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Abstract

In recent years, significant advancements have been made in the field of identi-
fying financial bubbles, particularly through the development of time-series unit-
root tests featuring fractionally integrated errors and panel unit-root tests. This
study introduces an innovative approach for assessing the persistence parameter
(α) sign within a panel fractional Ornstein-Uhlenbeck process, based on the least
squares estimator of α. This method incorporates three distinct test statistics
based on the Hurst parameter (H), which can take values in the range of (1/2, 1),
be equal to 1/2, or fall within the interval of (0, 1/2). The null hypothesis cor-
responds to α = 0. Based on a panel of continuous record of observations, the
null asymptotic distributions are obtained when the time span (T ) is fixed and
the number of cross sections (N) goes to infinity. The power function of the tests
is obtained under the local alternative where α is close to zero in the order of
1/(T

√
N). This alternative covers the departure from the unit root hypothesis

from the explosive side, enabling the calculation of lower power in bubble tests.
The hypothesis testing problem and the local power function are also considered
when a panel of discrete-sampled observations is available under a sequential
limit.

Keywords: Panel fractional Ornstein-Uhlenbeck process, Least squares, Asymptotic
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1 Introduction

Inspired by the influential research of Phillips and Magdalinos (2007), a proliferation

of techniques aimed at detecting explosiveness in single time series has emerged. The
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majority of these methods center around right-tailed unit root tests within the frame-

work of autoregressive (AR) models, such as AR(1) or AR(p). Noteworthy instances

encompass the contributions of Phillips et al. (2011), Phillips and Yu (2011), Phillips

et al. (2014), Phillips et al. (2015a, 2015b), and Pedersen and Schütte (2020). These

investigations consistently build upon the least squares estimator (LSE) derived from

individual time series data, coupled with an AR model exhibiting weakly dependent

errors. The local power function of the tests can be obtained using the local-to-unity

approach suggested by Phillips (1987).

In recent times, the academic landscape has witnessed the emergence of novel bubble

detection techniques that expand the horizons of traditional methods along two distinct

trajectories. The initial trajectory continues to center on utilizing individual time series

data, while now accommodating fractionally integrated errors. Notable contributions

in this vein include the works of Magdalinos (2012), Lui et al. (2020, 2023), Wang et

al. (2023), and Wang and Yu (2023). However, the precise characterization of the local

power function for these tests remains elusive.

Moreover, an important stride has been taken by extending the realm of assumption

from weakly dependent errors to encompass fractionally dependent errors. This exten-

sion holds empirical significance, as many economic and financial time series inherently

exhibit the property of fractional dependence. This development contributes to a more

comprehensive and accurate analysis, aligning with the intricacies often observed in

real-world economic and financial data.

Another trajectory involves augmenting the potency of time-series tests through

the application of the least squares estimator (LSE) to panel data. This approach

has been embraced by Liu et al. (2023) within the framework of an autoregressive

(AR) model featuring weakly dependent errors. The determination of the local power

function for this test can be achieved by employing methodologies existing within the

realm of panel unit root literature, as exemplified by the work of Breitung (2001). This

strategic approach holds the potential to harness the collective information from panel

data, potentially yielding enhanced detection capabilities.

In this paper, we combine these two extensions by considering unit root tests in a

context of a panel of fractional Ornstein-Uhlenbeck (fO-U) processes. A univariate fO-U

process with Hurst parameterH corresponds to an autoregressive fractionally integrated

moving average (ARFIMA) model, or to be more precise, ARFIMA(1, H − 0.5, 0); see

Shi and Yu (2023). Hence, our approach not only allows for fractionally integrated

errors but also a panel of time series, each following the fO-U process. Our proposed

panel unit root tests are based on LSE. Moreover, we obtain the local power function

of the panel unit root tests. The alternative hypothesis covers the unit root departure

from the explosive side.

The fO-U process, which extends the specification of standard Ornstein-Uhlenbeck

process, has found a wide range of applications in many fields, including but not limited
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to economics, finance, biology, physics, chemistry, medicine, and environmental studies.

The fO-U process is described by the following stochastic differential equation:

dY (t) = αY (t)dt+ dBH(t), (1.1)

where α ∈ R is the persistence parameter and BH(t), a fractional Brownian motion

(fBm) with the Hurst parameter H ∈ (0, 1), is a zero-mean Gaussian process with the

following covariance

E
[

BH(t)B(s)
]

=
1

2

(

|t|2H + |s|2H − |t− s|2H
)

:= RH(s, t). (1.2)

Several methods have been proposed to estimate α in Model (1.1) when a continuous

record of observations is available. For example, the maximum likelihood estimation

method has been investigated in the ergodic case (i.e. α < 0) by Kleptsyna and Le

Breton (2002) and in the non-ergodic case (i.e. α > 0) by Belfadli et al. (2011)

and Tanaka (2015). The LSE has also been studied in the ergodic case by Hu and

Nualart (2010) and Hu et al. (2019) and in the non-ergodic case by El Machkouri et

al. (2016). Moreover, in the ergodic case, the minimum contrast estimator (see, e.g.,

Tanaka (2013)) and the method of moments estimator (see, e.g., Hu and Nualart (2010);

Hu et al. (2019)) have been also investigated.

Unlike estimation, hypothesis testing in the fO-U process is less extensively studied.

To the best of our knowledge, only a few studies are available in the literature. When

a continuous record of observations is available, Moers (2012) proposed a test statistic,

based on the function of Y 2(T ) and
∫ T

0
Y 2 (t) dt, to test three types of hypothesis: (1)

H0: α ≥ 0 against H1: α < 0; (2) H0: α ≤ 0 against H1: α > 0; (3) H0: α = 0 against

H1: α 6= 0. For H ≥ 1/2, Tanaka (2013) studied the testing problem H0: α = 0 against

H1: α < 0 based on the maximum likelihood estimator (MLE) and minimum contrast

estimator while Tanaka (2015) considered the testing problem H0: α = 0 against H1:

α > 0 based on the MLE. For H ∈ (0, 1), Kukush et al. (2017) proposed a test statistic

for the sign of α based on a logarithmic function of Y (t). It is worth emphasizing that

the test statistic proposed by Kukush et al. (2017) is based on the observation of Y

at one point t. Kukush et al. (2017) presented some algorithms for testing H0: α ≤ 0

against H1: α > 0 for all H ∈ (0, 1).

The discussion above focuses on the hypothesis testing problem of an fO-U process

when a single time series is observed (i.e. N = 1). In practice, multiple time series

may be observed (i.e. N > 1). Consequently, hypothesis testing in a panel framework

is of interest and may significantly raise the power of time-series based unit root tests;

see Liu et al (2023). Assuming that H is known and a panel of continuous records

of observations is available, Tanaka (2019) investigates the hypothesis testing problem

using the MLE of the panel fO-U process. The limiting distributions and the local

power function are obtained in Tanaka (2019).
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In practice, it is rare that a panel of continuous records of observations is available.

When discrete-sampled data is available, it is not clear how to construct the likelihood

function of a fractional continuous-time model. As a result, it is not known how to

do maximum likelihood. This is why we consider the LSE of α and propose the test

statistics based on the LSE in this paper.

To facilitate the construction of the LSE from discrete-sampled data, we first assume

that a panel of continuous records of observations is available. We construct the LSE

of α in the panel fO-U process based on the idea of the LSE for the discrete-time

fractional local-to-unit root model. We then propose three test statistics, depending on

1/2 < H < 1, 0 < H < 1/2, or H = 1/2. The proposed statistics are used to test the

null hypothesis that α = 0. The null asymptotic distributions are obtained when N is

assumed to go to infinity, where N is the number of cross sections. The limiting power

function of the tests is obtained under the local alternative where α is close to zero in

the order of 1/
(

T
√
N
)

. The alternative covers the departure from the unit root from

the explosive side. The limiting power function of the LSE-based tests is compared

with that of the MLE-based test of Tanaka (2019).

