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This article provides the limit theory of real-time dating algorithms for bubble detection that were suggested in
Phillips, Wu, and Yu (PWY; International Economic Review 52 [2011], 201–26) and in a companion paper by the
present authors (Phillips, Shi, and Yu, 2015; PSY; International Economic Review 56 [2015a], 1099–1134. Bubbles are
modeled using mildly explosive bubble episodes that are embedded within longer periods where the data evolve as a
stochastic trend, thereby capturing normal market behavior as well as exuberance and collapse. Both the PWY and
PSY estimates rely on recursive right-tailed unit root tests (each with a different recursive algorithm) that may be
used in real time to locate the origination and collapse dates of bubbles. Under certain explicit conditions, the moving
window detector of PSY is shown to be a consistent dating algorithm even in the presence of multiple bubbles. The
other algorithms are consistent detectors for bubbles early in the sample and, under stronger conditions, for subsequent
bubbles in some cases. These asymptotic results and accompanying simulations guide the practical implementation of
the procedures. They indicate that the PSY moving window detector is more reliable than the PWY strategy, sequential
application of the PWY procedure, and the CUSUM procedure.

1. INTRODUCTION

A recent article by Phillips, Wu, and Yu (2011; PWY) developed new econometric method-
ology for real-time bubble detection. When it was applied to NASDAQ data in the 1990s,
the algorithm revealed that evidence in the data supported Greenspan’s declaration of “irra-
tional exuberance” in December 1996 and that this evidence of market exuberance had existed
for some 16 months prior to that declaration. Greenspan’s remark therefore amounted to an
assertion that could have been evidence-based if the test had been conducted at the time.

Greenspan formulated his comment as a question: “How do we know when irrational ex-
uberance has unduly escalated asset values?” It was this very question that the recursive test
procedure in PWY was designed to address. Correspondingly, an element of the methodology
that is critical for empirical applications and policy assessment is the consistency of the test.
Ideally we want a test whose size goes to zero and whose power goes to unity as the sample
size passes to infinity. Then in very large samples there will be no false positive declarations of
exuberance and no false negative assessments where asset price bubbles are missed.

PWY gave heuristic arguments showing that their recursive methodology produced a con-
sistent test for exuberance, and they provided a real-time dating algorithm for finding the
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bubble origination and termination dates that was used in analyzing the NASDAQ data. The
present article provides a rigorous limit theory showing formal test consistency of the PWY
bubble detection procedure and the consistency of its associated dating algorithm under certain
conditions, notably the existence of a single bubble period in the data.2 This limit theory is part
of a much larger formal investigation undertaken here that examines the asymptotic properties
of bubble detection algorithms when there may be multiple episodes of exuberance in the data,
under which the PWY procedure does not perform nearly as well. As argued in the authors’
companion paper (Phillips, Shi, and Yu, 2015a, hereafter PSY), data over long historical peri-
ods often include several crises involving financial exuberance and collapse. Bubble detection
in this context of multiple episodes of exuberance and collapse is much more complex and is
the main subject of the PSY paper, which develops a new moving window bubble detector
that has some substantial advantages for long data series characterized by multiple financial
crises.

The dating algorithms of PWY and PSY are now being applied to a wide range of markets
that include energy, real estate, and commodities as well as financial assets.3 This methodology
and its various applications have also attracted the attention of central bank economists, fiscal
regulators, and the financial press.4 It is therefore important that the limit properties and
performance characteristics of these dating algorithms be well understood to assist in guiding
practitioners about the suitable choice of procedures for implementation in empirical work and
policy assessment exercises.

The PWY and PSY strategies for bubble detection involve the comparison of a sequence of
recursive test statistics with corresponding critical value sequences. Crossing times of these crit-
ical value lines provide the corresponding date estimates of bubble origination and termination.
The PWY procedure uses recursively calculated right-sided unit root test statistics based on an
expanding window of observations up to the current data point, whereas PSY use a moving
window recursion of sup statistics based on a sequence of right-sided unit root tests calculated
over flexible windows of varying length taken up to the current data point. Inferences from the
PWY and PSY strategies about the presence of exuberance in the data, including the dating of
any exuberance or collapse, are drawn from these test sequences and the corresponding critical
value sequences. The goals of the present article are to explore the asymptotic and finite sample
properties of these two procedures for bubble dating and to build a methodology for analyzing
real-time detector asymptotics in this context.

Our findings can be summarized as follows. First, under some general conditions both the
PWY and PSY detectors are consistent when there is a single bubble in the sample period.
Second, when there are two bubbles in the sample period, the PWY detector for the first bubble
is consistent, whereas the PWY estimates associated with the second bubble are duration-
dependent. Specifically, the PWY strategy fails to detect the existence of the second bubble
(and hence cannot provide consistent date estimates for the timing of that bubble) when the
first bubble has longer duration than the second. But when the duration of the second bubble
exceeds the first, the PWY strategy can detect the second bubble but only with some delay.
Third, the PSY strategy and (under additional conditions) a sequential implementation of the
PWY strategy (to each individual bubble in turn) do provide consistent detectors for both

2 The present article therefore subsumes the results contained in the unpublished working paper of Phillips and Yu
(2009) which is referenced in PWY and which first analyzed the asymptotic properties of the PWY procedure.

3 See Phillips and Yu (2011b), Das et al. (2011), Homm and Breitung (2012), Gutierrez (2013), Bohl et al. (2013),
Etienne et al. (2013), Greenaway-McGrevy and Phillips (forthcoming), and Jiang et al. (2015), among others.

4 For example, a Financial Times article (Meyer, 2013) reports the work of Etienne et al. (2013), which employs
the PSY dating algorithm to identify agricultural commodity bubbles. Recent working papers from the Hong Kong
Monetary Authority (Yiu et al., 2013) and the Central Bank of Colombia (Ojeda-Joya et al., 2013), use PSY in studying
real estate bubbles in Hong Kong and Columbia. Work for UNCTAD by Gilbert (2010) applies PWY to date bubbles
in commodity prices and test congressional testimony reasoning by Masters (2008), and recent financial press articles
(Phillips and Yu, 2011a, 2013) use PWY to assess current real estate and world stock market data for evidence of
bubbles using these methods.
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bubbles, and these results hold irrespective of bubble duration. Thus, the PSY dating algorithm
and sequential application of the PWY procedure have desirable asymptotic properties in a
multiple bubbles scenario. One disadvantage of sequentially applying the PWY procedure is
that sufficient data are needed between bubbles to implement the procedure, and therefore
some origination dates may not be consistently estimated if the origination date is excluded
from the PWY sample recursion.

The article also reports simulations to evaluate the finite sample performance of these de-
tectors and date estimators, along with an alternative procedure based on CUSUM tests, as
proposed in recent work by Homm and Breitung (2012). The simulation results strongly cor-
roborate the asymptotic theory, indicating that the PSY detector is much more reliable than
PWY. On the other hand and with some exceptions that will be discussed in detail below, se-
quential application of the PWY procedure may perform nearly as well as the PSY algorithm.
The performance characteristics of the CUSUM procedure are found to be similar to those of
PWY. Overall, the results suggest that the PSY detector is a preferred procedure for practical
implementation, especially with long data series involving more than one bubble/crisis episode.

The rest of the article is organized as follows. Section 2 introduces the date stamping pro-
cedures that use recursive regressions and right-tailed unit root tests of the type considered in
PWY and PSY. This section also describes the models used to capture mildly explosive bubble
behavior when there are single and multiple bubble episodes in the data. Section 3 derives the
limit theory for the dating procedures under both single bubble and multiple bubble alternatives.
Finite sample performance is studied in Section 4, and Section 5 concludes. Two appendices
contain supporting lemmas and derivations for the limit theory presented in the article cover-
ing both single and multiple bubble scenarios. A technical supplement to the article (Phillips
et al., 2015b) provides a complete set of additional mathematical derivations that are needed
for the limit theory presented here. Computer code and Eviews software are now available for
implementation of the methods in the article.5

2. BUBBLE DATING ALGORITHMS

This section introduces three different dating algorithms—the original PWY detector, the
PSY detector, and a sequential version of the PWY detector. The approach in all of these
algorithms is to use recursive right-tailed unit root tests to assess evidence for mildly explosive
bubble behavior. In what follows we use the same models, tests, and notation as PSY to assist
in cross referencing between the two papers.

The null hypothesis is specified as suggested in Phillips et al. (2014): a random walk (or more
generally a martingale) process with an asymptotically negligible drift that we write in the form

Xt = kT −η + Xt−1 + εt, with constant k and η > 1/2,(1)

where T is the sample size, εt
i.i.d.∼ (0, σ2), and X0 = Op (1).6 Under these simple conditions,

partial sums of εt satisfy the functional law

T −1/2
�T ·�∑
t=1

εt ⇒ B (·) := σW (·) ,(2)

where W is standard Brownian motion. The framework can be extended to allow for martingale
difference sequence and more general weakly dependent innovations under conditions that

5 Gauss and Matlab codes are available online at https://sites.google.com/site/shupingshi/PrgGSADF.zip?
attredirects=0. An Add-In for the Eviews software package is available in Caspi (2013).

6 See Phillips and Magdalinos (2009) for the impact of alternative initializations on the limit theory.
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allow the limit theory to continue to hold under the null (1), based on the functional law (2),
and under mildly explosive alternatives as in (4) below, the latter based on results in Phillips and
Magdalinos (2007a, 2007b). We maintain the i.i.d. error assumption here to keep the exposition
as simple as possible and the article to manageable length.

The fitted regression model is

�Xt = α + βXt−1 + εt, εt
i.i.d.∼ (

0, σ2) ,(3)

which includes an intercept but no time trend. As in PSY, the fitted model may also be formulated
in ADF regression format to allow for any short memory dependence in the innovations. The
results given below continue to hold in that event but full extension to this case will substantially
complicate derivations that are already extremely lengthy.

The test alternative is a mildly explosive bubble process with either a single bubble or
sequence of multiple bubble episodes. The data-generating processes that are used to capture
bubble effects are extended versions of the PWY bubble model. That model has a single
explosive episode and collapse within the sample period [1, T ] and has the following form:

Xt = (Xt−1 + εt) 1 {t < τe} + (δT Xt−1 + εt) 1
{
τe ≤ t ≤ τf

}
(4)

+
⎛
⎝ t∑

k=τf +1

εk + X∗
τf

⎞
⎠ 1

{
t > τf

}
.

As usual, it is convenient to work with fractions of the sample T, and we use the notation t = �Tr�
to denote the integer part of Tr for r ∈ [0, 1]. In the process (4) a mildly explosive bubble runs
from τe = �Tre� to τf = �Trf � with an expansion rate determined by the mildly explosive
coefficient δT = 1 + cT −α with c > 0 and α ∈ (0, 1). When the bubble terminates, the process
collapses to a value X∗

τf
, which equals Xτe plus an Op (1) perturbation (i.e., X∗

τf
= Xτe + X∗)

at period τf + 1, which represents a re-initialization of the process to a level that relates to
the last pre-bubble observation Xτe . More general specifications of the collapse process are
considered in Phillips and Shi (2014). The pre-bubble period N0 = [1, τe) and post-bubble period
N1 = (τf , T ] are assumed to follow a pure random walk process.

The model is readily extended to include multiple bubble episodes. Suppose there are K
bubble episodes in the sample period, represented in terms of sample fraction intervals as
Bi = [τie, τif ] for i = 1, 2, . . . , K. The shifting dynamics of Xt are then given by the model

Xt = (Xt−1 + εt) 1 {t ∈ N0} + (δT Xt−1 + εt) 1 {t ∈ Bi}(5)

+
K∑

i=1

⎛
⎝ t∑

l=τif +1

εl + X∗
τif

⎞
⎠ 1 {t ∈ Ni} ,

where X∗
τif

= Xτie + X∗
i with X∗

i = Op (1) for all i and the intervening subperiods N0 = [1, τ1e),
Nj = (τj−1f , τje) with j = 1, . . . , K − 1, and NK = (τKf , T ] are “normal” intervals of pure ran-
dom walk (or more generally martingale) evolution.

The dating algorithms studied here are implemented repeatedly for observations starting
from some initialization �Tr0�, where r0 is the minimum window size required to initiate the re-
gression. For each individual observation t = �Tr�, we suppose that interest centers on whether
this particular observation comes from a bubble realization or an interval of normal martingale
behavior. Both the PWY and PSY algorithms use data from the same information set that starts
from the first observation and goes up to the observation of interest (i.e., Ir = {1, 2, . . . , �Tr�}).

PWY conduct recursive right-tailed unit root tests with sample data running from the first
observation to the current observation t = �Tr�. The corresponding unit root t-statistic at t =
�Tr� is denoted DFr. PSY conduct recursive right-tailed unit root tests repeatedly on a sequence
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of (backward expanding from observation t) windows of data and perform inference based on
the sup value of this t-statistic sequence. Let r1 and r2 denote the start and end points of
the regression. The regression window width rw then equals r2 − r1. With the end point of the
regressions r2 fixed at r (so that the test refers to the state of the process at the current observation
t = �Tr�) and r1 ≥ 0, the backward expanding sample sequence extends the window size rw from
r0 to r2 (which is equivalent to varying r1 from 0 to r2 − r0). The corresponding unit root test
sequence is denoted by {DF r2

r1
}r1∈[0,r2−r0]. The sup value of the test statistic sequence is called the

backward SDF statistic and is defined as

BSDFr (r0) = sup
r1∈[0,r2−r0],r2=r

{
DFr2

r1

}
.

The origination and termination dates of any bubbles that are detected are calculated using the
first crossing principle. Specifically, in the single bubble scenario, the origination (termination)
date of the bubble is the first chronological observation whose DF or BSDF statistic exceeds
(goes below) its corresponding critical value. The duration of a bubble is restricted to be
longer than a slowly varying (at infinity) quantity such as δ log(T ), or in sample fraction terms
LT = δ log(T )/T, where δ is a frequency dependent parameter—see PSY for further discussion.
The origination and termination estimators are calculated as the crossing time fractions

PWY : r̂e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : DFr < cvβT

}
,(6)

PSY : r̂e = inf
r∈[r0,1]

{
r : BSDFr (r0) > scvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
,(7)

where cvβT and scvβT are the 100(1 − βT )% critical values of the DF and BSDF statistics.
In the multiple bubbles scenario, estimators associated with the first bubble are defined as in

Equations (6) and (7), and denoted by r̂1e and r̂1f . The origination (termination) of bubble i
(for i ≥ 2) is the first chronological observation after r̂i−1f whose DF or BSDF statistic exceeds
(goes below) its corresponding critical value. Structurally,

PWY : r̂ie = inf
r∈[r̂i−1f ,1]

{
r : DFr > cvβT

}
and r̂if = inf

r∈[r̂ie +LT ,1]

{
r : DFr < cvβT

}
,(8)

PSY : r̂ie = inf
r∈[r̂i−1f ,1]

{
r : BSDFr (r0) > scvβT

}
and(9)

r̂if = inf
r∈[r̂ie +LT ,1]

{
r : BSDFr (r0) < scvβT

}
.

For the sequential PWY procedure, the dating criteria of the first bubble remain the same
(i.e., Equation (6)). For all subsequent bubbles, the sequential procedure uses information
starting from the termination of the previous bubble and ending at the current observation, i.e.,
Ii,r = {⌊

T r̂i−1f
⌋ + 1, . . . , �Tr�} for i ≥ 2. Importantly, note that the distance between r and r̂i−1f

needs to be greater than the minimum regression window r0, which restricts the capability of
this sequential procedure to detect bubble activity in the intervening period (r̂i−1f , r̂i−1f + r0).
The origination and termination dates of bubble i are then calculated as

Seq PWY : r̂ie = inf
r∈[r̂i−1f +r0,1]

{
r : r̂i−1fDFr > cvβT

}
and r̂if = inf

r∈[r̂ie+LT ,1]

{
r : r̂i−1fDFr < cvβT

}
,(10)

where r̂i−1f DFr is the DF statistic calculated over (r̂i−1f , r].
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3. ASYMPTOTIC PROPERTIES OF THE DETECTORS

The asymptotic performance of the dating algorithms is examined in this section. Under
the null hypothesis of no bubble episodes, the limit distributions of the DF and BSDF statistics
follow from PSY (Theorem 1). Both the DF and BSDF statistics are special cases of the GSADF
statistic introduced in PSY. For the DF statistic, the start point of the regression is r1 = 0 and
the end point r2 is fixed at r. Therefore, the limit distribution of the DF statistic under the null
hypothesis is

Fr(W) :=
1
2 r[W(r)2 − r] − ∫ r

0 W(s)dsW(r)

r1/2{r ∫ r
0 W(s)2ds − [

∫ r
0 W(s)ds]2}1/2

,(11)

where W is a standard Wiener process. For the BSDF statistic, the end point r2 is fixed at r and
the start point r1 varies from 0 to r − r0. The limit distribution of the BSDF statistic is

Fr(W, r0) :=
sup

r1∈[0,r−r0]

rw=r−r1

{
1
2 rw[W(r)2 − W(r1)2 − rw] − ∫ r

r1
W(s)ds[W(r) − W(r1)]

r1/2
w {rw

∫ r
r1

W(s)2ds − [
∫ r

r1
W(s)ds]2}1/2

}
.(12)

Notice that Fr(W) is a special case of Fr(W, r0) with r1 = 0 and rw = r. The asymptotic critical
values cvβT and scvβT are defined as the 100(1 − βT )% quantiles of Fr(W) and Fr(W, r0),
respectively. The significance level βT depends on the sample size T, and it is assumed that
βT → 0 as T → ∞. This control ensures that cvβT and scvβT diverge to infinity, and thereby
under the null hypothesis the probabilities of (falsely) detecting a bubble using the DF and
BSDF statistics, (6)–(10), tend to zero as T → ∞.

An implicit restriction in the asymptotic theory is that the minimum window size r0 is bounded
below, so that it cannot pass to zero as the sample size increases. Such restrictions are commonly
used in break point asymptotics and impose a practical restriction in the implementation of the
test. PSY recommend an empirical rule for choosing r0 based on a lower bound minimum
window width of 1% of the sample. This rule produces stable size and good power for sample
sizes typical in many applications.

We next derive the limit distributions under mildly explosive alternatives. We consider the
case of a single bubble and multiple bubbles separately, as the properties of some of the
detectors differ markedly in the case of multiple bubbles. The derivations require some careful
calculations involving weak convergence arguments and mildly explosive limit theory, paying
attention to some subtleties in the orders of magnitude of the various components of the test
statistics. The details are provided in the Appendix and the technical supplement to the paper
(Phillips et al., 2014).

Single Bubble Alternative.

THEOREM 1. Under the data-generating process (4), the limit forms of the DFr and BSDFr(r0)
statistics are as follows:

DFr ∼ a

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fr (W) if r ∈ N0

T 1−α/2 r3/2√
2 (re − r1)

if r ∈ B

−T (1−α)/2

(
1
2

cr
)1/2

if r ∈ N1

,(13)
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BSDFr (r0) ∼ a

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fr (W, r0) if r ∈ N0

T 1−α/2 supr1∈[0,r−r0]

{
(r−r1)3/2√

2(re−r1)

}
if r ∈ B

−T (1−α)/2 supr1∈[0,r−r0]

{[ 1
2 c (r − r1)

]1/2
}

if r ∈ N1

,(14)

where B(r) ≡ σW(r), t = �Tr�, and τe = �Tre�.

