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Summary. This paper overviews maximum likelihood and Gaussian methods of
estimating continuous time models used in finance. Since the exact likelihood can
be constructed only in special cases, much attention has been devoted to the devel-
opment of methods designed to approximate the likelihood. These approaches range
from crude Euler-type approximations and higher order stochastic Taylor series ex-
pansions to more complex polynomial-based expansions and infill approximations to
the likelihood based on a continuous time data record. The methods are discussed,
their properties are outlined and their relative finite sample performance compared
in a simulation experiment with the nonlinear CIR diffusion model, which is popu-
lar in empirical finance. Bias correction methods are also considered and particular
attention is given to jackknife and indirect inference estimators. The latter retains
the good asymptotic properties of ML estimation while removing finite sample bias.
This method demonstrates superior performance in finite samples.

1 Introduction

Continuous time models have provided a convenient mathematical framework
for the development of financial economic theory (e.g., Merton, 1990), asset
pricing, and the modern field of mathematical finance that relies heavily on
stochastic processes (Karatzas and Shreve, 2003). These models now domi-
nate the option pricing literature, which has mushroomed over the last three
decades from a single paper (Black and Scholes, 1973) to a vast subdiscipline
with strong practical applications in the finance industry. Correspondingly,
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the econometric analysis of continuous time models has received a great deal
attention in financial econometrics, providing a basis from which these mod-
els may be brought to data and used in practical applications. Much of the
focus is on the econometric estimation of continuous time diffusion equations.
Estimation not only provides parameter estimates which may be used directly
in the pricing of financial assets and derivatives but also serves as a stage in
the empirical analysis of specification and comparative diagnostics.

Many models that are used to describe financial time series are written in
terms of a continuous time diffusion X (t) that satisfies the stochastic differ-
ential equation

dX(t) = µ(X(t); θ)dt + σ(X(t); θ)dB(t), (1)

where B(t) is a standard Brownian motion, σ(X(t); θ) is some specified diffu-
sion function, µ(X(t); θ) is a given drift function, and θ is a vector of unknown
parameters. This class of parametric model has been widely used to charac-
terize the temporal dynamics of financial variables, including stock prices,
interest rates, and exchange rates.

It has been argued that when the model is correctly specified, the preferred
choice of estimator and preferred basis for inference should be maximum like-
lihood (ML) – see, for example, Aı̈t-Sahalia (2002) and Durham and Gallant
(2002). Undoubtedly, the main justification for the use of the ML method lies
in its desirable asymptotic properties, particularly its consistency and asymp-
totic efficiency under conditions of correct specification. In pursuit of this goal,
various ML and Gaussian (that is, ML under Gaussian assumptions) methods
have been proposed. Some of these methods involve discrete approximations,
others are exact (or exact under certain limiting conditions on the approxima-
tion). Some are computationally inexpensive while others are computationally
intensive. Some are limited to particular formulations, others have much wide
applicability.

The purpose of the present chapter is to review this literature and overview
the many different approaches to estimating continuous time models of the
form given by (1) using ML and Gaussian methods. In the course of this
overview, we shall discuss the existing methods of estimation and their mer-
its and drawbacks. A simple Monte Carlo experiment is designed to reveal
the finite sample performance of some of the most commonly used estima-
tion methods. The model chosen for the experiment is a simple example of
(1) that involves a square root diffusion function. This model is popular in
applied work for modeling short term interest rates and is known in the term
structure literature as the Cox-Ingersoll-Ross or CIR model (see (9) below).
One of the principal findings from this simulation experiment is that all ML
methods, including “exact” methods, have serious finite sample estimation
bias in the mean reversion parameter. This bias is significant even when the
number of observations is as large as 500 or 1000. It is therefore important in
ML/Gaussian estimation to take such bias effects into account. We therefore
consider two estimation bias reduction techniques – the jackknife method and
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the indirect inference estimation – which may be used in conjunction with
ML, Gaussian or various approximate ML methods. The indirect inference
estimator demonstrates markedly superior results in terms of bias reduction
and overall mean squared error in comparison with all other methods.

The chapter is organized as follows. Section 2 outlines the exact ML
method, Section 3 and Section 4 review the literature on implementing
ML/Gaussian methods in continuous time financial models and the practi-
calities of implementation. Section 5 reports a Monte Carlo study designed to
investigate and compare the performance of some ML/Gaussian estimation
methods for the CIR model. Section 6 reviews two bias reduction methods
and examines their performance in the CIR model example. Section 7 briefly
outlines some issues associated with extensions of ML/Gaussian procedures
for multivariate models, and Section 8 concludes.

2 Exact ML Methods

2.1 ML based on the Transition Density

Assume the data X(t) is recorded discretely at points (h, 2h, · · · , Nh(≡ T )) in
the time interval [0, T ], where h is the discrete interval of observation of X(t)
and T is the time span of the data. The full sequence of N observations is
{Xh, X2h, · · · , XNh}. If X(t) is conceptualized for modeling purposes as annu-
alized data which is observed discretely at monthly (weekly or daily) intervals,
then h = 1/12 (1/52 or 1/252). It is, of course, most convenient to assume
that equi-spaced sampling observations are available and this assumption is
most common in the literature, although it can be and sometimes is relaxed.

Many estimation methods are based on the construction of a likelihood
function derived from the transition probability density of the discretely sam-
pled data. This approach is explained as follows. Suppose p(Xih|X(i−1)h, θ) is
the transition probability density. The Markov property of model (1) implies
the following log-likelihood function for the discrete sample3

`TD(θ) = ln(p(Xih|X(i−1)h, θ)). (2)

The resulting estimator will be consistent, asymptotically normally distributed
and asymptotically efficient under the usual regularity conditions for maxi-
mum likelihood estimation in (stationary) dynamic models (Hall and Heyde,
1980; Billingsley, 1961). In nonstationary, nonergodic cases, the limit theory is
no longer asymptotically normal and there are several possibilities, including

3 Our focus in the present discussion is on the usefulness of the transition density
for estimation purposes. But we note that the transition density is needed and
used for many other applications, such as for pricing derivatives and for obtaining
interval and density forecasts.
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various unit root, local to unity, mildly explosive and explosive limit dis-
tributions (Phillips, 1987, Chan and Wei, 1988; Phillips, 1991; Phillips and
Magdalinos, 2007).

To perform exact ML estimation, one needs a closed form expression for
`TD(θ) and hence ln(p(Xih|X(i−1)h, θ)). Unfortunately, only in rare cases, do
the transition density and log likelihood component ln(p(Xih|X(i−1)h, θ)) have
closed form analytical expressions. All other cases require numerical tech-
niques or analytic or simulation-based approximants.

The following list reviews the continuous time models used in finance that
have closed-form expressions for the transition density.

1. Geometric Brownian Motion:

dX(t) = µX(t) dt + σX(t) dB(t). (3)

Black and Scholes (1973) used this process to describe the movement of
stock prices in their development of the stock option price formula. Since

d lnX(t) =
1

X (t)
dX (t)− (dX (t))2

2X (t)2
= µdt + σdB(t)− 1

2
σ2dt, (4)

the transformed process lnX(t) follows the linear diffusion

d lnX(t) =
(

µ− σ2

2

)
dt + σ dB(t). (5)

As a result, Xih|X(i−1)h ∼ LN((µ − σ2

2 )h + ln(X(i−1)h), σ2h), where LN
denotes the log-normal distribution.

2. Ornstein-Uhlenbeck (OU) process (or Vasicek model):

dX(t) = κ(µ−X(t))dt + σ dB(t). (6)

Vasicek (1977) used this process to describe the movement of short term
interest rates. Phillips (1972) showed that the exact discrete model corre-
sponding to (6) is given by

Xih = e−κhX(i−1)h + µ
(
1− e−κh

)
+ σ

√
(1− e−2κh)/(2κ)εi, (7)

where εi ∼ i.i.d. N(0, 1). Phillips (1972) also developed an asymptotic
theory for nonlinear least squares/ML estimates of the parameters in a
multivariate version of (6) using the exact discrete time model (7), show-
ing consistency, asymptotic normality and efficiency under stationarity
assumptions (κ > 0 in the univariate case here). The transition density
for the Vasicek model follows directly from (7) and is

Xih|X(i−1)h ∼ N
(
µ(1− e−κh) + e−κhX(i−1)h, σ2(1− e−2κh)/(2κ)

)
. (8)
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3. Square-root (or Cox-Ingersoll-Ross) model:

dX(t) = κ(µ−X(t))dt + σ
√

X(t) dB(t). (9)

Cox, Ingersoll and Ross (1985, CIR hereafter) also used this process to
describe movements in short term interest rates. The exact discrete model
corresponding to (9) is given by

Xih = e−κhX(i−1)h + µ
(
1− e−κh

)
+ σ

∫ ih

(i−1)h

e−κ(ih−s)
√

X(s)dB (s) .