When a panel of discrete-sampled observations is available, we introduce three ver-

sions of the LSE of α and three corresponding test statistics. The null asymptotic

distributions are obtained when h is assumed to go to zero and then N is assumed to

go to infinity, where h is the sampling interval between any two consecutive observa-

tions. The limiting power function of the tests is obtained. The limiting distributions

and the power function are shown to be the same as those based on a panel of continuous

records of observations.

The rest of this paper is organized as follows. Section 2 introduces the panel model,

the LSE of α, the null and alternative hypotheses, and the test statistics when a panel

of continuous records of observations is available. The asymptotic properties of the pro-

posed test statistics and their limiting power function are also obtained and compared

with those of the MLE-based test proposed. Section 3 constructs the LSE of α, the

asymptotic properties of the proposed test statistics, and their limiting power functions

when a panel of discrete-sampled observations is available. Section 4 contains some

concluding remarks and directions of further works. All the proofs are collected in the

Appendix.

We use the following notations throughout the paper:
p→,

L−→ and ∼ denote conver-

gence in probability, convergence in distribution and asymptotic equivalence, respec-

tively. Moreover, we will use the notation C for generic constants depending on H ,

which may change from line to line.
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2 Model, Estimator, Test Statistics, and Power

2.1 Model and LSEs

Let BH(t) be defined on the complete filtered probability space
(

Ω,F ,P, {Ft}t∈[0,∞)

)

.

The panel fO-U model is

dYi(t) = αYi(t)dt+ dBH
i (t), Yi(0) = 0, i = 1, . . . , N, t ∈ [0, T ] , (2.1)

where α ∈ R is an unknown persistence parameter and N is the cross-section dimension.

Assume a continuous record of observations is available for Yi(t) for 0 ≤ t ≤ T and for

all i = 1, . . . , N . Following Tanaka (2019), we assume that BH
i (t) is independent of

Bj(t) for all i 6= j. When α < 0, Yi(t) is ergodic for all i. When α > 0, Yi(t) is explosive

and hence non-ergodic for all i. When α = 0, Yi(t) is null-recurrent for all i.

One may test the following one-sided hypothesis

H0 : α = 0 against HL : α < 0 , (2.2)

or

H0 : α = 0 against HR : α > 0. (2.3)

Following Tanaka (2019), we consider the hypothesis testing problems with a local

alternative, that is,

H0 : α = 0 against HL
L : α = δ/

(

T
√
N
)

with δ < 0 , (2.4)

or

H0 : α = 0 against HR
L : α = δ/

(

T
√
N
)

with δ > 0 . (2.5)

Note that Yi(t) reduces to BH
i (t) under H0.

Let Γ(·) denote the gamma function. Tanaka (2019) considered the MLE of α from

a panel of continuous records of observations:

ᾰ (N, T ) =

∑N
i=1

∫ T

0
Qi (t) dZi (t)

∑N
i=1

∫ T

0
Q2

i (t) dω (t)
, (2.6)
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where, for any i ∈ {1, ..., N},

Qi (t) =
d

dω (t)

∫ t

0

k (t, s) Yi (s) ds ,

Zi (t) =

∫ t

0

k (t, s) dYi (s) = αi

∫ t

0

Qi (s) dω (s) +M (t) ,

ω (t) = λ−1t2−2H ,

k (t, s) = κ−1 (s (t− s))
1

2
−H ,

κ = 2HΓ

(

3

2
−H

)

Γ

(

H +
1

2

)

,

λ =
2HΓ (3− 2H) Γ

(

H + 1
2

)

Γ
(

3
2
−H

) ,

M (t) =

∫ t

0

k (t, s) dBi (s) .

Tanaka (2019) introduces the test statistic
√
NTᾰ (N, T ) and shows that, under the

null hypothesis H0, as N → ∞,

√
NTᾰ (N, T )

L−→ N
(

0,
1

βH

)

, (2.7)

where

βH =
1

4
+

1

16H (1−H)
.

Under the alternative, regardless of HL
L or HR

L , Tanaka (2019) shows that, as N → ∞,

√
NTᾰ (N, T )

L−→ N
(

δ,
1

βH

)

. (2.8)

Therefore, the limiting (local) power function of the MLE-based test is

P

(

√

NβHT ᾰ (N, T ) < zγ

)

→ Φ
(

zγ − δ
√

βH

)

, as N → ∞ , (2.9)

where Φ(·) is the distribution function ofN (0, 1) and zγ is the 100×γ% point ofN (0, 1).

Tanaka (2019) also gives the exact power function of the test when T and N are finite.

The estimator considered in this paper is based on the least squares. To motivate

the LSE from a panel of continuous records of observations, let us first review the idea

of the LSE in the discrete-time model defined by

yj = ρyj−1 + νj, (1− L)H− 1

2 νj = εj , y0 = 0, ρ = 1 +
α

n
, εj

i.i.d.∼
(

0, σ2
)

, (2.10)

where H ∈ (0, 1). By definition, νj is a stationary and fractionally integrated process

defined by

νj = (1− L)−(H−1/2) εj :=
∞
∑

k=0

Γ (k +H − 1/2)

Γ (H − 1/2) Γ (k + 1)
εj−k .
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Model (2.10) is a local-to-unit root model with a fractionally integrated error term.

The LSE of ρ takes the form of

ρ̂ =

∑n
j=1 yj−1yj
∑n

j=1 y
2
j−1

= 1 +

∑n
j=1 (yj − yj−1) yj−1
∑n

j=1 y
2
j−1

= 1 +

1
2

(

y2n −
∑n

j=1 (yj − yj−1)
2
)

∑n
j=1 y

2
j−1

.

(2.11)

From Tanaka (2017, page 605), for any 0 < H < 1, as n → ∞, we have

y2n = Op

(

n2H
)

,
n
∑

j=1

(yj − yj−1)
2 = Op (n) ,

n
∑

j=1

y2j−1 = Op

(

n2H+1
)

. (2.12)

Denote as Y (t) the solution of (1.1). Combining (2.11) with (2.12), we get

n (ρ̂− 1)
L−→

1
2
Y 2 (1)

∫ 1

0
Y 2 (t) dt

, when 1/2 < H < 1, (2.13)

n2H (ρ̂− 1)
L−→ − 1

2σ2Var (yi − yi−1)
∫ 1

0
Y 2 (t) dt

=
−1

2
AH

∫ 1

0
Y 2 (t) dt

, when 0 < H < 1/2, (2.14)

n (ρ̂− 1)
L−→
∫ 1

0
Y (t) dY (t)
∫ 1

0
Y 2 (t) dt

, when H = 1/2, (2.15)

where AH = Γ(2−2H)

Γ2( 3

2
−H)

.