Evidently, for all three cases the orders of magnitude of the DF and BSDF statistics are the
same. Importantly, the test statistics diverge to positive infinity when the current observation
falls in the explosive bubble period and to minus infinity when the observation is in a bubble
collapse period. The minus infinity divergence of DFr when r ∈ N1 is consistent with the ar-
gument given in PWY that the DF test treats a process including both bubble expansion and
collapse phases as a “pseudo stationary” process. Based on these limit forms of the recursive
statistics, we obtain the following consistency results for the date detectors.

THEOREM 2 (PWY DETECTOR). Suppose r̂e and r̂f are the date estimates obtained from the DF
t-statistic crossing times (6). Under the alternative hypothesis of mildly explosive behavior in
model (4), if

1
cvβT

+ cvβT

T 1−α/2
→ 0,(15)

we have r̂e
p→ re and r̂f

p→ rf as T → ∞.

THEOREM 3 (PSY DETECTOR). Suppose r̂e and r̂f are the date estimates obtained from the
backward sup DF statistic crossing times (7). Under the alternative hypothesis of mildly explosive
behavior in model (4), if

1
scvβT

+ scvβT

T 1−α/2
→ 0,(16)

we have r̂e
p→ re and r̂f

p→ rf as T → ∞.

These results show that both strategies consistently estimate the origination and termination
points when there is only a single bubble episode in the sample period. The regularity conditions
in Theorems 2 and 3 imply that the orders of magnitude of the critical value expansion rates need
to be smaller than T 1−α/2 to deliver consistency of r̂e and r̂f . In effect, for consistent estimation
of re the critical value sequence needs to pass to infinity but not too fast—otherwise the signal
from the mildly explosive period under the alternative is not strong enough to ensure that the
critical value is exceeded. The first condition (cvβT, scvβT → ∞) ensures that there are no false
positives prior to the origination date re. The second condition ( cvβT

T 1−α/2 ,
scvβT

T 1−α/2 → 0) ensures that
the signal from the data during the mildly explosive period dominates that from the earlier unit
root period leading to identifying information that there is now exuberance in the data.

An implicit restriction in these two results is that the minimum window size r0 is smaller
than the origination date of the bubble re (i.e., r0 < re) so that the recursive regressions provide
information for some r ∈ N0 for comparison to identify the origination point. This requirement
is also implicit in what follows, in particular in later proofs of consistency of the first bubble
origination date in the multiple bubbles scenario as discussed below. In the event that r0 ∈
(re, rf ), then the results given in the second panels of (13) and (14) are relevant and the
origination date of the first bubble is determined to be r0, so re is estimated with delay.
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For consistent estimation of rf , both conditions again come into play. The second condition
( cvβT

T 1−α/2 ,
scvβT

T 1−α/2 → 0) ensures that there is no underestimation of rf asymptotically because for
r ≤ rf the signal from the data during the mildly explosive period continues to dominate. When
r > rf , the autoregressive estimate is calculated from data that involve the explosive episode
as well as post-explosive (r > rf ) data, which makes the post-collapse data look mean reverting
and, as shown in the proof of Theorem 1, the test statistics become negative. The expansion
condition (cvβT , scvβT → ∞) then ensures that there is no overestimation of rf asymptotically.

Multiple Bubble Alternatives. The limit behavior of the recursive DF and BSDF statistics
in the presence of multiple bubbles is much more complicated. The strengths and weaknesses
of the various detectors are well illustrated by considering a mildly explosive process with two
bubble episodes. We therefore confine much of our discussion here to the case of model (5)
with K = 2. Even in this case, as shown below, there are several possibilities depending on the
respective durations of the bubbles.

We start with the case where the duration of the first bubble exceeds that of the second bubble.
Also, to obtain the BSDF asymptotics in Theorems 4 and 5, it is assumed that the distance
separating the termination dates of the first and second bubbles exceeds the minimum window
size (i.e., r2e − r1f > r0). This requirement seems a natural condition to achieve identification of
the second bubble. The effect of its relaxation is considered later.

THEOREM 4. Under the data-generating process of (5) with K = 2 and r1f − r1e > r2f − r2e, the
limit behavior of the recursive statistics DFr, BSDFr(r0) and r̂1f DFr is given by

DFr ∼ a

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fr (W) if r ∈ N0

T 1−α/2 r3/2√
2 (r1e − r1)

if r ∈ B1

−T (1−α)/2

(
1
2

cr
)1/2

if r ∈ N1 ∪ B2 ∪ N2

,(17)

BSDFr (r0) ∼ a

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fr (W, r0) if r ∈ N0

T 1−α/2 sup
r1∈[0,r−r0]

{
(r − r1)3/2√
2 (rie − r1)

}
if r ∈ Bi with i = 1, 2

−T (1−α)/2 sup
r1∈[0,r−r0]

[
1
2

c (r − r1)
]1/2

if r ∈ N1 ∪ N2

,(18)

r̂1f DFr ∼ a

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fr (W) if r ∈ N1

T 1−α/2 (r − r1f )3/2√
2 (r2e − r1)

if r ∈ B2

−T (1−α)/2

[
1
2

c (r − r1f )
]1/2

if r ∈ N2

.(19)

Evidently from the first panel (17), it is clear that when the duration of the first bubble exceeds
that of the second bubble, the DF statistic diverges to positive infinity when r ∈ B1, whereas
for r ∈ N1 ∪ B2 ∪ N2, the statistic is asymptotically equivalent to −T (1−α)/2( 1

2 cr)1/2 and tends to
negative infinity as T → ∞. Importantly, therefore, the behavior of the DF statistic during the
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second (shorter) bubble B2 is the same as it is for the normal martingale periods N1 and N2.
Hence, the DF statistic does not have discriminatory power for second bubble detection when
the duration of the second bubble is less than that of the first bubble.

From the second panel (18), the behavior of the BSDF statistic in both bubble periods B1

and B2 is the same and is distinct from that of the normal periods N0, N1, and N2. Unlike the DF
statistic, the BSDF statistic therefore has discriminatory power in detecting both bubbles. From
the final panel (19), it is clear that the orders of magnitude characterizing the limit behavior
of the sequential DF statistic r̂1f DFr are the same as those of the BSDF statistic for r ∈ B2 and
r ∈ N2. Hence, like BSDF, the sequential DF statistic has discriminatory power for the two
bubble periods.

Next consider the case where the duration of the second bubble exceeds that of the first
bubble.

THEOREM 5. Under the data-generating process of (5) with K = 2 and r1f − r1e ≤ r2f − r2e, the
limit behavior of the recursive statistics DFr, BSDFr(r0) and r̂1f DFr is as follows:

DFr ∼ a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fr (W) if r ∈ N0

T 1−α/2 r3/2√
2 (rie − r1)

if r ∈ B1

−T (1−α)/2

(
1
2

cr
)1/2

if r ∈ N1 ∪ N2

−T (1−α)/2

(
1
2

cr
)1/2

if r ∈ B2 and r1f − r1e > r − r2e

T 1−α/2

[
cr3

2 (r1e + r2e − r1f )

]1/2

if r ∈ B2 and r1f − r1e ≤ r − r2e

,(20)

BSDFr (r0) ∼ a

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fr (W, r0) if r ∈ N0

T 1/2δ
t−τie
T sup

r1∈[0,r−r0]

{
(r−r1)3/2B(rie)

2(rie−r1)
∫ rie

r1
B(s)ds

}
if r ∈ B1 ∪ B2

−T (1−α)/2 sup
r1∈[0,r2−r0]

[ 1
2 c (r − r1)

]1/2
if r ∈ N1 ∪ N2

,(21)

r̂1f DFr ∼ a

⎧⎪⎪⎨
⎪⎪⎩

Fr (W) if r ∈ N1

T 1/2δ
t−τ2e
T

(r−r1f )3/2B(rie)
2(rie−r1)

∫ rie
r1f

B(s)ds
if r ∈ B2

−T (1−α)/2
[ 1

2 c (r − r1f )
]1/2

if r ∈ N2

.(22)

As is evident in panels (21) and (22) of this theorem, the limit behaviors of the BSDF statistic
and sequential DF statistic are identical to those that apply in the earlier case where r1f − r1e >

r2f − r2e. Thus both procedures have the same discriminatory capability for identifying bubble
episodes in the data. Again, results are very different for the DF statistic, where the behavior
of the statistic during the second bubble (r ∈ B2) is contingent on the timing of latest date
(r) in the recursion. In particular, when r ∈ B2, the limit behavior of the DF statistic depends
on the relative length of r1f − r1e (the duration of the first bubble) and r − r2e (the segment
of the second bubble that is included in data used in the recursion). When r1f − r1e exceeds
r − r2e, the statistic diverges to negative infinity, just as for the case where r1f − r1e > r2f − r2e.

Thus, in this case there are insufficient data to identify the second bubble period. However,
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as is clear from the final asymptotic expression in (20), behavior changes dramatically as soon
as there are more data. Specifically, when the segment of the second bubble included in the
recursive regression exceeds the duration of the first bubble (i.e., when r − r2e ≥ r1f − r1e) the
sign in the limit behavior of the DF statistic changes and the statistic now diverges to positive
infinity instead of negative infinity. The order of the magnitude in the divergence also rises
(from T (1−α)/2 to T 1−α/2). It follows that the DF statistic has discriminatory power once there
are sufficient data for this test to identify a second bubble—that is, as soon as data from the
second bubble dominate those of the first bubble.

With the limit behavior of the recursive tests in hand, results on the consistency properties of
the bubble date detectors now follow. It is convenient to separate the results according to each
of the recursive tests and contingent conditions regarding duration of the bubbles.

THEOREM 6 (PWY DETECTOR). Suppose r̂1e, r̂1f , r̂2e, and r̂2f are obtained from the DF test based
on the crossing times (6) and (8). Given the alternative hypothesis of mildly explosive behavior
in model (5) with K = 2 and durations satisfying r1f − r1e > r2f − r2e, if

1
cvβT

+ cvβT

T 1−α/2
→ 0,

we have r̂1e
p→ r1e and r̂1f

p→ r1f as T → ∞ and r̂2e and r̂2f are not consistent estimators of r2e

and r2f .

THEOREM 7 (PWY DETECTOR). Suppose r̂1e, r̂1f , r̂2e, and r̂2f are obtained from the DF test based
on the crossing times (6) and (8). Given the alternative hypothesis of mildly explosive behavior
in model (5) with K = 2 and durations satisfying r1f − r1e ≤ r2f − r2e, if

1
cvβT

+ cvβT

T 1−α/2
→ 0,

we have r̂1e
p→ r1e, r̂1f

p→ r1f , r̂2e
p→ r2e + r1f − r1e, and r̂2f

p→ r2f as T → ∞.

THEOREM 8 (PSY DETECTOR). Suppose r̂1e, r̂1f , r̂2e, and r̂2f are obtained from the backward
sup DF test based on the crossing times (7) and (9). Given the alternative hypothesis of mildly
explosive behavior in model (5) with K = 2, if

1
scvβT

+ scvβT

T 1−α/2
→ 0 with i = 1, 2,

we have r̂1e
p→ r1e, r̂1f

p→ r1f , r̂2e
p→ r2e, and r̂2f

p→ r2f as T → ∞.

THEOREM 9 (SEQUENTIAL PWY DETECTOR). Suppose r̂1e, r̂1f , r̂2e, and r̂2f are obtained from
sequential application of the DF test based on the crossing times (6) and (10). Given the alternative
hypothesis of mildly explosive behavior in model (5) with K = 2, if

1
cvβT

+ cvβT

T 1−α/2
→ 0,

we have r̂1e
p→ r1e, r̂1f

p→ r1f , r̂2e
p→ r2e, and r̂2f

p→ r2f as T → ∞.

Theorems 6–9 characterize the consistency properties of the detectors when there are two
bubble episodes in the observed data. The results depend on the detector and certain side
conditions regarding the duration of the bubbles. Importantly, the PWY strategy consistently
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estimates the origination and termination of the first bubble but not the second bubble. When
the duration of the first bubble exceeds that of the second bubble, the PWY strategy fails to
detect the second bubble. When the duration of the second bubble exceeds the first, the PWY
recursion detects the presence of a second bubble but with a delay measured by the duration
of the first bubble (r1f − r1e). The PWY detector is therefore inconsistent in date stamping the
second bubble even when the conditions favor its detection. In contrast, the PSY and sequential
PWY recursions are both consistent date detectors for the origination and termination of the
two bubbles irrespective of their relative durations. These procedures are therefore robust to
bubble duration.

Theorems 6–9 can be extended to scenarios with multiple bubbles (K > 2). In this case, if
the duration of bubble i + 1 is less than that of bubble i for some i ∈ {1, 2, · · · , K − 1}, then the
PWY recursion may, under certain conditions such as increasing duration up to bubble i, detect
the presence of bubble i, but it will not detect bubble i + 1. In contrast, the PSY and sequential
PWY strategies detect each of the K bubbles, with fully consistent date detection by the PSY
recursion.

We now consider the extreme scenario, mentioned earlier, where the minimum window length
r0 exceeds the distance between the termination dates of the two bubbles. Suppose K = 2. For
the sequential PWY procedure, the first regression after re-initialization from the end point
of the first bubble now runs from period N1 directly to N2, so this procedure completely passes
over the second bubble and is unable to detect it. Somewhat remarkably however, the PSY
strategy still has some detective capability for the second bubble depending on the relative
length of r1f − r1e and r − r2e. Specifically, for observations in the second bubble episode (i.e.,
r ∈ B2), their backward expanding regression sample sequences does not include the case of
τ1 ∈ N1 and τ2 ∈ B2 when r0 > r2f − r1f . Hence, the limit behavior of BSDFr(r0) under the
two-bubble data-generating process is

BSDFr (r0) ∼a

⎧⎪⎪⎨
⎪⎪⎩

−T (1−α)/2 sup
r1∈[0,r2−r0]

[ 1
2 c (r − r1)

]1/2
if r ∈ B2 and r1f − r1e > r − r2e

T 1−α/2 sup
r1∈[0,r2−r0]

[
c(r−r1)3

2(r1e−r1+r2e−r1f )

]1/2
if r ∈ B2 and r1f − r1e ≤ r − r2e

.(23)

Then, if r1f − r1e > r − r2e, the limit behavior of BSDFr(r0) at r ∈ B2 is the same as when
r ∈ N1 ∪ N2, so in that event the PSY strategy also cannot detect the second bubble. But when
r1f − r1e ≤ r − r2e, the limit behavior of BSDFr(r0) at r ∈ B2 is divergent with an order magnitude
of T 1−α/2. Hence, even though r0 > r2f − r1f , the PSY strategy is still able to detect the second
bubble (with a delay of r1f − r1e in the estimated origination date) as long as the duration of the
second bubble exceeds the first bubble.

A less extreme scenario is the case where r2e − r1f < r0 ≤ r2f − r1f . That is, the minimum
window size exceeds the distance separating the two bubbles but does not exceed the distance
between the termination dates of these two bubbles. In this circumstance, the limit behaviors
of BSDFr(r0) and r̂1f DFr remain the same as in (21) and (22) for r1f + r0 ≤ r ≤ r2f (the later
segment of B2). However, for observations prior to that in B2, the r̂1f DFr statistic does not exist
by construction and the BSDF statistic follows the limit behavior of (23). Therefore, there will
be delay in estimates of the second bubble origination date using both the PSY and sequential
PWY strategies. However, the delay is potentially smaller using the PSY strategy due to the
last panel of (23).

The advantage of the PSY strategy over the sequential PWY procedure is revealed in the
simulations reported below that consider some less extreme cases. For instance, when r3e − r2f

< r0 < r3f − r2f (i.e., 0.05 < 0.12 < 0.15) as in the first panel of Table 10, the detection rate of
the sequential PWY strategy is zero compared with 62% for the PSY strategy.
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TABLE 1
DETECTION RATE AND ESTIMATION OF THE ORIGINATION AND TERMINATION DATES UNDER SINGLE BUBBLE DGP AND DIFFERENT

BUBBLE EXPANSION RATES

PWY PSY Seq CUSUM

α = 0.60, δT = 1.06
Detection Rate 0.77 0.85 0.79 0.85
re = 0.40 0.46 (0.03) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

α = 0.55, δT = 1.08
Detection Rate 0.84 0.90 0.85 0.90
re = 0.40 0.45 (0.03) 0.44 (0.03) 0.45 (0.03) 0.45 (0.03)
rf = 0.55 0.55 (0.00) 0.55 (0.01) 0.55 (0.00) 0.55 (0.01)

α = 0.50, δT = 1.10
Detection Rate 0.89 0.93 0.90 0.93
re = 0.40 0.45 (0.03) 0.43 (0.03) 0.44 (0.03) 0.44 (0.03)
rf = 0.55 0.55 (0.00) 0.55 (0.01) 0.55 (0.00) 0.55 (0.01)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set to:
y0 = 100, c = 1, σ = 6.79, τe = �0.4T �, τf − τe = �0.15T �, T = 100. Figures in parentheses are standard deviations.

4. SIMULATION EVIDENCE

This section reports simulations to explore the finite sample performance of the PSY, PWY,
sequential PWY, and CUSUM procedures for bubble detection. These simulations focus on
detection rates and estimation accuracy of the dating algorithms of these procedures. They
complement the findings reported in PSY and examine performance characteristics in systems
with many bubbles.

Experiments are conducted with generating models that involve up to three separate bubbles.
The generating system for single, dual, and three bubbles are as in (4) and (5). The parameter
settings follow those used in PSY, so that y0 = 100, σ = 6.79, c = 1, and T = 100.7 In the
single bubble setting, we explore the sensitivities of the dating strategies to the parameters
determining the magnitude of the bubbles (the bubble expansion rate α and the bubble duration
dT = τf − τe), the bubble location parameter τe, and the sample size T . We focus our attention
on the impact of bubble durations in the two bubble and three bubble settings. For each
parameter constellation, 5,000 replications were used. Bubbles were identified using respective
finite sample 95% quantiles, obtained from simulations with 5,000 replications. The minimum
window size has 12 observations.

We report the proportion of samples in which a bubble was successfully detected along with
the empirical mean and standard deviation (in parentheses) of the estimated origination and
termination dates. Successful detection of a bubble is defined as an outcome where the estimated
origination date is greater than or equal to the true origination date and smaller than the true
termination date of that particular bubble (i.e., τie ≤ τ̂ie < τif ).

4.1. A Single Bubble. In Tables 1 and 2, the bubble expansion rate α and bubble dura-
tion dT can each take three values: specifically, the expansion rate α ∈ {0.60, 0.55, 0.50} with
corresponding autoregressive coefficient δT ∈ {1.06, 1.08, 1.10} when T = 100, and duration
is dT ∈ {�0.10T � , �0.15T � , �0.20T �}. Evidently for all algorithms the bubble detection rate
increases with the value of the autoregressive coefficient δT and the bubble duration dT . More-
over, a higher autoregressive coefficient results in more timely detection of the bubble, whereas
longer bubble duration is associated with longer delay (i.e., r̂e − re). For instance, the delay in
the PSY estimate reduces from 0.05 to 0.03 when δT increases from 1.06 to 1.10 and the delay
increases from 0.04 to 0.06 when the bubble duration extends from �0.10T � to �0.20T �.