(10)
When 2κµ/σ2 ≥ 1, X is distributed over the positive half line. Feller
(1952) showed that the transition density of the square root model is
given by

Xih|X(i−1)h = ce−u−v(v/u)q/2Iq(2(uv)1/2) (11)

where c = 2κ/(σ2(1−e−κh)), u = cX(i−1)he−κh, v = cXih, q = 2κµ/σ2−1,
and Iq(·) is the modified Bessel function of the first kind of order q.

4. Inverse square-root model:

dX(t) = κ(µ−X(t))X(t)dt + σX1.5(t) dB(t). (12)

Ahn and Gao (1999) again used this process to model short term interest
rates. When κ, µ > 0, X is distributed over the positive half line. Ahn
and Gao (1999) derived the transition density of the inverse square root
model as

Xih|X(i−1)h = c−1e−u−v(v)q/2+2u−q/2Iq(2(uv)1/2) (13)

where c = 2κµ/(σ2(1 − e−κµh)), u = ce−κµh/X(i−1)h, v = c/Xih, q =
2(κ + σ2)/σ2 − 1.

2.2 ML based on the Continuous Record Likelihood

If a continuous sample path of the process X(t) were recorded over the interval
[0, T ], direct ML estimation would be possible based on the continuous path
likelihood. This likelihood is very useful in providing a basis for the so-called
continuous record or infill likelihood function and infill asymptotics in which
a discrete record becomes continuous by a process of infilling as the sampling
interval h → 0. Some of these infill techniques based on the continuous record
likelihood are discussed later in Section 4. Since financial data are now being
collected on a second by second and tick by tick basis, this construction is
becoming much more important.

When X(t) is observed continuously, a log-likelihood function for the con-
tinuous record {X (t)}T

t=0 may be obtained directly from the Radon Nikodym
(RN) derivative of the relevant probability measures. The RN derivative pro-
duces the relevant probability density and can be regarded as a change of
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measure among the absolutely continuous probability measures, the calcula-
tion being facilitated by the Girsanov theorem (e.g., Karatzas and Shreve,
2003). The approach is convenient and applies quite generally to continuous
time models with flexible drift and diffusion functions.

In the stochastic process literature the quadratic variation or square
bracket process is well known to play an important role in the study of stochas-
tic differential equations. In the case of equation (1), the square bracket pro-
cess of X (t) has the explicit form

[X]T =
∫ T

0

(dX(t))2 =
∫ T

0

σ2(X(t); θ)dt, (14)

which is a continuously differentiable increasing function. In fact, we have
d[X]t = σ(X(t); θ)2dt. In consequence, when a continuous sample path of
the process X(t) is available, the quadratic variation of X provides a per-
fect estimate of the diffusion function and hence the parameters on which it
depends, provided these are identifiable in σ2(X(t); θ). Thus, with the avail-
ability of a continuous record, we can effectively assume the diffusion term
(i.e., σ(X(t); θ) = σ(X(t)) is known and so this component does not involve
any unknown parameters. It follows that the exact continuous record or infill
log-likelihood can be constructed via the Girsanov theorem (e.g., Liptser and
Shiryaev, 2000) as

`IF (θ) =
∫ T

0

µ(X(t); θ)
σ2(X(t))

dX(t)− 1
2

∫ T

0

µ2(X(t); θ)
σ2(X(t))

dt. (15)

In this likelihood, the parameter θ enters via the drift function µ(X(t); θ).
Lánska (1979) established the consistency and asymptotic normality of the
continuous record ML estimator of θ when T → ∞ under certain regularity
conditions.

To illustrate the approach, consider the following OU process,

dX(t) = κX(t)dt + σ0dB(t), (16)

where σ0 is known and κ is the only unknown parameter. The exact log-
likelihood in this case is given by

`IF (κ) =
∫ T

0

κX(t)
σ2

0

dX(t)− 1
2

∫ T

0

κ2X2(t)
σ2

0

dt, (17)

and maximizing the log-likelihood function immediately gives rise to the fol-
lowing ML estimator of κ:

κ̂ =

(∫ T

0

X2(t)dt

)−1 ∫ T

0

X(t)dX(t) (18)

This estimator is analogous in form to the ML/OLS estimator of the autore-
gressive coefficient in the discrete time Gaussian autoregression
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Xt = φXt−1 + εt, εt ∼ i.i.d. N(0, 1) (19)

viz., φ̂ =
(∑n

t=1 X2
t−1

)−1∑n
t=1 XtXt−1. It is also interesting to observe that

when κ = 0 (18) has the same form as the limit distribution of the (discrete
time) autoregressive coefficient estimator when φ = 1 in (19). These connec-
tions with unit root limit theory are explored in Phillips (1987).

In practice, of course, a continuous record of {X (t)}T
t=0 is not available

and estimators such as (18) are infeasible. On the other hand, as the sampling
interval h shrinks, discrete data may be used to produce increasingly good ap-
proximations to the quadratic variation (14), the continuous record likelihood
(15) and estimators such as (18). These procedures may be interpreted as
infill likelihood methods in that they replicate continuous record methods by
infilling the sample record as h → 0.

3 Approximate ML Methods Based on Transition
Densities

Except for a few special cases such as those discussed earlier, the transition
density does not have a closed-form analytic expression. As a result, the exact
ML method discussed in Section 2.1 is not generally applicable. To address
this complication, many alternative approaches have been developed. The
methods involve approximating the transition densities, the model itself or
the likelihood function. This section reviews these methods.

3.1 The Euler Approximation and Refinements

The Euler scheme approximates a general diffusion process such as equation
(1) by the following discrete time model

Xih = X(i−1)h + µ(X(i−1)h, θ)h + σ(X(i−1)h, θ)
√

hεi, (20)

where εi ∼ i.i.d. N(0, 1). The transition density for the Euler discrete time
model has the following closed form expression:

Xih|X(i−1)h ∼ N
(
X(i−1)h + µ(X(i−1)h, θ)h, σ2(X(i−1)h, θ)h

)
. (21)

For the Vasicek model, the Euler discrete approximation is of the form

Xih = κµh + (1− κh)X(i−1)h + σN(0, h). (22)

Comparing the approximation (22) with the exact discrete time model (7), we
see that κµh, 1−κh and σ2h replace µ(1−e−κh), e−κh, and σ2(1−e−2κh)/(2κ),
respectively. These replacements may be motivated by considering the first
order term in the following Taylor expansions:
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µ(1− e−κh) = κµh + O(h2), (23)

e−κh = 1− κh + O(h2), (24)

σ2(1− e−2κh)/(2κ) = σ2h + O(h2). (25)

Obviously, when h is small, the Euler scheme should provide a good approxi-
mation to the exact discrete time model. However, when h is large, the Euler
approximation can be poor. To illustrate magnitude of the approximation er-
ror, first consider the case where κ = 1 and h = 1/12, in which case e−κh is
0.92 whereas 1 − κh is 0.9167 and the approximation is good. But if κ = 1
and h = 1, then e−κh is 0.3679 whereas 1 − κh is 0. These comparisons sug-
gest that the Euler discretization offers a good approximation to the exact
discrete time model for daily or higher frequencies but not for annual or lower
frequencies. The bias introduced by this discrete time approximation is called
the discretization bias.

The advantages of the Euler method include the ease with which the like-
lihood function is obtained, the low computational cost, and the wide range
of its applicability. The biggest problem with the procedure is that when h is
fixed the estimator is inconsistent (Merton, 1980; Lo, 1988). The magnitude
of the inconsistency can be analyzed, using the methods of Sargan (1974), in
terms of the observation interval h. Lo (1988) illustrated the size of inconsis-
tency in the context of model (3).