Borrowing the idea in (2.13), (2.14) and (2.15), we propose the following three LSEs

of α in the panel fO-U model, depending on the true value of H ,

α̂ (N, T ) =
1
2

∑N
i=1 Y

2
i (T )

∑N
i=1

∫ T

0
Y 2
i (t) dt

, when 1/2 < H < 1, (2.16)

ᾱ (N, T ) =
−1

2

∑N
i=1AH

∑N
i=1

∫ T

0
Y 2
i (t) dt

, when 0 < H < 1/2, (2.17)

α̃ (N, T ) =

∑N
i=1

∫ T

0
Yi (t) dYi (t)

∑N
i=1

∫ T

0
Y 2
i (t) dt

, when H = 1/2. (2.18)

To test the hypotheses specified in (2.4) and (2.5), we propose the following three test

statistics,
√
N
(

T α̂ (N, T )−
(

H + 1
2

))

,
√
N
(

T 2H+1ᾱ (N, T ) +
(

H + 1
2

)

AH

)

,
√
NTα̃ (N, T ),

depending on the true value of H . The reason why T α̂ (N, T ) and T 2H+1ᾱ (N, T ) need

to be re-centered will become clear soon.

2.2 Asymptotic properties and local power of the tests

Since the expressions of the LSE and the test statistic depend on the true value of

H , we consider the hypothesis testing problem for 1/2 < H < 1, 0 < H < 1/2, and

H = 1/2 separately. In all cases, Yi (t) = Bi (t) under the null hypothesis.
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2.2.1 Case of 1/2 < H < 1

We are now consider the asymptotic distribution of a properly centered
√
NTα̂ (N, T ),

which is presented in the following theorem.

Theorem 2.1 For 1/2 < H < 1 and under H0, as N → ∞, the asymptotic distribution

of a properly centered
√
NTα̂ (N, T ) is

√
N

(

T α̂ (N, T )−
(

H +
1

2

))

L−→ N
(

0, σ2
H

)

, (2.19)

where σ2
H = (2H + 1)2

[

1
2
+ (2H+1)Γ2(2H+1)

4Γ(4H+2)
− (2H+1)(4H+3)

8(4H+1)

]

. For 1/2 < H < 1 and under

HL
L or HR

L , as N → ∞, the asymptotic distribution of a properly centered
√
NTα̂ (N, T )

is √
N

(

T α̂ (N, T )−
(

H +
1

2

))

L−→ N
(

δ

4 (H + 1)
, (2H + 1)2 FH

)

, (2.20)

where FH = 1
2
+ 2H+1

4
B (2H + 1, 2H + 1)− (2H+1)(4H+3)

8(4H+1)
and B (·, ·) is the beta function.

Remark 2.1 When 1/2 < H < 1, as N → ∞, the limiting (local) power function of

the LSE-based test is

P

(√
N
(

T α̂ (N, T )−
(

H + 1
2

))

(2H + 1)
√
FH

≤ zγ

)

→ Φ

(

zγ −
δ

4 (H + 1) (2H + 1)
√
FH

)

.

(2.21)

This limiting (local) power function compares to that of the MLE-based test in (2.9).

Figure 1 plots the two sets of limiting (local) power functions for the ergodic alternatives.

The limiting (local) power functions for the non-ergodic alternatives should be the mirror

image to those for the ergodic alternatives for both tests. Clearly, the MLE-based test

is always more powerful than the LSE-based test when 1/2 < H < 1.

Remark 2.2 Under H0, T α̂ (N, T ) converges in probability to H + 1
2
. Hence, α̂ (N, T )

is not a consistent estimator of α. The inconsistency in the LSE is also found in the

case of a single time series; see Xiao and Yu (2019a).

2.2.2 Case of 0 < H < 1/2

The asymptotic distribution of a properly centered
√
NT 2H+1ᾱ (N, T ) is presented in

the following theorem.

Theorem 2.2 For 0 < H < 1/2 and under H0, as N → ∞, the asymptotic distribution

of a properly centered
√
NT 2H+1ᾱ (N, T ) is

√
N

(

T 2H+1ᾱ (N, T ) +

(

H +
1

2

)

AH

)

L−→ N
(

0, λ2
H

)

, (2.22)
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Figure 1: Limiting local powers of the LSE-based test and the MLE-based test against
the ergodic alternative HL

L : α = δ/(
√
NT ) (δ < 0) when 1/2 < H < 1.

where AH = Γ(2−2H)

Γ2( 3

2
−H)

and λ2
H =

A2

H
(2H+1)4

4

(

4H+3
(4H+1)(4H+2)

− 2Γ2(2H+1)
Γ(4H+3)

)

=
A2

H
(2H+1)4

4
IH .

For 0 < H < 1/2 and under HL
L or HR

L , as N → ∞, the asymptotic distribution of a

properly centered T 2H+1ᾱ (N, T ) is

√
N

(

T 2H+1ᾱ (N, T ) +

(

H +
1

2

)

AH

)

L−→ N
(

(2H + 1)AHδ

4 (H + 1)
, λ2

H

)

. (2.23)

Remark 2.3 When 0 < H < 1/2, as N → ∞, the limiting (local) power function of

the LSE-based test is

P

(√
N
(

T 2H+1ᾱ (N, T ) +
(

H + 1
2

)

AH

)

λH
≤ zγ

)

→ Φ

(

zγ −
δ

2 (H + 1) (2H + 1)
√
IH

)

.

(2.24)

This limiting (local) power function compares to that of the MLE-based test in (2.9).

Figure 2 plots the two sets of limiting (local) power functions for the ergodic alternatives.

The limiting (local) power functions for the non-ergodic alternatives should be the mirror

image to those for the ergodic alternatives for both tests. Clearly, the MLE-based test

is always more powerful than the LSE-based test when 0 < H < 1/2.

Remark 2.4 Under H0, T ᾱ (N, T ) converges in probability to −
(

H + 1
2

)

. Hence,

ᾱ (N, T ) is not a consistent estimator of α. The inconsistency in the LSE is also found

in the case of a single time series; see Xiao and Yu (2019b).
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Figure 2: Limiting local powers of the LSE-based test and the MLE-based test against
the ergodic alternative HL

L : α = δ/(
√
NT ) (δ < 0) when 0 < H < 1/2.

2.2.3 Case of H = 1/2

When H = 1/2, Bi (t) = Wi (t), where Wi (t) denotes a standard Brownian motion.

Under H0, we have

α̃ (N, T ) =

∑N
i=1

∫ T

0
Wi (t) dWi (t)

∑N
i=1

∫ T

0
W 2

i (t) dt
=

1
2

∑N
i=1 (W

2
i (T )− T )

T 2
∑N

i=1

∫ 1

0
W 2

i (t) dt
. (2.25)

Consequently, we obtain

T α̃ (N, T ) =
1
2

∑N
i=1 (W

2
i (1)− 1)

∑N
i=1

∫ 1

0
W 2

i (t) dt
. (2.26)

The asymptotic distributions of
√
NTα̃ (N, T ) is presented in the following theorem.

Theorem 2.3 For H = 1/2 and under H0, as N → ∞, we have

√
NTα̃ (N, T )

L−→ N (0, 2) . (2.27)

For H = 1/2 and under HL
L or HR

L , as N → ∞, we have

√
NTα̃ (N, T )

L−→ N (δ, 2) . (2.28)
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Figure 3: Limiting local powers of the LSE-based test against the ergodic alternative
HL

L : α = δ/(
√
NT ) (δ < 0) and non-ergodic alternative HR

L : α = δ/(
√
NT ) (δ > 0)

when H = 1/2.

Remark 2.5 When H = 1/2, the limiting (local) power function of the LSE-based test

is

P

(√
NTα̃(N, T )√

2
≤ zγ

)

→ Φ

(

zγ −
δ√
2

)

. (2.29)

Remark 2.6 When H = 1/2, the LSE of α is the same as the MLE of α. It can

be verified that βH = 1/2 in this case. Hence, the limiting distributions in (2.27) and

(2.28) are the same as those in (2.7) and (2.8). Not surprisingly, the limiting power

function in (2.29) is the same as that in (2.9). Figure 3 plots the limiting local power

function against the ergodic and the non-ergodic alternative when H = 1/2.

