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Abstract

Some limit theory is developed for estimators suggested in Phillips, Wu and Yu (2009)
for dating bubble pheonoma in time series data. The models involve mildly explosive au-
toregressions and the tests rely on right sided recursive unit root tests. The estimates locate
the origination and collapse dates of bubbles involving mildly explosive episodes set within
longer periods where the data evolve as a stochastic trend. The dating estimators are shown
to be consistent under mild regularity conditions on the process. Some simulation evidence
on the performance of the estimators is reported. The proposed method works well in �nite
samples and conforms with the limit theory.
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1 Introduction

The global �nancial turmoil over 2008-2009 and its e¤ects on real economic activity have led to

renewed interest among economists in �nancial bubbles. One important econometric aspect of

this phenomenon is date stamping. Dating the origination and collapse of �nancial asset bubbles

is obviously of interest in its own right but it is also important from an economic perspective.
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Date stamping provides precision in the assessment of bubble phenomena, providing information

on the temporal extent, the magnitude, and the course of the bubble. Dating also facilitates

comparisons between alternative economic hypotheses about bubbles. For example, in a recent

study, Caballero, Farhi and Gourinchas (2009) put forward a sequential hypothesis about bubble

creations and collapses during the course of the current �nancial turmoil in the U.S. economy.

According to this hypothesis, asset bubbles emerged and collapsed creating in their wake a

sequence of bubble e¤ects in other asset markets. Liquidity shortages crashed the real estate

bubble but then created bubbles in commodities and oil markets as investors transferred �nancial

assets. The deepening �nancial crisis then sharply slowed down economic growth, which in turn

destroyed the commodity bubbles. This story makes strong predictions concerning the timing of

the origination and the collapse of various bubble phenomena in di¤erent markets. To evaluate

the evidence in support of such interpretations of the events, consistent date stamping of those

events is critical.

The present paper seeks to provide a rigorous econometric approach to dating bubble phe-

nomena. In particular, this paper derives a limit theory for estimators of the origination and

collapse dates of mildly explosive bubble episodes that were proposed in recent work by Phillips,

Wu and Yu (2009, PWY hereafter). PWY used forward recursive right sided unit root tests

and mildly explosive regression asymptotics to assess empirical evidence for explosive behavior.

These methods were shown capable of detecting the existence of mildly explosive episodes in

time series data and were used to date stamp the origination and collapse of the Nasdaq bub-

ble in the 1990s, corresponding to Greenspan�s famous remark about irrational exuberance in

�nancial market which was made in December 1996.

One of the contributions of the current paper is to show that the PWY approach provides

consistent estimates of the timing of bubble episodes. The paper also examines the �nite sample

performance of the estimators in simulations. The asymptotic and �nite sample results both

indicate that the method is reliable for data stamping the origination and collapse dates of

bubble episodes in time series data.

The remainder of the paper is organized as follows. Section 2 develops an econometric

model of �nancial bubbles based on the successive conjunction of unit root and mildly explosive

processes, so that regime shifts in the model are contained within the same model family and

involve only moderate (local) changes in the autoregressive coe¢ cient. This section also proposes

date stamping estimators using recursive regressions and right sided unit root tests of the type

considered in PWY. Section 3 derives the limit theory for this dating procedure showing that the

estimates of both origination and termination of the bubble are consistent. Section 4 checks the
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�nite sample performance of these estimates. Section 5 concludes. Appendices collect together

the proof of the main results in the paper.

2 Econometric models of bubble behavior

PWY propose the use of recursive regression techniques for the detection of bubble behavior.

The key idea is to use right sided unit root tests to assess evidence for mildly explosive behavior

in the data. In particular, for time series fXtgnt=1, we apply unit root tests (such as Dickey-Fuller
or Augmented Dickey-Fuller tests) based on either the estimated coe¢ cient or the t statistic and

with standard null asymptotics against the alternative of an explosive or mildly explosive root, so

that the test is a right sided test, as distinct from the standard left sided tests for stationarity.

The recursions use subsets of the sample data incremented by one observation at each pass.

That is, we estimate the following autoregressive speci�cation (or suitably augmented versions)

by least squares

Xt = �+ �Xt�1 + "t; "t � iid (0; �2): (1)

The null hypothesis is H0 : � = 1 and the right-tailed alternative hypothesis is H1 : � > 1. If the

�rst regression involves �0 = [nr0] observations, for some fraction r0 of the total sample where

[ ] denotes the integer part of its argument, subsequent regressions employ this originating data

set supplemented by successive observations giving a sample of size � = [nr] for r0 � r � 1:

Denote the corresponding Dickey-Fuller test statistics by DF �r and DF
t
r , namely,

DF �r := �
�
�̂� (�)� 1

�
; DF tr :=

 P�
j=1

~X2
j�1

�̂2�

!1=2 �
�̂� (�)� 1

�
; (2)

where �̂� is the least squares estimate of � based on the �rst � = [nr] observations, �̂2� is

the corresponding estimate of �2; and ~Xj�1 = Xj�1 � ��1
P�
j=1Xj�1: Obviously, DF

�
1 and

DF t1 correspond to the full sample test statistics. Under the null hypothesis of the pure unit

root dynamics and standard weak convergence methods, we have the following limit theory as

� = [nr]!1 for all r 2 [r0; 1]

DF �r )
R 1
0
fWdWR 1
0
fW 2

; DF tr )
R 1
0
fWdW�R 1

0
fW 2
�1=2 ;

where W is standard Brownian motion and fW (r) = W (r) �
R 1
0 W is demeaned Brownian

motion.
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There are two major advantages in the forward recursive regression approach. First, it

signi�cantly improves the power of the full sample tests that have been considered earlier in

the literature (e.g. Diba and Grossman, 1988) when the bubbles are subject to collapse. The

improvements are especially large when the probability of a bubble originating and collapsing is

small but positive, which is an empirically realistic situation leading to a single bubble in models

such as that of Evans (1994). Second, it allows one to estimate the origination and collapse of

a bubble through sequential analysis of the recursion.

The idea is as follows: We date the origination of an explosive episode as �̂ e = [nr̂e] where

r̂e = inf
s�r0

n
s : DF �s > cv

�
�n

o
; or r̂e = inf

s�r0

n
s : DF ts > cv

df
�n

o
; (3)

and cv��n (cv
df
�n
) is the right side 100�n% critical value of the limit distribution of the DF

�
r (DF

t
r)

statistic based on � s = [ns] observations, and �n is the size of the one-sided test. Conditional

on �nding some originating date r̂e for explosive behavior, we date the collapse of the explosive

episode by �̂ f = [nr̂f ] where

r̂f = inf
s�r̂e+ log(n)

n

n
s : DF �s < cv

�
�n

o
; or r̂f = inf

s�r̂e+ log(n)
n

n
s : DF ts < cv

df
�n

o
: (4)

The dating rule (4) for determining the collapse date r̂f involves a search over � s � [nr̂e + log (n)]
in the recursive comparisons of DF �s and DF

t
s : This rule ensures that the duration of the bubble

is signi�cant � at least a small in�nity, i.e., episodes of smaller order than O (log n) are not

considered signi�cant in the dating algorithm for � f :

This recursive method can be used in the same way in connection with other unit root tests,

such as the Augmented Dickey-Fuller (ADF) test and Phillips-Perron tests developed in Phillips

(1987) and Phillips and Perron (1988). Since there is no material change in the use of these

more general procedures and no change in the asymptotic theory, the analysis that follows will

deal with the simple model (1). Extensions to the general semiparametric case will be examined

later.