A closely related discretization method, suggested by Bergstrom (1966)
and Houthakker and Taylor (1966), is based on integrating the stochastic
differential equation and using the following trapezoidal rule approximation∫ ih

(i−1)h

µ(X(t); θ)dt =
h

2
{
µ(Xih; θ) + µ(X(i−1)h; θ)

}
. (26)

For the OU process the corresponding discrete approximate model is given by

Xih −X(i−1)h = κµ− κh

2
(
Xih + X(i−1)h

)
+ σN(0, h), (27)

which involves the current period observation Xih on both sides of the equa-
tion. Solving (27) we obtain

Xih =
κµh(

1 + κh
2

) +
1− κh

2

1 + κh
2

X(i−1)h +
σ(

1 + κh
2

)N(0, h)

= κµh + (1− κh)X(i−1)h + σN(0, h) + O
(
h3/2

)
,

so that the Bergstrom approximation is equivalent to the Euler approxima-
tion to O (h) . In the multivariate case, the Bergstrom approximation leads
to a non-recursive simultaneous equations model approximation to a system
of recursive stochastic differential equations. The resulting system may be
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estimated by a variety of simultaneous equations estimators, such as instru-
mental variables, for example by using lagged X values as instruments. Again,
the magnitude of the inconsistency may be analyzed in terms of the observa-
tion interval h, as in Sargan (1974) who showed the asymptotic bias in the
estimates to be typically of O

(
h2
)
.

There are a number of ways to reduce the discretization bias induced by
the Euler approximation. Before we review these refinements, it is important
to emphasize that the aim of these refinements is simply bias reduction.

Elerian (1998) suggests using the scheme proposed by Milstein (1978). The
idea is to take a second order term in a stochastic Taylor series expansion to
refine the Euler approximation (20). We proceed as follows. Integrating (1)
we have∫ ih

(i−1)h

dX(t) =
∫ ih

(i−1)h

µ(X(t); θ)dt +
∫ ih

(i−1)h

σ(X(t); θ)dB(t), (28)

and by stochastic differentiation we have

dµ(X(t); θ) = µ′(X(t); θ)dX (t) +
1
2
µ′′(X(t); θ) (dX (t))2

= µ′(X(t); θ)dX (t) +
1
2
µ′′(X(t); θ)σ2(X(t); θ)dt,

and

dσ(X(t); θ) = σ′(X(t); θ)dX (t) +
1
2
σ′′(X(t); θ)σ2(X(t); θ)dt, (29)

so that

µ(X (t) ; θ) = µ(X(i−1)h; θ) +
∫ t

(i−1)h

µ′(X(s); θ)dX (s)

+
1
2

∫ t

(i−1)h

µ′′(X(s); θ)σ2(X(s); θ)ds

= µ(X(i−1)h; θ) +
∫ t

(i−1)h

µ′(X(s); θ)µ(X(s); θ)ds +

1
2

∫ t

(i−1)h

µ′′(X(s); θ)σ2(X(s); θ)ds +
∫ t

(i−1)h

µ′(X(s); θ)σ(X(s); θ)dB(s),

and

σ(X (t) ; θ) = σ(X(i−1)h; θ) +
∫ t

(i−1)h

σ′(X(s); θ)µ(X(s); θ)ds +

1
2

∫ t

(i−1)h

σ′′(X(s); θ)σ2(X(s); θ)ds +
∫ t

(i−1)h

σ′(X(s); θ)σ(X(s); θ)dB(s),
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with σ′(X(i−1)h; θ) = [∂σ(X; θ)/∂X]X=X(i−1)h
. Substituting these expressions

into (28) we obtain

Xih −X(i−1)h = µ(X(i−1)h; θ)h + σ(X(i−1)h; θ)
∫ ih

(i−1)h

dB (t) (30)

+
∫ ih

(i−1)h

∫ t

(i−1)h

σ′(X(s); θ)σ(X(s); θ)dB(s)dB (t) + R,

where R is a remainder of smaller order. Upon further use of the Ito formula
on the penultimate term of (31), we obtain the following refinement of the
Euler approximation

Xih −X(i−1)h ' µ(X(i−1)h; θ)h + σ(X(i−1)h; θ)
∫ ih

(i−1)h

dB (t) +

σ′(X(i−1)h; θ)σ(X(i−1)h; θ)
∫ ih

(i−1)h

∫ t

(i−1)h

dB(s)dB (t) ,

The multiple stochastic integral has the following reduction∫ ih

(i−1)h

∫ t

(i−1)h

dB(s)dB (t) =
∫ ih

(i−1)h

(
B(t)−B(i−1)h

)
dB (t)

=
∫ ih

(i−1)h

B(t)dB (t)−B(i−1)h

(
Bih −B(i−1)h

)
=

1
2

{(
B2

ih −B2
(i−1)h

)
− h
}
−B(i−1)h

(
Bih −B(i−1)h

)
=

1
2

{(
Bih −B(i−1)h

)2 − h
}

,

Then the refined Euler approximation can be written as

Xih −X(i−1)h ' µ(X(i−1)h; θ)h + σ(X(i−1)h; θ)
(
Bih −B(i−1)h

)
+σ′(X(i−1)h; θ)σ(X(i−1)h; θ)

1
2

{(
Bih −B(i−1)h

)2 − h
}

=
{

µ(X(i−1)h; θ)− 1
2
σ′(X(i−1)h; θ)σ(X(i−1)h; θ)

}
h

+σ(X(i−1)h; θ)
(
Bih −B(i−1)h

)
+

1
2
σ′(X(i−1)h; θ)σ(X(i−1)h; θ)

(
Bih −B(i−1)h

)2
The approach to such refinements is now very well developed in the numerical
analysis literature and higher order developments are possible - see Kloeden
and Platen (1999) for an extensive review.

It is convenient to write Bih −B(i−1)h =
√

hεi where εi is standard Gaus-
sian. Then, the Milstein approximation to model (1) produces the following
discrete time model:
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Xih = X(i−1)h+µ(X(i−1)h, θ)h−g(X(i−1)h, θ)h+σ(X(i−1)h, θ)
√

hεi+g(X(i−1)h, θ)hε2i ,
(31)

where
g(X(i−1)h, θ) =

1
2
σ′(X(i−1)h; θ)σ(X(i−1)h; θ). (32)

While Elerian (1998) used the Milstein scheme in connection with a simulation
based approach, Tse, Zhang and Yu (2004) used the Milstein scheme in a
Bayesian context. Both papers document some improvement from the Milstein
scheme over the Euler scheme.

Kessler (1997) advocated approximating the transition density using a
Gaussian density whose conditional mean and variance are obtained using
higher order Taylor expansions. For example, the second-order approximation
leads to the following discrete time model:

Xih = µ̂(X(i−1)h; θ) + σ̂(X(i−1)h; θ)εi, (33)

where

µ̂(X(i−1)h; θ) = X(i−1)h + µ(X(i−1)h; θ)h +(
µ(X(i−1)h; θ)µ′(X(i−1)h; θ) +

σ2(X(i−1)h; θ)µ′′(X(i−1)h; θ)
2

)
h

2

and

σ̂2(X(i−1)h; θ) = X2
(i−1)h +

(
2µ(X(i−1)h; θ)X(i−1)h + σ2(X(i−1)h; θ)

)
h

= {2µ(X(i−1)h; θ)(2µ′(X(i−1)h; θ)X(i−1)h + µ(X(i−1)h; θ)

+σ(X(i−1)h; θ)σ′(X(i−1)h; θ)) + σ2(X(i−1)h; θ)×
[µ′′(X(i−1)h; θ)X(i−1)h + 2µ(X(i−1)h; θ) + (σ′(X(i−1)h; θ))2

+σ(X(i−1)h; θ)σ′(X(i−1)h; θ)]}h2

2
− µ̂2(X(i−1)h; θ).