3 Discrete-sampled Data

In Section 2 it is assumed that a panel of continuous-record observations is available.

In practice, data are almost always available in discrete-time. Therefore, hypothesis

testing for discrete-sampled fO-U processes is of great interest for practitioners. In this

section we assume that a panel of discrete-sampled data Yi(jh), where i = 1, . . . , N ,

j = 0, 1, . . . ,M
(

:= T
h

)

, is generated from model (2.1) and observed by econometricians.
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Here, N is the number of cross-sectional units and T := Mh is the time span of each

time series with h being the sampling interval between any two consecutive observations.

Based on these discrete-sampled data, we propose the following three LSEs of α:

α̂ (N, T, h) =
1
2

∑N
i=1 Y

2
i (Mh)

∑N
i=1

∑M−1
j=0 hY 2

i (jh)
, when 1/2 < H < 1, (3.1)

ᾱ (N, T, h) =
−1

2

∑N
i=1AH

∑N
i=1

∑M−1
j=0 hY 2

i (jh)
, when 0 < H < 1/2, (3.2)

α̃ (N, T, h) =
1
2

∑N
i=1 (Y

2
i (Mh)−Mh)

∑N
i=1

∑M−1
j=0 hY 2

i (jh)
, when H = 1/2. (3.3)

Before deriving the power of our test, we first establish a few lemmas.

Lemma 3.1 For all H ∈ (0, 1) and a fixed T , we have

E

[

1

M

M−1
∑

j=0

B2
i (jh)−

1

Mh

∫ Mh

0

B2
i (t) dt

]

≤ CT
p

2
(ǫ+H)hH−ǫ , (3.4)

with 0 < ǫ < H and p ≥ 1, for any i = 1, . . . , N .

Lemma 3.2 For α < 0, H ∈ (0, 1) and a fixed T , we have

E

[

1

M

M−1
∑

j=0

Y 2
i (jh)− 1

Mh

∫ Mh

0

Y 2
i (t) dt

]

≤ ChH , (3.5)

for any i = 1, . . . , N .

Lemma 3.3 Let Z be the class of nonnegative random variables ζ with the following

property: there exists C > 0 independent of M such that E exp {xζ2} < ∞ for any

0 < x < C. For α > 0, H ∈ (0, 1) and a fixed T , we have

∣

∣

∣

∣

∣

∫ T

0

Y 2
i (s) ds− h

M−1
∑

k=0

Y 2
i (kh)

∣

∣

∣

∣

∣

≤ Ce2αT ζ2h , (3.6)

where ζ ∈ Z and for any i = 1, . . . , N .

We are now in the position to report the following three theorems under a sequential

limit, that is, h → 0 followed by N → ∞.

12



Theorem 3.1 For 1/2 < H < 1 and under H0, as h → 0 followed by N → ∞
and NhH−ǫ → 0 with 0 < ǫ < H, the asymptotic distribution of a properly centered√
NTα̂ (N, T, h) is

√
N

(

T α̂ (N, T, h)−
(

H +
1

2

))

L−→ N
(

0, σ2
H

)

, (3.7)

where σ2
H is defined in Theorem 2.1.

For 1/2 < H < 1 and under HL
L or HR

L , as h → 0 followed by N → ∞ and NhH−ǫ →
0 with 0 < ǫ < H, the asymptotic distribution of a properly centered

√
NTα̂ (N, T ) is

√
N

(

T α̂ (N, T, h)−
(

H +
1

2

))

L−→ N
(

δ

4 (H + 1)
, (2H + 1)2 FH

)

, (3.8)

where FH is defined by Theorem 2.1.

When 1/2 < H < 1, as h → 0 followed by N → ∞ and NhH−ǫ → 0 with 0 < ǫ < H,

the limiting (local) power function of the LSE-based test is

P

(√
N
(

T α̂ (N, T, h)−
(

H + 1
2

))

(2H + 1)
√
FH

≤ zγ

)

→ Φ

(

zγ −
δ

4 (H + 1) (2H + 1)
√
FH

)

.

(3.9)

Theorem 3.2 For 0 < H < 1/2 and under H0, as h → 0 followed by N → ∞
and NhH−ǫ → 0 with 0 < ǫ < H, the asymptotic distribution of a properly centered√
NT 2H+1ᾱ (N, T, h) is

√
N

(

T 2H+1ᾱ (N, T, h) +

(

H +
1

2

)

AH

)

L−→ N
(

0, λ2
H

)

, (3.10)

where AH and λH are defined in Theorem 2.2. For 0 < H < 1/2 and under HL
L or

HR
L , as h → 0 followed by N → ∞ and NhH−ǫ → 0 with 0 < ǫ < H, the asymptotic

distribution of a properly centered T 2H+1ᾱ (N, T, h) is

√
N

(

T 2H+1ᾱ (N, T, h) +

(

H +
1

2

)

AH

)

L−→ N
(

(2H + 1)AHδ

4 (H + 1)
, λ2

H

)

. (3.11)

When 0 < H < 1/2, as h → 0 followed by N → ∞ and NhH−ǫ → 0 with 0 < ǫ < H,

the limiting (local) power function of the LSE-based test is

P

(√
N
(

T 2H+1ᾱ (N, T, h) +
(

H + 1
2

)

AH

)

λH

≤ zγ

)

→ Φ

(

zγ −
δ

2 (H + 1) (2H + 1)
√
IH

)

,

(3.12)

where IH is defined in Theorem 2.2.
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Theorem 3.3 For H = 1/2 and under H0, as h → 0 followed by N → ∞ and

Nh1/2−ǫ → 0 with 0 < ǫ < 1/2, we have

√
NTα̃ (N, T, h)

L−→ N (0, 2) . (3.13)

For H = 1/2 and under HL
L or HR

L , as h → 0 followed by N → ∞ and Nh1/2−ǫ → 0

with 0 < ǫ < 1/2, we have

√
NTα̃ (N, T, h)

L−→ N (δ, 2) . (3.14)

When H = 1/2, as h → 0 followed by N → ∞ and Nh1/2−ǫ → 0 with 0 < ǫ < 1/2,, the

limiting (local) power function of the LSE-based test is

P

(√
NTα̃(N, T, h)√

2
≤ zγ

)

→ Φ

(

zγ −
δ√
2

)

. (3.15)

4 Conclusion

This paper considers the estimation problem and the hypothesis testing problem for the

persistence parameter, α, in the panel fO-U process based on the LSE, with a known

Hurst index H ∈ (0, 1). The proposed LSE takes different expressions depending on the

true value of H , namely, whether 1/2 < H < 1, or 0 < H < 1/2, or H = 1/2. Similarly,

the test statistics, which test the null of α = 0, take different expressions under these

three cases. When a panel of continuous record observations is available, we derive the

local power functions of the test statistics in the three cases, facilitating the comparison

of the efficiency of the proposed tests based on the LSE with those based on the MLE.

It is shown that when 1/2 < H < 1 and 0 < H < 1/2, the proposed tests based on

the LSE are less powerful than those based on the MLE. However, when H = 1/2, the

proposed test based on the LSE is as powerful as that based on the MLE.

When a panel of discrete-sample data is available, it is not known yet how to apply

the MLE. Hence, it is unclear how to construct the test statistic based on the MLE.

We then propose the LSE of α based on a panel of discrete-sample data and construct

the test statistic under each case of the true value of H , whether 1/2 < H < 1, or

0 < H < 1/2, or H = 1/2. We also derive the local power function of the test statistics

in the three cases under the sequential limit.