7 The parameters y0 and σ match the initial value and the sample standard deviation of the differenced series of the
normalized S&P 500 price–dividend ratio examined in PSY.
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TABLE 2
DETECTION RATE AND ESTIMATION OF THE ORIGINATION AND TERMINATION DATES UNDER SINGLE BUBBLE DGP AND DIFFERENT

BUBBLE DURATIONS

PWY PSY Seq CUSUM

τf − τe = �0.10T �
Detection Rate 0.59 0.70 0.59 0.67
re = 0.40 0.44 (0.02) 0.44 (0.02) 0.44 (0.02) 0.44 (0.02)
rf = 0.50 0.50 (0.00) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01)

τf − τe = �0.15T �
Detection Rate 0.77 0.85 0.79 0.85
re = 0.40 0.46 (0.03) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

τf − τe = �0.20T �
Detection Rate 0.86 0.90 0.88 0.91
re = 0.40 0.47 (0.04) 0.46 (0.04) 0.47 (0.04) 0.48 (0.04)
rf = 0.60 0.60 (0.01) 0.60 (0.01) 0.60 (0.01) 0.60 (0.01)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set to:
y0 = 100, c = 1, σ = 6.79, α = 0.6, τe = �0.4T �, T = 100. Figures in parentheses are standard deviations.

TABLE 3
DETECTION RATE AND ESTIMATION OF THE ORIGINATION AND TERMINATION DATES UNDER SINGLE BUBBLE DGP AND DIFFERENT

BUBBLE LOCATIONS

PWY PSY Seq CUSUM

τe = �0.2T �
Detection Rate 0.87 0.90 0.87 0.87
re = 0.20 0.25 (0.03) 0.25 (0.03) 0.25 (0.03) 0.26 (0.03)
rf = 0.35 0.35 (0.00) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)

τe = �0.4T �
Detection Rate 0.77 0.85 0.79 0.85
re = 0.40 0.46 (0.03) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

τe = �0.6T �
Detection Rate 0.72 0.82 0.74 0.82
re = 0.60 0.66 (0.03) 0.65 (0.03) 0.66 (0.03) 0.65 (0.03)
rf = 0.75 0.75 (0.01) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set to:
y0 = 100, c = 1, σ = 6.79, α = 0.6, τf − τe = �0.15T �, T = 100. Figures in parentheses are standard deviations.

In Table 3, the location parameter τe varies from �0.2T � to �0.6T �. When the bubble orig-
inates at a later stage of the sample, the bubble detection rates of all strategies are lower.
Table 4 monitors the effects of increasing the sample size from 100 to 400. Evidently, whereas
the detection rate of the CUSUM strategy decreases with the sample size, the detection rates of
the PWY, PSY, and sequential PWY strategies increase with the sample size. The time needed
to detect bubbles in all algorithms is largely unaffected by the location of the bubble and the
sample size.

The most striking finding in Tables 1–3 is the superiority of the PSY strategy relative to
the other algorithms in the single bubble case. The PSY strategy has a higher rate of bubble
detection and provides a more accurate estimate of the origination date. All strategies deliver
a good detection rate of the termination date of the bubble, which is no doubt associated with
the sharp collapse specification in the model formulation.

4.2. Two Bubbles. Two duration scenarios feature in the dual bubble simulations. In one of
these, the first bubble has longer duration (Table 5), whereas in the other the second bubble
has longer duration (Table 6). The bubbles originate 20% and 60% into the sample, and the
expansion rate of the two bubbles is 1.04 (i.e., α = 0.6).
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TABLE 4
DETECTION RATE AND ESTIMATION OF THE ORIGINATION AND TERMINATION DATES UNDER SINGLE BUBBLE DGP AND DIFFERENT

SAMPLE SIZES

PWY PSY Seq CUSUM

T = 100
Detection Rate 0.77 0.85 0.79 0.85
re = 0.40 0.46 (0.03) 0.45 (0.03) 0.46 (0.03) 0.46 (0.03)
rf = 0.55 0.55 (0.01) 0.55 (0.01) 0.55 (0.01) 0.55 (0.01)

T = 200
Detection Rate 0.79 0.85 0.81 0.83
re = 0.40 0.46 (0.04) 0.45 (0.03) 0.46 (0.04) 0.45 (0.03)
rf = 0.55 0.55 (0.01) 0.54 (0.02) 0.55 (0.01) 0.55 (0.02)

T = 400
Detection Rate 0.83 0.89 0.85 0.78
re = 0.40 0.46 (0.04) 0.44 (0.03) 0.45 (0.04) 0.45 (0.03)
rf = 0.55 0.55 (0.02) 0.53 (0.04) 0.55 (0.02) 0.54 (0.03)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set to:
y0 = 100, c = 1, σ = 6.79, α = 0.60, τe = �0.4T �, τf − τe = �0.15T �. Figures in parentheses are standard deviations.

TABLE 5
DETECTION RATE AND ESTIMATION OF THE ORIGINATION AND TERMINATION DATES UNDER TWO BUBBLE DGP WITH SHORTER

SECOND BUBBLE DURATIONS

PWY PSY Seq CUSUM

τ2f − τ2e = �0.10T �
Detection Rate (1) 0.94 0.95 0.94 0.93
r1e = 0.20 0.26 (0.04) 0.26 (0.04) 0.26 (0.04) 0.27 (0.04)
r1f = 0.40 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.40 (0.01)
Detection Rate (2) 0.01 0.73 0.68 0.03
r2e = 0.60 0.66 (0.02) 0.64 (0.02) 0.64 (0.02) 0.66 (0.02)
r2f = 0.70 0.70 (0.00) 0.70 (0.00) 0.70 (0.00) 0.70 (0.01)

τ2f − τ2e = �0.15T �
Detection Rate (1) 0.94 0.95 0.94 0.93
r1e = 0.20 0.26 (0.04) 0.26 (0.04) 0.26 (0.04) 0.27 (0.04)
r1f = 0.40 0.40 (0.01) 0.40 (0.01) 0.40 (0.01) 0.39 (0.01)
Detection Rate (2) 0.04 0.89 0.84 0.11
r2e = 0.60 0.71 (0.03) 0.65 (0.03) 0.65 (0.03) 0.70 (0.03)
r2f = 0.75 0.75 (0.00) 0.75 (0.01) 0.75 (0.01) 0.75 (0.01)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set to:
y0 = 100, c = 1, σ = 6.79, α = 0.6, τ1e = �0.20T �, τ2e = �0.60T �, τ1f − τ1e = �0.20T �, T = 100. Figures in parentheses
are standard deviations.

In Table 5, the duration of the first bubble is 20% of the total sample. The duration of the
second bubble is shorter than the first one, taking values dT = τ2f − τ2e = �0.10T �, �0.15T �.
As anticipated from asymptotic theory, PWY fails to detect the second bubble in this duration
scenario. For instance, when dT = �0.10T �, the proportion of samples where the second bubble
is detected using PWY is negligible (around 0.01). Noticeably, all algorithms perform well
in identifying the first bubble. The average delay in detecting this bubble is four to seven
observations.

The opposite setting is considered in the simulations reported in Table 6. Here the duration
of the first bubble is fixed at �0.10T � and the duration of the second bubble varies from �0.10T �
to �0.20T �. Several results emerge from the table. First, there is no dramatic performance
difference in identifying the first bubble among the dating algorithms. It is interesting to note
that, due to its shorter bubble duration, the detection rates for the first bubble are lower than
those in Table 5. Second, we observe a significant boost in the second bubble detection rate for
the PWY strategy. In particular, when the duration of the second bubble is twice as long as the
first, the detection rates of the PWY strategy is 77%. This outcome contrasts sharply with the



TESTING FOR MULTIPLE BUBBLES 1093

TABLE 6
DETECTION RATE AND ESTIMATION OF THE ORIGINATION AND TERMINATION DATES UNDER TWO BUBBLE DGP WITH LONGER

SECOND BUBBLE DURATIONS

PWY PSY Seq CUSUM

τ2f − τ2e = �0.10T �
Detection Rate (1) 0.71 0.76 0.69 0.64
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.25 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.01) 0.30 (0.01)
Detection Rate (2) 0.20 0.72 0.60 0.44
r2e = 0.60 0.66 (0.02) 0.64 (0.02) 0.64 (0.02) 0.66 (0.02)
r2f = 0.70 0.70 (0.00) 0.70 (0.00) 0.70 (0.01) 0.70 (0.00)

τ2f − τ2e = �0.15T �
Detection Rate (1) 0.71 0.76 0.69 0.64
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.25 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.02) 0.30 (0.01)
Detection Rate (2) 0.54 0.86 0.78 0.76
r2e = 0.60 0.69 (0.03) 0.65 (0.03) 0.66 (0.03) 0.68 (0.03)
r2f = 0.75 0.75 (0.00) 0.75 (0.01) 0.75 (0.01) 0.75 (0.00)

τ2f − τ2e = �0.20T �
Detection Rate (1) 0.71 0.76 0.69 0.64
r1e = 0.20 0.24 (0.02) 0.24 (0.02) 0.24 (0.02) 0.25 (0.02)
r1f = 0.30 0.30 (0.00) 0.30 (0.00) 0.30 (0.00) 0.30 (0.01)
Detection Rate (2) 0.77 0.91 0.87 0.90
r2e = 0.60 0.71 (0.04) 0.66 (0.04) 0.67 (0.04) 0.69 (0.04)
r2f = 0.80 0.80 (0.00) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set to:
y0 = 100, c = 1, σ = 6.79, α = 0.6, τ1e = �0.20T �, τ2e = �0.60T �, τ1f − τ1e = �0.10T �, T = 100. Figures in parentheses
are standard deviations.

PWY detection rates for the second bubble displayed in Table 5. Third, there are relatively long
delays in PWY detection of the second bubble. As a case in the point, when the duration of the
second bubble is �0.20T �, the PWY estimate of the origination date of the second bubble is 0.71
with a delay of 11 observations (nearly twice as long as the delay in detection of 6 observations
when using PSY). Those findings corroborate closely the asymptotic theory, which shows how
the PWY detector consistently estimates the first bubble but only identifies the second bubble
with some delay when r2f − r2e > r1f − r1e.

In both experiments (Tables 5 and 6), the performance of the CUSUM procedure follows
closely that of the PWY procedure. The PSY and the sequential PWY detectors are much more
reliable in all cases, as shown in their higher detection rates and more timely detection of both
bubbles. Overall, the findings indicate that the PSY strategy provides the best performance
when there are two bubbles in the time series.

4.3 Three Bubbles. Table 7–10 report findings for the three bubble case. In Tables 7–9,
we adjust the duration of one bubble to dT ∈ {�0.10T �, �0.20T �} and fix the durations of the
other two bubbles. The bubbles originate 15%, 45%, and 75% into the sample and the bubble
expansion rate is 1.04 in each case.

Results are similar to the two bubble case and are consistent with asymptotic theory in the
more complex scenarios of multiple bubbles. First, when the duration of bubble i (for i = 1, 2)
is longer than bubble i + 1, theory indicates that the PWY strategy is not capable of detecting
the presence of bubble i + 1. The simulation findings in Table 7 show that, due to the longer
duration of the second bubble, where dT = �0.20T �, the PWY detection rate is zero for the third
bubble, whose duration is dT = �0.10T �. Similar results are found in Table 9 where the duration
of the first bubble is longer than the second. An interesting feature of the PWY outcomes is that
the presence of a long duration bubble causes weak identification of all subsequent bubbles. In
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TABLE 7
DETECTION RATE AND ESTIMATES OF THE ORIGINATION AND TERMINATION DATES UNDER THREE BUBBLE DGP WITH DIFFERENT

FIRST BUBBLE DURATIONS

PWY PSY Seq CUSUM

τ1f − τ1e = �0.1T �, τ2f − τ2e = �0.2T �, τ3f − τ3e = �0.1T �
Detection Rate (1) 0.72 0.75 0.69 0.64
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.20 (0.02) 0.17 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)
Detection Rate (2) 0.79 0.93 0.90 0.90
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.51 (0.04) 0.55 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)
Detection Rate (3) 0.00 0.72 0.82 0.01
r3e = 0.75 0.82 (0.01) 0.79 (0.02) 0.79 (0.02) 0.80 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.01) 0.85 (0.00) 0.85 (0.01)

τ1f − τ1e = �0.2T �, τ2f − τ2e = �0.2T �, τ3f − τ3e = �0.1T �
Detection Rate (1) 0.92 0.93 0.89 0.92
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.22 (0.05)
r1f = 0.35 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.02)
Detection Rate (2) 0.14 0.97 0.96 0.25
r2e = 0.45 0.60 (0.03) 0.51 (0.04) 0.50 (0.04) 0.60 (0.03)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)
Detection Rate (3) 0.00 0.74 0.85 0.00
r3e = 0.75 — 0.79 (0.02) 0.79 (0.02) 0.80 (0.03)
r3f = 0.85 — 0.85 (0.01) 0.85 (0.00) 0.85 (0.00)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set
to: y0 = 100, c = 1, σ = 6.79, α = 0.6, T = 100, τ1e = �0.15T �, τ2e = �0.45T �, τ3e = �0.75T �. Figures in parentheses are
standard deviations.

TABLE 8
DETECTION RATE AND ESTIMATES OF THE ORIGINATION AND TERMINATION DATES UNDER THREE BUBBLE DGP WITH DIFFERENT

SECOND BUBBLE DURATIONS

PWY PSY Seq CUSUM

τ1f − τ1e = �0.1T �, τ2f − τ2e = �0.1T �, τ3f − τ3e = �0.2T �
Detection Rate (1) 0.72 0.75 0.69 0.64
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.20 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.24 (0.01)
Detection Rate (2) 0.17 0.73 0.64 0.33
r2e = 0.45 0.51 (0.02) 0.49 (0.02) 0.49 (0.02) 0.51 (0.02)
r2f = 0.55 0.55 (0.00) 0.55 (0.00) 0.55 (0.01) 0.55 (0.00)
Detection Rate (3) 0.67 0.92 0.86 0.87
r3e = 0.75 0.88 (0.03) 0.81 (0.04) 0.81 (0.05) 0.86 (0.04)
r3f = 0.95 0.95 (0.00) 0.95 (0.01) 0.95 (0.01) 0.95 (0.01)

τ1f − τ1e = �0.1T �, τ2f − τ2e = �0.2T �, τ3f − τ3e = �0.2T �
Detection Rate (1) 0.72 0.75 0.69 0.64
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.20 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)
Detection Rate (2) 0.79 0.93 0.90 0.90
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.51 (0.04) 0.55 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)
Detection Rate (3) 0.12 0.94 0.92 0.23
r3e = 0.75 0.91 (0.02) 0.81 (0.04) 0.80 (0.04) 0.90 (0.04)
r3f = 0.95 0.95 (0.00) 0.95 (0.02) 0.95 (0.01) 0.95 (0.01)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set
to: y0 = 100, c = 1, σ = 6.79, α = 0.6, T = 100, τ1e = �0.15T �, τ2e = �0.45T �, τ3e = �0.75T �. Figures in parentheses are
standard deviations.
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TABLE 9
DETECTION RATE AND ESTIMATION OF THE ORIGINATION AND TERMINATION DATES UNDER THREE BUBBLE DGP WITH DIFFERENT

THIRD BUBBLE DURATIONS

PWY PSY Seq CUSUM

τ1f − τ1e = �0.2T �, τ2f − τ2e = �0.1T �, τ3f − τ3e = �0.1T �
Detection Rate (1) 0.92 0.93 0.89 0.92
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.22 (0.04)
r1f = 0.35 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)
Detection Rate (2) 0.00 0.75 0.84 0.01
r2e = 0.45 0.50 (0.02) 0.49 (0.02) 0.49 (0.02) 0.51 (0.02)
r2f = 0.55 0.55 (0.00) 0.55 (0.00) 0.55 (0.03) 0.55 (0.01)
Detection Rate (3) 0.01 0.74 0.67 0.04
r3e = 0.75 0.81 (0.02) 0.79 (0.02) 0.79 (0.02) 0.81 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.00) 0.85 (0.00) 0.85 (0.00)

τ1f − τ1e = �0.2T �, τ2f − τ2e = �0.1T �, τ3f − τ3e = �0.2T �
Detection Rate (1) 0.92 0.93 0.89 0.92
r1e = 0.15 0.21 (0.04) 0.21 (0.04) 0.21 (0.04) 0.22 (0.04)
r1f = 0.35 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.33 (0.01)
Detection Rate (2) 0.00 0.75 0.84 0.01
r2e = 0.45 0.50 (0.02) 0.49 (0.02) 0.49 (0.02) 0.51 (0.02)
r2f = 0.55 0.55 (0.00) 0.55 (0.00) 0.55 (0.03) 0.55 (0.01)
Detection Rate (3) 0.20 0.93 0.89 0.69
r3e = 0.75 0.90 (0.03) 0.80 (0.04) 0.81 (0.04) 0.89 (0.03)
r3f = 0.95 0.95 (0.00) 0.95 (0.01) 0.95 (0.01) 0.95 (0.00)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set
to: y0 = 100, c = 1, σ = 6.79, α = 0.6, T = 100, τ1e = �0.15T �, τ2e = �0.45T �, τ3e = �0.75T �. Figures in parentheses are
standard deviations.

TABLE 10
DETECTION RATE AND ESTIMATES OF THE ORIGINATION AND TERMINATION DATES UNDER THREE BUBBLE DGP AND SPECIAL

EXAMPLES

PWY PSY Seq CUSUM

τ1f − τ1e = �0.1T �, τ2f − τ2e = �0.2T �, τ3f − τ3e = �0.10T �, τ2e = �0.45T �, τ3e = �0.70T �
Detection Rate (1) 0.72 0.75 0.69 0.64
r1e = 0.15 0.19 (0.02) 0.19 (0.02) 0.20 (0.02) 0.19 (0.02)
r1f = 0.25 0.25 (0.00) 0.25 (0.00) 0.25 (0.00) 0.25 (0.02)
Detection Rate (2) 0.79 0.93 0.90 0.90
r2e = 0.45 0.57 (0.04) 0.51 (0.04) 0.51 (0.04) 0.55 (0.04)
r2f = 0.65 0.65 (0.00) 0.65 (0.01) 0.65 (0.01) 0.65 (0.01)
Detection Rate (3) 0.00 0.61 0.01 0.01
r3e = 0.70 0.77 (0.02) 0.77 (0.00) 0.77 (0.02) 0.75 (0.02)
r3f = 0.80 0.79 (0.02) 0.80 (0.00) 0.84 (0.06) 0.80 (0.01)

τ1f − τ1e = �0.2T �, τ2f − τ2e = �0.1T �, τ3f − τ3e = �0.10T �, τ2e = �0.40T �, τ3e = �0.75T �
Detection Rate (1) 0.92 0.93 0.89 0.92
r1e = 0.15 0.21 (0.04) 0.20 (0.04) 0.21 (0.04) 0.22 (0.04)
r1f = 0.35 0.35 (0.01) 0.35 (0.01) 0.35 (0.01) 0.35 (0.01)
Detection Rate (2) 0.00 0.60 0.06 0.01
r2e = 0.40 0.46 (0.02) 0.47 (0.00) 0.47 (0.01) 0.45 (0.03)
r2f = 0.50 0.50 (0.00) 0.50 (0.00) 0.50 (0.01) 0.50 (0.01)
Detection Rate (3) 0.01 0.74 0.18 0.04
r3e = 0.75 0.82 (0.02) 0.79 (0.02) 0.81 (0.02) 0.81 (0.02)
r3f = 0.85 0.85 (0.00) 0.85 (0.00) 0.85 (0.00) 0.85 (0.00)

NOTES: Calculations are based on 5,000 replications. The minimum window has 12 observations. Parameters are set to:
y0 = 100, c = 1, σ = 6.79, α = 0.6, T = 100, τ1e = �0.15T �. Figures in parentheses are standard deviations.
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particular, when the first bubble lasts longer than the second and third bubbles (the first panel
of Table 9), the PWY detection rates of these two bubbles are 0.00 and 0.01.