Nowman (1997) suggested an approach which assumes that the conditional
volatility remains unchanged over the unit intervals, [(i−1)h, ih), i = 1, 2..., N.
In particular, he approximates the model:

dX(t) = κ(µ−X(t))dt + σ(X(t), θ)dB(t) (34)

by

dX(t) = κ(µ−X(t))dt + σ(X(i−1)h; θ)dB(t), (i− 1)h ≤ t < ih. (35)

It is known from Phillips (1972) and Bergstrom (1984) that the exact discrete
model of (35) has the form

Xih = e−κhX(i−1)h + µ
(
1− e−κh

)
+ σ(X(i−1)h; θ)

√
1− e−2κh

2κ
εi, (36)
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where εi ∼ i.i.d. N(0, 1). With this approximation, the Gaussian ML method
can be used to estimate equation (36) directly. This method also extends in
a straightforward way to multivariate systems. The Nowman procedure can
be understood as applying the Euler scheme to the diffusion term over the
unit interval. Compared with the Euler scheme where the approximation is
introduced to both the drift function and the diffusion function, the Nowman
method can be expected to reduce some of the discretization bias, as the
treatment of the drift term does not involve an approximation at least in
systems with linear drift.

Nowman’s method is related to the local linearization method proposed
by Shoji and Ozaki (1997, 1998) for estimating diffusion processes with a
constant diffusion function and a possible nonlinear drift function, that is

dX(t) = µ(X(t); θ)dt + σdB(t). (37)

While Nowman approximates the nonlinear diffusion term by a locally linear
function, Shoji and Ozaki (1998) approximate the drift term by a locally linear
function. The local linearization method can be used to estimate a diffusion
process with a nonlinear diffusion function, provided that the process can be
first transformed to make the diffusion function constant. This is achieved by
the so-called Lamperti transform which will be explained in detailed below.

While all these refinements offer some improvements over the Euler
method, with a fixed h, all the estimators remain inconsistent. As indicated,
the magnitude of the inconsistency or bias may analyzed in terms of its order
of magnitude as h → 0. This appears only to have been done by Sargan (1974),
Phillips (1974) and Lo (1988) for linear systems and some special cases.

3.2 Closed-form Approximations

The approaches reviewed above seek to approximate continuous time mod-
els by discrete time models, the accuracy of the approximations depending
on the sampling interval h. Alternatively, one can use closed-form sequences
to approximate the transition density itself, thereby developing an approxi-
mation to the likelihood function. Two different approximation mechanisms
have been proposed in the literature. One is based on Hermite polynomial
expansions whereas the other is based on the saddlepoint approximation.

Hermite Expansions

This approach was developed in Aı̈t-Sahalia (2002) and illustrated in Aı̈t-
Sahalia (1999). Before obtaining the closed-form expansions, a Lamperti trans-
form (mentioned earlier) is performed on the continuous time model so that
the diffusion function becomes a constant. The transformation has the form
Y (t) = G(X(t)), where G′(x) = 1/σ(x; ·). The transformation is variance sta-
bilizing and leads to another diffusion Y (t) , which by Ito’s lemma can be
shown to satisfy the stochastic differential equation
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dY (t) = µY (Y (t); θ)dt + dB(t), (38)

where

µY (Y (t); θ) =
µ(G−1(Y ); θ)
σ(G−1(Y ); θ)

− 1
2
σ′(G−1(Y ); θ). (39)

Based on a Hermite polynomial expansion of the transition density p(Yih|Y(i−1)h, θ)
around the normal distribution, one gets

p(Yih|Y(i−1)h, θ) ≈ h−1/2φ

(
Yih − Y(i−1)h

h1/2

)
exp

(∫ Yih

Y(i−1)h

µY (ω; θ)dω

)
×

K∑
k=0

ck(Yih|Y(i−1)h; θ)
hk

k!
, (40)

where φ(·) is the standard normal density function, c0(Yih|Y(i−1)h) = 1,

cj(Yih|Y(i−1)h) = j(Yih − Y(i−1)h)−j

∫ Yih

Y(i−1)h

(ω − Y(i−1)h)j−1 ×

{λYih
(ω; θ)cj−1(ω|Y(i−1)h; θ)

+
1
2
∂2cj−1(ω|Y(i−1)h; θ)/∂ω2}dω,

∀j ≥ 1 and

λY (y; θ) = −1
2
(
µ2

Y (y; θ) + ∂µY (y; θ)/∂y
)
. (41)

Under some regular conditions, Aı̈t-Sahalia (2002) showed that when
K →∞, the Hermite expansions (i.e., the right hand right in Equation (40))
approaches the true transition density. When applied to various interest rate
models, Aı̈t-Sahalia (1999) has found negligible approximation errors even
for small values of K. Another advantage of this approach is that it is in
closed-form and hence numerically tractable.

The approach described above requires the Lamperti transform be feasi-
ble. Aı̈t-Sahalia (2007) and Bakshi and Ju (2005) proposed some techniques
which avoid the Lamperti transform. Furthermore, Aı̈t-Sahalia and Kimmel
(2005, 2007) discussed how to use the method to estimate some latent variable
models.

Saddlepoint Approximations

The leading term in the Hermite expansions is normal whose tails may be
too thin and the shape too symmetric relative to the true transition density.
When this is the case, a moderately large value of K may be needed to ensure
a good approximation of the Hermite expansion. An alternative approach is
to choose a better approximating distribution as the leading term. One way
to achieve this is to use a saddlepoint approximation.
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The idea of the saddlepoint approximations is to approximate the con-
ditional cumulant generating function of the transition density by means of
a suitable expansion, followed by a careful choice of integration path in the
integral that defines the transition density so that most of the contribution to
the integral comes from integrating in the immediate neighborhood of a sad-
dlepoint. The method was originally explored in statistics by Daniels (1953).
Phillips (1978) developed a saddlepoint approximation to the distribution of
ML estimator of the coefficient in discrete time first order autoregression,
while Holly and Phillips (1979) proposed saddlepoint approximations for the
distributions of k-class estimators of structural coefficients in simultaneous
equation systems. There has since been a great deal of interest in the method
in statistics - see Reid (1988), Field and Ronchetti (1990) and Bulter (2005)
for partial overviews of the field. Aı̈t-Sahalia and Yu (2006) proposed the use
of saddlepoint approximations to the transition density of continuous time
models, which we now consider.

Let ϕX(i−1)h
(u; θ) be the conditional characteristic function corresponding

to the transition density, viz.,

ϕX(i−1)h
(u; θ) = E[exp(uXih|X(i−1)h)]. (42)

The conditional cumulant generating function is

KX(i−1)h
(u; θ) = ln(ϕX(i−1)h

(u; θ)). (43)

The transition density has the following integral representation by Fourier
inversion:

p(Xih|X(i−1)h, θ) =
1
2π

∫ +∞

−∞
exp(−iXihu)ϕX(i−1)h

(iu; θ)du

=
1
2π

∫ û+i∞

û−i∞
exp(−uXih)ϕX(i−1)h

(u; θ)du

=
1
2π

∫ û+i∞

û−i∞
exp(KX(i−1)h

(u; θ)− uXih)du (44)

Applying a Taylor expansion to KX(i−1)h
(u; θ)−uXih around the saddlepoint

û, one gets

KX(i−1)h
(u; θ)− uXih = KX(i−1)h

(û; θ)− ûXih −
1
2

∂2KX(i−1)h
(û; θ)

∂u2
ν

−1
6

∂3KX(i−1)h
(û; θ)

∂u3
iν3 + O(ν4).

Substituting this expansion to (43), one obtains a saddlepoint approximation
to the integral, which involves the single leading term of the form

exp(KX(i−1)h
(û; θ)− uXih)

√
2π

(
∂2KX(i−1)h

(û;θ)

∂u2

)1/2
, (45)
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and higher order terms of small order. As shown in Daniels (1954), the method
has the advantage of producing a smaller relative error than Edgeworth and
Hermite expansions.

When applying this method to transition densities for some continuous
time models that are widely used in finance, Aı̈t-Sahalia and Yu (2006) have
found very small approximation errors. The method requires the saddlepoint
to be analytically available or at least numerically calculable, an approach
considered in Phillips (1984) that widens the arena of potential application.
The saddlepoint method also requires the moment generating function of the
transition density to exist, so that all moments of the distribution must be
finite and heavy tailed transition distributions are therefore excluded. Multi-
variate extensions are possible using extensions of the saddlepoint method to
this case - see Phillips (1980,1984), Tierney and Kadane (1986) and McCul-
lagh (1987).

