
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lecr20

Econometric Reviews

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lecr20

Latent local-to-unity models

Xiaohu Wang & Jun Yu

To cite this article: Xiaohu Wang & Jun Yu (2023) Latent local-to-unity models, Econometric
Reviews, 42:7, 586-611, DOI: 10.1080/07474938.2023.2215034

To link to this article:  https://doi.org/10.1080/07474938.2023.2215034

Published online: 29 Jun 2023.

Submit your article to this journal 

Article views: 18

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lecr20
https://www.tandfonline.com/loi/lecr20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/07474938.2023.2215034
https://doi.org/10.1080/07474938.2023.2215034
https://www.tandfonline.com/action/authorSubmission?journalCode=lecr20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lecr20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/07474938.2023.2215034
https://www.tandfonline.com/doi/mlt/10.1080/07474938.2023.2215034
http://crossmark.crossref.org/dialog/?doi=10.1080/07474938.2023.2215034&domain=pdf&date_stamp=2023-06-29
http://crossmark.crossref.org/dialog/?doi=10.1080/07474938.2023.2215034&domain=pdf&date_stamp=2023-06-29


ECONOMETRIC REVIEWS
2023, VOL. 42, NO. 7, 586–611
https://doi.org/10.1080/07474938.2023.2215034

Latent local-to-unity models

Xiaohu Wanga and Jun Yub,#

aSchool of Economics, Fudan University, and Shanghai Institute of International Finance and Economics, Shanghai,
China; bSingapore Management University, Singapore

ABSTRACT
The article studies a class of state-space models where the state equation is a
local-to-unity process. The parameter of interest is the persistence parameter
of the latent process. The large sample theory for the least squares (LS) esti-
mator and an instrumental variable (IV) estimator of the persistent parameter
in the autoregressive (AR) representation of the model is developed under
two sets of conditions. In the first set of conditions, the measurement error
is independent and identically distributed, and the error term in the state
equation is stationary and fractionally integrated with memory parameter
d ∈ (−0.5, 0.5). For both estimators, the convergence rate and the asymptotic
distribution crucially depend on d. The LS estimator has a severe downward
bias, which is aggravated even more by the measurement error when d ≤ 0.
The IV estimator eliminates the effects of the measurement error and reduces
the bias. In the second set of conditions, the measurement error is independent
but not necessarily identically distributed, and the error term in the state
equation is strongly mixing. In this case, the IV estimator still leads to a smaller
bias than the LS estimator. Special cases of our models and results in relation
to those in the literature are discussed.
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1. Introduction

Since the local-to-unity literature was initiated by Phillips (1987a) and Chan and Wei (1987), the local-
to-unity model has received tremendous attention in theoretical and empirical studies.1. The success of
the local-to-unity model is not surprising because (1) the local-to-unity model is more general than the
exact unit root model; (2) it well describes the dynamics of many macroeconomic and financial time
series; and (3) the resulting asymptotic distribution better approximates the finite sample distribution
than the asymptotic distribution under the assumption of weak dependence.

However, the local-to-unity models used in practical applications assume the variable of interest is
observed without errors. This assumption can be too strong in practice. For example, when a time series
is obtained from a survey, errors of many types are possible, such as recall errors and sampling errors.
These so-called measurement errors can occur with a systematic pattern that generates the difference
between the respondents’ answers to a question and the actual values. See Kasprzyk (2005) for possible
sources of measurement errors and Bound et al. (2001) for certain econometric consequences. For
another example, a time series is sometimes obtained from estimation. A well-known example that
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motivates this article is the daily time series of realized volatilities (RV), which are estimates of the daily
integrated volatilities. Andersen et al. (2003) and Corsi (2009) introduce alternative models for RV. For
the third example, a latent time series may be related to an observed time series by definition or for
structural reasons. The class of the DSGE models and the family of stochastic volatility (SV) models are
among the interesting models in this example.

In this article, we consider the following latent local-to-unity model:{
yt = μ + ξt + wt
ξt = θTξt−1 + vt , θT = 1 + c

T , ξ0 ∼ Op(1)
, t = 0..., T, (1)

where μ is a constant, {ξt} is a latent process that is local-to-unity with c ∈ (−∞, ∞) being the local
coefficient. When θT = θ , which is independent of T, and when {wt} and {vt} are serially independent
Gaussian processes, the model is the popular linear Gaussian state-space model. We deviate from the
literature on linear Gaussian state-space modeling by assuming θT is a function of T, and also by allowing
for more general stochastic behavior for the measurement error {wt} and also for {vt}.

The main model considered in the article assumes that {wt} is independent and identically distributed
(i.i.d.), and {vt} forms a fractionally integrated series with an order d ∈ (−0.5, 0.5), that is, an I(d)
process. The I(d) process with d ∈ (0, 0.5) has positive serial correlations and an infinite long-run
variance and has been widely applied to model long-memory time series in economics and finance;
see, for example, Granger and Joyeux (1980), Baillie (1996), and Andersen et al. (2003). The interaction
between cross-sectional/temporal aggregation and long-range dependence has been investigated by
Andersen and Bollerslev (1997), Chambers (1998), and Lieberman and Phillips (2008). In contrast,
when d ∈ (−0.5, 0), {vt} becomes an antipersistent process that has negative serial dependence and zero
long-run variance. As argued in Shi and Yu (2022) and Li et al. (2022), the local-to-unity process {ξt}
with antipersistent errors can also have positive autocorrelations decaying very slowly and, therefore,
is capable of describing time series with long-range dependence. The models of this type share the
same spirit as rough volatility models, which are becoming increasingly popular in modeling spot
volatility and realized variance in the literature; see, for example, Gatheral et al. (2018) and Wang et
al. (2023a). Moreover, when c = 0, the latent process ξt becomes an nonstationary I (d∗) process with
d∗ = d + 1 ∈ (0.5, 1.5). Diebold and Rudebusch (1989) have found evidence of d∗ = 0.68 for the U.S.
quarterly real GNP per capita.2

Our interest is in the estimation and inference of θT , which captures the persistence level of the latent
process. Model (1) can be rewritten as a first-order autoregression (AR) with an intercept:

yt = α + θTyt−1 + εt , (2)

where α = (1 − θT) μ and

εt = vt + wt − θTwt−1. (3)

A simple way to estimate θT is via the least squares (LS) method based on the observations of
{

yt
}

.
Denote the LS estimator by θ̂T . First, we will show that θ̂T is consistent, but both the convergence rate
and the asymptotic distribution depend on the value of d. Second, we will show that θ̂T has a severe
downward bias when d ∈ (−0.5, 0]. When wt �= 0, the variance of wt appears in the limiting distribution
of θ̂T and deteriorates the bias problem further. Third, when d ∈ (0, 0.5), we will show that the limiting
distribution is not affected by the existence of the measurement error {wt}.

To avoid the influence of the measurement error {wt} and reduce the bias in estimating θT , we propose
the use of the instrumental variable (IV) estimator, denoted by θ̂ IV

T , with yt−2 as the IV. It is shown that
the limiting distribution of θ̂ IV

T is not affected by {wt}. In addition, when d ∈ (−0.5, 0], θ̂ IV
T not only

gets rid of the bias caused by the measurement error but also diminishes the bias induced by the serial
dependence in {vt}. In other words, even when the latent process ξt can be observed directly, θ̂ IV

T still

2Beran (1992) provides a nice review of results on estimation and statistical inference of the process with long-range
dependence.
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outperforms θ̂T in terms of bias. Furthermore, when d ∈ (0, 0.5), θ̂ IV
T leads to the same asymptotic theory

as θ̂T .
For completeness of the theory and also for the comparison purpose, we study another model, where

{vt} is a strongly mixing process and {wt} and {vt} have heteroskedasticity. Similar results are found in
this model to those in the main model. The measurement error aggravates the bias of the LS estimator
θ̂T but plays no role in the asymptotics of the IV estimator θ̂ IV

T . However, θ̂ IV
T may have more or less bias

than θ̂T , depending on the sign of the probability limit of
∑T

t=2 vtvt−1. This result reveals the fact that
the particular dependence structure of the I(d) process is the reason why θ̂ IV

T outperforms θ̂T in the first
model.

Our study is closely related to Hansen and Lunde (2014), where the latent process {ξt} in (1) is
assumed to be ARMA

(
p, q
)
. They prove that the IV estimator of the persistence parameter with yt−j,

j ≥ max
{

p, q
}

, as an instrument, is consistent and can purge the influence of the errors {wt} in the
observation equation. This article extends the model of Hansen and Lunde (2014) with a weakly
dependent structure to that with a strongly dependent structure. Our results show that even with the
I(d) error, the IV estimator with yt−2 as an instrument can eliminate the effects of the measurement
error and, more importantly, can further reduce the bias.

The rest of the article is organized as follows. Section 2 introduces the model where {vt} is an I (d)

process and {wt} is an i.i.d. sequence. The large sample theory of the LS estimator and the IV estimator of
θT is provided. Section 3 studies the model in which {vt} is strongly mixing and {wt} is an independent
but not necessarily identically distributed sequence. Both {vt} and {wt} allow for heteroskedasticity.
Simulation studies are presented in Section 4 to examine the finite sample performance of the derived
asymptotic distributions and to compare the performance of the LS estimator and the IV estimator of
θT . Section 5 concludes. Appendix collects the proof of the theoretical results. Throughout the article,
we use

p→, ⇒, d→, d=, iid∼ to denote convergence in probability, weak convergence, convergence in
distribution, equivalence in distribution, and independent and identically distributed, respectively. The
weak convergence is defined in the space of càdlàg functions equipped with the Skorokhod topology.

2. Latent model with I (d) errors

In this section, we first introduce our main model of the article and connect it with some popular models
in the volatility literature. Then, we focus on estimating the persistence parameter of the latent process
and provide the large sample theory of the LS estimator and an IV estimator.

2.1. The model and motivations

Consider the latent local-to-unity model defined in (1) with the following assumptions for the error
series {wt} and {vt}.

Assumption 1. wt
iid∼ (0, σ 2

w).

Assumption 2. vt is an I (d) process with d ∈ (−0.5, 0.5), i.e., (1 − L)d vt = et
iid∼ (0, σ 2

e ). There exists
k = max

{
4, 2

d+0.5 − 4
}

such that E |et|k < ∞.

Assumption 3. wt and vs are independent for any t and s.