Second, the simulations confirm that when the duration of bubble i is shorter than that of
bubble i + 1, the PWY strategy detects the existence of both bubbles but with a delay in the
identification of bubble i + 1. A case in point occurs in the first panel of Table 8, where the
duration of the second bubble, is shorter than that of the third bubble. The detection rate of
the third bubble using the PWY strategy is 0.67 and the length of the delay in the detection of
this bubble is �0.13T �, more than twice the delay incurred by the PSY detector. Third, just as
for the two bubble case, the behavior of the CUSUM detector resembles that of PWY.

Fourth, the performances of PSY and sequential PWY are invariant to the relative durations
among the bubbles. In other words, the frequency of detecting bubble i and the time needed
to detect this bubble depend on the duration of this particular bubble, not on the duration of
bubble j (for j �= i).

Overall best performance is delivered by the PSY algorithm, followed by the sequential PWY
strategy. Notice that when the duration of bubble i is twice as long as the duration of bubble
i + 1, the sequential PWY detection rate of bubble i + 1 rises to a higher level than PSY. For
example, in the first panel of Table 7 where τ2f − τ2e = �0.20T � and τ3f − τ3e = �0.10T �, the
third bubble detection rate of sequential PWY is 0.82, exceeding that of PSY at 0.72. This is due
to the fact that the sequential procedure re-initializes after the collapse of the second bubble,
and the first regression following re-initialization already covers several observations of the
third bubble episode. This situation resembles the case of bubbles occurring at the beginning of
the sample, which increases the bubble detection rate as shown in Table 3.

In extreme cases when the first regression after re-initialization covers most observations of
the particular bubble episode, the sequential PWY procedure may fail to detect this bubble.
Table 10 gives examples that forcefully illustrate this point. In the first panel of the table, the
sequential PWY procedure re-initiates at �0.65T �, and the undetectable period (due to the
minimum regression window requirement of 12 observations) following this re-initialization is
over the period �0.65T � to �0.77T � and covers most of the third bubble episode. As a result,
the detection rate of the third bubble episode using the sequential PWY procedure is 0.01,
whereas the detection rate of the third bubble using PSY is 61%. A further example occurs
in the bottom panel of the same table. For the same reason, the sequential procedure fails to
detect the second bubble episode in 94% of the cases—the detection rate reported in the table
is 0.06. Noticeably, the unsuccessful detection of the second bubble also leads to a low detection
rate for the third bubble, which may be partly explained by the fact that the remaining sample
period includes two bubble episodes. In all of these cases the PSY detector works well with a
high average detection rate (93%, 60%, and 74% for bubbles 1, 2, and 3, respectively) and an
average delay of 4–7 observations in detection.

5. CONCLUSIONS

We develop limit theory for real-time dating of the origination and termination of mildly
explosive periods using detectors based on the PWY, PSY, and sequential PWY algorithms.
All three strategies rely on recursive right-tailed unit root tests but involve different types of
recursion. The asymptotic performance of the detectors are evaluated using the extended PWY
bubble model where mildly explosive bubble episodes are embedded within a longer period of
normal stochastic trend behavior.

The PWY date estimates are shown to depend on the number of bubble episodes within
the sample period and the relative durations of the bubbles when there are multiple bubble
episodes. Specifically, in the single bubble case, the PWY estimators are consistent under some
mild regularity conditions. When the sample period includes two bubble episodes, the PWY
approach can consistently estimate the first bubble but not the second. The dating accuracy
of the second bubble is related to the relative duration of the two bubbles. If the first bubble
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lasts longer than the second, the PWY strategy cannot detect occurrence of the second bubble.
Alternatively, if the duration of the second bubble exceeds the first, the PWY detector finds
the second bubble but with some delay even asymptotically. In contrast, the PSY approach
and a sequential implementation of the PWY strategy both provide consistent estimators of all
bubbles regardless of the number of bubble episodes occurring in the sample period and their
relative duration.

Finite sample simulation are strongly confirmative of the asymptotics, indicating that the PSY
algorithm is more reliable as a detector than the PWY strategy. The second best procedure is
the sequential PWY strategy. The performance of the CUSUM procedure resembles that of
the PWY strategy and has similar disadvantages in multiple bubble cases.

The results obtained here require some detailed and complex calculations to obtain the
limit theory of the various recursive detection algorithms. Although these results are specific
to the bubble model context under study, the methods should be useful in other recursive
regression contexts. Also, with some modifications, the results continue to hold under more
general conditions on the innovations than those used here and may be extended to deal with
more general crisis and collapse processes (Phillips and Shi, 2014). The main requirements for
these extensions are that the weak convergence (2) applies under normal periods and the limit
theory for mildly explosive and mildly integrated periods applies, as it is known to do, under
general forms of weak dependence (Phillips and Magdalinos, 2007b).

APPENDIX

A. The Dating Algorithms (A Single Bubble)
Section A.1 provides some useful preliminary results that characterize the limit behavior of
the regression components over the various subperiods of the data. Section A2 provides test
asymptotics and gives proofs of Theorems 1–3 which describe the consistency properties of the
PWY and PSY dating strategies.

A.1. Notation and useful preliminary lemmas. We define the following notation:

� The bubble period B = [τe, τf ], where τe = �Tre� and τf = ⌊
Trf

⌋
.

� The normal market periods N0 = [1, τe) and N1 = [τf + 1, T ].
� The starting point of the regression τ1 = �Tr1�, the ending point of the regression τ2 =

�Tr2�, the regression sample size τw = �Trw� with rw = r2 − r1 and observation t = �Tr�.
� B(.) ≡ σW(.), where W is standard Brownian motion.

We use the data-generating process

Xt =

⎧⎪⎪⎨
⎪⎪⎩

Xt−1 + εt for t ∈ N0

δT Xt−1 + εt for t ∈ B

X∗
τf

+ ∑t
k=τf +1 εk for t ∈ N1

,(A.1)

where δT = 1 + cT −α with c > 0 and α ∈ (0, 1), εt
i.i.d.∼ (0, σ2) and X∗

τf
= Xτe + X∗ with X∗ =

Op (1). Under (A.1) we have the following lemmas.

LEMMA A1. Under the data-generating process,

(1) For t ∈ N0, Xt=�Tr� ∼a T 1/2B(r).
(2) For t ∈ B, Xt=�Tr� = δ

t−τe
T Xτe

{
1 + op (1)

} ∼a T 1/2δ
t−τe
T B(re).

(3) For t ∈ N1, Xt=�Tr� ∼a T 1/2[B(r) − B(rf ) + B(re)].
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PROOF. (1) For t ∈ N0, Xt is a unit root process. We know that T −1/2Xt=�Tr� ⇒ B(r) as
T → ∞. (2) For t ∈ B, the data-generating process

Xt = δT Xt−1 + εt = δ
t−τe+1
T Xτe−1 +

t−τe∑
j=0

δ
j
T εt−j .

Based on Phillips and Magdalinos (2007a, Lemma 4.2), we know that for α < 1,

T −α/2
t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

L→ Xc ≡ N
(
0, σ2/2c

)
,

as t − τe → ∞. Furthermore, we know that T −1/2Xτe−1
L→ B(re) and δT → 1 as T → ∞. There-

fore,

δ
−(t−τe)
T T −1/2Xt = δT T −1/2Xτe−1 + T −1/2

t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

= δT T −1/2Xτe−1 + T −(1−α)/2T −α/2
t−τe∑
j=0

δ
−(t−τe)+j
T εt−j

L→ B (re) .

This implies that the first term has a higher order than the second term. Hence,

Xt = δ
t−τe
T Xτe

{
1 +

∑t−τe−1
j=0 δ

j
T εt−j

δ
t−τe
T Xτe

}
= δ

t−τe
T Xτe

{
1 + op (1)

} ∼a T 1/2δ
t−τe
T B (re) .

(3) For t ∈ N1,

Xt =
t∑

k=τf +1

εk + X∗
τf

=
t∑

k=τf +1

εk + Xτe + X∗ ∼a T 1/2 [B (r) − B (rf ) + B (re)]

due to the fact that Xτe ∼a T 1/2B(re),
∑t

k=τf +1 εk ∼a T 1/2[B(r) − B(rf )], and X∗ = Op (1). �

LEMMA A2. Under the data-generating process,

(1) For τ1 ∈ N0 and τ2 ∈ B,

1
τw

τ2∑
j=τ1

Xj = T αδ
τ2−τe
T

τwc
Xτe

{
1 + op (1)

} ∼a T α−1/2δ
τ2−τe
T

1
rwc

B (re) .

(2) For τ1 ∈ B and τ2 ∈ N1,

1
τw

τ2∑
j=τ1

Xj = T αδ
τf −τ1

T

τwc
Xτe

{
1 + op (1)

} ∼a T α−1/2δ
τf −τ1

T
1

rwc
B (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

1
τw

τ2∑
j=τ1

Xj = Xτe

T αδ
τf −τe

T

τwc

{
1 + op (1)

} ∼a T α−1/2δ
τf −τe

T
1

rwc
B (re) .



TESTING FOR MULTIPLE BUBBLES 1099

PROOF. (1) For τ1 ∈ N0 and τ2 ∈ B, we have

1
τw

τ2∑
j=τ1

Xj = 1
τw

τe−1∑
j=τ1

Xj + 1
τw

τ2∑
j=τe

Xj .

The first term is

1
τw

τe−1∑
j=τ1

Xj = T 1/2 τe − τ1

τw

⎛
⎝ 1

τe − τ1

τe−1∑
j=τ1

Xj√
T

⎞
⎠

∼a T 1/2 re − r1

rw

∫ re

r1

B (s) ds.(A.2)

The second term is

1
τw

τ2∑
j=τe

Xj = Xτe

τw

τ2∑
j=τe

δ
j−τe
T

{
1 + op (1)

}
from Lemma A1

= Xτe

τw

δ
τ2−τe+1
T − 1
δT − 1

{
1 + op (1)

}

= Xτe

T αδ
τ2−τe
T + cδτ2−τe

T − T α

τwc

{
1 + op (1)

}

= Xτe

T αδ
τ2−τe
T

τwc

{
1 + op (1)

} ∼a T α−1/2δ
τ2−τe
T

1
rwc

B (re) .(A.3)

Furthermore, we have

T α−1/2δ
τ2−τe
T

T 1/2
= δ

τ2−τe
T

T 1−α
= ec(r2−re)T 1−α

T 1−α
> 1.

This implies that τ−1
w

∑τ2
j=τe

Xj has a higher order than τ−1
w

∑τe−1
j=τ1

Xj . Hence,

1
τw

τ2∑
j=τ1

Xj = 1
τw

τ2∑
j=τe

Xj
{
1 + op (1)

}

= T αδ
τ2−τe
T

τwc
Xτe

{
1 + op (1)

}
from Equation (A.3)

∼a T α−1/2δ
τ2−τe
T

1
rwc

B (re) .

(2) For τ1 ∈ B and τ2 ∈ N1, we have

1
τw

τ2∑
j=τ1

Xj = 1
τw

τf∑
j=τ1

Xj + 1
τw

τ2∑
j=τf +1

Xj .

The first term is
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1
τw

τf∑
j=τ1

Xj = Xτe

τw

τf∑
j=τ1

δ
j−τe
T

{
1 + op (1)

}
from Lemma A1

= Xτe

τw

δ
τf −τ1+1
T − 1
δT − 1

{
1 + op (1)

}

= Xτe

τw

T αδ
τf −τ1

T + cδ
τf −τ1

T − T α

c

{
1 + op (1)

}

= T αδ
τf −τ1

T

τwc
Xτe

{
1 + op (1)

}

∼a T α−1/2δ
τf −τ1

T
1

rwc
B (re) .

The second term is

1
τw

τ2∑
j=τf +1

Xj(A.4)

= 1
τw

τ2∑
j=τf +1

⎡
⎣ j∑

k=τf +1

εk + Xτe

⎤
⎦

= T 1/2 τ2 − τf

τw

⎡
⎣ 1

τ2 − τf

τ2∑
j=τf +1

⎛
⎝T −1/2

j∑
k=τf +1

εk

⎞
⎠
⎤
⎦ + T 1/2 τ2 − τf

τw

(
T −1/2Xτe

)

∼a T 1/2 r2 − rf

rw

∫ r2

rf

[B (s) − B (rf )] ds + T 1/2 r2 − rf

rw

B (re)

= T 1/2 r2 − rf

rw

{∫ r2

rf

[B (s) − B (rf )] ds − B (re)

}
.(A.5)

Furthermore, we have

T α−1/2δ
τf −τ1

T

T 1/2
= δ

τf −τ1

T

T 1−α
= ec(rf −r1)T 1−α

T 1−α
> 1.

This implies that τ−1
w

∑τf

j=τ1
Xj has a higher order than τ−1

w

∑τ2
j=τf +1 Xj . Hence,

1
τw

τ2∑
j=τ1

Xj = T αδ
τf −τ1

T

τwc
Xτe

{
1 + op (1)

} ∼a T α−1/2δ
τf −τ1

T
1

rwc
B (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

1
τw

τ2∑
j=τ1

Xj = 1
τw

τe−1∑
j=τ1

Xj + 1
τw

τf∑
j=τe

Xj + 1
τw

τ2∑
j=τf +1

Xj .

The first term is

1
τw

τe−1∑
j=τ1

Xj ∼a T 1/2 re − r1

rw

∫ re

r1

B (s) ds from Equation (A.2).
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The second term is

1
τw

τf∑
j=τe

Xj = Xτe

τw

τf∑
j=τe

δ
j−τe
T

{
1 + op (1)

}
from Lemma A1

= Xτe

τw

δ
τf −τe+1
T − 1
δT − 1

{
1 + op (1)

}

= Xτe

τwc

(
T αδ

τf −τe

T + cδ
τf −τe

T − T α
) {

1 + op (1)
}

= T αδ
τf −τe

T

τwc
Xτe

{
1 + op (1)

}
(A.6)

∼a T α−1/2δ
τf −τe

T
1

rwc
B (re) .

The third term is

1
τw

τ2∑
j=τf +1

Xj ∼a T 1/2 r2 − rf

rw

{∫ r2

rf

[B (s) − B (rf )] ds − B (re)

}
from Equation (A.5).

Furthermore, we know

T α−1/2δ
τf −τe

T

T 1/2
= ec(rf −re)T 1−α

T 1−α
> 1.

This implies that τ−1
w

∑τf

j=τe
Xj dominates τ−1

w

∑τe−1
j=τ1

Xj and τ−1
w

∑τ2
j=τf +1 Xj . Therefore,

1
τw

τ2∑
j=τ1

Xj = T αδ
τf −τe

T

τwc
Xτe

{
1 + op (1)

} ∼a T α−1/2δ
τf −τe

T
1

crw

B (re) . �

LEMMA A3. Define the centered quantity X̃t = Xt − τ−1
w

∑τ2
j=τ1

Xj .

(1) For τ1 ∈ N0 and τ2 ∈ B,

X̃t =

⎧⎪⎨
⎪⎩

−T αδ
τ2−τe
T

τwc Xτe

{
1 + op (1)

}
if t ∈ N0[

δ
t−τe
T − T αδ

τ2−τe
T

τwc

]
Xτe

{
1 + op (1)

}
if t ∈ B

.

(2) For τ1 ∈ B and τ2 ∈ N1,

X̃t =

⎧⎪⎨
⎪⎩

[
δ

t−τe
T − T αδ

τf −τ1
T

τwc

]
Xτe

{
1 + op (1)

}
if t ∈ B

−T αδ
τf −τ1
T

τwc Xτe

{
1 + op (1)

}
if t ∈ N1

.

(3) For τ1 ∈ N0 and τ2 ∈ N1,

X̃t =

⎧⎪⎨
⎪⎩

−T αδ
τf −τe
T

τwc Xτe

{
1 + op (1)

}
if t ∈ N0 ∪ N1[

δ
t−τe
T − T αδ

τf −τe
T

τwc

]
Xτe

{
1 + op (1)

}
if t ∈ B

.
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PROOF. (1) Suppose τ1 ∈ N0 and τ2 ∈ B. If t ∈ N0,

X̃t = Xt − τ−1
w

τ2∑
j=τ1

Xj = −T αδ
τ2−τe
T

τwc
Xτe

{
1 + op (1)

}
,(A.7)

where the second term dominates the first term due to the fact that

T −1/2Xt ∼a B (r) from Lemma A1

1
τw

τ2∑
j=τ1

Xj ∼a T α−1/2δ
τ2−τe
T

1
rwc

B (re) from Lemma A2

and

T α−1/2δ
τ2−τe
T

T 1/2
= ec(r2−re)T 1−α

T 1−α
> 1.

If t ∈ B,

X̃t = Xt − τ−1
w

τ2∑
j=τ1

Xj =
[
δ

t−τe
T − T αδ

τ2−τe
T

τwc

]
Xτe

{
1 + op (1)

}
.

(2) Suppose τ1 ∈ B and τ2 ∈ N1. If t ∈ B,

X̃t = Xt − τ−1
w

τ2∑
j=τ1

Xj =
[
δ

t−τe
T − T αδ

τf −τ1

T

τwc

]
Xτe

{
1 + op (1)

}
.

If t ∈ N1,

X̃t = Xt − τ−1
w

τ2∑
j=τ1

Xj = −T αδ
τf −τ1

T

τwc
Xτe

{
1 + op (1)

}
,

where the second term dominates the first term due to the fact that

Xt=�Tr� ∼a T 1/2 [B (r) − B (rf ) + B (re)] from Lemma A1

1
τw

τ2∑
j=τ1

Xj ∼a T α−1/2δ
τf −τ1

T
1

rwc
B (re) from Lemma A2

and

T α−1/2δ
τf −τ1

T

T 1/2
= δ

τf −τ1

T

T 1−α
= ec(rf −r1)T 1−α

T 1−α
> 1.

(3) Suppose τ1 ∈ N0 and τ2 ∈ N1. If t ∈ N0,

X̃t = Xt − τ−1
w

τ2∑
j=τ1

Xj = −T αδ
τf −τe

T

τwc
Xτe

{
1 + op (1)

}
,
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where the second term dominates the first term due to the fact that

Xt=�Tr� ∼a T 1/2B (r) from Lemma A1

1
τw

τ2∑
j=τ1

Xj ∼a T α−1/2δ
τf −τe

T
1

rwc
B (re) from Lemma A2

and

T α−1/2δ
τf −τe

T

T 1/2
> 1.

