ILMN,
INCY, IP, IPG, ], JCI, JNPR, JWN, K, KIM, KLAC, KMB, KMX, KO, KR, KSS,
LB, LEG.
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Figure 1: Empirical frequency distribution and sample average (shown by the vertical
line) of the signal-to-noise ratio in each group of DGPs 1-3.
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