In a recent paper, Wang and Yu (2023) develop asymptotic theory for the LSE of

α based on time series data in the context of a local-to-unity model with fractionally

integrated errors. Their asymptotic distributions also depend on the true values of the

memory parameter. The asymptotic distributions can be used to construct unit root

tests against both stationary and explosive alternatives. However, since such tests are

constructed from the time-series estimate, we expect the power of the tests to be lower

than our panel-data-based tests.
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This study also suggests several important directions for future research. First,

in the present paper the cross-sectional independence was assumed, that is, the fBm

B1(t), . . . , BN(t) which generate the panel fO-U processes are independent of each other.

An extension to the cross-sectional dependence is an important topic to be pursued.

Second, this paper assumes that a continuous record of the fO-U process is available

for the development of asymptotic theory. In practice, it is usually only possible to

observe these processes in discrete-time samples (e.g., stock prices collected once a day

or, at best, at every tick). Therefore, the hypothesis testing of the sign of the mean-

reversion parameter in the panel fO-U process based on discrete observations has been

an active research area and at the same time it posed a challenging problem. Third,

this paper considers the hypothesis testing problem of the panel fO-U process for all

H ∈ (0, 1). However, the fractional version of the Heston process, which is called the

fractional Heston process, is extensively used for capturing the volatility of an asset

price. Actually, under some mild conditions, this process is strictly positive and never

hits zero. Due to zero probability of hitting zero, the fractional Heston process is

suitable for modeling asset volatility and interest rates. Hence, statistical inference for

the fractional Heston process has attracted much attention recently. The main difficulty

lies in the fact that it is not clear whether the solution exists for the case H < 1/2. It

would be interesting to estimate the unknown parameters or consider the hypothesis

testing of the fractional Heston process, which is an ongoing project and will be reported

in later work.

5 Appendix

5.1 Proof of Theorem 2.1

Under H0, using (2.16) and the scaling property of the fBm, we obtain

T α̂ (N, T ) =
T
2

∑N
i=1B

2
i (T )

∑N
i=1

∫ T

0
B2

i (t) dt
=

T
2
T 2H

∑N
i=1B

2
i (1)

T 1+2H
∑N

i=1

∫ 1

0
B2

i (t) dt
=

∑N
i=1 Ui (1)

∑N
i=1 Vi (1)

, (5.1)

where Ui (1) =
1
2
B2

i (1) and Vi (1) =
∫ 1

0
B2

i (t) dt.

Elementary calculations yield

E (Ui (1)) =
1

2
E
(

B2
i (1)

)

=
1

2
, (5.2)

V ar (Ui (1)) =
1

4
V ar

(

B2
i (1)

)

=
1

2
, (5.3)

E (Vi (1)) =

∫ 1

0

E
(

B2
i (t)

)

dt =

∫ 1

0

t2Hdt =
1

2H + 1
. (5.4)
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Using (5.1)-(5.4), we obtain, as N → ∞,

T α̂ (N, T )
p→

1
2
1

2H+1

= H +
1

2
.

Consequently, we consider the following statistic

√
N

(

T α̂ (N, T )−
(

H +
1

2

))

=

1√
N

∑N
i=1

(

Ui (1)−
(

H + 1
2

)

Vi (1)
)

1
N

∑N
i=1 Vi (1)

. (5.5)

Applying Isserlis ’ Theorem (or Wick’s theorem) from Isserlis (1918) and (1.2), we obtain

E
[

B2
i (s)B

2
i (t)

]

= E [Bi (s)Bi (s)]E [Bi (t)Bi (t)] + 2E [Bi (s)Bi (t)]E [Bi (s)Bi (t)]

=
1

2

(

s2H + t2H − |s− t|2H
)2

+ s2Ht2H . (5.6)

Using (5.6), we have

∫ 1

0

E
[

B2
i (1)B

2
i (t)

]

dt =
4H + 3

4H + 1
× 1

2
+

1

2H + 1
−B (2H + 1, 2H + 1) ,

∫ 1

0

∫ 1

0

E
[

B2
i (s)B

2
i (t)

]

dsdt =
4H + 3

(4H + 1) (4H + 2)
− 2Γ2 (2H + 1)

Γ (4H + 3)
+

1

(2H + 1)2
,

where B (·, ·) denotes the beta function. Using the above results, we have

E

[

(

Ui (1)−
(

H +
1

2

)

Vi (1)

)2
]

= E

[

U2
i (1)− (2H + 1)Ui (1)Vi (1) +

(

H +
1

2

)2

V 2
i (1)

]

=
1

4
E
[

B4
i (1)

]

− 2H + 1

2
E

[

B2
i (1)

∫ 1

0

B2
i (t) dt

]

+

(

H +
1

2

)2

E

[

(
∫ 1

0

B2
i (t) dt

)2
]

=
3

4
− 2H + 1

2

∫ 1

0

E
[

B2
i (1)B

2
i (t)

]

dt+

(

H +
1

2

)2 ∫ 1

0

∫ 1

0

E
[

B2
i (s)B

2
i (t)

]

dsdt

=
3

4
−
(

H +
1

2

)[

4H + 3

4H + 1
× 1

2
+

1

2H + 1
− Γ2 (2H + 1)

Γ (4H + 2)

]

+

(

H +
1

2

)2 [
4H + 3

(4H + 1) (4H + 2)
− 2Γ2 (2H + 1)

Γ (4H + 3)
+

1

(2H + 1)2

]

=
1

2
+

(2H + 1)Γ2 (2H + 1)

4Γ (4H + 2)
− (2H + 1) (4H + 3)

8 (4H + 1)
. (5.7)

Combining (5.2), (5.4), (5.5) with (5.7), we obtain (2.19).
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Now, we consider (2.20). Put δN = δ/
√
N for notational simplicity. Using the scal-

ing property of fBm and using αi = δN/T , we can write the following result immediately

T α̂ (N, T ) =

1
2

∑N
i=1 e

2δN

(

∫ 1

0
e−uδNdBi (u)

)2

∑N
i=1

∫ 1

0
e2tδN

(

∫ t

0
e−uδNdBi (u)

)2

dt

=
1
2

∑N
i=1X

2
i (1)

∑N
i=1

∫ 1

0
X2

i (t) dt
. (5.8)

Using the fact ex = 1 + x+O(x2) as x → 0, we have, as δN → 0,

E
[

X2
i (t)

]

= H (2H − 1) e2δN t

∫ t

0

∫ t

0

e−δN (u+v)|u− v|2H−2dudv

= H (2H − 1) e2δN t
[

∫ t

0

∫ t

0

|u− v|2H−2dudv

−δN

∫ t

0

∫ t

0

(u+ v) |u− v|2H−2dudv +O(δ2N )
]

= e2δN t

[

t2H − δNH(2H − 1)

∫ t

0

∫ t

0

(u+ v) |u− v|2H−2dudv +O
(

δ2N
)

]

= e2δN t
[

t2H − δN t
2H+1 +O

(

δ2N
)]

= t2H + δN t
2H+1 +O

(

δ2N
)

. (5.9)

Combining (5.8) with (5.9), we get

lim
N→∞

E [T α̂ (N, T )] = H +
1

2
. (5.10)

Applying (5.8) and (5.10), we consider the following result

√
N

(

T α̂ (N, T )−
(

H +
1

2

))

=

1√
N

∑N
i=1

(

1
2
X2

i (1)−
(

H + 1
2

) ∫ 1

0
X2

i (t) dt
)

1
N

∑N
i=1

∫ 1

0
X2

i (t) dt
. (5.11)