If t ∈ B,

X̃t = Xt − τ−1
w

τ2∑
j=τ1

Xj =
[
δ

t−τe
T − T αδ

τf −τe

T

τwc

]
Xτe

{
1 + op (1)

}
.

If t ∈ N1,

X̃t = Xt − τ−1
w

τ2∑
j=τ1

Xj = −T αδ
τf −τe

T

τwc
Xτe

{
1 + op (1)

}
,

since Xt=�Tr� ∼a T 1/2[B(r) − B(rf ) + B(re)] (from Lemma A1). �

LEMMA A4. The sample variance terms involving X̃t behave as follows.

(1) For τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃2
j−1 = T αδ

2(τ2−τe)
T

2c
X2

τe

{
1 + op (1)

} ∼a
T 1+αδ

2(τ2−τe)
T

2c
B (re)2

.

(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 = T αδ

2(τf −τe)
T

2c
X2

τe

{
1 + op (1)

} ∼a
T α+1δ

2(τf −τe)
T

2c
B (re)2

.

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 = T αδ

2(τf −τe)
T

2c
X2

τe

{
1 + op (1)

} ∼a
T α+1δ

2(τf −τe)
T

2c
B (re)2

.

PROOF. (1) For τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃2
j−1 =

τe∑
j=τ1

X̃2
j−1 +

τ2∑
j=τe

X̃2
j−1.

The first term is
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τe−1∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

T 2αδ
2(τ2−τe)
T

τ2
wc2

X2
τe

{
1 + op (1)

}
from Lemma A3

= τe − τ1

τ2
wc2

T 2αδ
2(τ2−τe)
T X2

τe

{
1 + op (1)

}

∼a
re − r1

r2
wc

T 2αδ
2(τ2−τe)
T B (re) .

Given that

τ2∑
j=τe

δ
2(j−1−τe)
T = δ

2(τ2−τe)
T − δ−2

T

δ2
T − 1

= T αδ
2(τ2−τe)
T

2c

{
1 + op (1)

}
τ2∑

j=τe

δ
j−1−τe
T = δ

τ2−τe
T − δ−1

T

δT − 1
= T αδ

τ2−τe
T

c

{
1 + op (1)

}
,

the second term

τ2∑
j=τe

X̃2
j−1 =

τ2∑
j=τe

[
δ

j−1−τe
T − T αδ

τ2−τe
T

τwc

]2

X2
τe

{
1 + op (1)

}

=
τ2∑

j=τe

[
δ

2(j−1−τe)
T − 2δ

j−1−τe
T

T αδ
τ2−τe
T

τwc
+ T 2αδ

2(τ2−τe)
T

τ2
wc2

]
X2

τe

{
1 + op (1)

}

=
[

T αδ
2(τ2−τe)
T

2c
− 2

T 2α−1δ
2(τ2−τe)
T

rwc2
+ r2 − re + 1

T

r2
wc2

T 2α−1δ
2(τ2−τe)
T

]
X2

τe

{
1 + op (1)

}

= T αδ
2(τ2−τe)
T

2c
X2

τe

{
1 + op (1)

}
(since α > 2α − 1) ∼a

T 1+αδ
2(τ2−τe)
T

2c
B (re)2

.

Since 1 + α > 2α,
∑τ2

j=τe
X̃2

j−1 dominates
∑τe

j=τ1
X̃2

j−1. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τ2∑
j=τe

X̃2
j−1

{
1 + op (1)

} = T αδ
2(τ2−τe)
T

2c
X2

τe

{
1 + op (1)

} ∼a
T 1+αδ

2(τ2−τe)
T

2c
B (re)2

.

(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τ1

X̃2
j−1 +

τ2∑
j=τf +1

X̃2
j−1.

Given that

τf∑
j=τ1

δ
2(j−1−τe)
T =

T α
[
δ

2(τf −τe)
T − δ

2(τ1−τe−1)
T

]
2c + c2T −α

= T αδ
2(τf −τe)
T

2c

{
1 + op (1)

}

τf∑
j=τ1

δ
j−1−τe
T =

T α
[
δ
τf −τe

T − δ
τ1−τe−1
T

]
c

= T αδ
τf −τe

T

c

{
1 + op (1)

}
,
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the first term is

τf∑
j=τ1

X̃2
j−1 =

τf∑
j=τ1

[
δ

j−1−τe
T − T αδ

τf −τ1

T

τwc

]2

X2
τe

{
1 + op (1)

}

=
[

T αδ
2(τf −τe)
T

2c
− 2

T αδ
τf −τ1

T

τwc
T αδ

τf −τe

T

c
+ τf − τ1 + 1

τ2
wc2

T 2αδ
2(τf −τ1)
T

]
X2

τe

{
1 + op (1)

}

=
[

T αδ
2(τf −τe)
T

2c
− 2

δ
(τf −τ1)+(τf −τe)
T

T 1−2αrwc2
+ rf − r1 + 1

T

T 1−2αr2
wc2

δ
2(τf −τ1)
T

]
X2

τe

{
1 + op (1)

}

= T αδ
2(τf −τe)
T

2c
X2

τe

{
1 + op (1)

}
(since α > 2α − 1 and τf − τe > τf − τ1)

∼a
T α+1δ

2(τf −τe)
T

2c
B (re)2

.

The second term is

τ2∑
j=τf +1

X̃2
j−1 =

τ2∑
j=τf +1

T 2αδ
2(τf −τ1)
T

τ2
wc2

X2
τe

{
1 + op (1)

}

= τ2 − τf

τ2
wc2

T 2αδ
2(τf −τ1)
T X2

τe

{
1 + op (1)

}

∼a
r2 − rf

r2
wc2

T 2αδ
2(τf −τ1)
T B (re)2

.

Since 1 + α > 2α,
∑τf

j=τ1
X̃2

j−1 dominates
∑τ2

j=τf +1 X̃2
j−1. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τ1

X̃2
j−1

{
1 + op (1)

} = T αδ
2(τf −τe)
T

2c
X2

τe

{
1 + op (1)

}

∼a
T α+1δ

2(τf −τe)
T

2c
B (re)2

.

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

X̃2
j−1 +

τf∑
j=τe

X̃2
j−1 +

τ2∑
j=τf +1

X̃2
j−1.

The first term is

τe−1∑
j=τ1

X̃2
j−1 =

τe−1∑
j=τ1

T 2αδ
2(τf −τe)
T

τ2
wc2

X2
τe

{
1 + op (1)

}

= τe − τ1

τ2
wc2

T 2αδ
2(τf −τe)
T X2

τe

{
1 + op (1)

}

∼a
re − r1

r2
wc2

T 2αδ
2(τf −τe)
T B (re)2

.
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Given that

τf∑
j=τe

δ
2(j−1−τe)
T = δ

2(τf −τe)
T − δ−2

T

δ2
T − 1

= T αδ
2(τf −τe)
T

2c

{
1 + op (1)

}
τf∑

j=τe

δ
j−1−τe
T = δ

τf −τe

T − δ−1
T

δT − 1
= T αδ

τf −τe

T

c

{
1 + op (1)

}
,

the second term

τf∑
j=τe

X̃2
j−1 =

τf∑
j=τe

[
δ

j−1−τe
T − T αδ

τf −τe

T

τwc

]2

X2
τe

{
1 + op (1)

}

=
[

T αδ
2(τf −τe)
T

2c
− 2

δ
2(τf −τe)
T

T 1−2αrwc2
+ rf − re + 1

T

T 1−2αr2
wc2

δ
2(τf −τe)
T

]
X2

τe

{
1 + op (1)

}

= T αδ
2(τf −τe)
T

2c
X2

τe

{
1 + op (1)

}
(since α > 2α − 1)

∼a
T α+1δ

2(τf −τe)
T

2c
B (re)2

.

The third term is

τ2∑
j=τf +1

X̃2
j−1 =

τ2∑
j=τf +1

T 2αδ
2(τf −τe)
T

τ2
wc2

X2
τe

{
1 + op (1)

}

= τ2 − τf

τ2
wc2

T 2αδ
2(τf −τe)
T X2

τe

{
1 + op (1)

}

∼a
r2 − rf

r2
wc2

T 2αδ
2(τf −τe)
T B (re)2

.

Since 1 + α > 2α,
∑τf

j=τe
X̃2

j−1 dominates the other two terms. Therefore,

τ2∑
j=τ1

X̃2
j−1 =

τf∑
j=τe

X̃2
j−1

{
1 + op (1)

} = T αδ
2(τf −τe)
T

2c
X2

τe

{
1 + op (1)

}

∼a
T α+1δ

2(τf −τe)
T

2c
B (re)2

.

�

LEMMA A5. The sample covariance of X̃t and εt behaves as follows.

(1) For τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃ j−1εj =
τ2∑

j=τe

X̃ j−1εj
{
1 + op (1)

} ∼a T (α+1)/2δ
τ2−τe
T XcB (re) .
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(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃ j−1εj =
τf∑

j=τ1

X̃ j−1εj
{
1 + op (1)

} ∼a T (α+1)/2δ
τf −τe

T XcB (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃ j−1εj =
τf∑

j=τe

X̃ j−1εj
{
1 + op (1)

} ∼a T (α+1)/2δ
τf −τe

T XcB (re) .

PROOF. (1) For τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃ j−1εj =
τe−1∑
j=τ1

X̃ j−1εj +
τ2∑

j=τe

X̃ j−1εj .

The first term is

τe−1∑
j=τ1

X̃ j−1εj =
τe−1∑
j=τ1

−T αδ
τ2−τe
T

τwc
Xτeεj

{
1 + op (1)

}

= −T αδ
τ2−τe
T

τwc
Xτe

τe−1∑
j=τ1

εj
{
1 + op (1)

}

= −T αδ
τ2−τe
T

rwc

(
T −1/2Xτe

)⎛⎝T −1/2
τe−1∑
j=τ1

εj

⎞
⎠{

1 + op (1)
}

∼a −T αδ
τ2−τe
T

rwc
B (re) [B (re) − B (r1)] .

The second term is

τ2∑
j=τe

X̃ j−1εj =
τ2∑

j=τe

[
δ

j−1−τe
T − T αδ

τ2−τe
T

τwc

]
Xτeεj

{
1 + op (1)

}

=
⎡
⎣ τ2∑

j=τe

δ
j−1−τe
T εj − T αδ

τ2−τe
T

τwc

τ2∑
j=τe

εj

⎤
⎦Xτe

{
1 + op (1)

}

=
⎡
⎣T α/2δ

τ2−τe
T

⎛
⎝ 1

T α/2

τ2∑
j=τe

δ
−(τ2−j+1)
T εj

⎞
⎠ − δ

τ2−τe
T

T 1/2−αrwc

⎛
⎝ 1√

T

τ2∑
j=τe

εj

⎞
⎠
⎤
⎦Xτe

{
1 + op (1)

}

= T α/2δ
τ2−τe
T

⎛
⎝T −α/2

τ2∑
j=τe

δ
−(τ2−j+1)
T εj

⎞
⎠Xτe

{
1 + op (1)

}
(since α/2 > α − 1/2)

∼a T (α+1)/2δ
τ2−τe
T XcB (re) .
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Since (α + 1)/2 > α,
∑τ2

j=τe
X̃ j−1εj dominates

∑τe−1
j=τ1

X̃ j−1εj . Therefore,

τ2∑
j=τ1

X̃ j−1εj =
τ2∑

j=τe

X̃ j−1εj
{
1 + op (1)

} ∼a T (α+1)/2δ
τ2−τe
T XcB (re) .

(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃ j−1εj =
τf∑

j=τ1

X̃ j−1εj +
τ2∑

j=τf +1

X̃ j−1εj .

The first term is

τf∑
j=τ1

X̃ j−1εj =
τf∑

j=τ1

[
δ

j−1−τe
T − T αδ

τf −τ1

T

τwc

]
Xτeεj

{
1 + op (1)

}

=
⎡
⎣ τf∑

j=τ1

δ
j−1−τe
T εj − T αδ

τf −τ1

T

τwc

τf∑
j=τ1

εj

⎤
⎦Xτe

{
1 + op (1)

}

=
⎡
⎣T α/2δ

τf −τe

T

⎛
⎝ 1

T α/2

τf∑
j=τ1

δ
−(τf −j+1)
T εj

⎞
⎠− T α+1/2δ

τf −τ1

T

τwc

⎛
⎝ 1√

T

τf∑
j=τ1

εj

⎞
⎠
⎤
⎦Xτe

{
1+op (1)

}

= T α/2δ
τf−τe

T

⎛
⎝T −α/2

τf∑
j=τ1

δ
−(τf −j+1)
T εj

⎞
⎠Xτe

{
1 + op (1)

}

∼a T (α+1)/2δ
τf −τe

T XcB (re) .

The second term is

τ2∑
j=τf +1

X̃ j−1εj =
τ2∑

j=τf +1

−T αδ
τf −τ1

T

τwc
Xτeεj

{
1 + op (1)

}

= −T αδ
τf −τ1

T

rwc

(
T −1/2Xτe

)⎛⎝T −1/2
τ2∑

j=τf +1

εj

⎞
⎠{

1 + op (1)
}

∼a −T αδ
τf −τ1

T

rwc
B (re) [B (r2) − B (rf )] .

Since (α + 1)/2 > α,
∑τf

j=τ1
X̃ j−1εj dominates

∑τ2
j=τf +1 X̃ j−1εj . Therefore,

τ2∑
j=τ1

X̃ j−1εj =
τf∑

j=τ1

X̃ j−1εj
{
1 + op (1)

} ∼a T (α+1)/2δ
τf −τe

T XcB (re) .

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃ j−1εj =
τe−1∑
j=τ1

X̃ j−1εj +
τf∑

j=τe

X̃ j−1εj +
τ2∑

j=τf +1

X̃ j−1εj .
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The first term is

τe−1∑
j=τ1

X̃ j−1εj =
τe−1∑
j=τ1

−T αδ
τf −τe

T

τwc
Xτeεj

{
1 + op (1)

}

= −T αδ
τf −τe

T

rwc

(
T −1/2Xτe

)⎛⎝T −1/2
τe−1∑
j=τ1

εj

⎞
⎠{

1 + op (1)
}

∼a −T αδ
τf −τe

T

rwc
B (re) [B (re) − B (r1)] .

The second term is

τf∑
j=τe

X̃ j−1εj =
τf∑

j=τe

[
δ

j−1−τe
T − T αδ

τf −τe

T

τwc

]
Xτeεj

{
1 + op (1)

}

=
⎡
⎣ τf∑

j=τe

δ
j−1−τe
T εj − T αδ

τf −τe

T

τwc

τf∑
j=τe

εj

⎤
⎦Xτe

{
1 + op (1)

}

=
⎡
⎣T α/2δ

τf −τe

T

⎛
⎝ 1

T α/2

τf∑
j=τe

δ
−(τf −j+1)
T εj

⎞
⎠ − T α−1/2δ

τf −τe

T

rwc

⎛
⎝ 1√

T

τf∑
j=τe

εj

⎞
⎠
⎤
⎦Xτe

{
1 + op (1)

}

= T α/2+1/2δ
τf −τe

T

⎛
⎝T −α/2

τf∑
j=τe

δ
−(τf −j+1)
T εj

⎞
⎠(

T −1/2Xτe

) {
1 + op (1)

}

∼a T (α+1)/2δ
τf −τe

T XcB (re) .

The third term is

τ2∑
j=τf +1

X̃ j−1εj =
τ2∑

j=τf +1

−T αδ
τf −τe

T

τwc
Xτeεj

{
1 + op (1)

}

= −T αδ
τf −τe

T

rwc

(
T −1/2Xτe

)⎛⎝T −1/2
τ2∑

j=τf +1

εj

⎞
⎠{

1 + op (1)
}

∼a −T αδ
τf −τe

T

rwc
B (re) [B (r2) − B (rf )] .

Since (α + 1)/2 > α,
∑τf

j=τe
X̃ j−1εj dominates the other two terms. Therefore,

τ2∑
j=τ1

X̃ j−1εj =
τf∑

j=τe

X̃ j−1εj
{
1 + op (1)

} ∼a T (α+1)/2δ
τf −τe

T XcB (re) .

�

LEMMA A6. The sample covariance of X̃ j−1 and Xj − δT Xj−1 behaves as follows.
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(1) For τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a
re − r1

rw

Tδ
τ2−τe
T B (re)

∫ re

r1

B (s) ds.

(2) For τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a −Tδ
2(τf −τe)
T B (re)2

.

(3) For τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a −Tδ
2(τf −τe)
T B (re)2

.

PROOF. (1) When τ1 ∈ N0 and τ2 ∈ B,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) =
τ2∑

j=τe

X̃ j−1εj +
τe−1∑
j=τ1

X̃ j−1 (Xj − Xj−1 + Xj−1 − δT Xj−1)

=
τ2∑

j=τe

X̃ j−1εj +
τe−1∑
j=τ1

X̃ j−1

(
εj − c

T α
Xj−1

)

=
τ2∑

j=τ1

X̃ j−1εj − c
T α

τe−1∑
j=τ1

X̃ j−1Xj−1.(A.8)

The first term is

τ2∑
j=τ1

X̃ j−1εj ∼a T (α+1)/2δ
τ2−τe
T XcB (re) (from Lemma A5).

The second term is

c
T α

τe−1∑
j=τ1

X̃ j−1Xj−1 = c
T α

τe−1∑
j=τ1

−T αδ
τ2−τe
T

τwc
Xτe Xj−1

{
1 + op (1)

}

= −δ
τ2−τe
T

τw

Xτe

τe−1∑
j=τ1

Xj−1
{
1 + op (1)

}

= −τe − τ1

τw

Tδ
τ2−τe
T

(
T −1/2Xτe

)⎡⎣ 1
τe − τ1

τe−1∑
j=τ1

(
T −1/2Xj−1

)⎤⎦{
1 + op (1)

}

∼a − re − r1

rw

Tδ
τ2−τe
T B (re)

∫ re

r1

B (s) ds.

Since (α + 1)/2 < 1, c
T α

∑τe−1
j=τ1

X̃ j−1Xj−1 dominates
∑τ2

j=τ1
X̃ j−1εj . Therefore,
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τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) = − c
T α

τe−1∑
j=τ1

X̃ j−1Xj−1
{
1 + op (1)

}

∼a
re − r1

rw

Tδ
τ2−τe
T B (re)

∫ re

r1

B (s) ds.

(2) When τ1 ∈ B and τ2 ∈ N1,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) =
τf∑

j=τ1

X̃ j−1εj + X̃τf

(
Xτf +1 − δT Xτf

)

+
τ2∑

j=τf +2

X̃ j−1 (Xj − Xj−1 + Xj−1 − δT Xj−1)

=
τf∑

j=τ1

X̃ j−1εj + X̃τf

(
Xτe + X∗ + ετf +1 − δT Xτf

)

+
τ2∑

j=τf +2

X̃ j−1

(
εj − c

T α
Xj−1

)

=
τ2∑

j=τ1

X̃ j−1εj − δT X̃τf Xτf − c
T α

τ2∑
j=τf +2

X̃ j−1Xj−1.

The first term is
τ2∑

j=τ1

X̃ j−1εj ∼a T (α+1)/2δ
τf −τe

T XcB (re) (from Lemma A5).