There many ways to model �nancial exuberance, bubble formation and collapsing behavior.

For example, one mechanism that can capture exuberance is to allow for a period of mildly

explosive behavior, as in the following model

Xt = Xt�11 ft < � e or t > � fg+ �nXt�11 f� e � t � � fg+ "t; t = 1; :::; �

�n = 1 +
c

n�
; c > 0; � 2 (0; 1) ; (5)

where "t is iid
�
0; �2

�
and initialization of the process is assumed to occur at t = 0 from some

X0 = Op (1) : As indicated, it is possible to extend the theory to allow for weakly dependent "t;
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and the main results given below will continue to hold for such extensions under some regularity

conditions analogous to those in Phillips (1987).

The autoregressive parameter �n = 1 + c
n� > 1 for all n when c > 0 and �n is, in the

terminology of Phillips and Magdalinos (2007a, hereafter PMa) a mildly integrated root (as

distinct from a root local to unity) on the explosive side of unity and this root correspondingly

leads to mildly explosive behavior in the data over the subperiod t 2 [� e; � f ]. Model (5) allows
for two regimes �a unit root regime and an explosive regime. The system switches regimes from

unit root behavior to mildly explosive behavior at � e and from the explosive root back to a unit

root at � f . In this model, the process Xt does not �collapse�at � f but rather resumes unit root

wandering behavior from the new level X�f . The mechanism of mildly explosive growth in this

case e¤ectively changes the level of the martingale to a new plateau of origination. If there is

no mildly explosive episode, then c = 0 and �n = 1:

An alternative mechanism that can capture both exuberance and collapse, involves re-

initialization of the process under collapse, possibly with some transitional dynamics. For

instance, the following model speci�es a new initial value, or re-initialization of the process,

when the explosive period comes to the end, so that the initial value of the new unit root period

di¤ers from the end value of the explosive period

Xt = Xt�11 ft < � eg+ �nXt�11 f� e � t � � fg (6)

+

0@ tX
k=�f+1

"k +X
�
�f

1A 1 ft > � fg+ "t 1 ft � � fg
�n = 1 +

c

n�
; c > 0; � 2 (0; 1) :

With the re-initialization at � f , the process jumps to a di¤erent level X�
�f
. The new initial

value X�
�f
may be related to the earlier period of martingale behavior in the process, perhaps

with some random deviation, in which case we would have X�
�f
= X�e + X

� for some Op (1)

random quantity X�: The model may be further adapted to allow for a short period transitional

dynamic, which could be mean reverting to the level X�
�f
: As in (5), the model (6) is assumed

to initiate at t = 0 from some Op (1) random variable X0:

An intercept may be added to the model formulations (5) and (6), as in the �tted autoregres-

sion (1), but this has consequences on the properties of Xt. In particular, a non zero intercept

in (5) and (6) introduces drift to the process Xt for t < � e, which can be realistic, at least for

small �; in empirical applications during periods where there is a unit root and stochastic trend

in the data. However, during periods of exuberance for � e � t � � f ; where there is a mildly
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explosive root in the autoregression, a non zero intercept leads to a dominating deterministic

component in Xt with the following explosive form

�
�t��en � 1
(�n � 1)

=
�n�

c
ecn

1��(r�re) f1 + o (1)g ;

which is empirically unrealistic for most economic and �nancial time series. Although an inter-

cept is included in the �tted regression (1), we therefore anticipate that the generating mech-

anism (6) is unlikely to involve a non zero intercept, at least during mildly explosive episodes.

The theory below is therefore given for the generating mechanism (6). In fact, the limit theory

given here continues to hold in the case where there is a non-zero intercept in the model, in-

cluding the empirically relevant case where the intercept is non zero only during the episodes of

unit root behavior. This extension requires some modi�cation in the proofs, and these will be

indicated later.

Both models (5) and (6) may be analyzed using the methods in PMa: In particular, PMa

show that a central limit theory can be developed for mildly explosive time series like those in (5)

and (6), so that robust econometric inference is possible in this environment. The limit theory

methods in PMa and Phillips and Magdalinos (2007b, hereafter PMb) are used extensively in

the development of the asymptotic theory that follows. Our attention will focus on Model (6)

because this model allows for both the initiation of mildly explosive behavior, representing an

episode of market exuberance, and the subsequent collapse of that exuberance to a realized

earlier level of the process. Such a model has the inherent capability of capturing �nancial

market behavior of the type witnessed during the recent �nancial crisis in several di¤erent asset

markets.

3 Dating the Origination and Collapse of an Explosive Episode
with Re-initialization

This section develops limit theory for dating the origination and collapse of a mildly explosive

period under Model (6). We are particularly interested in establishing the consistency of the

dating estimator using recursive regressions. In what follows it is assumed that recursive autore-

gressions are run with data fXt : t = 1; 2; :::; � = [nr]g originating from �0 = [nr0] ; so that the

minimum amount of data used for the regressions is �0:We date the origination of the explosive

episode as �̂ e = [nr̂e] where

r̂e = inf
s�r0

n
s : DF �s > cv

�
�n
(s)
o
or r̂e = inf

s�r0

n
s : DF ts > cv

DF
�n

(s)
o
; (7)
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and cv��n (s) (cv
df
�n
(s)) is the right side 100�n% critical value of the two DFs statistics based on

� s = [ns] observations, and �n is the size of the one-sided test. We will allow �n ! 0 as n!1
because in this event cv��n ! 1 and cvdf�n ! 1: Conditional on �nding some originating date
r̂e for explosive behavior, we date the collapse of the explosive episode by �̂ f = [nr̂f ] where

r̂f = inf
s�r̂e+ log(n)

n

n
s : DF �s < cv

�
�n
(s)
o
or r̂f = inf

s�r̂e+ log(n)
n

n
s : DF ts < cv

df
�n
(s)
o
: (8)

It is assumed that � e = [nre] and � f = [nrf ] with re < rf ; so that asymptotically there is

O (n) of data (a large in�nity of data) separating origination and collapse. In the recursive

procedure for determining the collapse date r̂f in (8), we construct the dating rule so that all

data � s � [nr̂e + log (n)] is considered in the evaluation of the recursive comparisons of DF �s
and DF ts against the critical values cv

�
�n
(s) and cvdf�n (s) : As mentioned earlier, this dating

rule ensures that small separations between � e and � f ; viz. those of order o (log n) ; are not

considered in the dating algorithm for � f :

3.1 Dating the Origination of an Explosive Episode

We �rst develop the limit theory under the null hypothesis and then consider detection of the

origination and termination dates under the alternative.