Using (5.9), we have

E

[

1

2
X2

i (1)−
(

H +
1

2

)
∫ 1

0

X2
i (t) dt

]

=
1

2

(

1 + δN +O
(

δ2N
))

−
(

H +
1

2

)(

1

2H + 1
+

1

2H + 2
δN +O

(

δ2N
)

)

= δN

(

1

2
− H + 1

2

2H + 2

)

+O
(

δ2N
)

=
1

4 (H + 1)
δN +O

(

δ2N
)

. (5.12)
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Let ω11 = E [Xi (s)Xi (s)], ω12 = E [Xi (s)Xi (t)] and ω22 = E [Xi (t)Xi (t)]. Then,

using (5.9), we have

ω11 = s2H + δNs
2H+1 +O

(

δ2N
)

, (5.13)

ω22 = t2H + δN t
2H+1 +O

(

δ2N
)

. (5.14)

Moreover, an elementary but tedious calculation yields

ω12 = E

[

eδN s

∫ s

0

e−δNudBi (u) e
δN t

∫ t

0

e−δNvdBi (v)

]

= eδN (s+t)H (2H − 1)

∫ s

0

∫ t

0

e−δN (u+v)|u− v|2H−2dudv

= eδN (s+t)H (2H + 1)

∫ s

0

[

∫ v

0

(

1− δN (u+ v) +O
(

δ2N
))

(v − u)2H−2

+

∫ t

v

(

1− δN (u+ v) +O
(

δ2N
))

(u− v)2H−2 du

]

dv

= eδN (s+t)

[

1

2

(

s2H + t2H − |s− t|2H
)

+
δN
2

(

−s2H+1 − t2H+1 + (s+ t) |s− t|2H
)

+O
(

δ2N
)

]

=
1

2

(

s2H + t2H − |s− t|2H
)

+
δN
2

(

st2H + ts2H
)

+O
(

δ2N
)

. (5.15)

Applying (5.13)-(5.15) and Isserlis’ Theorem (or Wick’s theorem) by Isserlis (1918),

we can see that

E
[

X2
i (s)X

2
i (s)

]

= 2ω2
12 + ω11ω22

=
1

2

(

s2H + t2H − |s− t|2H
)2

+ s2Ht2H

+δN

(

(

s2H + t2H − |s− t|2H
) (

st2H + s2Ht
)

+s2H+1t2H + s2Ht2H+1

)

+O
(

δ2N
)

= g (s, t) + δNh (s, t) +O
(

δ2N
)

, (5.16)

where h (s, t) =
(

s2H + t2H − |s− t|2H
) (

st2H + s2Ht
)

+s2H+1t2H+s2Ht2H+1 and g (s, t) =
1
2

(

s2H + t2H − |s− t|2H
)2

+ s2Ht2H .
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Using (5.16), we can obtain

E

[
∫ 1

0

∫ 1

0

X2
i (s)X

2
i (t) dsdt

]

=

∫ 1

0

∫ 1

0

g (s, t) dsdt+ δN

∫ 1

0

∫ 1

0

h (s, t) dsdt+O
(

δ2N
)

=
4H + 3

(4H + 1) (4H + 2)
− 2Γ2 (2H + 1)

Γ (4H + 3)
+

1

(2H + 1)2

+δN

(

2

(H + 1) (2H + 1)
+

1

4H + 1

− 1

(H + 1) (2H + 1) (4H + 3)

− 4

4H + 3
B (2H + 1, 2H + 2)

)

+O
(

δ2N
)

. (5.17)

Using (5.16) again and following similar arguments as above, we can derive that

E

[

X2
i (1)

∫ 1

0

X2
i (t) dt

]

=

∫ 1

0

(

g (1, t) + δNh (1, t) +O
(

δ2N
))

dt

=
4H + 3

2 (4H + 1)
+

1

2H + 1
− B (2H + 1, 2H + 1)

+δN

(

1

H + 1
2

+
1

H + 1
+

1

2
+

1

4H + 1

−B (2H + 1, 2H + 1)−B (2, 2H + 1)

)

+O
(

δ2N
)

.(5.18)

Combining (5.17) with (5.18), we have

E

[

(

X2
i (1)

2
−
(

H +
1

2

)
∫ 1

0

X2
i (t) dt

)2
]

=
1

4
E
(

X4
i (1)

)

−
(

H +
1

2

)

E

(

X2
i (1)

∫ 1

0

X2
i (t) dt

)

+

(

H +
1

2

)2

E

[

(
∫ 1

0

X2
i (t) dt

)2
]

= FH + δNGH ++O
(

δ2N
)

, (5.19)

where FH = 1
2
+ 2H+1

4
B (2H + 1, 2H + 1)− (2H+1)(4H+3)

8(4H+1)
, GH = −H(H− 1

2
)

4H+1
− H+ 1

2

2(H+1)(4H+3)
−

(

H + 1
2

)

B (2, 2H + 1) + (H+1)(4H+3)
4H+3

B (2H + 1, 2H + 1).

Finally, applying (5.11), (5.12) and (5.19), we obtain (2.20). This concludes the

proof of the theorem.
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5.2 Proof of Theorem 2.2

We first focus on (2.22). Under H0 and using (2.17), we have

T 2H+1ᾱ (N, T ) =
−1

2
T 2H+1NAH

∑N
i=1

∫ T

0
B2

i (t) dt
=

−1
2
NAH

∑N
i=1

∫ 1

0
B2

i (t) dt
. (5.20)

A standard calculation yields
∫ 1

0

E
[

B2
i (t)

]

dt =
1

2H + 1
. (5.21)

By combining (5.20) with (5.21), we can obtain

T 2H+1ᾱ (N, T )
p→ −

(

H +
1

2

)

AH . (5.22)

Consequently, under H0, we have

√
N

(

T 2H+1ᾱ (N, T ) +

(

H +
1

2

)

AH

)

= −
1

2
√
N
AH

∑N
i=1

(

1− (2H + 1)
∫ 1

0
B2

i (t) dt
)

1
N

∑N
i=1

∫ 1

0
B2

i (t) dt
,

which implies (2.22) by similar arguments as (5.7).

Under H1, we can write

T 2H+1ᾱ (N, T ) =
−1

2
NAH

∑N
i=1

∫ 1

0
X2

i (t) dt
, (5.23)

where Xi (t) = eδN t
∫ t

0
e−δN sdBi (s) = δNe

δN t
∫ t

0
e−δN sBi (s) ds+Bi (t).

Using (5.22) and (5.23), we consider the following statistic

√
N

(

T 2H+1ᾱ (N, T ) +

(

H +
1

2

)

AH

)

=
√
N

(

−1
2
NAH +

(

H + 1
2

)

AH

∑N
i=1

∫ 1

0
X2

i (t) dt
∑N

i=1

∫ 1

0
X2

i (t) dt

)

.