The second term is

δT X̃τf Xτf = δT

[
δ
τf −τe

T − T αδ
τf −τ1

T

τwc

]
Xτe Xτf

{
1 + op (1)

}

= δ
τf −τe+1
T Xτe Xτf

{
1 + op (1)

} ∼a Tδ
2(τf −τe)
T B (re)2

due to the fact that
δ
τf −τe

T

T α−1δ
τf −τ1

T

= T 1−αδ
τ1−τe
T > 1.

The third term is

c
T α

τ2∑
j=τf +2

X̃ j−1Xj−1 = c
T α

τ2∑
j=τf +2

−T αδ
τf −τ1

T

τwc
Xτe Xj−1

{
1 + op (1)

}

= −δ
τf −τ1

T

τw

Xτe

τ2∑
j=τf +2

Xj−1
{
1 + op (1)

}

= −τ2 − τf − 1
τw

Tδ
τf −τ1

T

(
T −1/2Xτe

)⎛⎝ 1
τ2 − τf − 1

τ2∑
j=τf +2

T −1/2Xj−1

⎞
⎠

× {
1 + op (1)

}
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∼ a − r2 − rf

rw

Tδ
τf −τ1

T B (re)
∫ r2

rf

B (s) ds.

The quantity δT X̃τf Xτf dominates the other two terms and hence

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) = −δT X̃τf Xτf

{
1 + op (1)

} ∼a −Tδ
2(τf −τe)
T B (re)2

.

(3) When τ1 ∈ N0 and τ2 ∈ N1,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) =
τf∑

j=τe

X̃ j−1εj +
τe−1∑
j=τ1

X̃ j−1 (Xj − Xj−1 + Xj−1 − δT Xj−1)

+ X̃τf

(
Xτf +1 − δT Xτf

) +
τ2∑

j=τf +2

X̃ j−1 (Xj − Xj−1 + Xj−1 − δT Xj−1)

=
τf∑

j=τe

X̃ j−1εj +
τe−1∑
j=τ1

X̃ j−1

(
εj − c

T α
Xj−1

)

+ X̃τf

(
Xτf +1 − δT Xτf

) +
τ2∑

j=τf +2

X̃ j−1

(
εj − c

T α
Xj−1

)

=
τ2∑

j=τ1

X̃ j−1εj − c
T α

τe−1∑
j=τ1

X̃ j−1Xj−1 − δT X̃τf Xτf − c
T α

τ2∑
j=τf +2

X̃ j−1Xj−1.

The first term is

τ2∑
j=τ1

X̃ j−1εj ∼a T (α+1)/2δ
τf −τe

T XcB (re) (from Lemma A5).

The second term is

c
T α

τe−1∑
j=τ1

X̃ j−1Xj−1 = c
T α

τe−1∑
j=τ1

−T αδ
τf −τe

T

τwc
Xτe Xj−1

{
1 + op (1)

}

= −δ
τf −τe

T

τw

Xτe

τe−1∑
j=τ1

Xj−1
{
1 + op (1)

}

= −τe − τ1

τw

Tδ
τf −τe

T

(
T −1/2Xτe

)⎛⎝ 1
τe − τ1

τe−1∑
j=τ1

T −1/2Xj−1

⎞
⎠{

1 + op (1)
}

∼a − re − r1

rw

Tδ
τf −τe

T B (re)
∫ re

r1

B (s) ds.

The third term is

δT X̃τf Xτf = δT

[
δ
τf −τe

T − T αδ
τf −τe

T

τwc

]
Xτe Xτf

{
1 + op (1)

}
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= δ
τf −τe+1
T Xτe Xτf

{
1 + op (1)

} ∼a Tδ
2(τf −τe)
T B (re)2

,

due to the fact that

δ
τf −τe

T

T α−1δ
τf −τe

T

= T 1−α > 1.

The fourth term is

c
T α

τ2∑
j=τf +2

X̃ j−1Xj−1 = c
T α

τ2∑
j=τf +2

−T αδ
τf −τe

T

τwc
Xτe Xj−1

{
1 + op (1)

}

= −δ
τf −τe

T

τw

Xτe

τ2∑
j=τf +2

Xj−1
{
1 + op (1)

}

= −τ2 − τf − 1
τw

Tδ
τf −τe

T

(
T −1/2Xτe

)⎛⎝ 1
τ2 − τf − 1

τ2∑
j=τf +2

T −1/2Xj−1

⎞
⎠

× {
1 + op (1)

}
∼a − r2 − rf

rw

Tδ
τf −τe

T B (re)
∫ r2

rf

B (s) ds.

The quantity δT X̃τf Xτf dominates the other three terms and hence

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) = −δT X̃τf Xτf

{
1 + op (1)

} ∼a −Tδ
2(τf −τe)
T B (re)2

.
�

A.2. Test asymptotics and proofs of Theorems 1–3. The fitted regression model for the
subperiod unit root test is

Xt = α̂r1,r2 + ρ̂r1,r2 Xt−1 + ε̂t.(A.9)

The intercept α̂r1,r2 and slope coefficient ρ̂r1,r2 are obtained using data over the subperiod [r1, r2].

REMARK 1. We calculate the asymptotic distribution of the unit root statistic under the
alternative hypothesis. Based on Lemma A4 and Lemma A6, we can obtain the limit distribution
of ρ̂r1,r2 − δT using

ρ̂r1,r2 − δT =
∑τ2

j=τ1
X̃ j−1 (Xj − δT Xj−1)∑τ2

j=τ1
X̃2

j−1

.

(1) When τ1 ∈ N0 and τ2 ∈ B,

ρ̂r1,r2 − δT ∼a T −αδ
−(τ2−τie)
T

re−r1
rw

∫ re

r1
B (s) ds

B (re)
;

(2) when τ1 ∈ B and τ2 ∈ N1,

ρ̂r1,r2 − δT ∼a −2T −αc;
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(3) when τ1 ∈ N0 and τ2 ∈ N1,

ρ̂r1,r2 − δT ∼a −2T −αc.

REMARK 2. The asymptotic distributions of the unit root coefficient Z-statistics can be ob-
tained using

DFz
r1,r2

= τw (ρ̂r1,r2 − 1) = τw (δT − 1) + τw (ρ̂r1,r2 − δT ) .

(1) When τ1 ∈ N0 and τ2 ∈ B,

DFz
r1,r2

= rwcT 1−α + op (1) → ∞;

(2) when τ1 ∈ B and τ2 ∈ N1,

DFz
r1,r2

= −crwT 1−α → −∞;

(3) when τ1 ∈ N0 and τ2 ∈ N1,

DFz
r1,r2

= −crwT 1−α → −∞.

This implies that when τ1 ∈ N0 and τ2 ∈ B,

ρ̂r1,r2 − 1 ∼a T −αc and T α (ρ̂r1,r2 − 1)
L→ c,

and for the other two cases,

ρ̂r1,r2 − 1 ∼a −T −αc and T α (ρ̂r1,r2 − 1)
L→ −c.

In order to obtain the asymptotic distributions of the Dickey–Fuller t-statistic, we first obtain
the equation standard error of the regression over [r1, r2], which is

σ̂r1r2 =
⎧⎨
⎩τ−1

w

τ2∑
j=τ1

(
X̃ j − ρ̂r1,r2 X̃ j−1

)2

⎫⎬
⎭

1/2

.

LEMMA A7.

(1) When τ1 ∈ N0 and τ2 ∈ B,

σ̂2
r1r2

∼a T −1δ
2(τ2−τe)
T

re − r1

r3
wc−1

B (re) .

(2) When τ1 ∈ B and τ2 ∈ N1,

σ̂2
r1r2

∼a
1
rw

δ
2(τf −τe)
T B (re)2

.

(3) When τ1 ∈ N0 and τ2 ∈ N1,

σ̂2
r1r2

∼a
δ

2(τf −τe)
T

rw

B (re)2
.
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PROOF. (1) When τ1 ∈ N0 and τ2 ∈ B,

σ̂2
r1r2

= τ−1
w

τ2∑
j=τ1

(
X̃ j − δ̂r1,r2 X̃ j−1

)2

= τ−1
w

⎡
⎣τe−1∑

j=τ1

[
εj − (

δ̂r1,r2 − 1
)

X̃ j−1
]2 +

τ2∑
j=τe

[
εj − (

δ̂r1,r2 − δT
)

X̃ j−1
]2

⎤
⎦

= τ−1
w

τ2∑
j=τ1

ε2
j + (

δ̂r1,r2 − 1
)2

τw
−1

τe−1∑
j=τ1

X̃2
j−1 + (

δ̂r1,r2 − δT
)2

τ−1
w

τ2∑
j=τe

X̃2
j−1

−2
(
δ̂r1,r2 − 1

)
τ−1
w

τe−1∑
j=τ1

X̃ j−1εj − 2
(
δ̂r1,r2 − δT

)
τ−1
w

τ2∑
j=τe

X̃ j−1εj

= (
δ̂r1,r2 − 1

)2
τw

−1
τe−1∑
j=τ1

X̃2
j−1

∼a T −1δ
2(τ2−τe)
T

re − r1

r3
wc−1

B (re) .

The term (δ̂r1,r2 − 1)2τw
−1 ∑τe−1

j=τ1
X̃2

j−1 dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2
τw

−1
τe−1∑
j=τ1

X̃2
j−1 = Op

(
T −2α

)
Op

(
T 2α−1δ

2(τ2−τe)
T

)
= Op

(
T −1δ

2(τ2−τe)
T

)
,

(
δ̂r1,r2 − δT

)2
τ−1
w

τ2∑
j=τe

X̃2
j−1 = Op

(
1

T 2αδ
2(τ2−τe)
T

)
Op

(
T αδ

2(τ2−τe)
T

)
= Op

(
T −α

)
,

2
(
δ̂r1,r2 − 1

)
τ−1
w

τe−1∑
j=τ1

X̃ j−1εj = Op
(
T −α

)
Op

(
δ
τ2−τe
T

T 1−α

)
= Op

(
T −1δ

τ2−τe
T

)
,

2
(
δ̂r1,r2 − δT

)
τ−1
w

τ2∑
j=τe

X̃ j−1εj = Op

(
1

T αδ
τ2−τe
T

)
Op

(
δ
τ2−τe
T

T (1−α)/2

)
= Op

(
T −(1+3α)/2

)
.

(2) When τ1 ∈ B and τ2 ∈ N1,

X̃τf +1 − δ̂r1,r2 X̃τf = δ
τf −τ1

T

rwcT 1−α
Xτe − X̃τf − [

δ̂r1,r2 − 1
]

X̃τf

= Op (T α−1/2δ
τf −τ1

T ) − Op (T 1/2δ
τf −τe

T ) − Op (T −α)Op (T 1/2δ
τf −τe

T )

= −X̃τf = −δ
τf −τe

T Xτe

{
1 + op (1)

}
,

using the fact that

X̃τf =
[
δ
τf −τe

T − δ
τf −τ1

T

rwcT 1−α

]
Xτe

{
1 + op (1)

} = δ
τf −τe

T Xτe

{
1 + op (1)

}
.
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Therefore,

σ̂2
r1r2

= τ−1
w

τ2∑
j=τ1

(
X̃ j − δ̂r1,r2 X̃ j−1

)2

= τ−1
w

⎧⎨
⎩

τ2∑
j=τf +2

[
εj − (

δ̂r1,r2 − 1
)

X̃ j−1
]2 +

τf∑
j=τ1

[
εj − (

δ̂r1,r2 − δT
)

X̃ j−1
]2

+
[
X̃τf +1 − δ̂r1,r2 X̃2

τf
− ετf +1 + ετf +1

]2
}

= τ−1
w

τ2∑
j=τ1

ε2
j + (

δ̂r1,r2 − 1
)2

τw
−1

τ2∑
j=τf +2

X̃2
j−1 + (

δ̂r1,r2 − δT
)2

τ−1
w

τf∑
j=τ1

X̃2
j−1

− 2
(
δ̂r1,r2 − 1

)
τ−1
w

τ2∑
j=τf +2

X̃ j−1εj − 2
(
δ̂r1,r2 − δT

)
τ−1
w

τf∑
j=τ1

X̃ j−1εj + τ−1
w X̃2

τf

= τ−1
w X̃2

τf
= τ−1

w δ
2(τf −τe)
T X2

τe

{
1 + op (1)

} ∼a
1
rw

δ
2(τf −τe)
T B (re)2

.

The term τ−1
w X̃2

τf
dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2
τw

−1
τ2∑

j=τf +2

X̃2
j−1 = Op

(
T −2α

) (
T 2α−1δ

2(τf −τ1)
T

)
= Op

(
δ

2(τf −τ1)
T

T

)
,

(
δ̂r1,r2 − δT

)2
τ−1
w

τf∑
j=τ1

X̃2
j−1 = Op

(
1

T 2α

)
Op

(
T αδ

2(τf −τe)
T

)
= Op

(
δ

2(τf −τe)
T

T α

)
,

2
(
δ̂r1,r2 − 1

)
τ−1
w

τ2∑
j=τf +2

X̃ j−1εj = Op
(
T −α

)
Op

(
T α−1δ

τf −τ1
T

)
= Op

(
δ
τf −τ1

T

T

)
,

2
(
δ̂r1,r2 − δT

)
τ−1
w

τf∑
j=τ1

X̃ j−1εj = Op

(
1

T α

)
Op

(
T (α−1)/2δ

τf −τe

T

)
= Op

(
δ
τf −τe

T

T (1+α)/2

)
,

τ−1
w X̃2

τf
= Op

(
δ

2(τf −τe)
T

)
.

(3) When τ1 ∈ N0 and τ2 ∈ N1,

X̃τf +1 − δ̂r1,r2 X̃τf − ετf +1 = − δ
τf −τe

T

rwcT 1−α
Xτe − X̃τf − [

δ̂r1,r2 − 1
]

X̃τf

= −Op

(
T α−1/2δ

τf −τe

T

)
− Op

(
T 1/2δ

τf −τe

T

)
− Op

(
T −α

)
Op

(
T 1/2δ

τf −τe

T

)
= −X̃τf = −δ

τf −τe

T Xτe

{
1 + op (1)

}
,

using the fact that
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X̃τf =
[
δ
τf −τe

T − δ
τf −τe

T

rwcT 1−α

]
Xτe

{
1 + op (1)

} = δ
τf −τe

T Xτe

{
1 + op (1)

}
.

σ̂2
r1r2

= τ−1
w

τ2∑
j=τ1

(
X̃ j − δ̂r1,r2 X̃ j−1

)2

= τ−1
w

⎧⎨
⎩

τ2∑
j=τf +2

[
εj − (

δ̂r1,r2 − 1
)

X̃ j−1
]2 +

τe−1∑
j=τ1

[
εj − (

δ̂r1,r2 − 1
)

X̃ j−1
]2

+
τf∑

j=τe

[
εj − (

δ̂r1,r2 − δT
)

X̃ j−1
]2 + X̃τf +1 − δ̂r1,r2 X̃2

τf

⎫⎬
⎭

2

= τ−1
w

τ2∑
j=τ1

ε2
j + (

δ̂r1,r2 − 1
)2

τw
−1

⎡
⎣ τ2∑

j=τf +2

X̃2
j−1 +

τe−1∑
j=τ1

X̃2
j−1

⎤
⎦ + (

δ̂r1,r2 − δT
)2

τ−1
w

τf∑
j=τe

X̃2
j−1

− 2
(
δ̂r1,r2 − 1

)
τ−1
w

⎡
⎣ τ2∑

j=τf +2

X̃ j−1εj +
τe−1∑
j=τ1

X̃ j−1εj

⎤
⎦ − 2

(
δ̂r1,r2 − δT

)
τ−1
w

τf∑
j=τe

X̃ j−1εj + τ−1
w τ2

f

= τ−1
w X̃2

τf
= δ

2(τf −τe)
T

τw

X2
τe

{
1 + op (1)

} ∼a
δ

2(τf −τe)
T

rw

B (re)2
.

The term τ−1
w X̃2

τf
dominates the other terms due to the fact that

(
δ̂r1,r2 − 1

)2 1
τw

⎡
⎣ τ2∑

j=τf +2

X̃2
j−1 +

τe−1∑
j=τ1

X̃2
j−1

⎤
⎦ = Op

(
δ

2(τf −τe)
T

T

)
,

(
δ̂r1,r2 − δT

)2 1
τw

τf∑
j=τe

X̃2
j−1 = Op

(
δ

2(τf −τe)
T

T α

)
,

2
(
δ̂r1,r2 − 1

) 1
τw

⎡
⎣ τ2∑

j=τf +2

X̃ j−1εj +
τe−1∑
j=τ1

X̃ j−1εj

⎤
⎦ = Op

(
δ
τf −τe

T

T

)
,

2
(
δ̂r1,r2 − δT

) 1
τw

τf∑
j=τe

X̃ j−1εj = Op

(
δ
τf −τe

T

T (1+α)/2

)
,

τ−1
w X̃2

τf
= Op

(
δ

2(τf −τe)
T

)
. �

The asymptotic distributions of the t-statistic can be calculated as follows.

DFt
r1,r2

=
(∑τ2

j=τ1
X̃2

j−1

σ̂2
r1r2

)1/2

(ρ̂r1,r2 − 1) .

REMARK 3. (1) When τ1 ∈ N0 and τ2 ∈ B,

DFt
r1,r2

∼a T 1−α/2 r3/2
w√

2 (re − r1)
→ ∞.
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(2) When τ1 ∈ B and τ2 ∈ N1,

DFt
r1,r2

∼a −
(

1
2

crw

)1/2

T (1−α)/2 → −∞.

(3) When τ1 ∈ N0 and τ2 ∈ N1,

DFt
r1,r2

∼a −
(

1
2

crw

)1/2

T (1−α)/2 → −∞.

Taken together with (11) and (12), these results establish the limit behavior of the unit root
statistics DFr and BSDFr(r0) in Theorem 1 (see also (A.10) below).

The PWY strategy. The origination of the bubble expansion and the termination of the
bubble collapse based on the DF test are identified as

r̂e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r : DFr < cvβT

}
.

We know that when βT → 0, cvβT → ∞.
For the PWY strategy, we have r1 = 0 and r2 = rw = r. The asymptotic distributions of the

DF statistic under the alternative hypothesis are

DFr ∼a

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fr (W) if r ∈ N0

T 1−α/2 r3/2√
2 (re − r1)

→ ∞ if r ∈ B

−T (1−α)/2

(
1
2

cr
)1/2

→ −∞ if r ∈ N1

.

It is obvious that if r ∈ N0,

lim
T →∞

Pr
{
DFr > cvβT

} = Pr
{
Fr (W) = ∞} = 0.

If r ∈ B, limT →∞ Pr
{
DFr > cvβT

} = 1 provided that cvβT

T 1−α/2 → 0. If r ∈ N1, limT →∞ Pr{DFr <

cvβT
r } = limT →∞ Pr{−T (1−α)/2( 1

2 cr)1/2 < cvβT } = 1.
It follows that for any η, γ > 0,

Pr {r̂e > re + η} → 0 and Pr
{
r̂f < rf − γ

} → 0

due to the fact that Pr
{
DFre+aη

> cvβT
} → 1 for all 0 < aη < η and Pr

{
DFrf −aγ

> cvβT
} → 1 for

all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂e < re} → 0 and Pr
{
r̂f > rf

} → 0, we deduce
that Pr {|r̂e − re| > η} → 0 and Pr

{|r̂f − rf | > γ
} → 0 as T → ∞, provided that

1
cvβT

+ cvβT

T 1−α/2
→ 0.