3.3 Simulated Infill ML Methods

As explained above, the Euler scheme introduces discretization bias. The mag-
nitude of the bias is determined by h. When the sampling interval is arbitrarily
small, the bias becomes negligible. One way of making the sampling interval
arbitrarily small is to partition the original interval, say [(i− 1)h, ih], so that
the new subintervals are sufficiently fine for the discretization bias to be neg-
ligible. By making the subintervals smaller, one inevitably introduces latent
(that is, unobserved) variables between X(i−1)h and Xih. To obtain the re-
quired transition density p(Xih|X(i−1)h, θ), these latent observations must be
integrated out. When the partition becomes finer, the discretization bias is
closer to 0 but the required integration becomes high dimensional. We call
this approach to bias reduction the simulated infill ML method.

To fix ideas, suppose M−1 auxiliary points are introduced between (i−1)h
and ih, i.e.,

((i− 1)h ≡)τ0, τ1, · · · , τM−1, τM (≡ ih). (46)

The Markov property implies that

p(Xih|X(i−1)h; θ) =
∫
· · ·
∫

p(XτM
, XτM−1 , · · · , Xτ1 |Xτ0 ; θ)dXτ1 · · · dXτM−1

=
∫
· · ·
∫ M∏

m=1

p(Xτm
|Xτm−1 ; θ)dXτ1 · · · dXτM−1 . (47)

The idea behind the simulated infill ML method is to approximate the densi-
ties p(Xτm

|Xτm−1 ; θ) (step 1) and then evaluate the multidimensional integral
using importance sampling techniques (step 2). Among the class of simulated
infill ML methods that have been suggested, Pedersen (1995) is one of the
earliest contributions.
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Pedersen suggested approximating the latent transition densities p(Xτm
|Xτm−1 ; θ)

based on the Euler scheme and approximating the integral by drawing sam-
ples of (XτM−1 , · · · , Xτ1) via simulations from the Euler scheme. That is,
the importance sampling function is the mapping from (ε1, ε2, · · · , εM−1) 7→
(Xτ1 , Xτ2 , · · · , XτM−1) given by the Euler scheme:

Xτm+1 = Xτm
+ µ(Xτm

; θ)h/M + σ(Xτm
, θ)
√

h/Mεm+1, m = 0, · · · ,M − 2,
(48)

where (ε1, ε2, · · · , εM−1) is a multivariate standard normal.
As noted in Durham and Gallant (2002), there are two sources of approxi-

mation error in Pedersen’s method. One is the (albeit reduced) discretization
bias in the Euler scheme. The second is due to the Monte Carlo integration.
These two errors can be further reduced by increasing the number of latent
infill points and the number of simulated paths, respectively. However, the
corresponding computational cost will inevitably be higher.

In order to reduce the discretization bias in step 1, Elerian (1998) sug-
gested replacing the Euler scheme with the Milstein scheme while Durham
and Gallant advocated using a variance stablization transformation, i.e., ap-
plying the Lamperti transform to the continuous time model. Certainly, any
method that reduces the discretization bias can be used. Regarding step 2,
Elerian et al (2001) argued that the importance sampling function of Peder-
sen ignores the end-point information, XτM

, and Durham and Gallant (2002)
showed that Pedersen’s importance function draws most samples from re-
gions where the integrand has little mass. Consequently, Pedersen’s method
is simulation-inefficient.

To improve the efficiency of the importance sampler, Durham and Gallant
(2002) considered the following importance sampling function

Xτm+1 = Xτm
+

Xih −Xτm

ih− τm
h/M + σ(Xτm

, θ)
√

h/Mεm+1, m = 0, · · · ,M − 2,

(49)
where (ε1, ε2, · · · , εM−1) is a multivariate standard normal. Loosing speaking,
this is a Brownian bridge because it starts from X(i−1)h at (i − 1)h and is
conditioned to terminate with Xih at ih.

Another importance sampling function proposed by Durham and Gallant
(2002) is to draw Xτm+1 from the density N(Xτm

+ µ̃mh/M, σ̃2
mh/M) where

µ̃m = (XτM
−Xτm)/(ih− τm), σ̃2

m = σ2(Xτm)(M −m− 1)/(M −m).
Elerian et al. (2001) proposed a more efficient importance function which

is based on the following tied-down process:

p(Xτ1 , · · · , XτM−1 |Xτ0 , XτM
). (50)

In particular, they proposed using the Laplace approximation (c.f., Phillips,
1984; Tierney and Kadane, 1986) to the tied-down process. That is, they used
the distributional approximation (Xτ1 , · · · , XτM−1) ∼ N(x∗, Σ∗) where

x∗ = arg max
x

ln p(Xτ1 , · · · , XτM−1 |Xτ0 , XτM
) (51)
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Σ2 = −

[
∂2 ln p(X∗

τ1
, · · · , X∗

τM−1
|Xτ0 , XτM

)
∂x′∂x

]−1

, (52)

where x = (Xτ1 , · · · , XτM−1)
′.

Durham and Gallant (2002) compared the performance of these three im-
portance functions relative to Pedersen (1995) and found that all these meth-
ods deliver substantial improvements.

3.4 Other Approaches

Numerical ML

While the transition density may not have a closed-form expression for a
continuous time model, it must satisfy the Fokker-Planck-Komogorov (also
known as “forward”) equation. That is,

∂p

∂t
=

1
2

∂2p

∂y2
. (53)

where p(y, t|x, s) is the transition density. Solving the partial differential equa-
tion numerically at y = Xih, x = X(i−1)h yields the transition density. This
is approach proposed by Lo (1988). Similarly, one can numerically solve the
“backward” equation

∂p

∂s
= −1

2
∂2p

∂x2
. (54)

Obviously, solving these two partial differential equations numerically can be
computationally demanding. Consequently, this approach has been little used
in practical work.

An Exact Gaussian Method based on Time Changes

Yu and Phillips (2001) developed an exact Gaussian method to estimate con-
tinuous time models with a linear drift function of the following form:

dX(t) = κ(µ−X(t))dt + σ(X(t); θ)dB(t), (55)

The approach is based on the idea that any continuous time martingale can
be written as a Brownian motion after a suitable time change. That is, when
we adjust from chronological time in a local martingale Mt to time based
on the evolution of the quadratic variation process [M ]t of M, we have the
time change given by Tt = inf{s|[M ]s > t} and the process transforms to a
Brownian motion (called DDS Brownian motion) so that Mt = W[M ]t

, where
W is standard Brownian motion.

To see how this approach can be used to estimate equation (55), first write
(55) as
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X(t + δ) = e−κhX(t) + µ
(
1− e−κh

)
+
∫ δ

0

σe−κ(δ−τ)σ(t + τ)dB(τ),∀δ > 0.

(56)
Define M(δ) = σ

∫ δ

0
e−κ(δ−τ)σ(t + τ)dB(τ), which is a continuous martingale

with quadratic variation process

[M ]δ = σ2

∫ δ

0

e−2κ(δ−τ)σ2(t + τ)dτ. (57)

To construct a DDS Brownian motion to represent M(δ), one can construct
a sequence of positive numbers {δj} which deliver the required time changes.
For any fixed constant a > 0, let

δj+1 = inf{s|[Mj ]s ≥ a} = inf{s|σ2

∫ s

0

e−2κ(s−τ)σ2(tj + τ)dτ ≥ a}. (58)

Next, construct a sequence of time points {tj} using the iterations tj+1 =
tj + δj+1 with t1 assumed to be 0. Evaluating equation (56) at {tj}, we have

Xtj+1 = µ
(
1− e−κδj+1

)
+ e−κδj+1Xtj

+ M(δj+1). (59)

where M(δj+1) = W[M ]δj+1
= Wa ≡ N(0, a) is the DDS Brownian motion.

Hence, equation (59) is an exact discrete model with Gaussian disturbances
and can be estimated directly by ML conditional on the sequence of time
changes. Of course, since the new sequence of time points {tj} is path de-
pendent, this approach does not deliver the true likelihood. Also, since a
continuous record of observations is not available, the time points {tj} must
be approximated.