Remark 2.1. Assumption 1 assumes that the latent process {ξt} is observed with i.i.d. errors. Assumption
2 takes that the error sequence of the latent process, {vt}, is a fractionally integrated process with order
d ∈ (−0.5, 0.5). It means that
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vt =
∞∑

k=0
aket−k, with ak = �(k + d)

�(k + 1)�(d)
∼ |k|d−1 for large |k| .

where �(·) denotes the Gamma function. The process {vt} is stationary and ergodic for all values of
d ∈ (−0.5, 0.5). The autocovariance function is given by

Cov
(
vt , vt−k

)=
{

0 for all k �= 0, if d = 0
�(1−2d)�(d+k)

�(d)�(2−d)�(1−d+k) ∼ |k|2d−1 for large |k| , if d �= 0 .

Note that when d = 0, {vt} becomes an i.i.d. sequence. Whereas when d �= 0, {vt} has serial dependence
at all lags. If d > 0, the autocovariance of vt at any lag is positive. Additionally, the autocovariances decay
more slowly than |k|−1 and are not summable. Hence, I (d) processes with d ∈ (0, 0.5) are often adopted
to model long-memory time series. In contrast, if d < 0, {vt} has negative autocovariance for any k �= 0,
which decays faster than |k|−1 as k → ∞. Moreover, the sum of autocovariances equals zero, and {vt}
is called an antipersistent process. In this case, however, the autocovariance of the latent process ξt can
still be positive and decay slowly at small and moderate lags due to the local-to-unity AR root (Li et al.,
2022).

The process {ξt} with no observation errors has been extensively studied in the literature. For example,
Diebold and Rudebusch (1989) apply the process {ξt} with θT = 1 and d = −0.32 to model the U.S.
quarterly real GNP per capita. Sowell (1990) develops the large sample theory of the LS estimator of θT
when θT = 1 and no intercept is involved in the regression. Buchmann and Chan (2007) extend Sowell’s
results to the local-to-unity case.

In the following, we motivate our study by linking our model to some existing models in the volatility
literature. It is known that RV serves as a consistent estimate of the integrated variance as the sampling
frequency of the return observations shrinks to zero. A well-established stylized fact is the daily log RV
series has a slowly decaying autocorrelation function (ACF). A standard procedure to model the daily log
RV series is to use a fractional process, namely I(d) with d ∈ (0, 0.5). Significant contributions include
Andersen et al. (2001a, 2001b) and Andersen et al. (2003). Andersen and Bollerslev (1997) provide an
interesting explanation of a slowly decaying ACF in volatilities (i.e., ACF at lag k is of order k2d−1 with
d ∈ (0, 0.5) for large k so that the ACF is not absolutely summable) from the interactions of a large
number of heterogeneous information processes.3 The interaction between aggregation and long-range
dependence is also explored in Chambers (1998) and Lieberman and Phillips (2008). Andersen et al.
(2003) introduce the ARFIMA(1, d, 0) model for log RV and provide evidence of d ∈ (0, 0.5) (i.e., long-
memory errors) and weak short-run dynamic based on a semiparametric estimation method. They
also provide evidence that the ARFIMA(1, d, 0) model with long-memory errors and weak short-run
dynamics outperforms many alternative models in predicting RV and log RV, including GARCH-type
models and other high-frequency models.

However, a recent attempt to model daily log RV series is to use the local-to-unity model with
antipersistent errors. Shi and Yu (2022) find that many daily log RV series are better fitted by the local-to-
unity model with I(d) errors where d ∈ (−0.5, 0). Li et al. (2022) argue that there is a weak identification
issue between the pure I(d) process with d > 0 and the local-to-unity process with I(d) errors where
d < 0. A debate about how to model slow-decaying ACFs of log RV begins with Gatheral et al. (2018),
where the new stylized fact termed “roughness” is established for the sample path of RV. The partial sum
of an I(d) process converges weakly to the fractional Brownian motion (fBm), denoted by BH(t) with
H = d + 0.5 being the Hurst parameter. Comte and Renault (1996) model the spot volatility of asset price
by using the fractional Ornstein-Uhlenbeck (fO-U) process driven by BH(t) with H > 0.5 (i.e., d > 0).

3Partly motivated by the presence of heterogeneous traders, Corsi (2009) proposes to use the heterogeneous autoregressive
(HAR) model to capture the slowly decaying ACF. The HAR model has become a popular model in practice to forecast RV.
An interesting observation of Table 2 in Corsi (2009) is that the sum of the three autoregressive parameter estimates is very
close to one for USD/CHF and S & P500.
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Gatheral et al. (2018) point out that Comte and Renault’s model tends to generate smoother sample paths
than the actual daily RV series. Gatheral et al. (2018) advocate the usage of fBm with H < 0.5 (i.e., d < 0).
This model generates sample paths that are rougher than that from the standard Brownian motion. In
the empirical studies, Gatheral et al. use fBm with H = 0.14 to model log RV and forecast RV and log RV
out-of-sample. It is shown that fBm with H = 0.14 performs better than the AR(5), AR(10), and HAR
models. The fBm with H = 0.14 corresponds to a unit root process with antipersistent errors in discrete
time.

Wang et al. (2023a) apply the fO-U process to model log RV. Under the infill sampling scheme, the
fO-U model is a local-to-unity model with fractionally integrated errors. They introduce a two-stage
method to estimate parameters and develop large sample properties of the estimators. When applying
the approach to the daily log RV, daily log realized kernel (RK), and daily log bipower variation (BV),
they find strong evidence of H ∈ (0.05, 0.25) < 0.5 (once again antipersistent errors), although H > 0.5
is also allowed in their model. This finding supports that the log RV follows a local-to-unity model with
antipersistent errors. In terms of out-of-sample forecasting performance, their empirical studies show
that the fO-U model outperforms the random walk, AR(1), HAR, ARFIMA, and fBm in predicting the
daily RV, log RV, log RK, and log BV.

Instead of modeling RV or log RV directly, Bolko et al. (2023) assume the log spot variance follows
an fO-U and take the estimation errors in the daily RV seriously. In particular, under the infill sampling
scheme, the expressions for moments of the daily RV are obtained, facilitating the implementation of
the generalized method of moments (GMM). When applying the GMM method to real data, Bolko et
al. (2023) report strong evidence of H ∈ (0.01, 0.2) < 0.5. Therefore, Bolko et al. (2023) present strong
evidence of local-to-unity and antipersistent errors in log spot variance.

Motivated by the ongoing debate about how to model the daily log RV series, together with the
possibility that the integrated variance of an asset is highly persistent and the fact that daily RV is
an approximation to daily integrated variance, we consider the latent model defined in (1) under
Assumptions 1-3. Some concrete examples are given below to relate our model with several popular
models proposed in the volatility literature.

Example 2.1. Breidt et al. (1998) propose the following long-memory SV model:

rt = σ eξt/2εt , εt
iid∼ N (0, 1) ,

ξt = θξt−1 + vt , (1 − L)dvt = et
iid∼ N

(
0, σ 2

e
)

.

where rt is the return of a financial asset. It is easy to get that

yt := log
(
r2

t
)= μ + ξt + wt ,

where μ = log σ 2 + 1.27 and wt = log
(
ε2

t
)− 1.27 iid∼ log

(
χ2

(1)

)
− 1.27 with χ2

(1) standing for the chi-
squared distribution with one degree of freedom. By allowing θ = θT = 1 + c/T, the model becomes a
special case of ours.

Example 2.2. Liu et al. (2021) propose the following fractional SV model:

rt	 = σ eξt	/2εt	, εt	
iid∼ N (0, 1) ,

ξt	 = (1 + γ	) ξ(t−1)	 + σvη
H
t	, H ∈ (0, 1)

where {rt	} is a return series with 	 denoting the sampling frequency and ηH
t	 := BH(t	) −

BH((t − 1) 	) is the first-order difference of the fBm BH(t	).
{
ηH

t	
}

is often called a fractional Gaussian
noise (FGN). Again, it is easy to get that yt	 := log

(
r2

t	
)= μ + ξt	 + wt , where μ = log σ 2 + 1.27 and

wt
iid∼ log

(
χ2

(1)

)
− 1.27. If we normalize the time span of the data to be one, then it has 	 = 1/T and

1 + γ	 = 1 + γ /T with T being the sample size. Hence, the latent process ξt	 has a local-to-unity root
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as T → ∞. Because the FGN
{
ηH

t	
}

has an autocovariance function that converges to zero at the same
rate as those of the I (d) process with d = H − 0.5 (see, e.g., Samorodnitsky and Taqqu, 1994), the results
developed for our model can be easily extended to the fractional SV model of Liu et al. (2021).

Example 2.3. Andersen et al. (2003) propose the following model for daily log RV,

Xt = (1 − θ) μ + θXt−1 + vt , (1 − L)dvt = et
iid∼ N

(
0, σ 2

e
)

.

Note that RV is an observed proxy of the integrated variance. Hence, if Xt is the log integrated variance
series, we have the model

log RVt = Xt + wt = μ + ξt + wt ,
ξt = θξt−1 + vt ,

where wt denotes the observation error and ξt := Xt − μ. By further allowing θ = θT = 1 + c/T, our
model in (1) is obtained.

Example 2.4. Wang et al. (2023a) apply the exact discretization of an fO-U process to model log RV:

Xt	 = e−κ	X(t−1)	 + (1 − e−κ	
)
μ + εt	, with εt	 = σ

∫ t	

(t−1)	

e−κ(t	−s)dBH (s) ,

where κ , μ, and σ are three constants, and 	 denotes the sampling frequency. Again, if Xt	 is the log
integrated variance series, we have the model

log RVt	 = Xt	 + wt = μ + ξt	 + wt ,
ξt	 = e−κ	ξt−1 + εt	,

where wt denotes the observation error and ξt := Xt − μ. Cheridito et al. (2003) show that the autoco-
variance of {εt	} decays to zero at the same rate as that of the I (d) process with d = H − 0.5, as the lag
number increases. Hence, the results developed for our model can be easily extended to the new model.