THEOREM 3.1 Under the null hypothesis of no episode of explosive behavior ( c = 0 and

�n = 1 in Model (6)) and provided cv��n ! 1 and cvdf�n ! 1, the probability of detecting the
origination of a bubble using DF � or DF t is zero as n!1; so that P (r̂e 2 [r0; 1])! 0:

We now determine the limit behavior of r̂e under the alternative hypothesis of the initiation

of a period of mildly explosive behavior at � e = [nre] for some re > r0: Model (6) implies that

the process Xt follows the generating mechanism

Xt = Xt�11 ft < � eg+ �nXt�11 ft � � eg+ "t; �n = 1 +
c

n�
; c > 0; � 2 (0; 1) ; (9)

over t 2 [�0; � f ] ; where "t is iid
�
0; �2

�
:

THEOREM 3.2

(i) If
1

cv��n

+
cv��n
n1��

! 0; (10)

then under the alternative hypothesis of mildly explosive behavior in Model (6), r̂e
p! re as

n!1; where r̂e is obtained from the DF � test.
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(ii) If

1

cvdf�n

+
cvdf�n
n1��=2

! 0; (11)

then under the alternative hypothesis of explosive behavior in Model (6), r̂e
p! re as n!1;where

r̂e is obtained from the DF t test.

Remarks

(a) As shown in the proof of the theorem, when data from the explosive period are included

in estimating the autoregressive coe¢ cient, these observations govern the asymptotics of

the estimate since the signal from the explosive period dominates that from the unit root

model. This di¤erence in signal between the two periods provides identifying information

and explains why the two test procedures consistently estimate the origination date.

(b) The DF test based on the coe¢ cient diverges at the rate O
�
n1��

�
; while the DF test based

on the t statistic diverges at the rate An = O
�
n1��=2

�
; as shown in (31) and (33) in the

Appendix. We therefore expect these statistics to perform in a very similar way under the

alternative hypothesis.

(c) For practical implementation, we might set the critical value sequences
n
cv��n ; cv

df
�n

o
accord-

ing to some (arbitrary) expansion rule such as cv��n = log log2 n and cvdf�n =
2
3 log log

2 n:

Both critical values diverge at a slowly varying rate with cvdf�n < cv��n : This setting is

justi�ed by the fact that the critical values for the DF t test are well known to be smaller

(in magnitude) than those for DF �. (For example, the 1% asymptotic critical value for

DF � is 1:04 whereas the 1% asymptotic critical value for DF t is 0:60:) Noting that �xed

(right side) critical values like cv�0:05 (and critical values for higher signi�cance levels) are

negative rather than positive for right side testing against a unit root, it is clear that such

a rule is conservative and places a higher (and increasing) bar on the assessment for explo-

sive behavior as n!1. For DF �; when n = 50; the 10% critical value is �0:81; the 1%
critical value is 1:22; and log log2 50 = 1:36. In such cases using a rule like cv��n = log log

2 n

will produce a signi�cance level close to the 1% level for samples of this magnitude, while

the level slowly goes to 0 as n ! 1. For DF t, when n = 50; the 10% critical value is

�0:40; the 1% critical value is 0:66; and 2
3 log log

2 50 = 0:90. In such cases using a rule

like cv��n =
2
3 log log

2 n will produce a signi�cance level close to the 1% level for samples of

this magnitude, while again the level slowly goes to 0 as n!1. A conservative 1% rule

seems acceptable because there is only a small risk of choosing the explosive alternative
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when it is not true and thereby only a small degree of possible underestimation of the

origination date. On the other hand, choosing a large critical value expansion rate will

result in overestimation bias in the origination date estimate.

3.2 Dating the Collapse of an Explosive Episode

This section develops the limit theory for dating the collapse of a mildly explosive period under

model (6). Again, it is convenient for the development to assume that "t is iid
�
0; �2

�
; although

this can be relaxed to allow for weak dependence in the residuals in view of the (equivalent)

limit theory for the mildly explosive case given in PMb under weakly dependent errors and

the modi�ed semiparametric unit root limit theory (e.g., Phillips, 1987) for the unit root case.

The parameter � e = [nre] is the origination date and � f = [nrf ] is the collapse date of the

explosive episode. If there is no mildly explosive episode, then c = 0 and �n = 1 throughout

the sample. It is further assumed that there is only a single explosive episode in the data, but

the methods are applicable when there are repeated episodes and the asymptotic theory given

here continues to apply in such cases, although we do not prove this here. It is also assumed

that � f � � e > log (n) in order to achieve date separation that exceeds a small in�nity of data
asymptotically, as discussed earlier

Model (6) implies that data t = � e; :::; � > � f are generated according to

Xt = Xt�11 ft < � eg+ �nXt�11 f� e � t � � fg

+

0@ tX
k=�f+1

"k +X
�
�f

1A 1 ft > � fg+ "t1 ft � � fg (12)

�n = 1 +
c

n�
; c > 0; � 2 (0; 1) ;

where X�
�f
is a (random) re-initialization following the explosive period. This generating mech-

anism ensures that the explosive episode switches o¤ at � f and the data subsequently follows

a unit root process evolving from the initialization X�
�f
= X�e +X

� for some random quantity

X� = Op (1) : Thus, for t > � f ; Xt follows a unit root evolution originating at X�
�f
, which

is determined to be within some Op (1) interval of the initiation of the explosive episode X�e :

Initializing the post explosive episode at X�
�f
ensures that the bubble collapses completely and

reinitializes to a level within Op (1) of its origination.

Note that if c = 0 and �n = 1 in (12) there is again no mildly explosive episode in the

process and Xt = Op (
p
n) for all t � � : Under model (12) and the rate conditions (10) and

(11), Theorem 3.2 holds as before, so that again r̂e !p re: The consistency of r̂f is given in the

following theorem.
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THEOREM 3.3

(i) Under the null hypothesis of no episode of explosive behavior P (r̂e 2 [r0; 1]) ! 0 as in

theorem 3.1 and correspondingly P (r̂f 2 [r0; 1])! 0 as n!1:
(ii) Suppose conditions (10) and (11) hold and the alternative hypothesis of Model (6) with

a mildly explosive episode applies. Conditional on some r̂e > r0, as n ! 1; we then have
r̂f

p! rf where r̂f is obtained from the right sided DF test based on either the coe¢ cient or the

t statistic.

Remarks

(d) When the system switches back to the unit root model with the re-initialization taking place

within an Op (1) neighborhood of X�e , the signal from the explosive period dominates that

from the unit root model and so governs the asymptotics of the estimate. This domination

by initial conditions is analogous to the domination by in�nitely distant initializations that

arises in unit root limit theory (see Phillips and Magdalinos, 2009).