Therefore, the PWY date detectors r̂e and r̂f are consistent estimators of re and rf . This proves
Theorem 2.
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The PSY algorithm. The origination of the bubble expansion and the termination of the
bubble collapse based on the backward sup DF test are identified as

r̂e = inf
r∈[r0,1]

{
r : BSDFr (r0) > scvβT

}
and r̂f = inf

r∈[r̂e+LT ,1]

{
r2 : BSDFr (r0) < scvβT

}
.

We know that when βT → 0, scvβT → ∞.
Given that r1 ∈ [0, r − r0], r2 = r, and rw = r − r1, the asymptotic behavior of the backward

sup DF statistic under the alternative hypothesis is characterized as

BSDFr (r0) ∼a

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fr (W, r0) if r ∈ N0

T 1−α/2 supr1∈[0,r−r0]

{
(r − r1)3/2√
2 (re − r1)

}
if r ∈ B

−T (1−α)/2 supr1∈[0,r−r0]

{[
1
2

c (r − r1)
]1/2

}
if r ∈ N1

.(A.10)

It is obvious that if r ∈ N0,

lim
T →∞

Pr
{
BSDFr (r0) > scvβT

} = Pr
{
Fr2 (W, r0) = ∞} = 0.

If r ∈ B, limT →∞ Pr
{
BSDFr(r0) > scvβT

} = 1 provided that scvβT

T 1−α/2 → 0. If r ∈ N1,
limT →∞ Pr{BSDFr(r0) < scvβT

r } = 1.
It follows that for any η, γ > 0,

Pr {r̂e > re + η} → 0 and Pr
{
r̂f < rf − γ

} → 0,

since Pr
{
BSDFre+aη

(r0) > scvβT
} → 1 for all 0 < aη < η and Pr

{
BSDFrf −aγ

(r0) > scvβT
} → 1

for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂e < re} → 0 and Pr
{
r̂f > rf

} → 0, we
deduce that Pr {|r̂e − re| > η} → 0 and Pr

{|r̂f − rf | > γ
} → 0 as T → ∞, provided that

1
scvβT

+ scvβT

T 1−α/2
→ 0.

Therefore, the PSY date detectors r̂e and r̂f are consistent estimators of re and rf . This proves
Theorem 3.

B. The Dating Algorithms (Two Bubbles)
Section B.1 provides preliminary results that characterize the limit behavior of the regression
components over subperiods of the data. Section B.2 provides test asymptotics and gives proofs
of Theorems 4–9, which describe the consistency properties of the PWY, PSY, and sequential
PWY dating strategies.

B.1. notation and lemmas.

� The two bubble periods are B1 = [τ1e, τ1f ] and B2 = [τ2e, τ2f ] , where τ1e = �Tr1e�, τ1f =⌊
Tr1f

⌋
, τ2e = �Tr2e�, and τ2f = ⌊

Tr2f
⌋

.
� The normal periods are N0 = [1, τ1e), N1 = (τ1f , τ2e), N2 = (τ2f , T ].
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We use the data-generating process

Xt =
⎧⎨
⎩

Xt−1 + εt for t ∈ N0

δT Xt−1 + εt for t ∈ Bi with i = 1, 2
X∗

τif
+ ∑t

k=τif +1 εk for t ∈ Ni with i = 1, 2
,(A.11)

where δT = 1 + cT −α with c > 0 and α ∈ (0, 1), εt
i.i.d.∼ (0, σ2) and X∗

τif
= Xτie + X∗

i with X∗
i =

Op (1) for i = 1, 2. We state the following lemmas whose proofs follow arguments closely related
to those given in the proofs of Lemmas A1–A6. They are provided in full in the technical
supplement (Phillips et al., 2014; Lemmas S1–S6).

LEMMA A8. Under the data-generating process,

(1) For t ∈ N0, Xt=�Tr� ∼a T 1/2B(r).
(2) For t ∈ Bi with i = 1, 2, Xt=�Tr� =δ

t−τie
T Xτie

{
1 + op (1)

} ∼a T 1/2δ
t−τie
T B(rie).

(3) For t ∈ Ni with i = 1, 2, Xt=�Tr� ∼a T 1/2[B(r) − B(rif ) + B(rie)].

LEMMA A9. Under the data-generating process,

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

1
τw

τ2∑
j=τ1

Xj = T αδ
τ2−τie
T

τwc
Xτie

{
1 + op (1)

} ∼a T α−1/2δ
τ2−τie
T

1
rwc

B (rie) .

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

1
τw

τ2∑
j=τ1

Xj = T αδ
τif −τ1

T

τwc
Xτie

{
1 + op (1)

} ∼a T α−1/2δ
τif −τ1

T
1

rwc
B (rie) .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

1
τw

τ2∑
j=τ1

Xj = Xτie

T αδ
τif −τie

T

τwc

{
1 + op (1)

} ∼a T α−1/2δ
τif −τie

T
1

rwc
B (rie) .

(4) For τ1 ∈ N0 and τ2 ∈ N2, if r1f − r1e > r2f − r2e

1
τw

τ2∑
j=τ1

Xj = T αδ
τ1f −τ1e

T

τwc
Xτ1e

{
1 + op (1)

} ∼a T α−1/2δ
τ1f −τ1e

T
1

rwc
B (r1e)

and if r1f − r1e ≤ r2f − r2e

1
τw

τ2∑
j=τ1

Xj = T αδ
τ2f −τ2e

T

τwc
Xτ2e

{
1 + op (1)

} ∼a T α−1/2δ
τ2f −τ2e

T
1

rwc
B (r2e) .

(5) For τ1 ∈ B1 and τ2 ∈ B2, if r1f − r1 > r2 − r2e

1
τw

τ2∑
j=τ1

Xj = T αδ
τ1f −τ1

T

τwc
Xτ1e

{
1 + op (1)

} ∼a T α−1/2δ
τ1f −τ1

T
1

rwc
B (r1e) ;



TESTING FOR MULTIPLE BUBBLES 1121

if r1f − r1 ≤ r2 − r2e

1
τw

τ2∑
j=τ1

Xj = T αδ
τ2−τ2e
T

τwc
Xτ2e

{
1 + op (1)

} ∼a T α−1/2δ
τ2−τ2e
T

1
rwc

B (r2e) .

(6) For τ1 ∈ B1 and τ2 ∈ N2, if r1f − r1 > r2f − r2e,

1
τw

τ2∑
j=τ1

Xj = T αδ
τ1f −τ1

T

τwc
Xτ1e

{
1 + op (1)

} ∼a T α−1/2δ
τ1f −τ1

T
1

rwc
B (r1)

and if r1f − r1 ≤ r2f − r2e,

1
τw

τ2∑
j=τ1

Xj = T αδ
τ2f −τ2e

T

τwc
Xτ2e

{
1 + op (1)

} ∼a T α−1/2δ
τ2f −τ2e

T
1

rwc
B (r2e) .

(7) For τ1 ∈ N0 and τ2 ∈ B2, if r1f − r1e > r2 − r2e,

1
τw

τ2∑
j=τ1

Xj = T αδ
τ1f −τ1e

T

τwc
Xτ1e

{
1 + op (1)

} ∼a T α−1/2δ
τ1f −τ1e

T
1

rwc
B (r1e)

and if r1f − r1e ≤ r2 − r2e,

1
τw

τ2∑
j=τ1

Xj = T αδ
τ2−τ2e
T

τwc
Xτ2e

{
1 + op (1)

} ∼a T α−1/2δ
τ2−τ2e
T

1
rwc

B (r2e) .

LEMMA A10. Define the centered quantity X̃t = Xt − τ−1
w

∑τ2
j=τ1

Xj .

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

X̃t =

⎧⎪⎪⎨
⎪⎪⎩

−T αδ
τ2−τie
T

τwc
Xτie

{
1 + op (1)

}
if t ∈ Ni−1[

δ
t−τie
T − T αδ

τ2−τie
T

τwc

]
Xτie

{
1 + op (1)

}
if t ∈ Bi

.

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

X̃t =

⎧⎪⎨
⎪⎩

[
δ

t−τie
T − T αδ

τif −τ1
T

τwc

]
Xτie

{
1 + op (1)

}
if t ∈ Bi

−T αδ
τif −τ1
T

τwc Xτie

{
1 + op (1)

}
if t ∈ Ni

.

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

X̃t =

⎧⎪⎨
⎪⎩

−T αδ
τif −τie
T

τwc Xτie

{
1 + op (1)

}
if t ∈ Ni−1 ∪ Ni[

δ
t−τie
T − T αδ

τif −τie
T

τwc

]
Xτie

{
1 + op (1)

}
if t ∈ Bi

.
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(4) For τ1 ∈ N0 and τ2 ∈ N2, if r1f − r1e > r2f − r2e

X̃t =

⎧⎪⎨
⎪⎩

−T αδ
τ1f −τ1e
T
τwc Xτ1e

{
1 + op (1)

}
if t ∈ Ni,[

δ
t−τie
T Xτie − T αδ

τ1f −τ1e
T
τwc Xτ1e

] {
1 + op (1)

}
if t ∈ Bi, i = 1, 2,

and if r1f − r1e ≤ r2f − r2e

X̃t =

⎧⎪⎨
⎪⎩

−T αδ
τ2f −τ2e
T
τwc Xτ2e

{
1 + op (1)

}
if t ∈ Ni,[

δ
t−τie
T Xτie − T αδ

τ2f −τ2e
T
τwc Xτ2e

] {
1 + op (1)

}
if t ∈ Bi, i = 1, 2

.

(5) For τ1 ∈ B1 and τ2 ∈ B2, if r1f − r1 > r2 − r2e,

X̃t =

⎧⎪⎨
⎪⎩

[
δ

t−τie
T Xτie − T αδ

τ1f −τ1
T

τwc Xτ1e

] {
1 + op (1)

}
if t ∈ Bi, i = 1, 2,

−T αδ
τ1f −τ1
T

τwc Xτ1e

{
1 + op (1)

}
if t ∈ N1

and if τ1f − τ1 ≤ r2 − r2e

X̃t =

⎧⎪⎨
⎪⎩

[
δ

t−τie
T Xτie − T αδ

τ2−τ2e
T

τwc Xτ2e

] {
1 + op (1)

}
if t ∈ Bi, i = 1, 2,

−T αδ
τ2−τ2e
T

τwc Xτ2e

{
1 + op (1)

}
if t ∈ N1

.

(6) For τ1 ∈ B1 and τ2 ∈ N2, if r1f − r1 > r2f − r2e,

X̃t =

⎧⎪⎨
⎪⎩

[
δ

t−τie
T Xτie − T αδ

τ1f −τ1
T

τwc Xτ1e

] {
1 + op (1)

}
if t ∈ Bi, i = 1, 2,

−T αδ
τ1f −τ1
T

τwc Xτ1e

{
1 + op (1)

}
if t ∈ Ni, i = 1, 2,

and if τ1f − τ1 ≤ r2f − r2e,

X̃t =

⎧⎪⎨
⎪⎩

[
δ

t−τie
T Xτie − T αδ

τ2f −τ2e
T
τwc Xτ2e

] {
1 + op (1)

}
if t ∈ Bi, i = 1, 2,

−T αδ
τ2f −τ2e
T
τwc Xτ2e

{
1 + op (1)

}
if t ∈ Ni, i = 1, 2

.

(7) For τ1 ∈ N0 and τ2 ∈ B2, if r1f − r1e > r2 − r2e

X̃t =

⎧⎪⎨
⎪⎩

−T αδ
τ1f −τ1e
T
τwc Xτ1e

{
1 + op (1)

}
if t ∈ Ni, i = 1, 2,[

δ
t−τie
T Xτie − T αδ

τ1f −τ1e
T
τwc Xτ1e

] {
1 + op (1)

}
if t ∈ Bi, i = 1, 2

and if r1f − r1e ≤ r2 − r2e

X̃t =

⎧⎪⎨
⎪⎩

−T αδ
τ2−τ2e
T

τwc Xτ2e

{
1 + op (1)

}
if t ∈ Ni, i = 1, 2,[

δ
t−τie
T Xτie − T αδ

τ2−τ2e
T

τwc Xτ2e

] {
1 + op (1)

}
if t ∈ Bi, i = 1, 2

.
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LEMMA A11. The sample variance of X̃t has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 = T αδ

2(τ2−τie)
T

2c
X2

τie

{
1 + op (1)

} ∼a
T 1+αδ

2(τ2−τie)
T

2c
B (rie)2

.

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 = T αδ

2(τif −τie)
T

2c
X2

τie

{
1 + op (1)

} ∼a
T 1+αδ

2(τif −τie)
T

2c
B (rie)2

.

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃2
j−1 = T αδ

2(τif −τie)
T

2c
X2

τie

{
1 + op (1)

} ∼a
T 1+αδ

2(τif −τie)
T

2c
B (rie)2

.

(4) For τ1 ∈ N0 and τ2 ∈ N2,

τ2∑
j=τ1

X̃2
j−1 =

⎧⎪⎨
⎪⎩

T αδ
2(τ1f −τ1e)
T

2c X2
τ1e

{
1 + op (1)

} ∼a
T α+1δ

2(τ1f −τ1e)
T
2c B (r1e)2 if r1f − r1e > r2f − r2e

T αδ
2(τ2f −τ2e)
T

2c X2
τ2e

{
1 + op (1)

} ∼a
T α+1δ

2(τ2f −τ2e)
T
2c B (r2e)2 if r1f − r1e ≤ r2f − r2e

.

(5) For τ1 ∈ B1 and τ2 ∈ B2,

τ2∑
j=τ1

X̃2
j−1 =

⎧⎪⎨
⎪⎩

T αδ
2(τ1f −τ1e)
T

2c X2
τ1e

{
1 + op (1)

} ∼a
T α+1δ

2(τ1f −τ1e)
T
2c B (r1e)2 if r1f − r1e > r2 − r2e

T αδ
2(τ2−τ2e)
T
2c X2

τ2e

{
1 + op (1)

} ∼a T α+1δ
2(τ2−τ2e)
T

1
2c B (r2e)2 if r1f − r1e ≤ r2 − r2e

.

(6) For τ1 ∈ B1 and τ2 ∈ N2,

τ2∑
j=τ1

X̃2
j−1 =

⎧⎪⎨
⎪⎩

T αδ
2(τ1f −τ1e)
T

2c X2
τ1e

{
1 + op (1)

} ∼a
T α+1δ

2(τ1f −τ1e)
T
2c B (r1e)2 if r1f − r1e > r2f − r2e

T αδ
2(τ2f −τ2e)
T

2c X2
τ2e

{
1 + op (1)

} ∼a
T α+1δ

2(τ2f −τ2e)
T
2c B (r2e)2 if r1f − r1e ≤ r2f − r2e

.

(7) For τ1 ∈ N0 and τ2 ∈ B2,

τ2∑
j=τ1

X̃2
j−1 =

⎧⎪⎨
⎪⎩

T αδ
2(τ1f −τ1e)
T

2c X2
τ1e

{
1 + op (1)

} ∼a
T α+1δ

2(τ1f −τ1e)
T
2c B (r1e)2 if r1f − r1e > r2 − r2e

T αδ
2(τ2−τ2e)
T
2c X2

τ2e

{
1 + op (1)

} ∼a
T α+1δ

2(τ2−τ2e)
T
2c B (r2e)2 if r1f − r1e ≤ r2 − r2e

.

LEMMA A12. The sample covariance of X̃t and εt has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃ j−1εj ∼a T (α+1)/2δ
τ2−τie
T XcB (rie) .
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(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃ j−1εj ∼a T (α+1)/2δ
τif −τie

T XcB (rie) .

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃ j−1εj ∼a T (α+1)/2δ
τif −τie

T XcB (rie) .

(4) For τ1 ∈ N0 and τ2 ∈ N2,

τ2∑
j=τ1

X̃ j−1εj ∼a

{
T (1+α)/2δ

τ1f −τ1e

T XcB (r1e) if r1f − r1e > r2f − r2e

T (1+α)/2δ
τ2f −τ2e

T XcB (r2e) if r1f − r1e ≤ r2f − r2e

.

(5) For τ1 ∈ B1 and τ2 ∈ B2,

τ2∑
j=τ1

X̃ j−1εj ∼a

{
T (α+1)/2δ

τ1f −τ1e

T XcB (r1e) if r1f − r1e > r2 − r2e

T (α+1)/2δ
τ2−τ2e
T XcB (r2e) if r1f − r1e ≤ r2 − r2e

.

(6) For τ1 ∈ B1 and τ2 ∈ N2,

τ2∑
j=τ1

X̃ j−1εj ∼a

{
T (1+α)/2δ

τ1f −τ1e

T XcB (r1e) if r1f − r1e > r2f − r2e

T (1+α)/2δ
τ2f −τ2e

T XcB (r2e) if r1f − r1e ≤ r2f − r2e

.

(7) For τ1 ∈ N0 and τ2 ∈ B2,

τ2∑
j=τ1

X̃ j−1εj ∼a

{
T (α+1)/2δ

τ1f −τ1e

T XcB (r1e) if r1f − r1e > r2 − r2e

T (α+1)/2δ
τ2−τ2e
T XcB (r2e) if r1f − r1e ≤ r2 − r2e

.

LEMMA A13. The sample covariance of X̃ j−1 and Xj − δT Xj−1 has the following limit form:

(1) For τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a
rie − r1

rw

Tδ
τ2−τie
T B (rie)

∫ rie

r1

B (s) ds.

(2) For τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a −Tδ
2(τif −τie)
T B (rie)2

.

(3) For τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a∼a −Tδ
2(τif −τie)
T B (rie)2

.
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(4) For τ1 ∈ N0 and τ2 ∈ N2,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a

{
−Tδ

2(τ1f −τ1e)
T B (r1e)2 if r1f − r1e > r2f − r2e

−Tδ
2(τ2f −τ2e)
T B (r2e)2 if r1f − r1e ≤ r2f − r2e

.

(5) For τ1 ∈ B1 and τ2 ∈ B2,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a

{
−Tδ

2(τ1f −τ1e)
T B (r1e)2 if r1f − r1e > r2 − r2e

T αδ
τ2−τ2e+τ1f −τ1e

T
1

rwc B (r2e) B (r1e) if r1f − r1e ≤ r2 − r2e

.

(6) For τ1 ∈ B1 and τ2 ∈ N2,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a

{
−Tδ

2(τ1f −τ1e)
T B (r1e)2 if r1f − r1e > r2f − r2e

−Tδ
2(τ2f −τ2e)
T B (r2e)2 if r1f − r1e ≤ r2f − r2e

.

(7) For τ1 ∈ N0 and τ2 ∈ B2,

τ2∑
j=τ1

X̃ j−1 (Xj − δT Xj−1) ∼a

{
−Tδ

2(τ1f −τ1e)
T B (r1e)2 if r1f − r1e > r2 − r2e

T αδ
τ2−τ2e+τ1f −τ1e

T
1

rwc B (r2e) B (r1e) if r1f − r1e ≤ r2 − r2e

.