Example 2.5. Comte and Renault (1996) specify the following fO-U model with H > 0.5 for the log spot
variance:

dX(t) = −κX(t)dt + σdBH(t), (4)

while Gatheral et al. (2018) propose H < 0.5. The discretization of the fO-U process with 	 being the
sampling frequency is

Xt	 = e−κ	X(t−1)	 + εt	, with εt	 = σ

∫ t	

(t−1)	

e−κ(t	−s)dBH (s) ,

which is the model discussed in Example 2.4 with μ = 0. It is also well-known in the literature that the
following discrete-time model

ξt	 = e−κ	ξ(t−1)	 + (1 − L)−det	, et	
iid∼
(

0,
1 − e−2κ	

2κ
σ 2
)

, t = 1..., T, (5)

with d = H − 0.5, weakly converges to model (4), that is, δH�(H+0.5)

TH ξ�Tr� ⇒ X(r) as 	 → 0, where δH
is a function of H and T = 1/	 is the sample size (Tanaka, 2013). Clearly, model (5) is a local-to-unity
model with the error term satisfying Assumption 2. Since the spot variance is only observed with errors,
our model in (1) is useful for studying the dynamics of the spot variance.
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2.2. Large sample theory

Throughout this article, our parameter of interest is θT that controls the persistence level of the latent
process ξt . It is straightforward to rewrite Model (1) as an AR model:

yt = α + θTyt−1 + εt ,

where α = (1 − θT) μ and

εt = vt + wt − θTwt−1.

There are two simple ways to estimate θT , the LS method and the IV method with yt−2 as an instrument.
The resulting estimators are

θ̂T =
∑T

t=1
(
yt−1 − y−1

)
yt∑T

t=1
(
yt−1 − y−1

)2 , (6)

and

θ̂ IV
T =

∑T
t=2
(
yt−2 − y−2

)
yt∑T

t=2
(
yt−2 − y−2

)
yt−1

, (7)

respectively, where y−1 = T−1∑T
t=1 yt−1 and y−2 = (T − 1)−1∑T

t=2 yt−2. These two estimators have
closed-form expressions and are hence easy to apply.4

When both {wt} and {vt} are i.i.d. series, the error term εt becomes the sum of a white noise process
and a first-order moving average (MA(1)) process. In this case, we have

Corr(εt , εt−1) = −θTσ 2
w

σ 2
v + (1 + θ2

T
)
σ 2

w
→ − 1

σ 2
v /σ 2

w + 2
, as T → ∞,

and

Cov(εt , εt−k) = Corr(εt , εt−k) = 0 for all k = 2, 3....

where Corr(·, ·) denotes the correlation function. Hence, εt is an MA(1) process with a negative root,
which is due to the measurement error {wt}. Note that when σ 2

v /σ 2
w → 0, Corr(εt , εt−1) → −1/2. This

means that as the ratio between the variance of the signal vt and that of the noise wt shrinks to zero,
the root of the MA(1) process εt goes to minus unity. How to test for a unit root when the error term
follows an MA(1) process with a negative root has received much attention in the unit root literature;
see, for example, Schwert (1989) and Ng and Perron (2001). These studies show that the negative root in
the MA(1) process makes the LS estimator of the AR(1) coefficient severely downward biased, leading
to severe size distortions for the conventional Dickey-Fuller and augmented Dickey-Fuller tests. Hall
(1989) proposes to use the IV estimator with yt−2 as an instrument to purge the influence of the
negative MA root. Hansen and Lunde (2014) develop the asymptotic theory of the IV estimator with
yt−j, j ≥ max

(
p, q
)
, as an instrument when yt is an ARMA

(
p, q
)

process. Dou and Müller (2021) studied
a generalized local-to-unity model that allows yt to be an ARMA (p, p − 1) process with p AR roots close
to unity and p − 1 MA roots close to negative unity.

Our study contributes to the literature in two aspects. First, by allowing {vt} to be an I(d) process,
we show that the influence of {wt} on the LS estimator depends on the value of d. When d ≤ 0, the
existence of {wt} deteriorates the bias and increases the difficulty of making inferences by involving
additional nuisance parameters in the limiting distribution. Whereas, when d > 0, {wt} plays no role in
the asymptotics of the LS estimator. Second, we show that when {vt} is an I(d) process, the IV estimator
with yt−2 as an instrument can remove the impact of {wt} successfully. More importantly, even in the
case without measurement error {wt}, θ̂ IV

T continues to outperform the LS estimator θ̂T in terms of bias
if d ≤ 0. When d > 0, θ̂ IV

T and θ̂T share the same asymptotic distribution.

4The maximum likelihood estimator, although could be more efficient, does not lead to an analytical expression.
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Before presenting the large sample theory of the estimators, we first introduce some notations that
will be heavily used in the rest of this subsection. The I (d) process {vt} has a variance of

σ 2
v := Var (vt) = σ 2

e �(1 − 2d)

{�(1 − d)}2 . (8)

Sowell (1990) has shown that

Var

( T∑
t=1

vt

)
= σ 2

e �(1 − 2d)

(2d + 1) �(1 + d)�(1 − d)

[
�(1 + d + T)

�(1 − d + T)
− �(1 + d)

�(1 − d)

]
(9)

∼ T(2d+1)

[
σ 2

e �(1 − 2d)

(2d + 1) �(1 + d)�(1 − d)

]
:= T(2d+1)σ 2

v ,

where

σ 2
v = σ 2

e �(1 − 2d)

(2d + 1) �(1 + d)�(1 − d)

is often referred to as the long-run variance of vt in the literature. According to Davydov (1970, Theorem
2) and Taqqu (1975, Theorem 2.1), under Assumption 2, the following functional central limit theorem
(FCLT) holds:

1
THσ v

�Tr�∑
t=1

vt ⇒ BH(r), as T → ∞,

where H = d + 0.5, �Tr� denotes the integer part of Tr for any r ∈ [0, 1] and BH(r) is an fBm that is a
Gaussian process with mean zero and covariance function

Cov
(
BH(t), BH(s)

)= 1
2
(|t|2H + |s|2H − |t − s|2H) , ∀t, s. (10)

An alternative definition of fBm is given by Mandelbrot and van Ness (1968) as

BH(t) = 1
�(H + 0.5)

{∫ 0

−∞
[
(t − s)H−0.5 − (−s)H−0.5] dW(s) +

∫ t

0
(t − s)H−0.5 dW(s)

}
,

where W(t) is a standard Brownian motion. Clearly, if H = 0.5, BH(r) becomes a standard Brownian
motion, W(r). We further define the O-U process Jc(t) by the stochastic diffusion function of

dJc(t) = cJc(t)dt + dW(t), Jc(0) = 0, (11)

and the fO-U process JH
c (t) by

dJH
c (t) = cJH

c (t)dt + dBH(t), JH
c (0) = 0, (12)

where c is the local parameter in θT = 1 + c/T.
Theorem 2.1 gives the large sample theory of the LS estimator θ̂T .

Theorem 2.1. Let {yt}T
t=0 be the time series generated by (1), θ̂T be the LS estimator defined in (6). Let

Assumptions 1-3 hold. Then, as T → ∞, it has

T(2d+1)
(
θ̂T − θT

) d→ −σ 2
v /2 − σ 2

w

σ 2
v

(∫ 1
0 JH

c (r)2dr −
(∫ 1

0 JH
c (r)dr

)2
) , if d < 0; (13)

T
(
θ̂T − θT

) d→
∫ 1

0 Jc(r)dW(r) − σ 2
w/σ 2

e∫ 1
0 Jc(r)2dr

, if d = 0; (14)



594 X. WANG AND J. YU

T
(
θ̂T − θT

) d→
1
2 JH

c (1)2 − c
∫ 1

0 JH
c (r)2 dr − BH(1)

∫ 1
0 JH

c (r)dr∫ 1
0 JH

c (r)2dr −
(∫ 1

0 JH
c (r)dr

)2 , if d > 0, (15)

where H = d + 0.5, Jc(r) = Jc(r) − ∫ 1
0 Jc(s)ds is the de-meaned O-U process, the parameters σ 2

v and σ 2
v

are defined in (8), (9), and σ 2
w and σ 2

e are defined in Assumptions 1 and 2, respectively.

Remark 2.2. Theorem 2.1 reveals several facts about the asymptotics of θ̂T . First, θ̂T is a consistent
estimator of θT . Second, both the convergence rate and the limiting distribution of θ̂T depend on the
value of d. The centered estimator θ̂T − θT converges to zero at the same rate when d ≥ 0, which is
higher than that of d < 0. Third, the measurement error influences the limiting distribution when d ≤ 0
because σ 2

w appears in the limiting distribution. In particular, the measurement error leads to a more
severe downward bias in θ̂T . Fourth, when d > 0, σ 2

w plays no role in the asymptotics of θ̂T .

Remark 2.3. To understand the phenomenon that the variance of the measurement error, σ 2
w, presents

in the limiting distribution of the LS estimator only when d ≤ 0, we pay attention to the asymptotic
properties of the term

∑T
t=1 yt−1εt , which appears in the numerator of the centered LS estimator. From

Eq. (2), it is easy to get

T∑
t=1

yt−1εt = 1
2θT

[
y2

T − y2
0 − (θ2

T − 1
) T∑

t=1
y2

t−1 −
T∑

t=1
ε2

t − μ2c2

T
− 2

μc
T

T∑
t=1

(
θTyt−1 + εt

)]
.

The large sample theory of
∑T

t=1 yt−1εt is jointly determined by y2
T ,
(
θ2

T − 1
)∑T

t=1 y2
t−1, and

∑T
t=1 ε2

t .
Note that yt = μ + ξt + wt , that is, imposing a relatively “high frequency” noise wt on the persistent
signal ξt gives the observation series yt . Therefore, the asymptotic properties of yt should be the same
as those of ξt . As shown in Lemma A.1, y2

T = Op
(
T2d+1) and

(
θ2

T − 1
)∑T

t=1 y2
t−1 = Op

(
T2d+1), whose

limiting distributions, after they are normalized by corresponding convergence rates, are free from the
impact of wt . In contrast, the limit of T−1∑T

t=1 ε2
t is the variance of εt = vt + wt − θTwt−1, that is,

1
T

T∑
t=1

ε2
t = 1

T

T∑
t=1

(
v2

t + w2
t + θ2

Tw2
t−1
)+ op (1)

p→ σ 2
v + 2σ 2

w,

which involves the variance of the measurement error wt . It becomes clear now that when d < 0,
∑T

t=1 ε2
t

dominates the other two terms in the decomposition of
∑T

t=1 yt−1εt and hence, determines the limiting
distribution of

∑T
t=1 yt−1εt . Consequently, we see the role of σ 2

w in the limiting distribution of the LS
estimator. Whereas, when d > 0, the dominant terms in the decomposition are y2

T = Op
(
T2d+1) and(

θ2
T − 1

)∑T
t=1 y2

t−1 = Op
(
T2d+1). As a result, the limiting distribution of θ̂T − θT in the case of d > 0

is not affected by the measurement error wt .