(e) It is shown in the proof of Theorem 3.3 that �̂n (�) !p 1 when � > � f but its limit

distribution in this case involves a (second order) downward bias. This bias is explained by

the fact that �̂n (�) is computed with data that involves the explosive episode (� e � t � � f )
as well as post explosive data (� > � f ), which makes the post-collapse data look mean

reverting, producing a second order downward bias below unity in �̂n (�) :

(f) More speci�cally, n�
�
�̂n (�)� 1

�
converges to �c as n ! 1; and so the statistic DF �� =

�
�
�̂n (�)� 1

�
diverges to �1 at the rate n1��. The DF t� also diverges to �1 and at the

rate n(1+�)=2; which exceeds n1�� when � > 1=3: The di¤erence is explained by the fact

that the equation standard error is also sensitive to the collapse in the mildly explosive

period. These di¤erences in asymptotic behavior suggest that in some cases the DF t

test may be more powerful in identifying the termination of an explosive episode than the

DF coe¢ cient test due to the sensitivity of both the �tted coe¢ cient and the equation

standard error to the post-collapse data.

4 Monte Carlo Simulations

This section reports some brief simulations examining the �nite sample performance of the above

dating estimation procedure and the accuracy of the asymptotic theory. Two experiments are

used, one based on the DF �� test and the other on the DF
t
� test. Both experiments use 1,000
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sample path replications with data simulated from Model (6). From each sample path, we

obtain r̂e and r̂f based on the DF �r or DF
t
r statistic for r 2 [0:2; 1], thereby setting r0 = 0:2:

We use the critical values log log2 n for DF �r and
2
3 log log

2 n for DF tr : In all cases, we set the

true values of the origination and collapse dates as re = 0:4 and rf = 0:6 and impose the (small

in�nity) duration condition r̂f � r̂e � [log(n)]=n. Three di¤erent sample sizes are considered in
both experiments: n = 100; 400; 800. To assess the sensitivity of the dating estimators to the

parameters determining the nature and extent of mildly explosive bubble activity, we �x � = 0:5

but allow c to take four di¤erent values so that the implied autoregressive coe¢ cient takes the

following four values, 1.035, 1.040, 1.045, 1.050. These mildly explosive roots are empirically

realistic given recent experience in the �nancial markets (see PWY for discussion).

Tables 1-3 report results for the DF �� test, giving means, standard errors, and root mean

square errors (RMSE) and the percentage of replications that determine the true date stamp, for

r̂e and r̂f ; when n = 100; 400; 800, respectively. Several results emerge from Tables 1-3. First,

in all cases, the true values of re and rf can be estimated with high accuracy, re�ected by a

small bias and a small standard error (and hence a small RMSE) in each case. In fact, in all

cases, the true values of re and rf are always within the 2 (simulation) standard deviations of

the estimated values. When n = 100, r̂f = rf for 99% of the time. For 1% of the time, there

is a downward bias in r̂f ; which arises from the Type I error when estimating re. This sharp

resolution of rf is explained by the substantial e¤ect of the bubble collapse on the limit theory.

Second, when the explosive behavior is stronger, it is easier to estimate re and in this case both

the bias and the standard error become smaller. It is interesting to note that the estimate of rf

remains unchanged when the explosive behavior is stronger - essentially the collapse magnitude

is su¢ cient for determination of rf even when the bubble has smaller overall magnitude. Third,

when the sample size increases, it is easier to estimate re and rf ; both the bias and the standard

error becoming smaller, corroborating the consistency result. In particular, when n = 800,

r̂f = rf 100% of the time.

Tables 4-6 report �ndings for the DF t� test, reporting the means, standard errors, and root

mean square errors (RMSE) and the percentage of replications that hit the true date stamp for

r̂e and r̂f ; when n = 100; 400; 800, respectively. The results are very similar to those for the

DF �� test. In particular, re and rf are again estimated with high accuracy and stronger explosive

behavior facilitates estimation of re. Noticeably, the estimation of rf is improved using the DF t�
test. In particular, r̂f = rf 100% of the time for sample size n = 400 as well as 800; thereby

indicating the increased power in this test which corroborates the asymptotic theory.

Comparison of Tables 1-3 and Table 4-6 reveals several results. First, DF � and DF t perform

11



similarly as far as r̂e is concerned. Both the bias and the standard error are close to each others.

This result is consistent with the �nding of the similar divergence rates in DF � and DF t (see

Remark (b)). Second, DF t performs better than DF � for estimating rf . The estimate r̂f from

DF t has smaller bias and standard error in all cases. This result is consistent with the �nding

of di¤erent divergence rates in DF � and DF t (see Remark (f)).

5 Conclusions

This paper develops limit theory for dating the origination and collapse of explosive periods,

based on a procedure originally proposed in PWY (2009). That procedure involves recursive

calculations of right sided unit root tests for estimating the emergence and termination of mildly

explosive episodes in time series data. It is shown here that, under general regularity conditions,

the estimates of both the origination and collapse dates are consistent. Simulation evidence

shows that the dating procedure works well in �nite samples provided the explosive episode is

su¢ ciently sustained, so that the duration of the period is at least of O (log n) ; where n is the

overall sample size.

6 Appendix

Proof of Theorem 3.1: The result is straightforward to prove and is a direct consequence

of controlling size in the test so that �n ! 0 as n ! 1. Since DF �s )
R 1
0
fWdW= R 10 fW 2 and

DF ts )
R 1
0
fWdW=�R 10 fW 2

�1=2
under the null hypothesis of no episode of explosive behavior, we

have under that null hypothesis

lim
n!1

P
�
DF �s > cv

�
�n

�
= P

 R 1
0
fWdWR 1
0
fW 2

=1
!
= 0; (13)

and

lim
n!1

P
�
DF ts > cv

df
�n

�
= P

0B@ R 1
0
fWdW�R 1

0
fW 2
�1=2 =1

1CA = 0; (14)

because cv��n !1 and cvdf�n !1: Hence, in the limit as n!1 under the null, no origination

point for an explosive period in the data will be detected. �

Proof of Theorem 3.2: For time series data sampled from (9)

Xt = Xt�11 ft < � eg+ �nXt�11 ft � � eg+ "t; �n = 1 +
c

n�
; c > 0; � 2 (0; 1) ; (15)
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over t = 1; :::; � = [nr] prior to � e = [nre] ; conventional unit root asymptotics apply. So, for

r < re we have the functional convergence

1p
n
X[nr] =) B (r) = �W (r) � BM

�
�2
�
; (16)

and following limit theory for the tests

DF �r = �
�
�̂n (�)� 1

�
)
R 1
0
fWdWR 1
0
fW 2

; DF tr )
R 1
0
fWdW�R 1

0
fW 2
�1=2 ;

where �̂n (�) =
P�
j=1

~Xj ~Xj�1=
P�
j=1

~X2
j�1 is the least squares regression coe¢ cient from the

�tted equation (1) and ~Xj denotes demeaned Xj . Clearly, (13) and (14) hold for all r < re.