4 Approximate ML Methods Based on the Continuous
Record Likelihood and Realized Volatility

While (1) is formulated in continuous time, the sample data are always col-
lected at discrete points in time or over discrete intervals in the case of flow
data. One may argue that for highly liquid financial assets, the sampled data
are so frequently observed as to be nearly continuously available. This is es-
pecially true for some tick-by-tick data. Unfortunately, at the highest fre-
quencies, continuous time models such as that given by (1) are often bad
descriptions of reality. One reason for the discrepancy is the presence of mar-
ket microstructure noise, due to trading frictions, bid-ask bounces, recording
errors and other anomalies. As a result of these noise effects, the exact ML
method based on the continuous record likelihood that was reviewed in Section
2.2 is not applicable.

An alternative approach that is available in such situations was developed
in Phillips and Yu (2007) and involves a two-step procedure to estimate the
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underlying continuous time model that makes use of the empirical quadratic
variation process. To explain the method, suppose the model has the form

dX(t) = µ(X(t); θ1)dt + σ(X(t); θ2)dB(t), (60)

Note that in this specification the vector of parameters θ2 in the diffusion
function is separated from the parameter vector, θ1, that appears in the drift
function. The reason for this distinction will become clear below.

In the first step, Phillips and Yu (2007) propose to estimate parameters
in the diffusion function from the empirical quadratic variation process or
so-called realized volatility. The approach is justified by the fact that real-
ized volatility is a natural consistent estimate of quadratic variation and,
with certain modifications, can be made consistent even in the presence of
microstructure noise effects. Also, realized volatility has convenient distri-
butional characteristics that are determined asymptotically by (functional)
central limit theory, as derived by Jacod (1994) and Barndorff-Nielsen and
Shephard (2002).

To proceed, assume that Xt is observed at the following times

t = h, 2h, · · · ,Mhh(=
T

K
)︸ ︷︷ ︸, (Mh + 1)h, · · · , 2Mhh(=

2T

K
)︸ ︷︷ ︸, · · · , nhh(= T ),

(61)
where nh = KMh with K a fixed and positive integer, T is the time span
of the data, h is the sampling frequency, and Mh = O(nh). Phillips and Yu
constructed the non-overlapping K subsamples

((k − 1)Mh + 1)h, · · · , kMhh, where k = 1, · · · ,K, (62)

so that each sub-sample has Mh observations over the interval ((k−1) T
K , k T

K ].
For example, if ten years of weekly observed data are available and we split
the data into ten blocks, then T = 10, h = 1/52, Mh = 52, K = 10. The total
number of observations is 520 and the number of observations contained in
each block is 52.

As h → 0, n = T
h →∞ and Mh →∞,

Mh∑
i=2

(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2
p→ [X]k T

K
− [X](k−1) T

K
, (63)

and

ln(
∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2 − ln([X]k T
K
− [X](k−1) T

K
) + 1

2s2
k

sk

d→ N(0, 1),

(64)
where

sk = min

{√
r2
k

(
∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2)2
,

√
2

Mh

}
,
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rk =

√√√√2
3

Mh∑
i=2

(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)4, (65)

for k = 1, · · · ,K, and [X]T is the quadratic variation of X which can be
consistently estimated by the empirical counterpart [Xh]T defined as

[Xh]T =
nh∑
i=2

(Xih −X(i−1)h)2. (66)

The limit (63) follows by virtue of the definition of quadratic variation.
The central limit theorem (CLT) (64) is based on the asymptotic theory of
Barndorff-Nielsen and Shephard (2005), which involves a finite sample correc-
tion (65) on some important earlier limit theory contributions made by Jacod
(1994) and Barndorff-Nielsen and Shephard (2002).

Based on the CLT (64), θ2 can be estimated in the first stage by running
a (nonlinear) least squares regression of the standardized realized volatility

ln
(∑Mh

i=2(X(k−1)Mh+ih −X(k−1)Mh+(i−1)h)2
)

+ 1
2s2

k

sk
(67)

on the standardized diffusion function

ln
(
[X]k T

K
− [X](k−1) T

K

)
sk

=
ln
(∫ k T

K

(k−1) T
K

σ2 (Xt; θ2) dt
)
− 1

2s2
k

sk
(68)

'
ln
(∑M

i=2 σ2
(
X(k−1)Mh+(i−1)h; θ2

)
h
)
− 1

2s2
k

sk

for k = 1, · · · ,K. This produces a consistent estimate θ̂2 of θ2. In the second
stage, the approximate continuous record or infill log-likelihood function (AIF)
is maximized with respect to θ1

`AIF (θ1) =
n∑

i=2

µ(X(i−1)h; θ1)

σ2(X(i−1)h; θ̂2)
(Xih−X(i−1)h)− h

2

n∑
i=2

µ2(X(i−1)h; θ1)

σ2(X(i−1)h; θ̂2)
. (69)

The procedure is discussed more fully in Phillips and Yu (2007).
To illustrate the two-stage method, we consider the following specific mod-

els.

1. Vasicek model (6): Since there is only one parameter in the diffusion
function, one could choose Mh = 1. As a result, the first stage estimation
gives the following estimator for σ,

σ̂ =

√
[Xh]T

T
, (70)
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and the approximate infill log-likelihood function is given by

`AIF (κ, µ) =
n∑

i=2

κ(µ−X(i−1)h)(Xih−X(i−1)h)− h

2

n∑
i=2

κ2(µ−X(i−1)h)2.

(71)
2. Square root model (9): With Mh = 1, the first stage estimation gives

the following estimator for σ.

σ̂ =

√
[Xh]T

h
∑nh

i=1 X(i−1)h
. (72)

The approximate infill log-likelihood function is given by

`AIF (κ, µ) =
n∑

i=2

κ(µ−X(i−1)h)
σ̂2X(i−1)h

(Xih−X(i−1)h)−h

2

n∑
i=2

κ2(µ−X(i−1)h)2

σ̂2X(i−1)h
.

(73)

5 Monte Carlo Simulations

This section reports the results of a Monte Carlo experiment designed to
compare the performance of the various ML estimation methods reviewed
in the previous sections. In the experiment, the true generating process is
assumed to be the CIR model of short term interest rates of the form

dX(t) = κ(µ−X(t))dt + σ
√

X(t) dB(t), (74)

where κ = 0.1, µ = 0.1, σ = 0.1. Replications involving 1000 samples, each
with 120 monthly observations (ie h = 1/12), are simulated from the true
model. The parameter settings are realistic to those in many financial appli-
cations and the sample period covers 10 years.

It is well-known that κ is difficult to estimate with accuracy whereas the
other two parameters, especially σ, are much easier to estimate (Phillips and
Yu, 2005a, b) and extensive results are already in the literature. Consequently,
we only report estimates of κ in the present Monte Carlo study. In total, we
employ six estimation methods, namely, exact ML, the Euler scheme, the
Milstein scheme, the Nowman method, the infill method, and the Hermite
expansion (with K = 1).

Table 1 reports the means, standard errors, and root mean square errors
(RMSEs) for all these cases. The exact ML estimator is calculated for com-
parison purposes. Since the other estimators are designed to approach to the
exact ML estimator, we also report the means and the standard errors of the
differences between the exact ML estimator and the alternative estimators.

Table 1
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Exact and Approximate ML Estimation
and Bias Reduced Estimation of κ

True Value κ = 0.1
Method Exact Euler Milstein Nowman In-fill Hermite Jackk Jackk Ind Inf

(m=2) (m=3)
Mean .2403 .2419 .2444 .2386 .2419 .2400 .1465 .1845 .1026

Std error .2777 .2867 .2867 .2771 .2867 .2762 .3718 .3023 .2593
RMSE .3112 .3199 .3210 .3098 .3199 .3096 .3747 .3139 .2594

Mean of NA .0016 .0041 -.0017 .0016 -.0003 NA NA NA
diff

Std error NA .0500 .0453 .0162 .0500 .0043 NA NA NA
of diff

Note: A square-root model with κ = 0.1, µ = 0.1, σ = 0.1 is used to
simulate 120 monthly observations for each of the 1,000 replications. Various
methods are used to estimate κ.