Remark 2.4. When σ 2
w = 0, μ = 0, and c = 0, the latent process ξt in Model (1) becomes observable and

is described by an integrated first-order autoregression with I (d) errors:

ξt = ξt−1 + vt .

Sowell (1990) develops the large sample theory of the LS estimator of the AR root, that is θ̃T =∑T
t=1 ξt−1ξt/

∑T
t=1 ξ 2

t−1, as

T(2d+1)
(
θ̃T − 1

) d→ − σ 2
v /2

σ 2
v
∫ 1

0 BH(r)2dr
, if d < 0,



ECONOMETRIC REVIEWS 595

T
(
θ̃T − 1

) d→
∫ 1

0 W(r)dW(r)∫ 1
0 W(r)2dr

, if d = 0,

T
(
θ̃T − 1

) d→
1
2 BH(1)2∫ 1

0 BH(r)2dr
, if d > 0.

Buchmann and Chan (2007) extend Sowell’s results to the case where c �= 0, that is, the AR root of ξt
becomes θT = 1 + c/T. Our results in Theorem 2.1 extend the study to the case where ξt are observed
with measurement errors (σ 2

w �= 0), and an AR regression with an unknown intercept is used.

Remark 2.5. When σ 2
w = 0, our model is also closely related to the following model considered by Wang

et al. (2023b):

ξt = θTξt−1 + εt , θT = exp(c/T) ≈ 1 + c
T

, (16)

where εt is a fractional Gaussian noise (FGN) with memory parameter H ∈ (0, 1), whose covariance
function is

Cov (εt , εs) = 1
2
[
(k + 1)2H + (k − 1)2H − 2k2H]

∼ H(2H − 1)k2H−2 for large k = |t − s|.
As k increases, the autocovariance of the FGN decays to zero at the same rate as that of an I(d) process
with d = H − 0.5. Wang et al. (2023b) derive the limiting distributions of both θ̂T (i.e., the LS estimator
with fitted intercept) and θ̃T (i.e., the LS estimator without fitted intercept) under a general initial
condition. However, the results in Wang et al. (2023b) are not the invariance principle as the error term
in the model (16) is assumed to be normally distributed. By betting εt be an I (d) process without specific
distributional assumption, the results in the present paper establish an invariance principle.

To purge the influence of the measurement error and reduce the bias in estimating θT , we propose to
use the IV estimator θ̂ IV

T defined in (7). Theorem 2.2 presents the large sample theory.

Theorem 2.2. Let {yt}T
t=0 be the time series generated by (1), θ̂ IV

T be the IV estimator defined in (7). Let
Assumptions 1-3 hold. Then, as T → ∞, it has

T(2d+1)
(
θ̂ IV

T − θT
) d→ − (0.5 + d) � (2 + d) /� (2 − d)∫ 1

0 JH
c (r)2dr −

(∫ 1
0 JH

c (r)dr
)2 , if d < 0; (17)

T
(
θ̂ IV

T − θT
) d→

∫ 1
0 Jc(r)dW(r)∫ 1

0 Jc(r)2dr
, if d = 0; (18)

T
(
θ̂ IV

T − θT
) d→

1
2 JH

c (1)2 − c
∫ 1

0 JH
c (r)2 dr − BH(1)

∫ 1
0 JH

c (r)dr∫ 1
0 JH

c (r)2dr −
(∫ 1

0 JH
c (r)dr

)2 , if d > 0, (19)

where d ∈ (−0.5, 0.5) and H = d + 0.5.

Remark 2.6. Theorem 2.2 shows that the measurement error {wt} (i.e., σ 2
w) does not affect the IV

estimator θ̂ IV
T in asymptotics. Moreover, the limiting distribution of θ̂ IV

T in every case has only d and
c as nuisance parameters. It further has c = 0 in unit-root testing. In contrast, the limiting distribution
of the LS estimator θ̂T depends on extra parameters, σ 2

w, σ 2
e , σ 2

v , σ 2
v . Hence, it is more convenient to make

inferences about θ based on θ̂ IV
T than on θ̂T .
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Remark 2.7. It is known that
∫ 1

0 Jc(r)dW(r)/
∫ 1

0 Jc(r)2dr is left-skewed for c ≥ 0, suggesting that the
IV estimator is downward biased when d = 0. In this case, it is straightforward to compare the limiting
distribution in (18) with that in (14) and find that θ̂ IV

T has a less downward bias than θ̂T because σ 2
w is

eliminated from the asymptotic distribution.

Remark 2.8. To facilitate the comparison between the limiting distribution of θ̂ IV
T and that of θ̂T when

d < 0, we give an equivalent representation of the limiting distribution given in (17):5

T(2d+1)
(
θ̂ IV

T − θT
) d→ −σ 2

v /2 − Cov (vt , vt−1)

σ 2
v

[∫ 1
0 JH

c (r)2dr −
(∫ 1

0 JH
c (r)dr

)2
] , (20)

where

Cov (vt , vt−1) = � (1 − 2d) � (1 + d)

� (d) � (1 − d) � (2 − d)
σ 2

e = d
1 − d

σ 2
v . (21)

Comparing to the limiting distribution of θ̂T given in (13), the term −σ 2
w is replaced with the term

−Cov (vt , vt−1) in the limiting distribution of θ̂ IV
T . Since −σ 2

w is always negative and −Cov (vt , vt−1) is
always positive when d < 0, θ̂ IV

T is not only less biased than θ̂T when there is measurement error but also
less biased than θ̂T when there is no measurement error. Combining (20) and (21), we can also get

T(2d+1)
(
θ̂ IV

T − θT
) d→ − 1

2
1+d
1−d σ 2

v

σ 2
v

(∫ 1
0 JH

c (r)2dr −
(∫ 1

0 JH
c (r)dr

)2
) ,

which suggests that the bias of θ̂ IV
T is negative.

Remark 2.9. For the case of d > 0, the formula in (19) shows that the IV estimator θ̂ IV
T has the same

limiting distribution as θ̂T . Hence, θ̂ IV
T does not lead to any loss of asymptotic efficiency relative to θ̂T .

Remark 2.10. The advantages of θ̂ IV
T over θ̂T in the case of d = 0 have been explored by Hall (1989)

and Hansen and Lunde (2014). However, when d �= 0, {vt} has serial dependence. In this scenario, the
choice of the optimal instrumental variable yt−j and the performance of the resulting IV estimator have
not been studied in the literature. Theorem 2.2 partially fulfills this task by showing that yt−2 is a good
instrument, especially when d < 0.

3. Latent model with strongly mixing errors

3.1. The model and motivations

While Assumptions 1-3 allow for fractionally integrated errors in the latent local-to-unity model, no
heteroskedasticity is allowed in {wt} or {vt}. It is possible that {wt} and/or {vt} involve heteroskedasticity
in practice, and hence, it is important to relax the requirement of homoskedasticity.

For example, heteroskedasticity may present in {vt} when ξt measures the spot variance. The well-
known square root model of Heston (1993) and the GARCH diffusion model of Nelson (1990) are two
widely used specifications for the spot variance that allow for heteroskedasticity in the error term of the
discretized representation via the Euler scheme.

Heteroskedasticity may also arise in the measurement error {wt}. One example is using daily RV to
estimate daily integrated variance. To compute the daily RV for a trading day t, let the intraday return
based on a particular sampling frequency M be

ri,t = pi/M,t − p(i−1)/M,t , for i = 1, 2, · · · , M,

5This formula is obtained in the proof of Theorem 2.2, which is included in the Appendix.
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where pi/M,t is the log price at time i/M on day t. The RV on day t is

RVt (M) =
M∑

i=1
r2

i,t .

As M → ∞, it has

RVt (M) =
M∑

i=1
r2

i,t
p→
∫ t

t−1
σ 2

s ds := IVt ,

where σ 2
s is the spot variance and IVt denotes the integrated variance on day t. Barndorff-Nielsen and

Shephard (2002) have shown that, as M → ∞,
√

M (RVt(M) − IVt)
d→ MN(0, 2IQt), (22)

where MN stands for mixed normality and

IQt =
∫ t

t−1
σ 4

s ds

is the integrated quarticity. To improve the accuracy of the asymptotic approximation, Barndorff-Nielsen
and Shephard (2005) suggest using the log RVt to approximate the log IVt and develop the following
asymptotic theory when M → ∞ :

√
M
[
log (RVt(M)) − log (IVt)

] d→ MN(0, 2IQt/IV2
t ), (23)

where IQt/IV2
t can be much less time-varying than IQt . The asymptotic theory given by (22) and (23)

suggests the presence of heteroskedasticity when approximating IVt (or log IVt) by RVt (or log RVt).
This example gives a practical reason why one would like to relax the i.i.d. assumption about wt .

Unfortunately, for the FCLT to be applicable when the assumption of homoskedasticity is relaxed, a
form of strong mixing condition for {vt} is required as a trade-off. Hence, in this section, we study the
latent local-to-unity model defined in (1), but with the following assumptions on the error sequences
{wt} and {vt}.

Assumption 4. {wt} is independent over t with E(wt) = 0. σ 2
w = lim

T→∞
1
T
∑T

t=1 E(w2
t ) exists. There is k > 2

such that supt E |wt|k < ∞.

Assumption 5. E(vt) = 0 for all t. {vt} is strong mixing with mixing coefficients αm satisfying∑∞
m=1 α

1− 2
k

m < ∞. There exists k > 2 such that supt E |vt|k < ∞. Assume σ 2
v = limT→∞ 1

T
∑T

t=1 E(v2
t ) ∈

(0, ∞), σ 2
v = limT→∞ 1

T E
(∑T

t=1 vt
)2 ∈ (0, ∞), and γ1 = plimT→∞ 1

T
∑T

t=1 vtvt−1 exists.

Assumption 6. wt and vs are independent for any t and s.

Assumption 4 allows the latent process ξt to be observed with independent but not necessarily
identically distributed errors. Assumption 5 allows ξt to have an error term that could be serially
dependent and heteroscedastic. This assumption, also adopted in Phillips (1987a, 1987b), includes many
stationary ARMA models as special cases. According to Phillips (1987a, 1987b), the FCLT of Herrndorf
(1983) applies to the partial sum process of {vt}, that is, as T → ∞,

1
T1/2σ v

�Tr�∑
t=1

vt ⇒ W(r) for r ∈ [0, 1] .
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3.2. Asymptotics for the model with strongly mixing errors

This subsection develops the large sample theory for the LS estimator θ̂T and the IV estimator θ̂ IV
T ,

defined in (6) and (7), respectively, under Assumptions 4-6. Compared to θ̂T , it is found that the
estimator θ̂ IV

T can purge the influence of the observation errors {wt}, but not necessarily lead to a smaller
bias. The last finding is distinct from that for the model with I (d) errors, in which case θ̂ IV

T always leads
to a smaller bias than θ̂T .