Hence, under this model and the alternative hypothesis (9), we have for � < � e

P fr̂e < reg ! 0; as n!1: (17)

Next suppose that data is sampled over t = 1; :::; � = [nr] for re < r � rf : In this case, the
data fXt : t = � e; :::; �g satisfy

Xt = �nXt�11 ft � � eg+ "t =
t��eX
j=0

�jn"t�j + �
t��e+1
n X�e�1: (18)

and the components of �̂n are dominated asymptotically by this part of the time series when

r > re:Note that �
�(t��e)
n Xt =

Pt��e
j=0 �

j�(t��e)
n "t�j+�nX�e�1; and, from Phillips and Magdalinos

(2007a, lemma 4.2), as t� � e !1 the following central limit theory holds

1

n�=2

t��eX
j=0

�j�(t��e)n "t�j ) Xc � N
�
0; �2=2c

�
; (19)

whereas n�1=2X�e�1 ) B (re) from (16). Suppose � = [np] for some p > re: Then, as t�� e !1
we have

�
�(t��e)
n

n1=2
Xt =

1

n(1��)=2
1

n�=2

t��eX
j=0

��(t��e�j)n "t�j +
�n

n1=2
X�e�1 ) B (re) ; (20)

so that

Xt = �
(t��e)
n X�e f1 + op (1)g � n1=2�(t��e)n B (re) ; (21)

for all � � � e !1:
Now consider the centred quantities ~Xt = Xt � ��1

P�
j=1Xj : For � = [nr] and re < r � rf ;

We have

1

�
p
n

�X
j=1

Xj =
1

�
p
n

�X
j=�e

Xj +
� e
�
��1e

�e�1X
j=1

Xjp
n
� 1

�
p
n

�X
j=�e

Xj +
re
r

Z 1

0
B (s) ds;

13



and

1

�

�X
j=�e

Xj =
1

�

�X
j=�e

�(j��e)n

�
��(j��e)n Xj

�
=
X�e
�

���eX
k=0

�kn f1 + op (1)g

= X�e
����e+1n � 1
� (�n � 1)

f1 + op (1)g

= X�e
n�����en

�c
f1 + op (1)g ; (22)

so that

��1
�X
j=1

Xj = X�e
n�����en

�c
f1 + op (1)g : (23)

It follows that

~Xt = Xt � ��1
�X
j=1

Xj =

�
�(t��e)n � n

�����en

�c

�
X�e f1 + op (1)g (24)

and so ~Xt behaves asympotically like Xt for t = [np] when re < p � rf : Using (22), we have for
j � � e

~Xj = Xj � ��1
�X
j=1

Xj = �X�e
n�����e+1n

�c
f1 + op (1)g ;

so that the sample mean dominates over this time period and

�eX
j=1

~X2
j�1 =

n2�� e�
2(���e)
n

�2c2
X2
�e f1 + op (1)g : (25)

Using these results in conjunction with standard unit root limit theory, we have

�X
j=1

~X2
j�1 �

�X
j=�e

~X2
j�1 +

�e�1X
j=1

~X2
j�1 =

�X
j=�e

~X2
j�1 f1 + op (1)g ; (26)

�X
j=1

~Xj�1 (Xj � �nXj�1) =
�X

j=�e

~Xj�1"j +
�e�1X
j=1

~Xj�1
�
"j �

c

n�
Xj�1

�
=

�X
j=�e

~Xj�1"j f1 + op (1)g : (27)

Explicit limits may be obtained from (24) for the mildly explosive components of the sums in

(26) and (27). In particular, for � = [nr] with r > re; we obtain

�X
j=�e

~X2
j�1 =

�X
j=�e

�2(j��e)n X2
�e f1 + op (1)g =

�
2(���e+1)
n � �2n
�2n � 1

X2
�e f1 + op (1)g

=
n��

2(���e)
n

2c
X2
�e f1 + op (1)g ;
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which dominates
P�e
j=1

~X2
j�1 as given in (25). Also,

�X
j=�e

~Xj�1"j =
�X

j=�e

�j�1��en X�e"j f1 + op (1)g = ����en X�e

�X
j=�e

��(��j+1)n "j f1 + op (1)g

=
�
n�=2����en X�e

�8<: 1

n�=2

�X
j=�e

��(��j+1)n "j

9=; f1 + op (1)g
� n�=2+1=2����en B (re)Xc;

where Xc is N
�
0; �2=2c

�
using (19). Thus, as n!1

2c�
�2(���e)
n

n1+�

�X
j=�e

~X2
j�1 ) B (re)

2 ; (28)

Further,
�
�(���e)
n

n�=2+1=2

�X
j=�e

~Xj�1"j ) B (re)Xc;

where B (re) and Xc are independent Gaussian variates. It follows that for � = [nr] and r > re;

we have

n(1+�)=2����en

2c

�
�̂n (�)� �n

�
=

�
�(���e)
n

n�=2+1=2

P�
j=�e

Xj�1"j f1 + op (1)g
2c�

�2(���e)
n
n1+�

P�
j=�e

X2
j�1 f1 + op (1)g

) Xc
B (re)

; (29)

where the rate of convergence is n(1+�)=2����en . Then, since � 2 (0; 1) and c > 0 we have

�
�
�̂n (�)� 1

�
= �

�
�̂n (�)� �n

�
+ � (�n � 1)

= � (�n � 1) + op
�

�

n(1+�)=2����en

�
= n1��rc+ op (1)!1: (30)

Correspondingly,

DF �r = �
�
�̂� (�)� 1

�
= n1��rc f1 + op (1)g ! 1: (31)

The regression residual variance estimate is, using (29),
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�̂2� = ��1
�X
j=1

�
~Xj � �̂n (�) ~Xj�1

�2
= ��1

�X
j=1

�
"j �

�
�̂n (�)� �n

�
~Xj�11 fj � � eg �

�
�̂n (�)� 1

�
~Xj�11 fj < � eg

�2
= ��1

�X
j=1

"2j + op

 
��1

P�
j=�e

~X2
j�1

n1+��
2(���e)
n

!
+ op

 
��1

P�
j=�e

~Xj�1"j

n(1+�)=2����en

!

+Op

0@n�2�
�

�eX
j=1

~X2
j�1

1A+Op P�e
j=1

~Xj�1"j

n��

!