B.2. Test asymptotics and proofs of Theorems 4–9. The fitted regression model for the
recursive unit root tests is

Xt = α̂r1,r2 + ρ̂r1,r2 Xt−1 + ε̂t,

where as in (A.9) above the intercept α̂r1,r2 and slope coefficient ρ̂r1,r2 are obtained using data
over the subperiod [r1, r2].

REMARK 4. Based on Lemma A11 and Lemma A13, we can obtain the limit distribution of
ρ̂r1,r2 − δT using

ρ̂r1,r2 − δT =
∑τ2

j=τ1
X̃ j−1 (Xj − δT Xj−1)∑τ2

j=τ1
X̃2

j−1

.

(1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

ρ̂r1,r2 − δT ∼a T −αδ
−(τ2−τie)
T

rie−r1
rw

∫ rie

r1
B (s) ds

B (rie)
;

(2) when τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

ρ̂r1,r2 − δT ∼a −2T −αc;

(3) when τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

ρ̂r1,r2 − δT ∼a −2T −αc;

(4) when τ1 ∈ N0 and τ2 ∈ N2,

ρ̂r1,r2 − δT ∼a −2T −αc;
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(5) when τ1 ∈ B1 and τ2 ∈ B2,

ρ̂r1,r2 − δT ∼a

{−2T −αc if r1f − r1e > r2 − r2e

T −1δ
−(τ2−τ2e)+(τ1f −τ1e)
T

2B(r1e)
rwB(r2e) if r1f − r1e ≤ r2 − r2e

;

(6) when τ1 ∈ B1 and τ2 ∈ N2,

ρ̂r1,r2 − δT ∼a −2T −αc;

(7) when τ1 ∈ N0 and τ2 ∈ B2,

ρ̂r1,r2 − δT ∼a

{−2T −αc if r1f − r1e > r2 − r2e

T −1δ
−(τ2−τ2e)+(τ1f −τ1e)
T

2B(r1e)
rwB(r2e) if r1f − r1e ≤ r2 − r2e

.

REMARK 5. The asymptotic distributions of the unit root coefficient Z-statistics can be calcu-
lated using

DFz
r1,r2

= τw (ρ̂r1,r2 − 1) = τw (δT − 1) + τw (ρ̂r1,r2 − δT ) .

(1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

DFz
r1,r2

= rwcT 1−α + op (1) → ∞.

(2) When τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

DFz
r1,r2

= −crwT 1−α → −∞.

(3) When τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

DFz
r1,r2

= −crwT 1−α → −∞.

(4) When τ1 ∈ N0 and τ2 ∈ N2,

DFz
r1,r2

= −crwT 1−α → −∞.

(5) When τ1 ∈ B1 and τ2 ∈ B2,

DFz
r1,r2

=
{−crwT 1−α → −∞ if r1f − r1e > r2 − r2e

crwT 1−α → ∞ if r1f − r1e ≤ r2 − r2e
.

(6) When τ1 ∈ B1 and τ2 ∈ N2,

DFz
r1,r2

= −crwT 1−α → −∞.

(7) When τ1 ∈ N0 and τ2 ∈ B2,

DFz
r1,r2

=
{−crwT 1−α → −∞ if r1f − r1e > r2 − r2e

crwT 1−α → ∞ if r1f − r1e ≤ r2 − r2e
.
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To obtain the asymptotic distributions of the t-statistics, we first obtain the equation standard
error of the regression over [r1, r2], which is

σ̂r1r2 =
⎧⎨
⎩τ−1

w

τ2∑
j=τ1

(
X̃ j − ρ̂r1,r2 X̃ j−1

)2

⎫⎬
⎭

1/2

.

LEMMA A14. (1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

σ̂2
r1r2

∼a T −1δ
2(τ2−τie)
T

rie − r1

c−1r3
w

B (rie)2
.

(2) When τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

σ̂2
r1r2

∼a
1
rw

δ
2(τif −τie)
T B (rie)2

.

(3) When τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

σ̂2
r1r2

∼a
δ

2(τif −τie)
T

rw

B (rie)2
.

(4) When τ1 ∈ N0 and τ2 ∈ N2,

σ̂2
r1r2

∼a

{
r−1
w δ

2(τ1f −τ1e)
T B (r1e)2 if r1f − r1e > r2f − r2e

r−1
w δ

2(τ2f −τ2e)
T B (r2e)2 if r1f − r1e ≤ r2f − r2e

.

(5) When τ1 ∈ B1 and τ2 ∈ B2,

σ̂2
r1r2

∼a

{
δ

2(τ1f −τ1e)
T r−1

w B (r1e)2 if r1f − r1e > r2 − r2e

T −1δ
2(τ2−τ2e)
T

r2e−r1f

r3
w

B (r2e)2 if r1f − r1e ≤ r2 − r2e
.

(6) When τ1 ∈ B1 and τ2 ∈ N2,

σ̂2
r1r2

∼a

{
δ

2(τ1f −τ1e)
T

1
rw

B (r1e)2 if r1f − r1e > r2f − r2e

δ
2(τ2f −τ2e)
T

1
rw

B (r2e)2 if r1f − r1e ≤ r2f − r2e
.

(7) When τ1 ∈ N0 and τ2 ∈ B2,

σ̂2
r1r2

∼a

{
δ

2(τ1f −τ1e)
T

1
rw

B (r1e)2 if r1f − r1e > r2 − r2e

T −1δ
2(τ2−τ2e)
T

r1e−r1+r2e−r1f

r3
w

B (r2e)2 if r1f − r1e ≤ r2 − r2e
.

REMARK 6. The asymptotic distributions of the DF t-statistic can be calculated as

DFt
r1,r2

=
(∑τ2

j=τ1
X̃2

j−1

σ̂2
r1r2

)1/2

(ρ̂r1,r2 − 1) .
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(1) When τ1 ∈ Ni−1 and τ2 ∈ Bi with i = 1, 2,

DFt
r1,r2

∼a T 1−α/2 r3/2
w√

2 (rie − r1)
→ ∞;

(2) when τ1 ∈ Bi and τ2 ∈ Ni with i = 1, 2,

DFt
r1,r2

∼a −
(

1
2

crw

)1/2

T (1−α)/2 → −∞;

(3) when τ1 ∈ Ni−1 and τ2 ∈ Ni with i = 1, 2,

DFt
r1,r2

∼a −
(

1
2

crw

)1/2

T (1−α)/2 → −∞;

(4) when τ1 ∈ N0 and τ2 ∈ N2,

DFt
r1,r2

∼a −
(

1
2

crw

)1/2

T (1−α)/2 → −∞;

(5) when τ1 ∈ B1 and τ2 ∈ B2,

DFt
r1,r2

∼a

⎧⎨
⎩

− ( 1
2 crw

)1/2
T (1−α)/2 → −∞ if r1f − r1e > r2 − r2e[

cr3
w

2(r2c−r1f )

]1/2
T 1−α/2 → ∞ if r1f − r1e ≤ r2 − r2e

;

(6) when τ1 ∈ B1 and τ2 ∈ N2,

DFt
r1,r2

∼a −
(

1
2

crw

)1/2

T (1−α)/2 → −∞;

(7) when τ1 ∈ N0 and τ2 ∈ B2,

DFt
r1,r2

∼a

⎧⎨
⎩

− ( 1
2 crw

)1/2
T (1−α)/2 → −∞ if r1f − r1e > r2 − r2e[

cr3
w

2(r1e−r1+r2e−r1f )

]1/2
T 1−α/2 → ∞ if r1f − r1e ≤ r2 − r2e

.

Taken together with (11) and (12), these results establish the limit behavior of the unit root
statistics DFr and BSDFr(r0) in the two cases considered in theorems 4 and 5 (see also (A.13)
below).

The PWY strategy. The origination of the bubble expansion r1e, r2e and the termination of
the bubble collapse r1f , r2f based on the DF test are identified as

r̂1e = infr∈[r0,1]
{
r2 : DFr > cvβT

}
and r̂1f = infr∈[r̂1e+LT ,1]

{
r2 : DFr < cvβT

}
,

r̂2e = infr∈(r̂1f ,1]
{
r2 : DFr > cvβT

}
and r̂2f = infr∈[r̂2e+LT ,1]

{
r2 : DFr < cvβT

}
.

We know that when βT → 0, cvβT → ∞.



TESTING FOR MULTIPLE BUBBLES 1129

Case I. Suppose r1f − r1e > r2f − r2e. Given that r1 = 0 and r2 = rw = r, the asymptotic dis-
tributions of the DF statistic under the alternative hypothesis are

DFr ∼a

⎧⎪⎨
⎪⎩

Fr (W) if r ∈ N0

T 1−α/2 r3/2√
2(r1e−r1)

if r ∈ B1

−T (1−α)/2
( 1

2 cr
)1/2

if r ∈ N1 ∪ B2 ∪ N2

.

It is obvious that if r ∈ N0,

lim
T →∞

Pr
{
DFr > cvβT

} = Pr
{
Fr2 (W) = ∞} = 0.

If r ∈ B1, limT →∞ Pr
{
DFr > cvβT

} = 1 provided that cvβT

T 1−α/2 → 0. If r ∈ N1,
limT →∞ Pr

{
DFr < cvβT

} = 1.
It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr
{
r̂1f < r1f − γ

} → 0,

due to the fact that Pr
{
DFr1e+aη

> cvβT
} → 1 for all 0 < aη < η and Pr

{
DFr1f −aγ

> cvβT
} → 1

for all 0 < aγ < γ. Since η, γ > 0 is arbitrary, Pr {r̂1e < r1e} → 0 and Pr
{
r̂1f > r1f

} → 0, we
deduce that Pr {|r̂1e − r1e| > η} → 0 and Pr

{|r̂1f − r1f | > γ
} → 0 as T → ∞, provided that

1
cvβT

+ cvβT

T 1−α/2
→ 0.

The strategy can therefore consistently estimate both r1e and r1f .
Since limT →∞ Pr

{
DFr < cvβT

} = 1 when r ∈ N1 ∪ B2 ∪ N2, the strategy cannot estimate r2e

and r2f consistently when r1f − r1e > r2f − r2e. This proves Theorem 6.

Case II. Suppose r1f − r1e ≤ r2f − r2e. The asymptotic distributions of the DF statistic under
the alternative hypothesis are

DFr ∼a

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Fr (W) if r ∈ N0

T 1−α/2 r3/2√
2(r1e−r1)

if r ∈ B1

−T (1−α)/2
( 1

2 cr
)1/2

if r ∈ N1 ∪ N2

−T (1−α)/2
( 1

2 cr
)1/2

if r ∈ B2 and r1f − r1e > r − r2e

T 1−α/2
[

cr3

2(r1e+r2e−r1f )

]1/2
if r ∈ B2 and r1f − r1e ≤ r − r2e

.(A.12)

It is obvious that if r ∈ N0,

lim
T →∞

Pr
{
DFr > cvβT

} = Pr
{
Fr (W) = ∞} = 0.

If r ∈ B1, limT →∞ Pr
{
DFr > cvβT

} = 1 provided that cvβT

T 1−α/2 → 0. If r ∈ N1,
limT →∞ Pr

{
DFr < cvβT

} = 1.
It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr
{
r̂1f < r1f − γ

} → 0,



1130 PHILLIPS, SHI, AND YU

due to the fact that Pr
{
BDFr1e+aη

> cvβT
} → 1 for all 0 < aη < η and Pr

{
DFr1f −aγ

> cvβT
} → 1

for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂1e < r1e} → 0 and Pr
{
r̂1f > r1f

} → 0, we
deduce that Pr {|r̂1e − r1e| > η} → 0 and Pr

{|r̂1f − r1f | > γ
} → 0 as T → ∞, provided that

1
cvβT

+ cvβT

T 1−α/2
→ 0.

The strategy therefore consistently estimates r1e and r1f .
If r ∈ B2 and r1f − r1e > r − r2e, limT →∞ Pr

{
DFr < cvβT

} = 1 since cvβT → ∞. If r ∈ B2 and
r1f − r1e ≤ r − r2e, limT →∞ Pr

{
DFr > cvβT

} = 1 provided that cvβT

T 1−α/2 → 0 in view of the final
panel entry of (A.12). If r ∈ N1, limT →∞ Pr

{
DFr < cvβT

} = 1. This implies that the strategy
cannot identify the second bubble when r1f − r1e > r − r2e. However, when r1f − r1e ≤ r − r2e it
can identify the second bubble provided that

1
cvβT

+ cvβT

T 1−α/2
→ 0.

This suggests that estimated second bubble origination date r̂2e will be biased, taking values of
r2e + r1f − r1e (in view of the condition r1f − r1e ≤ r − r2e under which the final panel entry of
(A.12) holds). The termination point r2f can be consistently estimated. This proves Theorem 7.

The PSY algorithm. The origination of the bubble expansion r1e, r2e and the termination of
the bubble collapse r1f , r2f based on the backward sup DF test are identified as follows:

r̂1e = infr∈[r0,1]
{
r : BSDFr (r0) > scvβT

}
and r̂1f = infr∈[r̂1e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
,

r̂2e = infr∈(r̂1f ,1]
{
r : BSDFr (r0) > scvβT

}
and r̂2f = infr∈[r̂2e+LT ,1]

{
r : BSDFr (r0) < scvβT

}
.

We know that when βT → 0, scvβT → ∞.
Given that r1 ∈ [0, r − r0], r2 = r and rw = r2 − r1, the asymptotic distributions of the back-

ward sup DF statistic under the alternative hypothesis are

BSDFr (r0) ∼a

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Fr (W, r0) if r ∈ N0

T 1−α/2 sup
r1∈[0,r−r0]

{
(r−r1)3/2√

2(rie−r1)

}
if r ∈ Bi

−T (1−α)/2 sup
r1∈[0,r−r0]

[ 1
2 c (r − r1)

]1/2
if r ∈ N1 ∪ N2

.(A.13)

It is obvious that if r ∈ N0,

lim
T →∞

Pr
{
BSDFr (r0) > scvβT

} = Pr
{
Fr (W, r0) = ∞} = 0.

If r ∈ Bi with i = 1, 2, limT →∞ Pr
{
BSDFr(r0) > scvβT

} = 1 provided that scvβT

T 1−α/2 → 0. If r ∈ Ni

with i = 1, 2, limT →∞ Pr
{
BSDFr(r0) < scvβT

} = 1.
It follows that for any η, γ > 0,

Pr {r̂ie > rie + η} → 0 and Pr
{
r̂if < rif − γ

} → 0,
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since Pr
{
BSDFrie+aη

(r0) > scvβT
} → 1 for all 0 < aη < η and Pr

{
BSDFrif −aγ

(r0) > scvβT
} → 1

for all 0 < aγ < γ. Since η, γ > 0 is arbitrary and Pr {r̂ie < rie} → 0 and Pr
{
r̂if > rif

} → 0, we
deduce that Pr {|r̂ie − rie| > η} → 0 and Pr

{|r̂if − rif | > γ
} → 0 as T → ∞ , provided that

1
scvβT

+ scvβT

T 1−α/2
→ 0.

Therefore, the date-stamping strategy based on the backward sup ADF test can consistently
estimate r1e, r1f , r2e, and r2f . This proves Theorem 8.

The sequential PWY procedure. The origination of the bubble expansion r1e, r2e and the
termination of the bubble collapse r1f , r2f based on the sequential DF test are identified as

r̂1e = inf
r∈[r0,1]

{
r : DFr > cvβT

}
and r̂1f = inf

r∈[r̂1e+LT ,1]

{
r : DFr < cvβT

}
,

r̂2e = inf
r∈(r̂1f +r0,1]

{
r :r̂1f DFr > cvβT

}
and r̂2f = inf

r∈[r̂2e+LT ,1]

{
r :r̂1f DFr < cvβT

}
,

where r̂1f DFr is the DF statistic calculated over (r̂1f , r]. We know that when βT → 0, cvβT → ∞.
The starting point of the regression r1 takes value of zero for the DFr statistic and the

regression window rw = r. The asymptotic distributions of the DFr statistic under the alternative
hypothesis are

DFr ∼a

⎧⎪⎪⎨
⎪⎪⎩

Fr (W) if r ∈ N0

T 1−α/2 r3/2√
2(r1e−r1)

if r ∈ B1

−T (1−α)/2
( 1

2 cr
)1/2

if r ∈ N1

It is obvious that if r ∈ N0,

lim
T →∞

Pr
{
DFr > cvβT

} = Pr
{
Fr2 (W) = ∞} = 0.

If r ∈ B1, limT →∞ Pr
{
DFr > cvβT

} = 1 provided that cvβT

T 1−α/2 → 0. If r ∈ N1,
limT →∞ Pr

{
DFr < cvβT

} = 1. It follows that for any η, γ > 0,

Pr {r̂1e > r1e + η} → 0 and Pr
{
r̂1f < r1f − γ

} → 0,

since Pr
{
DFr1e+aη

> cvβT
} → 1 for all 0 < aη < η and Pr

{
DFr1f −aγ

> cvβT
} → 1 for all 0 < aγ <

γ. Since η, γ > 0 is arbitrary and Pr {r̂1e < r1e} → 0 and Pr
{
r̂1f > r1f

} → 0, we deduce that
Pr {|r̂1e − r1e| > η} → 0 and Pr

{|r̂1f − r1f | > γ
} → 0 as T → ∞, provided that

1
cvβT

+ cvβT

T 1−α/2
→ 0.

Thus, this date-stamping strategy consistently estimates r1e and r1f .



1132 PHILLIPS, SHI, AND YU

For the r̂1f DFr statistic, the starting point of the regression equals r̂1f so that the regression

window is rw = r − r̂1f . Given that r̂1f
p→ r1f , in the limit we have rw equal to r − r1f . The

asymptotic distributions of the r̂1f DFr statistic under the alternative hypothesis are

r̂1f DFr ∼a

⎧⎪⎪⎨
⎪⎪⎩

Fr (W) if r ∈ N1

T 1−α/2 (r−r1f )3/2√
2(r2e−r1)

if r ∈ B2

−T (1−α)/2
[ 1

2 c (r − r1f )
]1/2

if r ∈ N2

.

If r ∈ N1, limT →∞ Pr{r̂1f DFr > cvβT } = Pr{Fr(W) = ∞} = 0. If r ∈ B2, limT →∞ Pr{r̂1f DFr >

cvβT } = 1 provided that cvβT

T 1−α/2 → 0. If r ∈ N2, limT →∞ Pr
{

r̂1f DFr < cvβT
} = 1.

For any φ, κ > 0,

Pr {r̂2e > r2e + φ} → 0 and Pr
{
r̂2f < r2f − κ

} → 0,

since Pr
{

r̂1f DFr2e+aφ
> cvβT

} → 1 for all 0 < aφ < φ and Pr
{

r̂1f DFr2f −aκ
> cvβT

} → 1 for all
0 < aκ < κ. Since φ, κ > 0 is arbitrary and Pr

{
r1f < r̂2e < r2e

} → 0 and Pr
{
r̂2f > r2f

} → 0, we
deduce that Pr {|r̂2e − r2e| > η} → 0 and Pr

{|r̂2f − r2f | > γ
} → 0 as T → ∞ , provided that

1
cvβT

+ cvβT

T 1−α/2
→ 0.

Therefore, the alternative sequential implementation of the PWY procedure consistently esti-
mates r2e and r2f . This proves Theorem 9.
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