Theorem 3.1. Let {yt}T
t=0 be the time series generated by (1), and Assumptions 4-6 hold. Then, as T → ∞,

it has

T
(
θ̂T − θT

) d→
∫ 1

0 Jc(r)dW(r) + 1
2
(
σ 2

v − σ 2
v − 2σ 2

w
)
/σ 2

v∫ 1
0 Jc(r)2dr

, (24)

and

T
(
θ̂ IV

T − θT
) d→

∫ 1
0 Jc(r)dW(r) + 1

2
(
σ 2

v − σ 2
v − 2γ1

)
/σ 2

v∫ 1
0 Jc(r)2dr

, (25)

where σ 2
w, γ1, σ 2

v, and σ 2
v are defined in Assumptions 4-5, and Jc(r) is defined in Theorem 2.1.

Remark 3.1. Theorem 3.1 shows that the measurement error {wt} affects the limiting distribution of the
LS estimator θ̂T . In contrast, it does not affect the limiting distribution of the IV estimator θ̂ IV

T .

Remark 3.2. Although θ̂ IV
T purges the influence of σ 2

w in asymptotics, γ1 appears in the limiting
distribution. Whether or not θ̂ IV

T outperforming θ̂T in terms of bias depends on the sign of
E
{[∫ 1

0 Jc(r)dW(r) + 1
2
(
σ 2

v − σ 2
v
)
/σ 2

v

]
/
∫ 1

0 Jc(r)2dr
}

and the sign and magnitude of γ1 relative to
σ 2

w.

Remark 3.3. Under Assumptions 4-6, it can be shown that

1
T

T∑
t=1

ε2
t = 1

T

T∑
t=1

(
v2

t + w2
t + θ2

Tw2
t−1
)+ op (1)

p→ σ 2
v + 2σ 2

w,

by McLeish (1975, Theorem 2.10 with condition (2.12)). Hence, σ 2
v + 2σ 2

w as a whole can be consistently
estimated by

1
T

T∑
t=1

ε̂2
t = 1

T

T∑
t=1

(
yt − α̂ − θ̂Tyt−1

)2 .

Whereas, estimating σ 2
v separately is not easily achieved. Thus, compared to θ̂T , it is more challenging

to use θ̂ IV
T to make inferences.

Remark 3.4. For a special case where both {wt} and {vt} are i.i.d. sequences and θT = 1 with c = 0, Hall
(1989) and Hansen and Lunde (2014) prove that

T
(
θ̂T − θT

) d→
∫ 1

0 Jc(r)dW(r) − σ 2
w/σ 2

v∫ 1
0 Jc(r)2dr

,

and

T
(
θ̂ IV

T − θT
) d→

∫ 1
0 Jc(r)dW(r)∫ 1

0 Jc(r)2dr
.
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In this case, θ̂ IV
T has a smaller bias than θ̂T . Moreover, using θ̂ IV

T to make inferences is more convenient
than using θ̂T , because its limiting distribution of θ̂ IV

T is free from nuisance parameters. Our results in
Theorem 3.1 extend those in the literature to the local-to-unity case allowing for heteroskedasticity.

4. Finite sample performance of asymptotic distributions

To check the finite sample performance of the asymptotic distributions, we focus on the case where
Assumptions 1-3 hold. That is, we check the quality of approximation of the asymptotic distributions
derived in Theorem 2.1 and Theorem 2.2 in finite sample.

We simulate data {yt}T
t=0 from Model (1) under Assumptions 1-3 with wt

iid∼ N(0, 0.1), et
iid∼ N(0, 1),

μ = 0, c = −5, and T = 256, 1024, and 4096, respectively. The finite sample distributions of the estima-
tors θ̂T and θ̂ IV

T are obtained from 10,000 replications. The asymptotic distributions are calculated based
on the formulae given in Theorem 2.1 and Theorem 2.2, with the integrals replaced by the corresponding
sums with 10,000 interior points.

Figure 1 plots three finite sample distributions of T
(
θ̂T − θT

)
, its asymptotic distribution, three finite

sample distributions of T
(
θ̂ IV

T − θT
)

and its asymptotic distribution when d = 0. It can be seen that even
when T = 256, the finite sample distributions are very close to their asymptotic distributions. All of them
are asymmetric and skewed to the left. It is much more likely for T

(
θ̂T − θT

)
and T

(
θ̂ IV

T − θT
)

to take a
negative number than a positive number. It is clear that the IV estimator is less biased and more efficient
than the LS estimator when d = 0.

Figure 2 plots three finite sample distributions plus the asymptotic distribution of T
(
θ̂T − θT

)
, as

well as those of T
(
θ̂ IV

T − θT
)

when d = −0.3. The four densities centered around −2 are for θ̂T while the
four densities centered around −0.8 are for θ̂ IV

T . Three features are apparent in the figure. First, the finite
sample distributions of the LS estimator are close to the asymptotic distribution. In contrast, the finite
sample distributions of the IV estimator are noticeably different from the asymptotic distribution, even
when T = 4096, although the finite sample distribution gets closer to the asymptotic distribution as T
increases. Second, the limiting distributions of both estimators have only negative support. Hence, both
estimators have a downward bias. But, the IV estimator is much less biased than the LS estimator. Third,
the distributions of the IV estimator are more concentrated than those of the LS estimator. Therefore,
θ̂ IV

T is more efficient than θ̂T when d = −0.3.

Figure 1. The graph plots three finite sample distributions and the asymptotic distribution of T
(
θ̂T − θT

)
and those of T

(
θ̂ IV

T − θT

)
,

when d = 0 and T = 256, 1024, and 4096, respectively.
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Figure 2. Three finite sample distributions and the asymptotic distribution of T2d+1 (θ̂T − θT
)

and those of T2d+1
(
θ̂ IV

T − θT

)
when

d = −0.3 and T = 256, 1024, and 4096, respectively.

Figure 3. The finite sample and asymptotic distributions of T
(
θ̂T − θT

)
(the left panel) and those of T

(
θ̂ IV

T − θT

)
(the right panel)

when d = 0.3, T = 256, 1024, and 4096, respectively.

Figure 3 plots three finite sample distributions of T
(
θ̂T − θT

)
and its asymptotic distribution (the left

panel) as well as those distributions of T
(
θ̂ IV

T − θT
)

(the right panel) when d = 0.3. The two asymptotic
distributions are the same, as has been proven in Theorem 2.1 and Theorem 2.2. The figure shows that,
for each estimator, the finite sample distribution has some distance to the asymptotic distribution when
T = 256. As T increases, the finite sample distribution gets closer to its limiting distribution. Also shown
in the figure is that both T

(
θ̂T − θT

)
and T

(
θ̂ IV

T − θT
)

are more likely to take a positive number than a
negative one. Hence, both two estimators are upward biased when d = 0.3.

To further compare the two estimators’ finite sample performance in the case of d = 0.3, Figure 4 plots
the finite sample distributions of T

(
θ̂T − θT

)
and T

(
θ̂ IV

T − θT
)

for T = 256 only, plus the associated
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Figure 4. The finite sample distributions of T
(
θ̂T − θT

)
and T

(
θ̂ IV

T − θT

)
when d = 0.3 and T = 256, and the associated asymptotic

distribution.

asymptotic distribution. It shows that the LS estimator has a more significant upward bias than the IV
estimator. This is because the finite sample distribution of the LS estimator is closer to the asymptotic
distribution, which has a support that is almost always positive. Moreover, there might have a bias-
variance trade-off between θ̂T and θ̂ IV

T when d is positive, as the finite sample distribution of θ̂T seems
to be more concentrated than that of θ̂ IV

T .

5. Conclusion

In this article, the primary consideration is given to the latent local-to-unity model under the conditions
that (i) the error in the observation equation is an i.i.d. sequence, and (ii) the error in the state equation
is an I(d) series with d ∈ (−0.5, 0.5). We develop the large sample theory for the LS estimator of the AR
root of the latent process. Two properties are found. First, both the convergence rate and the limiting
distribution crucially depend on the value of d. Second, the variance of the measurement error appears
in the limiting distribution and deteriorates the downward bias of the LS estimator when d ≤ 0.

To purge the influence of the measurement error, we propose the IV estimator with yt−2 as an
instrument to estimate the AR root of the latent process. It is shown that the IV method not only
eliminates the effect of the measurement error but also leads to a less biased estimator than LS when
d ≤ 0.

We also study another model specification, in which (i) the error term in the observation equation is
independent and not necessarily identically distributed, and (ii) the error term in the state equation is
strong mixing. In this case, the IV estimator can still remove the influence of the measurement error in
asymptotics. However, it is not necessarily less biased than the LS estimator.

Our model is similar to the class of models recently introduced by Dou and Müller (2021) in that
the local-to-unity feature exists in both the AR and the MA components. However, in our model, the
local-to-unity feature is only a part of the MA component, which comes from the state-space modeling
strategy. Hence, it has a natural structural interpretation. It would be interesting to compare the empirical
relevance of these two non-nested modeling strategies.

We have not considered the boundary case where d = 0.5. The model with d = 0.5 has attracted some
attention in the literature in different contexts; see, for example, Duffy and Kasparis (2021). Extending
our results to cover the case of d = 0.5 is to be investigated.
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We should also point out that making statistical inferences about θT based on our asymptotic theory
is generally not feasible, as it requires c and d to be consistently estimated. Although d is consistently
estimable as shown in Wang et al. (2023b), c is not consistently estimable in our setup. However, our
asymptotic theory can be used to examine the local power of unit root tests. To develop a feasible
inferential framework, one may use the grid bootstrap method of Hansen (1999). The formal asymptotic
justification of the grid bootstrap method in the context of the latent local-to-unity model is beyond the
scope of this article. We plan to report it in the future study.