=
�
2(���e)
n � e
�3c2

X2
�e f1 + op (1)g =

�
2(���e)
n re
�2c2r

X2
�e f1 + op (1)g ; (32)

since
P�e
j=1

~X2
j�1 =

n2��e�
2(���e)
n

�2c2
X2
�e f1 + op (1)g from (25). Using these results , the DF t statis-

tic for � = [nr] and r > re is

DF tr =

 P�
j=1

~X2
j�1

�̂2�

!1=2 �
�̂n (�)� 1

�

=

 
��2

P�
j=1

~X2
j�1

�̂2�

!1=2
�
�
�̂n (�)� 1

�

=

 
��2

P�
j=�e

~X2
j�1

�̂2�

!1=2
n1��rc f1 + op (1)g

=

0@ n��
2(���e)
n
�22c

X2
�e

�
2(���e)
n re
�2c2r

X2
�e

1A1=2 n1��rc f1 + op (1)g
=

�
n�cr

2re

�1=2
n1��rc f1 + op (1)g

= n1��=2
c3=2r3=2

21=2r
1=2
e

f1 + op (1)g ; (33)

which diverges at the rate n1��=2 as n!1:
De�ne the (asymptotic fractional r) critical values of the coe¢ cient and DF tests as

cv��n = cv�n

(R 1
0
~WdWR 1
0
~W 2

)
; and cvdf�n = cv�n

8><>:
R r
0
~WdW�R r

0
~W 2
�1=2

9>=>; ; (34)
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and, as indicated earlier, we set �n ! 0 so that cv��n ; cv
df
�n
!1 for all r 2 [r0; 1] :

We deduce from (30) that for all � = [nr] and r > re

P
�
�
�
�̂n (�)� 1

�
> cv��n

�
! 1; (35)

provided
cv��n
n1�� ! 0; and from (33) that

P
�
DF tr > cv

df
�n

�
! 1; (36)

provided
cvdf�n
n1��=2

! 0: According to (7) we have r̂e = infs
n
s : DF ts > cv

df
�n

o
: It follows that for

any � > 0

P fr̂e > re + �g ! 0;

since P
�
DF tre+a� > cv

df
�n

�
! 1 for all 0 < a� < �: Since � > 0 is arbitrary and since

P fr̂e < reg ! 0 from (17), we deduce that P fjr̂e � rej > �g ! 0 as n!1, provided

1

cvdf�n

+
cvdf�n
n1��=2

! 0; (37)

for all r 2 [r0; 1] : Hence, as n!1

r̂e = inf
s

n
s : DFs > cv

df
�n
; s 2 [r0; 1]

o
!p re: (38)

In a similar way for the coe¢ cient test, we have

r̂e = inf
s

n
s : [ns]

�
�̂n ([ns])� 1

�
> cv��n ; s 2 [r0; 1]

o
!p re;

provided
1

cv��n

+
cv��n
n1��

! 0; (39)

for all r 2 [r0; 1] : �

Proof of Theorem 3.3: When c = 0 and �n = 1 in (12) there is no explosive episode in

the data and no origination date is detected as n!1; so that (i) holds by Theorem 3.1.

To prove (ii) we consider the behavior the tests for various values of � : First suppose that

data is sampled over t = 1; :::; � = [nr] with r 2 (re; rf ) : The data fXt : t = � e; :::; �g satisfy
(18), and the test statistics DF � and DF t have the same behavior as in (31) and (33), just as

before. The case re < r � rf therefore follows from the earlier analysis. In particular, over this

range of r; mildly explosive asymptotics apply and we have from (30)

�
�
�̂n (�)� 1

�
= n1��rc+ op (1)!1;
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so that

P
�
�
�
�̂n (�)� 1

�
< cv��n

�
! 0; (40)

for all �xed critical values cv��n : Similarly, from (33) we have

P
�
DF tr < cv

df
�n

�
! 0; (41)

for all �xed critical values cvdf�n : Since the two termination date estimation criteria are

r̂f = inf
s�r̂e+ log(n)

n

n
s : DF as�r̂e < cv

df
�n

o
; for a = �; t

it follows from (40) - (41) that

lim
n!1

P (r̂f < rf )! 0; (42)

for both the coe¢ cient test and t test. Hence, as n!1; r̂f never underestimates the collapse
date rf :

Next consider the case where t > � f : In this event the data Xt satisfy

Xt =

tX
k=�f+1

"k +X
�
�f
=

tX
k=�f+1

"k +X�e +X = Op

�
n1=2

�
;

while the demeaned data ~Xt = Xt� ��1
P�
j=1Xj = Xt� �X� depend on the full sequence fXjg�1

which satis�es

Xj = Xj�11 fj < � eg+�nXj�11 f� e � j � � fg+

0@ jX
k=�f+1

"k +X
�
�f

1A 1 fj > � fg+"j1 fj � � fg :
For � e < j � � f we have from (21)

Xj = �
(j��e)
n X�e f1 + op (1)g � n1=2�(j��e)n B (re) : (43)

Hence, the sample mean is

��1
�X
j=1

Xj =
1

�

�X
j=�f+1

0@ jX
k=�f+1

"k +X�e +X

1A+ 1

�

�fX
j=�e

 
j��eX
k=0

�kn"t�k + �
j��e
n X�e

!

+
1

�

�e�1X
j=1

 
jX
k=1

"k +X0

!

=
1

�

0@ �fX
j=�e

�(j��e)n

1AX�e +Op
 
n3=2

�

!

=
1

�

�
�f��e+1
n � 1
�n � 1

X�e +Op

 
n3=2

�

!

=
n�

�c
�
�f��e+1
n X�e f1 + op (1)g �

n�+1=2

�c
�
�f��e+1
n B (re) : (44)
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Then, for � f < t � �

~Xt = Xt � ��1
�X
j=1

Xj =

0@ tX
k=�f+1

"k +X�e +X

1A� n�
�c
�
�f��e
n X�e f1 + op (1)g

= �n
�

�c
�
�f��e
n X�e f1 + op (1)g ;

which is dominated by the sample mean �X� :

It follows that
�X

j=�f+1

~X2
j�1 =

n2� (� � � f )
�2c2

�
2(�f��e)
n X2

�e f1 + op (1)g ; (45)

and

�X
j=�f+1

~Xj�1"j = �
n�

�c
�
�f��e
n X�e

�X
j=�f+1

"j f1 + op (1)g : (46)

Next we need to consider ~Xt = Xt � ��1
P�
j=1Xj for � e � t � � f : Over this period the

behavior of Xt is given in (43) and so, using (44),

~Xt = Xt � ��1
�X
j=1

Xj = �
t��e
n X�e f1 + op (1)g �

n�

�c
�
�f��e
n X�e f1 + op (1)g : (47)

Since
�fX
j=�e

�(j��e)n =
�
(�f��e+1)
n � �n

�n � 1
=
n��

�f��e
n

c
f1 + op (1)g ;

we have

�fX
j=�e

~X2
j�1 =

8<:
�fX
j=�e

�2(j��e)n � 2

0@ �fX
j=�e

�(j��e)n

1A�n�
�c
�
�f��e
n

�
+ (� f � � e)

�
n�

�c
�
�f��e
n

�29=;
� X2

�e f1 + op (1)g

=

8<:�
2(�f��e+1)
n � �2n

�2n � 1
� 2

�

 
n��

�f��e
n

c

!2
+ (� f � � e)

�
n�

�c
�
�f��e
n

�29=;
� X2

�e

���eX
k=0

�2kn f1 + op (1)g

=

8<:n��
2(�f��e)
n

2c
� 2

�

 
n��

�f��e
n

c

!2
+ (� f � � e)