Using the definition of Xi (t) and Corollary 1.44 in Kukush et al. (2018), we have

E
[

X2
i (t)

]

= H

∫ t

0

u2H−1eδNudu+H

∫ t

0

u2H−1eδN (2t−u)du

= H

∫ t

0

u2H−1
(

1 + δNu+O
(

δ2N
))

du

+H

∫ t

0

u2H−1
(

1 + δN (2t− u) +O
(

δ2N
))

du

= t2H + δN t
2H+1 +O

(

δ2N
)

. (5.24)

Using (5.24), we can easily obtain

E

[

1− (2H + 1)

∫ 1

0

X2
i (t) dt

]

= −2H + 1

2H + 2
δN +O

(

δ2N
)

. (5.25)

Combining (5.23) and (5.25) with (5.19), we obtain (2.23).
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5.3 Proof of Theorem 2.3

Under H0, using (2.26), we can easily obtain

√
NTα̃ (N, T ) =

1√
N

1
2

∑N
i=1 (W

2
i (1)− 1)

1
N

∑N
i=1

∫ 1

0
W 2

i (t) dt
. (5.26)

Using the properties of the standard Brownian motion, we have

E

[

1√
N

1

2

N
∑

i=1

(

W 2
i (1)− 1

)

]

= 0 , (5.27)

E





(

1√
N

1

2

N
∑

i=1

(

W 2
i (1)− 1

)

)2


 =
1

2
, (5.28)

E

[

1

N

N
∑

i=1

∫ 1

0

W 2
i (t) dt

]

=
1

2
. (5.29)

Combining (5.26), (5.27), (5.28) with (5.29), we can easily obtain (2.27).

On the other hand, under H1 : α = δN
T

with δN = δ√
N
, we can obtain

T α̃ (N, T ) =
1
2

∑N
i=1 (X

2
i (1)− 1)

∑N
i=1

∫ 1

0
X2

i (t) dt
, (5.30)

where Xi (t) = eδN t
∫ t

0
e−δN sdWi (s).

Elementary calculations yield

E
[

X2
i (t)

]

= t+ δN t
2 +O

(

δ2N
)

. (5.31)

Combining (5.30) with (5.31), we have

√
NTα̃ (N, T ) =

1
2
√
N

∑N
i=1 (X

2
i (1)− 1)

1
N

∑N
i=1

∫ 1

0
X2

i (t) dt
L−→ N (δ, 2) , (5.32)

which is (2.28) and hence, completes the proof of the theorem.

5.4 Proof of Lemma 3.1

Let η1 := sup
t6=s∈[0,T ]

|BH
i (t)−Bi(s)|
|t−s|H−ǫ with 0 < ǫ < H and η2 := 2 sup

u∈[0,T ]

|Bi(u)|. Using the self-

similarity property of the fBm, for any p ≥ 1, we have E [ηp1] = CT pǫ and E [ηp2 ] = CT pH .
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Then, using the Cauchy–Schwarz inequality, we can calculate the difference between the

integral and the corresponding integral sum as

E

[

1

M

M−1
∑

j=0

B2
i (jh)−

1

Mh

∫ Mh

0

B2
i (t) dt

]

= E

[

1

Mh

M−1
∑

j=0

hB2
i (jh)−

1

Mh

∫ Mh

0

B2
i (t) dt

]

= E

[

1

Mh

M−1
∑

j=0

∫ (j+1)h

jh

B2
i (jh) dt−

1

Mh

M−1
∑

j=0

∫ (j+1)h

jh

B2
i (t) dt

]

=
1

Mh

M−1
∑

j=0

∫ (j+1)h

jh

E [(Bi (jh)−Bi (t)) (Bi (jh) +Bi (t))] dt

≤ 2

T

M−1
∑

j=0

∫ (j+1)h

jh

|jh− t|H−ǫ
E [η1η2] dt

≤ 2

T

M−1
∑

j=0

∫ (j+1)h

jh

|jh− t|H−ǫ
(

E
[

η21
])1/2 (

E
[

η22
])1/2

dt

≤ 2

T
T

p

2
(ǫ+H)hH−ǫ(Mh) , (5.33)

which is (3.4) and the proof of this lemma is completed.

5.5 Proof of Lemma 3.2

When α < 0, (2.1) is stationary. For any i = 1, . . . , N , we can see that (2.1) has a

unique solution, which can be presented as

Yi (t) = Bi (t) + αeαt
∫ t

0

Bi (s) e
−αsds . (5.34)

From (5.34), for any i = 1, . . . , N , we can easily obtain E [Yi (t)] = 0 and, as t → ∞,

V ar [Yi (t)] = H

∫ t

0

z2H−1
(

eαz + eα(2t−z)
)

dz → HΓ(2H)

|α|2H
.

Since Yi (t) is normally distributed for all H ∈ (0, 1) and p ≥ 1, there exists a

positive constant C such that

E |Yi (t)|p ≤ C . (5.35)

On the other hand, for any i = 1, . . . , N , we can write the unique solution of (2.1)

as

Yi (t) = α

∫ t

0

Yi (s) ds+Bi (t) . (5.36)
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Using (5.36), for any i = 1, . . . , N , we get

|Yi (t)− Yi (s)| ≤ α

∫ t

s

|Yi (u)| du+ |Bi (t)−Bi (s)| . (5.37)

Applying the Cauchy-Schwarz inequality, (5.35) and (5.37), we obtain

E [Yi (t)− Yi (s)]
2 ≤ 2α2

E

(
∫ t

s

|Yi (u)| du
)2

+ 2E (Bi (t)− Bi (s))
2

≤ 2α2(t− s)

∫ t

s

E |Yi (u)|2 du+ 2 (t− s)2H

≤ C |t− s|2 . (5.38)

Moreover, since Yi (t) − Yi (s) has a normal distribution, using (5.38), for all H ∈
(0, 1) and p ≥ 1, there exists a positive constant C such that

E |Yi (t)− Yi (s)|p ≤ C|t− s|pH . (5.39)

Using the Cauchy-Schwarz inequality, (5.35) and (5.39), we have

E

[

1

M

M−1
∑

j=0

Y 2
i (jh)− 1

Mh

∫ Mh

0

Y 2
i (t) dt

]

= E

[

1

Mh

M−1
∑

j=0

hY 2
i (jh)− 1

Mh

∫ Mh

0

Y 2
i (t) dt

]

= E

[

1

Mh

M−1
∑

j=0

∫ (j+1)h

jh

Y 2
i (jh) dt− 1

Mh

M−1
∑

j=0

∫ (j+1)h

jh

Y 2
i (t) dt

]

=
1

Mh

M−1
∑

j=0

∫ (j+1)h

jh

E [(Yi (jh)− Yi (t)) (Yi (jh) + Yi (t))] dt

≤ 1

T

M−1
∑

j=0

∫ (j+1)h

jh

√

E
[

(Yi (jh)− Yi (t))
2]
√

E
[

(Yi (jh) + Yi (t))
2]dt

≤ C

T

M−1
∑

j=0

∫ (j+1)h

jh

|jh− t|Hdt

≤ C

T
hH(Mh) , (5.40)

which implies the desired result of (3.5).
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5.6 Proof of Lemma 3.3

Using (5.34) and the well known result of sup0≤s≤t |Bi (s)| ≤
(

tH log2 t + 1
)

ζ (where

ζ ∈ Z with Z defined in Lemma 3.3), for any t and any i = 1, . . . , N , we have

sup
0≤u≤s

|Yi (u)| ≤ αeαs
∫ s

0

e−αu sup
0≤t≤u

|Bi (t)| du+ sup
0≤u≤s

|Bi (u)|

≤ αeαsζ

∫ s

0

e−αu
(

uH log2 u+ 1
)

du+
(

sH log2 s+ 1
)

ζ

≤ Cαeαsζ +
(

sH log2 s+ 1
)

ζ

≤
(

Ceαs + sH log2 s
)

ζ . (5.41)

Let us mention that, for any 0 < s < t < ∞, we can obtain the important result of in-

crements of the fBm, that is, |Bi (t)−Bi (s)| ≤ (t− s)H
(

|log (t− s)|1/2 + 1
)

ζ log (t+ 2).

See Remark 3 of Kukush et al. (2015) for details. Consequently, for any kh < s ≤
(k + 1)h and any 0 < r < H , by a similar argument as Remark 3 of Kukush et al.