A. Appendix

Lemma A.1. Let {yt}T
t=0 be the time series generated by (1). Let Assumptions 1-3 hold, H = d + 0.5, and r ∈

[0, 1]. Then, as T → ∞, it has

1. 1
TH
∑�Tr�

t=1 εt ⇒ σ vBH(r);
2. 1

TH y�Tr� ⇒ σ vJH
c (r);

3. 1
T1+H

∑T
t=1 yt−1

d→ σ v
∫ 1

0 JH
c (r)dr;

4. 1
T1+2H

∑T
t=1 y2

t−1
d→ σ 2

v
∫ 1

0 JH
c (r)2dr;

5. 1
T
∑T

t=1 yt−1εt
d→ −σ 2

v /2 − σ 2
w, if H < 0.5;

6. 1
T
∑T

t=1 yt−1εt
d→ σ 2

e
2

(
Jc(1)2 − 2c

∫ 1
0 Jc(r)2dr − 1

)
− σ 2

w, if H = 0.5;

7. 1
T2H

∑T
t=1 yt−1εt

d→ σ 2
v

2

(
JH
c (1)2 − 2c

∫ 1
0 JH

c (r)2dr
)

, if H > 0.5.

where σ 2
v and σ 2

v are defined in (8), (9), σ 2
w and σ 2

e are defined in Assumptions 1 and 2, JH
c (r) is the fO-U process

defined in (12), and Jc(r) is JH
c (r) with H = 0.5.

Lemma A.2. Let {yt}T
t=0 be the time series generated by (1) and Assumptions 4-6 hold. Then, as T → ∞, it has

1. 1
T1/2 y[Tr] ⇒ σ vJc(r);

2. 1
T3/2

∑T
t=1 yt−1

d→ σ v
∫ 1

0 Jc(r)dr;

3. 1
T2
∑T

t=1 y2
t−1

d→ σ 2
v
∫ 1

0 Jc(r)2dr;

4. 1
T
∑T

t=1 yt−1εt
d→ σ 2

v
∫ 1

0 Jc(r)dW(r) + 1
2
(
σ 2

v − σ 2
v − 2σ 2

w
)
;

5. 1
T
∑T

t=2 yt−2εt
d→ σ 2

v
∫ 1

0 Jc(r)dW(r) + 1
2
(
σ 2

v − σ 2
v − 2γ1

)
;

6. 1
T2
∑T

t=2 yt−2yt−1
d→ σ 2

v
∫ 1

0 Jc(r)2dr,

where σ 2
w, γ1, σ 2

v, and σ 2
v are the constants defined in Assumptions 4-5, and Jc(r) is defined in Theorem 2.1.

Proof of Lemma A.1. Part (1): Under Assumption (2), the FCLT of Davydov (1970) and Taqqu (1975) shows
that, as T → ∞,

1
TH

�Tr�∑
t=1

vt ⇒ σ vBH(r).

Note that εt = vt + wt − θTwt−1 and

�Tr�∑
t=1

εt =
⎛⎝�Tr�∑

t=1
vt

⎞⎠+ w�Tr� − w0 − c
T

�Tr�∑
t=1

wt ,
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where wt
iid∼ (0, σ 2

w
)

as presumed in Assumption 1. Hence, as long as H = d + 0.5 > 0, it has

sup
r∈(0,1)

1
TH

∣∣∣∣∣∣
�Tr�∑
t=1

εt −
�Tr�∑
t=1

vt

∣∣∣∣∣∣= sup
r∈(0,1)

1
TH

∣∣∣∣∣∣w�Tr� − w0 − c
T

�Tr�∑
t=1

wt

∣∣∣∣∣∣
≤ sup

r∈(0,1)

∣∣∣∣w�Tr� − w0
TH

∣∣∣∣+
∣∣∣∣∣∣ c
TH+1

�Tr�∑
t=1

wt

∣∣∣∣∣∣
p→ 0.

Therefore, 1
TH
∑�Tr�

t=1 εt and 1
TH
∑�Tr�

t=1 vt have the same limit. This gives the proof of Part (1).
Part (2): Buchmann and Chan (2007) have proved that, under Assumption (2), the latent process ξt given

in Model (1) has the following large sample theory (see also Tanaka, 2013):
ξ�Tr�
TH ⇒ σ vJH

c (r), as T → ∞,

where JH
c (r) is the fO-U process defined in (12). Note that yt = μ + ξt + wt . Under Assumption (1), it is easy

to get

sup
r∈(0,1)

∣∣∣∣y�Tr�
TH − ξ�Tr�

TH

∣∣∣∣= sup
r∈(0,1)

∣∣∣∣μ + w�Tr�
TH

∣∣∣∣ p→ 0.

Therefore, it has y�Tr�
TH ⇒ σ vJH

c (r) too.
Parts (3)-(4) are obtained by directly applying Part (2) and the continuous mapping theorem.
To prove Parts (5)-(7), we turn to the AR representation of yt that is given in Eq. (2):

yt = (1 − θT) μ + θTyt−1 + εt ,
which leads to

y2
t = μ2c2

T2 + θ2
Ty2

t−1 + ε2
t + 2θTyt−1εt + 2

μc
T
(
θTyt−1 + εt

)
,

and
T∑

t=1
yt−1εt = 1

2θT

[
y2

T − y2
0 − (θ2

T − 1
) T∑

t=1
y2

t−1 −
T∑

t=1
ε2

t − μ2c2

T
− 2

μc
T

T∑
t=1

(
θTyt−1 + εt

)]
.

Under Assumptions 1-3, the law of large numbers yields the following results for any H ∈ (0, 1) :

1
T

T∑
t=1

εt = 1
T

T∑
t=1

(vt + wt − θTwt−1)
p→ 0,

and

1
T

T∑
t=1

ε2
t = 1

T

T∑
t=1

[
v2

t + (wt − θTwt−1)
2 + 2vt (wt − θTwt−1)

]
= 1

T

T∑
t=1

(
v2

t + w2
t + θ2

Tw2
t−1
)+ op (1)

p→ σ 2
v + 2σ 2

w.

Hence,
∑T

t=1 ε2
t = Op(T) for any H ∈ (0, 1). However, the results in Parts (3)-(4) show that y2

T = Op(T2H),∑T
t=1 y2

t−1 = Op(T1+2H), and
∑T

t=1 yt−1 = Op(T1+H). Those terms have orders crucially depending on H,
and hence, can dominate or be dominated by the term

∑T
t=1 ε2

t for different values of H. As a result, the
convergence rate and the limiting distribution of

∑T
t=1 yt−1εt also depend on the value of H.

When H < 0.5, it has

1
T

T∑
t=1

yt−1εt = − 1
2θT

1
T

T∑
t=1

ε2
t + op (1)

p→ σ 2
v

2
+ σ 2

w.
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When H = 0.5, it has

1
T

T∑
t=1

yt−1εt = 1
2θT

[
y2

T − y2
0

T
− T

(
θ2

T − 1
) T∑

t=1

(
yt−1√

T

)2 1
T

− 1
T

T∑
t=1

ε2
t

]
+ op (1)

d→ 1
2

{
σ 2

vJc(1)2 − 2cσ 2
v

∫ 1

0
Jc(r)2dr − σ 2

v − 2σ 2
w

}
= σ 2

e
2

{
Jc(1)2 − 2c

∫ 1

0
Jc(r)2dr − 1

}
− σ 2

w,

where the last equation comes from that fact that σ 2
v = σ 2

v = σ 2
e when H = 0.5.

When H > 0.5,

1
T2H

T∑
t=1

yt−1εt = 1
2θT

[
y2

T − y2
0

T2H − T
(
θ2

T − 1
) T∑

t=1

(yt−1
TH

)2 1
T

]
+ op (1)

d→ 1
2

{
σ 2

vJH
c (1)2 − 2cσ 2

v

∫ 1

0
JH
c (r)2dr

}
.

This completes the proof of Lemma A.1.

Proof of Theorem 2.1. When d < 0, it has H = d + 0.5 < 0.5. From the results in Lemma A.1.1-5, it is
straightforward to get

T2H (θ̂T − θT
)=

T−1
T∑

t=1
yt−1εt − T2H−1

(
T−H

T∑
t=1

εt

)(
T−1−H

T∑
t=1

yt−1

)
T−2H−1

T∑
t=1

y2
t−1 −

(
T−H−1

T∑
t=1

yt−1

)2

d→ −σ 2
v /2 − σ 2

w

σ 2
v

{∫ 1
0 JH

c (r)2dr −
(∫ 1

0 JH
c (r)dr

)2
} .

When d = 0, it has H = 0.5. Applying the results in Lemma A.1.1-4 and Lemma A.1.6, we have

T
(
θ̂T − θT

)=
T−1

T∑
t=1

yt−1εt −
(

T−0.5
T∑

t=1
εt

)(
T−3/2

T∑
t=1

yt−1

)
T−2

T∑
t=1

y2
t−1 −

(
T−3/2

T∑
t=1

yt−1

)2

d→
σ 2

e
2

{
Jc(1)2 − 2c

∫ 1
0 Jc(r)2dr − 1

}
− σ 2

w − σ 2
vW(1)

∫ 1
0 Jc(r)dr

σ 2
v
∫ 1

0 Jc(r)2dr − σ 2
v

(∫ 1
0 Jc(r)dr

)2

d=
∫ 1

0 Jc(r)dW(r) − σ 2
w/σ 2

e − W(1)
∫ 1

0 Jc(r)dr∫ 1
0 Jc(r)2dr −

(∫ 1
0 Jc(r)dr

)2 ,

where the last equation is from the fact that σ 2
v = σ 2

e when H = 0.5, and

1
2

{
Jc(1)2 − 2c

∫ 1

0
Jc(r)2dr − 1

}
=
∫ 1

0
Jc(r)dW(r).

With the definition of Jc(r) := Jc(r) − ∫ 1
0 Jc(r)dr, it is easy to get∫ 1

0
Jc(r)dW(r) =

∫ 1

0
Jc(r)dW(r) − W(1)

∫ 1

0
Jc(r)dr,
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and ∫ 1

0
Jc(r)2dr =

∫ 1

0
Jc(r)2dr −

(∫ 1

0
Jc(r)dr

)2
.

The limiting distribution reported in (14) in Theorem 2.1 is then obtained.
For the case of d > 0, which makes H > 0.5, it has

T
(
θ̂T − θT

)=
T−2H

T∑
t=1

yt−1εt −
(

T−H
T∑

t=1
εt

)(
T−H−1

T∑
t=1

yt−1

)
T−2H−1

T∑
t=1

y2
t−1 −

(
T−H−1

T∑
t=1

yt−1

)2

d→
1
2

{
σ 2

vJH
c (1)2 − 2cσ 2

v
∫ 1

0 JH
c (r)2dr

}
− σ 2

vBH(1)
∫ 1

0 JH
c (r)dr

σ 2
v
∫ 1

0 JH
c (r)2dr − σ 2

v

(∫ 1
0 JH

c (r)dr
)2

=
1
2

{
JH
c (1)2 − 2c

∫ 1
0 JH

c (r)2dr
}

− BH(1)
∫ 1

0 JH
c (r)dr∫ 1

0 JH
c (r)2dr −

(∫ 1
0 JH

c (r)dr
)2 ,

where the limit comes from the results in Lemma A.1.1-4 and Lemma A.1.7.