�
n�

�c
�
�f��e
n

�29=;X2
�e f1 + op (1)g

=
n��

2(�f��e)
n

2c
X2
�e f1 + op (1)g ; (48)
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so that
P�f
j=�e

~X2
j�1 =

P�f
j=�e

X2
j�1 f1 + op (1)g. Similarly, we �nd using (47) that

�fX
j=�e

~Xj�1"j =

�fX
j=�e

�
�j�1��en � n

�

�c
�
�f��e
n

�
X�e"j f1 + op (1)g

=

8<:
�fX
j=�e

�j�1��en "j �
n�

�c
�
�f��e
n

�fX
j=�e

"j

9=;X�e f1 + op (1)g
=

8<:��f��en

�fX
j=�e

�
�(�f�j+1)
n "j �

n�

�c
�
�f��e
n

�fX
j=�e

"j

9=;X�e f1 + op (1)g
=

8<:n�=2��f��en
1

n�=2

�fX
j=�e

�
�(�f�j+1)
n "j �

n�+1=2

�c
�
�f��e
n

P�f
j=�e

"jp
n

9=;X�e f1 + op (1)g
=

8<:n�=2��f��en
1

n�=2

�fX
j=�e

�
�(�f�j+1)
n "j

9=;X�e f1 + op (1)g
=

�X
j=�e

Xj�1"j f1 + op (1)g � n�=2+1=2�
�f��e
n B (re)Xc; (49)

using (19), since �=2� (�� 1=2) = (1� �) =2 > 0: Then, (48) and (49) give

2c�
�2(�f��e)
n

n�

�fX
j=�e

~X2
j�1 ) B (re)

2 ; (50)

�
�(�f��e)
n

n(1+�)=2

�fX
j=�e

~Xj�1"j ) B (re)Xc: (51)

Using (45), (50) and (44) we deduce that

�X
j=1

~X2
j�1 =

�X
j=�f+1

~X2
j�1 +

�fX
j=�e

~X2
j�1 +

�e�1X
j=1

~X2
j�1

=

�X
j=�f+1

~X2
j�1 +

�fX
j=�e

~X2
j�1 +

�e�1X
j=1

X2
j�1 + (� e � 1) �X2

� � 2 �X�
�e�1X
j=1

Xj�1

=
n2� (� � � f )

�2c2
�
2(�f��e)
n X2

�e f1 + op (1)g+
n��

2(�f��e)
n

2c
X2
�e f1 + op (1)g

+(� e � 1)
�
n�

�c
�
�f��e
n X�e

�2
f1 + op (1)g

=
n��

2(�f��e)
n

2c
X2
�e f1 + op (1)g
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and

2c�
�2(�f��e)
n

n�

�X
j=1

~X2
j�1 ) B (re)

2 :

Now suppose � = [nr] > � f and consider

~Xj � ~Xj�1 = Xj �Xj�1 �
1

�

�X
t=1

(Xt �Xt�1) = Xj �Xj�1 �
1

�
(X� �X0)

=

8>><>>:
"j � 1

� (X� �X0) j < � e
"j +

c
n�Xj�1 �

1
� (X� �X0) � e � j � � f

"�f+1 +X�e +X �X�f � 1
� (X� �X0) j = � f+1

"j � 1
� (X� �X0) j > � f

:

Observe that X� =
P�
k=�f+1

"k +X
�
�f
=
P�
k=�f+1

"k +X�e +X = Op (
p
n) ; so that ��1X� =

Op
�
n�1=2

�
: Further, X�f = �

(�f��e)
n X�e f1 + op (1)g from (43). So when j = � f + 1 we have

~X�f+1 � ~X�f = X�e �X�f +
�
"�f+1 +X

�
+Op

�
n�1=2

�
= ��(�f��e)n X�e f1 + op (1)g : (52)

Next, using (46), (49), (50), and (52) we have

�X
j=1

~Xj�1
�
~Xj � ~Xj�1

�

=
�X

j=�f+2

~Xj�1"j + ~X�f

�
~X�f+1 � ~X�f

�
+

�fX
j=�e

~Xj�1
�
"j +

c

n�
Xj�1

�
+

�e�1X
j=1

~Xj�1"j

= �n
�

�c
�
�f��e
n X�e

�X
j=�f+2

"j f1 + op (1)g � �
2(�f��e)
n X2

�e f1 + op (1)g

+

�fX
j=�e

~Xj�1
�
"j +

c

n�
Xj�1

�
� n

�

�c
�
�f��e
n X�e

�e�1X
j=1

"j f1 + op (1)g+Op (n)
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= �n�2(�f��e)n
X2
�e

n
f1 + op (1)g

�n
1+�

�c
�
�f��e
n

X�ep
n

P�
j=�f+2

"j +
P�e�1
j=1 "jp

n
f1 + op (1)g

+n�=2+1=2�
�f��e
n

0@ 1

n�=2

�fX
j=�e

�
�(�f�j+1)
n "j

1A X�ep
n
f1 + op (1)g

+
c

n�
n��

2(�f��e)
n

2c
X2
�e f1 + op (1)g+Op (n)

= �n�2(�f��e)n
X2
�e

n
f1 + op (1)g+

n�
2(�f��e)
n

2

X2
�e

n
f1 + op (1)g

= �n�
2(�f��e)
n

2

X2
�e

n
f1 + op (1)g :

Hence, for � = [nr] and r > rf ; we have

�̂n (�)� 1 =

P�
j=1

~Xj�1
�
~Xj � ~Xj�1

�
P�
j=1

~X2
j�1

=
�n�

2(�f��e)
n
2

X2
�e
n f1 + op (1)g

n1+��
2(�f��e)
n
2c

X2
�e
n f1 + op (1)g

= � c

n�
f1 + op (1)g :

Then n�
�
�̂n (�)� 1

�
= �c+ op (1) and

�
�
�̂n (�)� 1

�
= �c �

n�
+ op (1) = �crn1�� ! �1: (53)

for all � � � e !1:
We deduce from (53) that, for � > � f ; �̂n (�) !p 1: Observe that there is some downward

bias (below unity) in �̂n (�) even in the limit distribution. This is due to the fact that �̂n (�) is

computed with data that involves the explosive episode (� e � t � � f ) which makes the post-

collapse data (� > � f ) look mean reverting and (eventually) leads to a second order downward

bias (that is in the limit distribution) in �̂n (�) below unity.