(2015), we can obtain

|Bi (s)− Bi (kh)| ≤ ζ (s− kh)H
(

|log (s− kh)|1/2 + 1
)

log (s + 2)

= ζ
[

(s− kh)H |log (s− kh)|1/2 + (s− kh)H
]

log (s+ 2)

≤ ζ (s− kh)H−r log (s+ 2) . (5.42)

Using (5.36), (5.41) and (5.42), we have, for s ∈ [kh, (k + 1)h],

sup
kh≤u≤s

|Yi (u)− Yi (kh)| ≤ α

∫ s

kh

|Yi (u)| du+ sup
kh≤u≤s

|Bi (u)− Bi (kh)|

≤ ζ
(

hsH log2 s+ heαs + hH−r log(s+ 2)
)

. (5.43)

Let 1x∈[a,b) be an indicator function, which takes the value 1 if x ∈ [a, b) and 0

otherwise. Then, using (5.41) and (5.43), we have
∣

∣

∣

∣

∣

∫ T

0

Y 2
i (s) ds− h

M−1
∑

k=0

Y 2
i (kh)

∣

∣

∣

∣

∣

≤
∫ T

0

∣

∣

(

Y 2
i (s)− Y 2

i (kh)
)

1s∈[kh,(k+1)h)

∣

∣ ds

≤
∫ T

0

|Yi (s)− Yi (kh)| |Yi (s) + Yi (kh)| 1s∈[kh,(k+1)h)ds

≤ 2

∫ T

0

|Yi (s)− Yi (kh)| sup
0≤u≤s

|Yi (u)|1s∈[kh,(k+1)h)ds

≤ 2ζ2
∫ T

0

[(

hsH log2 s+ heαs + hH−r log(s+ 2)
) (

Ceαs + sH log2 s
)]

ds

≤ Ce2αT ζ2h , (5.44)

which implies (3.6).
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5.7 Proof of Theorem 3.1

Under H0, using (3.1), (3.4), (2.19) and Slutsky’s theorem, as h → 0 followed by

N → ∞ and NhH−ǫ → 0 with 0 < ǫ < H , we obtain

√
N

(

T α̂ (N, T, h)−
(

H +
1

2

))

=
√
N

(

T
2

∑N
i=1B

2
i (T )

∑N
i=1

∑M−1
j=0 hB2

i (jh)
−
(

H +
1

2

)

)

=
√
N





1
2

∑N
i=1B

2
i (T )

∑N
i=1

[

1
M

∑M−1
j=0 B2

i (jh)− 1
Mh

∫Mh

0
B2

i (t) dt+
1
T

∫ T

0
B2

i (t) dt
] −

(

H +
1

2

)





L−→ N
(

0, σ2
H

)

,

which implies (3.7).

Similarly, under HL
L, using (3.1), (3.5), (2.20) and Slutsky’s theorem, as h → 0

followed by N → ∞ and NhH → 0, we can see that

√
N

(

T α̂ (N, T, h)−
(

H +
1

2

))

=
√
N

(

T
2

∑N
i=1 Y

2
i (T )

∑N
i=1

∑M−1
j=0 hY 2

i (jh)
−
(

H +
1

2

)

)

=
√
N





1
2

∑N
i=1 Y

2
i (T )

∑N
i=1

[

1
M

∑M−1
j=0 Y 2

i (jh)− 1
Mh

∫Mh

0
Y 2
i (t) dt+ 1

T

∫ T

0
Y 2
i (t) dt

] −
(

H +
1

2

)





L−→ N
(

δ

4 (H + 1)
, (2H + 1)2 FH

)

,

which is (3.8) under HL
L.

Using (3.1), (3.6), (2.20), Slutsky’s theorem and similar arguments as above, we

can obtain (3.8) under HR
L . Moreover, (3.9) is a direct application of (3.8) and hence,

completes the proof of the theorem.
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5.8 Proof of Theorem 3.2

Under H0, using (3.2), (3.4), (2.22) and Slutsky’s theorem, as h → 0 followed by

N → ∞ and NhH−ǫ → 0 with 0 < ǫ < H , we can see that

√
N

(

T 2H+1ᾱ (N, T, h) +

(

H +
1

2

)

AH

)

=
√
N

(

−1
2
T 2H+1

∑N
i=1AH

∑N
i=1

∑M−1
j=0 hB2

i (jh)
+

(

H +
1

2

)

AH

)

=
√
N





−1
2

∑N
i=1AH

∑N
i=1

1
T 2H

[

1
M

∑M−1
j=0 B2

i (jh)− 1
Mh

∫Mh

0
B2

i (t) dt+
1
T

∫ T

0
B2

i (t) dt
] +

(

H +
1

2

)

AH





L−→ N
(

0, λ2
H

)

,

which implies (3.10).

Under HL
L, using (3.2), (3.5), (2.23) and Slutsky’s theorem, as h → 0 followed by

N → ∞ and NhH → 0, we can see that

√
N

(

T 2H+1ᾱ (N, T, h) +

(

H +
1

2

)

AH

)

=
√
N

(

−1
2
T 2H+1

∑N
i=1AH

∑N
i=1

∑M−1
j=0 hY 2

i (jh)
+

(

H +
1

2

)

AH

)

=
√
N





−1
2

∑N
i=1AH

∑N
i=1

1
T 2H

[

1
M

∑M−1
j=0 Y 2

i (jh)− 1
Mh

∫Mh

0
Y 2
i (t) dt+ 1

T

∫ T

0
Y 2
i (t) dt

] +

(

H +
1

2

)

AH





L−→ N
(

(2H + 1)AHδ

4 (H + 1)
, λ2

H

)

,

which is (3.11) under HL
L.

Using (3.2), (3.6), (2.23), Slutsky’s theorem and similar arguments as above, we

can obtain (3.11) under HR
L . Moreover, (3.12) is a direct application of (3.11) and we

complete the proof.
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5.9 Proof of Theorem 3.3

Under H0, using (3.3), (3.4), (2.27) and Slutsky’s theorem, as h → 0 followed by

N → ∞ and Nh1/2−ǫ → 0 with 0 < ǫ < 1/2, we can obtain

√
NTα̃ (N, T, h) =

1√
N

∑N
i=1

1
2
(W 2

i (Mh)−Mh)

1
N

1
T

∑N
i=1

∑M−1
j=0 hW 2

i (jh)

=

1√
N

∑N
i=1

[

1
2
(W 2

i (Mh)−Mh)
]

1
N

∑N
i=1

[

1
M

∑M−1
j=0 W 2

i (jh)− 1
Mh

∫Mh

0
W 2

i (t) dt+
1
T

∫ T

0
W 2

i (t) dt
]

L−→ N (0, 2) ,

which implies (3.13).

Similarly, under HL
L and HR

L , using (3.3), (3.5), (3.6), (2.28) and the Slutsky’s

theorem, as h → 0 followed by N → ∞ and Nh1/2 → 0, we have

√
NTα̃ (N, T, h) =

1√
N

∑N
i=1

1
2
(Y 2

i (Mh)−Mh)

1
N

1
T

∑N
i=1

∑M−1
j=0 hY 2

i (jh)

=

1√
N

∑N
i=1

[

1
2
(Y 2

i (Mh)−Mh)
]

1
N

∑N
i=1

[

1
M

∑M−1
j=0 Y 2

i (jh)− 1
Mh

∫Mh

0
Y 2
i (t) dt+ 1

T

∫ T

0
Y 2
i (t) dt

]

L−→ N (δ, 2) ,

which is (3.14). Moreover, a straightforward application of (3.14) yields (3.15) and we

finish the proof.
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