Proof of Theorem 2.2. The IV estimator θ̂ IV
T defined in (7) can be rewritten as

θ̂ IV
T − θT =

T∑
t=2

yt−2εt − 1
T−1

T∑
t=2

εt
T∑

t=2
yt−2

T∑
t=2

yt−2yt−1 − 1
T−1

T∑
t=2

yt−2
T∑

t=2
yt−1

.

From Lemma A.1, it is straightforward to get that, as T → ∞,

1
T1+H

T∑
t=2

yt−2 = 1
T1+H

T∑
t=1

yt−1 − yT−1
T1+H

d→ σ v

∫ 1

0
JH
c (r)dr,

and

1
T1+2H

T∑
t=2

yt−2yt−1

= 1
T1+2H

T∑
t=2

yt−2
[
(1 − θT) μ + θTyt−2 + εt−1

]
= (1 − θT) μ

T1+2H

T∑
t=2

yt−2 + θT
T1+2H

T∑
t=2

y2
t−2 + 1

T1+2H

T∑
t=2

yt−2εt−1

= θT
T1+2H

T∑
t=2

y2
t−2 + op (1)

= θT

(
1

T1+2H

T∑
t=1

y2
t−1 − y2

T−1
T1+2H

)
+ op (1)

d→ σ 2
v

∫ 1

0
JH
c (r)2dr.
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From the AR representation of yt given in Eq. (2), we have

T∑
t=2

yt−2εt = 1
θT

T∑
t=2

[
yt−1 − (1 − θT) μ − εt−1

]
εt

= 1
θT

T∑
t=2

yt−1εt − 1
θT

T∑
t=2

εt−1εt − op (1) .

Under Assumptions 1-3, as T → ∞, it has

1
T

T∑
t=2

εt−1εt = 1
T

T∑
t=2

(vt−1 + wt−1 − θTwt−2) (vt + wt − θTwt−1)

= 1
T

T∑
t=2

vt−1vt − θT
T

T∑
t=2

w2
t−1 + op (1)

d→ Cov (vt−1, vt) − σ 2
w,

where

Cov (vt−1, vt) = � (1 − 2d) � (1 + d)

� (d) � (1 − d) � (2 − d)
σ 2

e .

For the case of d < 0, it has H = d + 0.5 < 0.5. Lemma A.1.5 shows that
T∑

t=1
yt−1εt = Op (T). We then get,

as T → ∞,

1
T

T∑
t=2

yt−2εt = 1
TθT

T∑
t=2

yt−1εt − 1
TθT

T∑
t=2

εt−1εt − op (1)

p→ −σ 2
v /2 − σ 2

w − Cov (vt−1, vt) + σ 2
w

= −σ 2
v /2 − Cov (vt−1, vt) .

Note that the variance of the measurement error, σ 2
w, disappears in the limit of T−1

T∑
t=2

yt−2εt . As it becomes

clear later, this is why the limiting distribution of the IV estimator is free from σ 2
w when d < 0. The covariance

term Cov (vt−1, vt) appears in the limit of T−1
T∑

t=2
yt−2εt because of the inclusion of the cross product

T−1
T∑

t=2
εt−1εt . It is important to note that Cov (vt−1, vt) < 0 when d < 0. Hence, σ 2

v /2 and Cov (vt−1, vt)

could partially cancel out each other.
With the results above, it is ready to get that when d < 0, it has H = d + 0.5 < 0.5 and

T2H (θ̂ IV
T − θT

)=
1
T

T∑
t=2

yt−2εt − T2H

T−1

(
1

TH

T∑
t=2

εt

)(
1

T1+H

T∑
t=2

yt−2

)
1

T1+2H

T∑
t=2

yt−2yt−1 − T
T−1

(
1

T1+H

T∑
t=2

yt−2

)(
1

T1+H

T∑
t=2

yt−1

)
d→ −σ 2

v /2 − Cov (vt−1, vt)

σ 2
v

{∫ 1
0 JH

c (r)2dr −
(∫ 1

0 JH
c (r)dr

)2
} .
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Eqs. (8) and (9) give the expressions of σ 2
v and σ 2

v , respectively. Some simple calculations yield the following
formula:

− σ 2
v

2σ 2
v

− Cov (vt−1, vt)

σ 2
v

= − (1 + 2d) � (1 + d)

2� (1 − d)
− (1 + 2d) [� (1 + d)]2

� (d) � (2 − d)

= − (0.5 + d) � (2 + d)

� (2 − d)
.

This equation completes the proof of the formula (17) in Theorem 2.2.
When d = 0, vt becomes an i.i.d. sequence that has zero autocovariances and σ 2

v = σ 2
e . Then, it has

Cov (vt−1, vt) = 0,

1
T

T∑
t=2

εt−1εt = 1
T

T∑
t=2

vt−1vt − θT
T

T∑
t=2

w2
t−1 + op (1)

p→ −σ 2
w,

and

1
T

T∑
t=2

yt−2εt = 1
TθT

T∑
t=2

yt−1εt − 1
TθT

T∑
t=2

εt−1εt − op (1)

p→ σ 2
e

2

{
Jc(1)2 − 2c

∫ 1

0
Jc(r)2dr − 1

}
− σ 2

w + σ 2
w

= σ 2
e

∫ 1

0
Jc(r)dW (r) ,

where the term σ 2
w is cancelled out. We can further obtain

T
(
θ̂ IV

T − θT
)=

1
T

T∑
t=2

yt−2εt − T
T−1

(
1

T1/2

T∑
t=2

εt

)(
1

T3/2

T∑
t=2

yt−2

)
1

T2

T∑
t=2

yt−2yt−1 − T
T−1

(
1

T3/2

T∑
t=2

yt−2

)(
1

T3/2

T∑
t=2

yt−1

)
d→
∫ 1

0 Jc(r)dW(r) − W(1)
∫ 1

0 Jc(r)dr∫ 1
0 Jc(r)2dr −

(∫ 1
0 Jc(r)dr

)2 =
∫ 1

0 Jc(r)dW(r)∫ 1
0 Jc(r)2dr

,

which gives the result in the formula (18) of Theorem 2.2.
For the case where d > 0, it has H > 0.5 and

1
T2H

T∑
t=2

yt−2εt = 1
T2HθT

T∑
t=2

yt−1εt − 1
T2HθT

T∑
t=2

εt−1εt − op (1)

= 1
T2HθT

T∑
t=2

yt−1εt + op (1) .

As a result, the IV estimator θ̂ IV
T has the same limiting distribution as the LS estimator θ̂T , as given in the

formula (19) of Theorem 2.2.

Proof of Lemma A.2. Under Assumptions (5), Phillips (1987a) prove that, as T → ∞
1√
T

ξ�Tr� ⇒ σ vJc(r).

Note that yt = μ + ξt + wt . Under Assumption (4), it is easy to get

sup
r∈(0,1)

∣∣∣∣y�Tr�√
T

− ξ�Tr�√
T

∣∣∣∣= sup
r∈(0,1)

∣∣∣∣μ + w�Tr�√
T

∣∣∣∣ p→ 0.

Therefore, it has T−1/2y�Tr� ⇒ σ vJc(r), as T → ∞. Lemma A.2.1 is proved.
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The results in Lemma A.2.2 and A.2.3 are obtained by directly applying the result of Lemma A.2.1 together
with the continuous mapping theorem.

To prove Lemma A.2.4, we first note that, as T → ∞, it has

1
T

T∑
t=1

εt = 1
T

T∑
t=1

(vt + wt − θTwt−1)
p→ 0,

and

1
T

T∑
t=1

ε2
t = 1

T

T∑
t=1

[
v2

t + (wt − θTwt−1)
2 + 2vt (wt − θTwt−1)

]
= 1

T

T∑
t=1

(
v2

t + w2
t + θ2

Tw2
t−1
)+ op (1)

p→ lim
T→∞

1
T

T∑
t=1

E
(
v2

t
)+ lim

T→∞
2
T

T∑
t=1

E
(
w2

t
)= σ 2

v + 2σ 2
w,

where the two limit results come from the result of McLeish (1975, Theorem 2.10 with condition (2.12)); see
also Page 297 of Phillips, 1987b). From the AR representation of yt given in Eq. (2), it is easy to get that

T∑
t=1

yt−1εt = 1
2θT

[
y2

T − y2
0 − (θ2

T − 1
) T∑

t=1
y2

t−1 −
T∑

t=1
ε2

t − μ2c2

T
− 2

μc
T

T∑
t=1

(
θTyt−1 + εt

)]
,

which, in turn, leads to

1
T

T∑
t=1

yt−1εt = 1
2θT

[
y2

T − y2
0

T
− T

(
θ2

T − 1
) 1

T2

T∑
t=1

y2
t−1 − 1

T

T∑
t=1

ε2
t

]
+ op (1)

d→ σ 2
v

2
[
Jc(1) − 2cJc(r)2 − 1

]+ 1
2
(
σ 2

v − σ 2
v − 2σ 2

w
)

= σ 2
v

∫ 1

0
Jc(r)dW(r) + 1

2
(
σ 2

v − σ 2
v − 2σ 2

w
)

.

To prove Lemma A.2.5, note that γ1 = plimT→∞ T−1
T∑

t=2
vt−1vt exists. Then, as T → ∞, it has

1
T

T∑
t=2

εt−1εt = 1
T

T∑
t=2

(vt−1 + wt−1 − θTwt−2) (vt + wt − θTwt−1)

= 1
T

T∑
t=2

vt−1vt − θT
T

T∑
t=2

w2
t−1 + op (1)

p→ γ1 − σ 2
w.

We then have

1
T

T∑
t=2

yt−2εt = 1
T

1
θT

T∑
t=2

[
yt−1 − (1 − θT) μ − εt−1

]
εt

= 1
θT

1
T

T∑
t=2

yt−1εt − 1
θT

1
T

T∑
t=2

εt−1εt + op

(
1
T

)
d→ σ 2

v

∫ 1

0
Jc(r)dW(r) + 1

2
(
σ 2

v − σ 2
v − 2γ1

)
,

where the first equation is from the AR representation of yt given in Eq. (2).
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To prove Lemma A.2.6, it has

1
T2

T∑
t=2

yt−2yt−1 = 1
T2

T∑
t=2

yt−2
[
(1 − θT) μ + θTyt−2 + εt−1

]
= θT

T2

T∑
t=2

y2
t−2 + op (1)

d→ σ 2
v

∫ 1

0
Jc(r)2dr.

The proof is completed.