Several conclusions can be drawn from the table (Note the true value of
κ = 0.1). First, the ML estimator of κ is upward biased by more than 140%,
consistent with earlier results reported in Phillips and Yu (2005a, b). This
result is also consistent with what is known about dynamic bias in local-
to-unity discrete time autoregressive models. Second, all the approximation-
based ML methods perform very similarly to the exact ML method, and hence,
all inherit substantial estimation bias from the exact ML method that these
methods seek to imitate. Indeed, compared to the estimation bias in exact ML,
the bias that is induced purely by the approximations is almost negligible.
Third, relative to the Euler scheme, the Milstein scheme fails to offer any
improvements in terms of both mean and variation while Nowman’s method
offers slight improvements in terms of variation and root mean squared error
(RMSE). In terms of the quality of approximating the exact ML, the method
based on the Hermite expansions is a clear winner when K is as small as 1.
Further improvements can be achieved by increasing the value of K, although
such improvements do not help to remove the finite sample bias of the ML
procedure.

6 Estimation Bias Reduction Techniques

It has frequently been argued in the continuous time finance literature that
ML should be the preferred choice of estimation method. The statistical jus-
tification for this choice is the generality of the ML approach and its good
asymptotic properties of consistency and efficiency. Moreover, since sample
sizes in financial data applications are typically large4, it is often expected
4 Time series samples of weekly data often exceed 500 and sample sizes are very

much larger for daily and intradaily data.
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that these good asymptotic properties will be realized in finite samples. How-
ever, for many financial time series, the asymptotic distribution of the ML
estimator often turns out to be a poor approximation to the finite sample
distribution, which may be badly biased even when the sample size is large.
This is especially the case in the commonly occurring situation of drift param-
eter estimation in models where the process is nearly a martingale. From the
practical viewpoint, this is an important shortcoming of the ML method. The
problem of estimation bias turns out to be of even greater importance in the
practical use of econometric estimates in asset and option pricing, where there
is nonlinear dependence of the pricing functional on the parameter estimates,
as shown in Phillips and Yu (2005a). This nonlinearity seems to exacerbate
bias and makes good bias correction more subtle.

In the following sections we describe two different approaches to bias cor-
rection. The first of these is a simple procedure based on Quenouille’s (1956)
jackknife. To improve the finite sample properties of the ML estimator in
continuous time estimation and in option pricing applications, Phillips and
Yu (2005a) proposed a general and computationally inexpensive method of
bias reduction based on this approach. The second approach is simulation-
based and involves the indirect inference estimation idea of Gourieroux et al
(1993). Monfort (1996) proposed this method of bias corrected estimation in
the context of nonlinear diffusion estimation.

In the context of OU process with a known long-run mean, Yu (2007)
derived analytical expressions to approximate the bias of ML estimator of
the mean reversion parameter and argued that a nonlinear term in the bias
formula is particularly important when the mean reversion parameter is close
to zero.

6.1 Jackknife estimation

Quenouille (1956) proposed the jackknife as a solution to finite sample bias
problems in parametric estimation contexts such as discrete time autoregres-
sions. The method involves the systematic use of subsample estimates. To fix
ideas, let N be the number of observations in the whole sample and decompose
the sample into m consecutive subsamples each with ` observations, so that
N = m × `. The jackknife estimator of a certain parameter, θ, then utilizes
the subsample estimates of θ to assist in the bias reduction process giving the
jackknife estimator

θ̂jack =
m

m− 1
θ̂N −

∑m
i=1 θ̂li

m2 −m
, (75)

where θ̂N and θ̂li are the estimates of θ obtained by application of a given
method like the exact ML or approximate ML to the whole sample and the
i’th sub-sample, respectively. Under quite general conditions which ensure
that the bias of the estimates (θ̂N , θ̂li) can be expanded asymptotically in
a series of increasing powers of N−1, it can be shown that the bias in the
jackknife estimate θ̂jack is of order O(N−2) rather than O(N−1).
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The jackknife has several appealing properties. The first advantage is its
generality. Unlike other bias reduction methods, such as those based on correc-
tions obtained by estimating higher order terms in an asymptotic expansion
of the bias, the jackknife technique does not rely (at least explicitly) on the
explicit form of an asymptotic expansion. This means that it is applicable in
a broad range of model specifications and that it is unnecessary to develop
explicit higher order representations of the bias. A second advantage of the
jackknife is that this approach to bias reduction can be used with many differ-
ent estimation methods, including general methods like the exact ML method
whenever it is feasible or approximate ML methods when the exact ML is not
feasible. Finally, unlike many other bias correction methods, the jackknife is
computationally much cheaper to implement. In fact, the method is not much
more time consuming than the initial estimation itself. A drawback with jack-
knife is that it cannot completely remove the bias as it is only designed to
decrease the order of magnitude of the bias.

Table 1 reports the results of the jackknife method applied with m = 2, 3
based on the same experimental design above. It is clear that the jackknife
makes substantial reductions in the bias but this bias reduction comes with
an increase in variance. However, a carefully designed jackknife method can
reduce the RMSE.

6.2 Indirect inference estimation

The indirect inference (II) procedure, first introduced by Gouriéroux, Monfort,
and Renault (1993), and independently proposed by Smith (1993) and Gallant
and Tauchen (1996), can be understood as a generalization of the simulated
method of moments approach of Duffie and Singleton (1993). It has been found
to be a highly useful procedure when the moments and the likelihood function
of the true model are difficult to deal with, but the true model is amenable
to data simulation. Since many continuous time models are easy to simulate
but present difficulties in the analytic derivation of moment functions and
likelihood, the indirect inference procedure has some convenient advantages in
working with continuous time models in finance. A carefully designed indirect
inference estimator can also have good small sample properties, as shown
by Gouriéroux, et al (2000) in the time series context and by Gouriéroux,
Phillips and Yu (2007) in the panel context. The method therefore offers
some interesting opportunities for bias correction and the improvement of
finite sample properties in continuous time estimation.

Without loss of generality, we focus on the OU process. Suppose we need
to estimate the parameter κ in the model

dX(t) = κ(µ−X(t))dt + σ dB(t). (76)

from observations x = {Xh, · · · , XNh}. An initial estimator of κ can be ob-
tained, for example, by applying the Euler scheme to {Xh, · · · , XNh} (call it
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κ̂N ). Such an estimator is inconsistent (due to the discretization error) and
may be seriously biased (due to the poor finite sample property of ML in the
low κ or near-unit-root case).

The indirect inference method makes use of simulations to remove the dis-
cretization bias. It also makes use of simulations to calibrate the bias function
and hence requires neither the explicit form of the bias, nor the bias expansion.
This advantage seems important when the computation of the bias expression
is analytically involved, and it becomes vital when the bias and the first term
of the bias asymptotic expansions are too difficult to compute explicitly.

The idea of indirect inference here is as follows. Given a parameter choice
κ, we apply the Euler scheme with a much smaller step size than h (say
δ = h/10), which leads to

X̃k
t+δ = κ(µ− X̃k

t )h + X̃k
t + σ

√
δεt+δ, (77)

where

t = 0, δ, · · · , h(= 10δ)︸ ︷︷ ︸, h + δ, · · · , 2h(= 20δ)︸ ︷︷ ︸, 2h + δ, · · · , Nh. (78)

This sequence may be regarded as a nearly exact simulation from the contin-
uous time OU model for small δ. We then choose every (h/δ)th observation
to form the sequence of {X̃k

ih}N
i=1, which can be regarded as data simulated

directly from the OU model with the (observationally relevant) step size h.
Let x̃k(κ) = {X̃k

h , · · · , X̃k
Nh} be data simulated from the true model, where

k = 1, · · · ,K with K being the number of simulated paths. It should be
emphasized that it is important to choose the number of observations in x̃k(κ)
to be the same as the number of observations in the observed sequence x for
the purpose of the bias calibration. Another estimator of κ can be obtained by
applying the Euler scheme to {Xk

h , · · · , Xk
Nh} (call it κ̃k

N ). Such an estimator
and hence the expected value of them across simulated paths is naturally
dependent on the given parameter choice κ.