Next consider the residual variance estimate that appears in the DF t statistic. As in (32),
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we have

�̂2�
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1

�

�X
j=1

�
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=

1
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�
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�2
+
1

�
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� �̂n (�)

�
X�f � �X�

�o2
=

1

�

�X
j=1

"2j +Op
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�

24 �eX
j=1

~X2
j�1 +

�X
j=�f+1

~X2
j�1

351A+Op P�e
j=1

~Xj�1"j +
P�
j=�f+1

~Xj�1"j

n��

!
+��1X2

�f
f1 + op (1)g

= ��1�
2(�f��e)
n X2

�e f1 + op (1)g ;

since X�f = �
(�f��e)
n X�e f1 + op (1)g : Hence, the DF t statistic has the form P�

j=1
~X2
j�1

�̂2�

!1=2 �
�̂n (�)� 1

�

=

0B@ n��
2(�f��e)
n
2c X2

�e f1 + op (1)g

��1�
2(�f��e)
n X2

�e f1 + op (1)g

1CA
1=2 �

�̂n (�)� 1
�

=

�
�n�

2c

�1=2 �
�̂n (�)� 1

�
f1 + op (1)g

= �n
(1+�)=2r1=2c1=2p

2
f1 + op (1)g ! �1

and diverges to minus in�nity at the rate O
�
n(1+�)=2

�
:

The limit theory for the terminal estimate r̂f under the alternative when r > rf now follows.

For all � = [nr] with r > rf we have

P
�
�
�
�̂n (�)� 1

�
< cv��n

�
= P

�
�n1��rc f1 + op (1)g < cv��n

�
! 1; (54)

and similarly

P
�
DF tr < cv

df
�n

�
= P

 
�n

(1+�)=2c1=2p
2

f1 + op (1)g < cvdf�n

!
! 1: (55)
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Note that both (54) and (55) hold even for �xed critical values cv��n and cv
df
�n
: The remainder

of the proof follows as before and we have

r̂f = inf
s�r̂e+ log(n)

n

n
s : DF ts < cv

df
�n
; s 2 (r̂e; 1)

o
!p rf :

and

r̂f = inf
s�r̂e+ log(n)

n

n
s : n

�
�̂n ([ns])� 1

�
< cv��n ; s 2 (r̂e; 1)

o
!p rf ;

which hold for all cv��n ; cv
df
�n
� 0: �
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Table 1: Estimates of re and rf based on the DF coe¢ cient test. We simulate 1,000 sample
paths, each with 100 observations, from the model de�ned by (6). The true values for re is 0.4
and the true value for rf is 0.6. We impose the rule that r̂f � r̂e > [log(n)]=n. Critical values
are log log2(�).

1 + c=n� = 1:035 1 + c=n� = 1:040 1 + c=n� = 1:045 1 + c=n� = 1:050

r̂e r̂f r̂e r̂f r̂e r̂f r̂e r̂f
Mean .4496 .5968 .4425 .5968 .4369 .5968 .4326 .5968
Std .0353 .0275 .0311 .0275 .0279 .0275 .0253 .0275
RMSE .0609 .0277 .0526 .0277 .0462 .0277 .0413 .0277

Exact Est (%) 2.22 98.67 2.22 98.67 3.78 98.67 4.22 98.67

Table 2: Estimates of re and rf based on the DF coe¢ cient test. We simulate 1,000 sample
paths, each with 400 observations, from the model de�ned by (6). The true values for re is 0.4
and the true value for rf is 0.6. We impose the rule that r̂f � r̂e > [log(n)]=n. Critical values
are log log2(�).

1 + c=n� = 1:035 1 + c=n� = 1:040 1 + c=n� = 1:045 1 + c=n� = 1:050

r̂e r̂f r̂e r̂f r̂e r̂f r̂e r̂f
Mean .4246 .5993 .4213 .5993 .4188 .5993 .4169 .5993
Std .0167 .0150 .0149 .0150 .0135 .0150 .0125 .0150
RMSE .0298 .0150 .0260 .0150 .0231 .0150 .0210 .0150

Exact Est (%) 0.22 99.78 0.44 99.78 0.44 99.78 0.66 99.78

Table 3: Estimates of re and rf based on the DF coe¢ cient test. We simulate 1,000 sample
paths, each with 800 observations, from the model de�ned by (6). The true values for re is 0.4
and the true value for rf is 0.6. We impose the rule that r̂f � r̂e > [log(n)]=n. Critical values
are log log2(�).

1 + c=n� = 1:035 1 + c=n� = 1:040 1 + c=n� = 1:045 1 + c=n� = 1:050

r̂e r̂f r̂e r̂f r̂e r̂f r̂e r̂f
Mean .4182 .6000 .4157 .6000 .4139 .6000 .4125 .6000
Std .0135 .0000 .0116 .0000 .0103 .0000 .0092 .0000
RMSE .0226 .0000 .0196 .0000 .0173 .0000 .0155 .0000

Exact Est (%) 0.00 100 0.00 100 0.00 100 0.00 100

Table 4: Estimates of re and rf based on the DF t test. We simulate 1,000 sample paths, each
with 100 observations, from the model de�ned by (6). The true values for re is 0.4 and the true
value for rf is 0.6. We impose the rule that r̂f� r̂e > [log(n)]=n. Critical values are 23 log log

2(�).
1 + c=n� = 1:035 1 + c=n� = 1:040 1 + c=n� = 1:045 1 + c=n� = 1:050

r̂e r̂f r̂e r̂f r̂e r̂f r̂e r̂f
Mean .4579 .5978 .4492 .5978 .4435 .5978 .4387 .5978
Std .0354 .0230 .0311 .0230 .0280 .0230 .0256 .0230
RMSE .0679 .0231 .0582 .0231 .0517 .0231 .0464 .0231

Exact Est (%) 1.33 99.11 2.00 99.11 2.22 99.11 2.67 99.11
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Table 5: Estimates of re and rf based on the DF t test. We simulate 1,000 sample paths, each
with 400 observations, from the model de�ned by (6). The true values for re is 0.4 and the true
value for rf is 0.6. We impose the rule that r̂f� r̂e > [log(n)]=n. Critical values are 23 log log

2(�).
1 + c=n� = 1:035 1 + c=n� = 1:040 1 + c=n� = 1:045 1 + c=n� = 1:050

r̂e r̂f r̂e r̂f r̂e r̂f r̂e r̂f
Mean .4284 .6000 .4248 .6000 .4220 .6000 .4198 .6000
Std .0152 .0000 .0134 .0000 .0118 .0000 .0107 .0000
RMSE .0323 .0000 .0282 .0000 .0250 .0000 .0225 .0000

Exact Est (%) 0.00 100 0.00 100 0.00 100 0.00 100

Table 6: Estimates of re and rf based on the DF t test. We simulate 1,000 sample paths, each
with 800 observations, from the model de�ned by (6). The true values for re is 0.4 and the true
value for rf is 0.6. We impose the rule that r̂f� r̂e > [log(n)]=n. Critical values are 23 log log

2(�).
1 + c=n� = 1:035 1 + c=n� = 1:040 1 + c=n� = 1:045 1 + c=n� = 1:050

r̂e r̂f r̂e r̂f r̂e r̂f r̂e r̂f
Mean .4203 .6000 .4177 .6000 .4157 .6000 .4141 .6000
Std .0134 .0000 .0116 .0000 .0102 .0000 .0091 .0000
RMSE .0243 .0000 .0211 .0000 .0187 .0000 .0168 .0000

Exact Est (%) 0.00 100 0.00 100 0.00 100 0.00 100
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