Proof of Theorem 3.1. The results in Theorem 3.1 follow directly from the continuous mapping theorem and
Lemma A.2. Details are omitted.

Acknowledgment

We would like to thank two referees, an associate editor, Peter Phillips, Liyu Dou, Yiu Lim Lui, Jia Li, Shuping Shi, and
Yongmiao Hong for helpful discussion. Xiaohu Wang, School of Economics, Fudan University, and Shanghai Institute
of International Finance and Economics, Shanghai, China. Email: wang_xh@fudan.edu.cn. Jun Yu, School of Economics
and Lee Kong Chian School of Business, Singapore Management University, 90 Stamford Road, Singapore 178903. Email:
yujun@smu.edu.sg.

Funding

Wang acknowledges financial support from National Natural Science Foundation of China (NSFC) (No. G0301), and from
Shanghai Pujiang Program (No. 22P JC022). Yu acknowledges that this research/project is supported by the Ministry of
Education, Singapore, under its Academic Research Fund (AcRF) Tier 2 (Award Number MOE-T2EP402A20-0002). He
also acknowledges the financial support from the Lee Foundation.

References

Andersen, T. G., Bollerslev, T. (1997). Heterogeneous information arrivals and return volatility dynamics: Uncovering the
long-run in high frequency returns. Journal of Finance 52(3):975–1005.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Ebens, H. (2001a). The distribution of realized stock return volatility. Journal
of Financial Economics 61(1):43–76.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P. (2001b). The distribution of realized exchange rate volatility. Journal
of the American Statistical Association 96(453):42–55.

Andersen, T. G., Bollerslev, T., Diebold, F. X., Labys, P. (2003). Modeling and forecasting realized volatility. Econometrica
71(2):579–625.

Baillie, R. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics 73(1):5–59.
Barndorff-Nielsen, O. E., Shephard, N. (2002). Econometric analysis of realized volatility and its use in estimating stochastic

volatility models. Journal Royal Statistical Society. Series B 64(2):253–280.
Barndorff-Nielsen, O. E., Shephard, N. (2005). How accurate is the asymptotic approximation to the distribution of realized

volatility? In: Andrews, D. W. K., Powell, J., Ruud, P., and Stock, J., eds., Identification and Inference for Econometric
Models. Cambridge University Press. Cambridge, U.K.

Beran, J. (1992). Statistical methods for data with long-range dependence. Statistical Science 7(4):404–416.
Bolko, A., Christensen, K., Pakkanen, M. S., Veliyev, B. (2023). A GMM approach to estimate the roughness of stochastic

volatility. Journal of Econometrics 235(2):745–778. forthcoming.
Bound, J., Brown, C., Mathiowetz, N. (2001). Measurement error in survey data. In: Handbook of Econometrics, Heckman,

J. J., Leamer, E., eds., Vol. 5, pp. 3705–3843. Elsevier. Amsterdam, Holland.
Breidt, F. J., Crato, N., De Lima, P. (1998). The detection and estimation of long memory in stochastic volatility. Journal of

Econometrics 83:325–348.
Buchmann, B., Chan, N. G. (2007). Asymptotic theory of least squares estimators for nearly unstable processes under

strong dependence. Annals of Statistics 35(5):2001-2017.
Campbell, J. Y., Motohiro, Y. (2006). Efficient tests of stock return predictability. Journal of Financial Economics 81:27–60.
Cavanagh, C. L., Elliott, G., Stock, J. H. (1995). Inference in models with nearly integrated regressors. Econometric Theory

11:1131–1147.



610 X. WANG AND J. YU

Chambers, M. (1998). Long memory and aggregation in macroeconomic time series. International Economic Review
39:1053–1072.

Chan, N. H., Wei, C. Z. (1987). Asymptotic inference for nearly nonstationary AR(1) processes. Annals of Statistics 15:
1050–1063.

Cheridito, P., Kawaguchi, H., Maejima, M. (2003). Fractional ornstein-uhlenbeck processes. Electronical Journal Probability
8(3):1–14.

Comte, F., Renault, E. (1996). Long memory continuous-time models. Journal of Econometrics 73(1):101–149.
Corsi, F. (2009). A simple approximate long-memory model of realized volatility. Journal of Financial Econometrics

7(2):174–196.
Davydov, Y. A. (1970). The invariance principle for stationary processes. Theory of Probability and Its Applications 15:

487–489.
Diebold, F. X., Rudebusch, G. D. (1989). Long memory and persistence in aggregate output. Journal of Monetary Economics

24(2):189–209.
Dou, L., Müller, U. (2021). Generalized local-TO-Unity models. Econometrica 89:1825–1854.
Duffy, J. A., Kasparis, I. (2021). Estimation and inference in the presence of fractional d = 0.5 AND weakly nonstationary

processes. Annals of Statistics 49(2):1195–1217.
Elliott, G., Rothenberg, T. J., Stock, J. H. (1996). Efficient tests for an autoregressive unit root. Econometrica 64:813–836.
Elliott, G., Stock, J. H. (2001). Confidence intervals for autoregressive coefficients near one. Journal of Econometrics

103:155–181.
Gatheral, J., Jaisson, T., Rosenbaum, M. (2018). Volatility is rough. Quantitative Finance 18(6):933–949.
Gospodinov, N. (2004). Asymptotic confidence intervals for impulse responses of near integrated processes. Econometrics

Journal 7:505–527.
Granger, C. W. J., Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing.

Journal of Time Series Analysis 1:15–29.
Hall, A. (1989). Testing for a unit root in the presence of moving average errors. Biometrika 76:49–56.
Hansen, B. (1999). The grid bootstrap and the autoregressive model. Review of Economics and Statistics 81(4):594–607.
Hansen, P., Lunde, A. (2014). Estimating the persistence and the autocorrelation function of a time series that is measured

with error. Econometric Theory 30(1):60–93.
Herrndorf, N. (1983). Stationary strongly mixing sequences not satisfying the Central limit theorem. Annals of Probability

11:809–813.
Heston, S. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency

options. Review of Financial Studies 6:327–343.
Jansson, M., Moreira, M. J. (2006). Optimal inference in regression models with nearly integrated regressors. Econometrica

74:681–714.
Jiang, L., Wang, X., Yu, J. (2021). In-fill asymptotic theory for structural break point in autoregression. Econometric Reviews

40:359–386.
Kasprzyk, D. (2005). Measurement error in household surveys: sources and measurement. In Household Sample Surveys

in Developing and Transition Countries, Chapter IX, pp. 171–198.
Li, J., Phillips, P. C. B., Shi, S., Yu, J. (2022). Weak identification of long memory with implications for inference. Working

Paper. Singapore Management University, Singapore.
Lieberman, O., Phillips, P. C. B. (2008). Refined inference on long memory in realized volatility. Econometric Reviews

27:254–267.
Liu, X., Shi, S., Yu, J. (2021). Fractional stochastic volatility model. Working Paper. Singapore Management University,

Singapore.
Mandelbrot, B., Van Ness, J. W. (1968). Fractional brownian motions, fractional noises and applications. SIAM Review

10:422–437.
Mcleish, D. L. (1975). A maximal inequality and dependent strong laws. Annals of Probability 3(5):829–839.
Mikusheva, A. (2007). Uniform inference in autoregressive models. Econometrica 75:1411–1452.
Nelson, D. B. (1990). ARCH models as diffusion approximations. Journal of Econometrics 45(1-2):7–38.
Ng, S., Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica

69(6):1519–1554.
Phillips, P. C. B. (1987a). Toward a unified asymptotic theory for autoregression. Biometrika 74:533–547.
Phillips, P. C. B. (1987b). Time series regression with a unit root. Econometrica 55:277–301.
Phillips, P. C. B. (1988). Regression theory for near-integrated time series. Econometrica 56:1021–1043.
Rossi, B. (2005). Confidence intervals for half-life deviations from purchasing power parity. Journal of Business & Economic

Statistics 23:432–442.
Samorodnitsky, G., Taqqu, M. S. (1994). Stable non-Gaussian random processes: Stochastic models with infinite variance.

Stochastic modeling. New York: Chapman & Hall.



ECONOMETRIC REVIEWS 611

Schwert, G. W. (1989). Tests for unit roots: A monte carlo investigation. Journal of Business & Economic Statistics
7:147–159.

Shi, S., Yu, J. (2022). Volatility puzzle: long memory or anti-persistency. Management Science, forthcoming.
Sowell, F. (1990). The fractional unit root distribution. Econometrica 58:495–505.
Stock, J. H. (1991). Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series. Journal of

Monetary Economics 28:435–459.
Tanaka, K. (2013). Distributions of the maximum likelihood and minimum contrast estimators associated with the

fractional ornstein-uhlenbeck process. Statistical Inference for Stochastic Processes 16(3):173–192.
Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Zeitschrift für

Wahrscheinlichkeitstheorie und verwandte Gebiete 31:287–302.
Torous, W., Valkanov, R., Yan, S. (2004). On predicting stock returns with nearly integrated explanatory variables. The

Journal of Business 77:937–966.
Valkanov, R. (2003). Long-horizon regressions: Theoretical results and applications. Journal of Financial Economics

68:201–232.
Wang, X., Xiao, W., Yu, J. (2023a). Modeling and forecasting realized volatility with the fractional Ornstein-Uhlenbeck

process. Journal of Econometrics 232:389–415.
Wang, X., Xiao, W., Yu, J. (2023b). Asymptotic properties of least squares estimator in local to unity processes with the

fractional Gaussian noises. Advances in Econometrics, 45A, 73–95.
Wright, J. H. (2000). Confidence intervals for univariate impulse responses with a near unit root. Journal of Business &

Economics Statistics 18:368–373.


	Abstract
	1.  Introduction 
	2.  Latent model with I(d) errors 
	2.1.  The model and motivations 
	2.2.  Large sample theory 

	3.  Latent model with strongly mixing errors 
	3.1.  The model and motivations 
	3.2.  Asymptotics for the model with strongly mixing errors 

	4.  Finite sample performance of asymptotic distributions 
	5.  Conclusion 
	A.  Appendix 
	Acknowledgment
	Funding
	References