The central idea in II estimation is to match the parameter obtained from
the actual data with that obtained from the simulated data. In particular, the
II estimator of κ is defined as

κ̂II
N,K = argminκ ‖ κ̂N − 1

K

K∑
h=1

κ̃k
N (κ) ‖, (79)

where ‖ · ‖ is some finite dimensional distance metric. In the case where K
tends to infinity, the II estimator is the solution of the limiting extremum
problem

κ̂II
N = argminκ ‖ κ̂N − E(κ̃k

N (κ)) ‖ . (80)

This limiting extremum problem involves the so-called binding function

bN (κ) = E(κ̃k
N (κ)), (81)
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which is a finite sample functional relating the bias to κ. In the case where
bN is invertible, the indirect inference estimator is given by

κ̂II
N = b−1

N (κ̂N ). (82)

The II estimation procedure essentially builds in a small-sample bias correc-
tion to parameter estimation, with the bias (in the base estimate, like ML)
being computed directly by simulation.

Indirect inference has several advantages for estimating continuous time
models. First, it overcomes the inconsistency problem that is common in many
approximate ML methods. Second, the indirect inference technique calibrates
the bias function via simulation and hence does not require, just like the jack-
knife method, an explicit form for the bias function or its expansion. Con-
sequently, the method is applicable in a broad range of model specifications.
Thirdly, indirect inference can be used with many different estimation meth-
ods, including the exact ML method or approximate ML methods, and in
doing so will inherit the good asymptotic properties of these base estimators.
For instance, it is well known that the Euler scheme offers an estimator which
has very small dispersion relative to many consistent estimators and indirect
inference applied to it should preserve its good dispersion characteristic while
at the same time achieving substantial bias reductions. Accordingly, we expect
indirect inference to perform very well in practice and in simulations on the
basis of criteria such as RMSE, which take into account central tendency and
variation. A drawback with indirect inference is that it is a simulation-based
method and can be computationally expensive. However, with the continuing
explosive growth in computing power, such a drawback is obviously of less
concern

Indirect inference is closely related to median unbiased estimation (MUE)
originally proposed by Andrews (1993) in the context of AR models and sub-
sequently applied by Phillips and Yu (2005a) to reduce bias in the mean
reversion estimation in the CIR model. While indirect inference uses expecta-
tion as the binding function, MUE uses the median as the binding function.
Both methods are simulation-based.

Table 1 reports the results of the indirect inference method with K = 1000
based on the same experiment discussed earlier. Clearly, indirect inference is
very successful in removing bias and the bias reduction is achieved without
increasing the variance. As a result, the RMSE is greatly reduced.

7 Multivariate Continuous Time Models

Multivariate systems of stochastic differential equations may be treated in
essentially the same manner as univariate models such as (1) and meth-
ods such as Euler-approximation-based ML methods and transition density-
approximation-based ML methods continue to be applicable. The literature
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on such extensions is smaller, however, and there are more and more financial
data applications of multivariate systems at present; see, for example, Ghy-
sels et al (1996) and Shephard (2005) for reviews of the stochastic volatility
literature and Dai and Singleton (2002) for a review of the term structure
literature.

One field where the literature on multivariate continuous time economet-
rics is well developed is macroeconomic modeling of aggregative behavior.
These models have been found to provide a convenient mechanism for em-
bodying economic ideas of cyclical growth, market disequilibrium and dynamic
adjustment mechanisms. The models are often constructed so that they are
stochastic analogues (in terms of systems of stochastic differential equations)
of the differential equations that are used to develop the models in economic
theory. The Bergstrom (1966) approximation, discussed in Section 3.1 above,
was developed specifically to deal with such multiple equation systems of
stochastic equations. Also, the exact discrete time model corresponding to a
system of linear diffusions, extending the Vasicek model in Section 2.1, was
developed in Phillips (1972, 1974) as the basis for consistent and efficient es-
timation of structural systems of linear diffusion equations using nonlinear
systems estimation and Gaussian ML estimation.

One notable characteristic of such continuous time systems of equations is
that there are many across-equation parameter restrictions. These restrictions
are typically induced by the manner in which the underlying economic the-
ory (for example, the theory of production involving a parametric production
function) affects the formulation of other equations in the model, so that the
parameters of one relation (the production relation) become manifest else-
where in the model (such as wage and price determination, because of the
effect of labor productivity on wages). The presence of these across-equation
restrictions indicates that there are great advantages to the use of systems
procedures, including ML estimation, in the statistical treatment of systems
of stochastic differential equations.

While many of the statistical issues already addressed in the treatment of
univariate diffusions apply in systems of equations, some new issues do arise.
A primary complication is that of aliasing, which in systems of equations
leads to an identification problem when a continuous system in estimated by
a sequence of discrete observations at sampling interval h. The manifestation
of this problem is evident in a system of linear diffusions for an n− vector
process X (t) of the form

dX (t) = A (θ2)X (t) dt + Σ (θ2) dW (t) , (83)

where A = A (θ) is an n× n coefficient matrix whose elements are dependent
on the parameter vector θ1, Σ = Σ (θ2) is a matrix of diffusion coefficients
dependent on the parameter vector θ2, and W (t) is n− vector standard Brow-
nian motion. The exact discrete model corresponding to this system has the
form
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Xih = ehA(θ2)Xih + N

(
0,

∫ h

0

esA(θ2)Σ (θ2) esA(θ2)
′
ds

)
, (84)

and the coefficient matrix in this discrete time model involves the matrix
exponential function ehA(θ2). However, there are in general, an infinite number
of solutions (A) to the matrix exponential equation

ehA = B0 (85)

where B0 = ehA0
= ehA(θ0

2) and θ0
2 is the true value of θ2. In fact, the solutions

of the matrix equation (85) all have the form

A = A0 + TQT−1, (86)

where T is a matrix that diagonalizes A0 (so that T−1AT = diag(λ1, ..., λn),
assuming that A0 has distinct characteristics roots {λi : i = 1, ..., n}), Q is a
matrix of the form

Q =
2πi

h

0 0 0
0 P 0
0 0 −P

 , (87)

and P is a diagonal matrix with integers on the diagonal. The multiple solu-
tions of (85) effectively correspond to aliases of A0.

Fortunately, in this simple system the aliasing problem is not consequential
because there are enough restrictions on the form of the system to ensure
identifiability. The problem was originally considered in Phillips (1973). In
particular, the coefficient matrix A = A (θ) is real and is further restricted
by its dependence on the parameter vector θ. Also, the covariance matrix
of the error process

∫ h

0
esA(θ2)Σ (θ2) esA(θ2)

′
ds in the discrete system is real

and necessarily positive semi-definite. These restrictions suffice to ensure the
identifiability of A0 in (85), removing the aliasing problem. Discussion and
resolution of these issues is given in Phillips (1973) and Hansen and Sargent
(1984). Of course, further restrictions may be needed to ensure that θ1 and
θ2 are identified in A

(
θ0
1

)
and Σ

(
θ0
2

)
.

A second complication that arises in the statistical treatment of systems
of stochastic differential equations is that higher order systems involve ex-
act discrete systems of the vector autoregressive and moving average type,
which have more complicated likelihood functions. A third complication is
that the discrete data often involves both stock and flow variables, so that
some variables are instantaneously observed (like interest rates) while other
variables (like consumption expenditure) are observed as flows (or integrals)
over the sampling interval. Derivation of the exact discrete model and the like-
lihood function in such cases presents further difficulties - see Phillips (1978)
and Bergstrom (1984) - and involves complicated submatrix formulations of
matrix exponential series. Most of these computational difficulties have now
been resolved and Gaussian ML methods have been regularly used in applied
research with these continuous time macroeconometric systems. Bergstrom
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(1996) provides a survey of the subject area and much of the empirical work.
A more recent discussion is contained in Bergstrom and Nowman (2006).

8 Conclusions

Research on ML estimation of continuous time systems has been ongoing in
the econometric and statistical literatures for more than three decades. But
the subject has received its greatest attention in the last decade, as researchers
in empirical finance have sought to use these models in practical applications
of importance in the financial industry. Among the more significant of these
applications have been the analysis of the term structure of interest rates
and the pricing of options and other financial derivatives which depend on
parameters that occur in the dynamic equations of motion of variables that are
most relevant for financial asset prices, such as interest rates. The equations
of motion of such variables are typically formulated in terms of stochastic
differential equations and so the econometric estimation of such equations
has become of critical importance in these applications. We can expect the
need for these methods and for improvements in the statistical machinery
that is available to practitioners to grow further as the financial industry
continues to expand and data sets become richer. The field is therefore of
growing importance for both theorists and practitioners.
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