
73

Chapter 2

asymptotiC properties of 
the Least squares estimator 
in LoCaL to unity proCesses 
with fraCtionaL Gaussian 
noise

Xiaohu wanga, weilin Xiaob and Jun yuc

aSchool of Economics, Fudan University, Shanghai, China, and Shanghai Institute of International 
Finance and Economics, Shanghai, China
bSchool of Management, Zhejiang University, Hangzhou, China
cSchool of Economics and Lee Kong Chian School of Business, Singapore Management University, 
Singapore, Singapore

AbstrAct

This chapter derives asymptotic properties of the least squares (LS) estimator 
of the autoregressive (AR) parameter in local to unity processes with errors 
being fractional Gaussian noise (FGN) with the Hurst parameter ∈H (0,1) . It 
is shown that the estimator is consistent for all values of ∈H (0,1) . Moreover, 
the rate of convergence is n 1−  when ∈H [0.5,1) . The rate of convergence is 
n H2−  when ∈H (0,0.5) . Furthermore, the limiting distribution of the cen-
tered LS estimator depends on h. When =H 0.5 , the limiting distribution 
is the same as that obtained in Phillips (1987a) for the local to unity model 
with errors for which the standard functional central limit theorem is applica-
ble. When h > 0.5 or when h < 0.5, the limiting distributions are new to the 
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literature. The asymptotic properties of the LS estimator with fitted intercept 
are also derived. Simulation studies are performed to check the reliability of 
the asymptotic approximation for different values of sample size.

Keywords: Least squares; local to unity; fractional Brownian motion; 
fractional ornstein–uhlenbeck process; fitted intercept; functional central 
limit theorem
JEL classification: C22

1. INtroductIoN
in this chapter, we consider the following model:

 X X c n t n, exp( / ), 1,..., ,t n t t n1ρ ε ρ= + = − =−  (1)

where c is a constant, ut tε σ= , ut is a fGn that has mean zero, variance one, and 
covariance function as

 k u u k k k k t s:
1
2

1 1 2 with ,u t s
H H H2 2 2γ ( )( ) ( ) ( )= = + + − −



 = −  (2)

and H 0,1( )∈ . the parameter H is known as the hurst parameter in the litera-
ture. when H = 0.5, it has k 0uγ ( )=  for any k 0≠ , in which case ut{ }  form 
a sequence of independent and identically distributed (i.i.d.) variables with the 
standard normal distribution N(0, 1). however, when H 0.5≠ , it has k 0uγ ( )≠  
for any k, meaning that ut{ }  have serial dependence. moreover, it has

 k H H k k~ (2 1) , for large .u
H2 2γ ( ) − −  (3)

that is kuγ ( )  decays at a hyperbolic rate as k goes to infinity. as a result, for the 

case of H > 0.5, it has k 0uγ ( )>  and ∑ γ ( )=∞
=−∞

∞
ku

k

, giving rise to the ter-

minology of “long-range-dependent” errors. in contrast, for the case of H < 0.5, 

it has k 0uγ ( )<  for k 0≠  and ∑ γ =
=−∞

∞
k( ) 0u

k

, giving rise to the terminology 

of “anti-persistent” errors.
the fGn ut has the same distribution as the increment of the fractional 

Brownian motion (fBm) B t( )H  that is a zero-mean Gaussian process with the 
covariance function

 B t B s t s t s t sCov ( ), ( )
1
2

, 0.H H H H H2 2 2( )( )= + − − ∀ ≥  (4)

that is u B t B t~ ( ) ( 1)t
H H− −  where ∼ stands for equivalence in distribution.
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model (1) is related to the local to unity model of phillips (1987a) and Chan 
and wei (1987) by replacing the noise where the classical central limit theorem is 
applicable with fGns. model (1) is also related to the fractional unit root model 
of sowell (1990) by replacing the ar coefficient of unity with the ar coefficient 
of local to unity. although we replace the I d( )  noise of sowell (1990) with the 
fGn, the results in this chapter also apply to I d( )  errors as it will become clear 
later. model (1) is also related to the model of park (2003) where m n1 /nρ = −  if  
we assume m is fixed in his model.

we consider two regressions to estimate the ar root ρn in model (1). the first 
is an ar regression without intercept fitted, which leads to the Ls estimator of 
ρn as

 X X X X Xˆ / / .n t
t

n

t t
t

n

n t
t

n

t t
t

n

1
1

1
2

1
1

1
1

2

1
∑ ∑ ∑ ∑ρ ρ ε= = +−
=

−
=

−
=

−
=

 (5)

the second is an ar regression with intercept fitted, giving the following Ls 
estimator of ρn

 

X X X X X

X X X X

/

/

,
n t

t

n

t t
t

n

n t
t

n

t t
t

n

1 1
1

1 1 1

2

1

1 1
1

1 1

2

1

 ∑ ∑

∑ ∑

ρ

ρ ε

( ) ( )

( ) ( )

= − −

= + − −

− −
=

− − −
=

− −
=

− −
=

 (6)

where X
n

X
1

t
t

n

1 1
1
∑=− −
=

.

the goal of this chapter is to derive the asymptotic properties of the two esti-
mators ˆnρ  and nρ  under the assumption of n→∞ . as it is well expected for 
local to unity model, the initial value of Xt significantly affects the finite sample 
distribution of ˆnρ  and nρ . to capture the impact of the initial value on asymp-
totics, we set the initial value of Xt to be X O np

H
0 ( )=  and

n
X

,H
p

0
0σ
π→−

where π0 is a constant (such as zero) or O 1p ( ) .
the rest of this chapter is organized as follows. section 2 reviews the results in 

the literature. the asymptotic properties of the normalized ˆn nρ ρ−  are developed 
in section 3. section 4 extends the results to the case when the intercept is fitted. 
section 5 examines the finite sample properties of the normalized ˆn nρ ρ−  and 

n nρ ρ− . section 6 concludes. the appendix collects proofs of the main results.
throughout the chapter, we use → → ⇒, ,

p d , and ∼ to denote convergence in 
probability, convergence in distribution, convergence in functional space, and 
equivalence in distribution, respectively. the notation nr[ ]  represents the integer 
part of nr.
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2. A LItErAturE rEVIEW
phillips (1987a) considers the following local to unity model

 X X v c n X O, exp( / ), (1),t n t t n p1 0ρ ρ= + = − =−  (7)

where vt{ }  is a strong mixing sequence with mixing coefficients αm that satis-

fies ∑ α <∞β−

=

∞

m
m

1 2/

1

 and vsup
t

t <∞β δ+
 for some β> 2  and δ> 0 . there are 

two important features in model (7). first, since ρ = − + −c n O n1 / ( )n
2 , the ar 

coefficient depends on n and converges to unity as →∞n . second, the func-
tional central limit theorem is applicable to { }vt . an interesting special case of 

model (7) is when { }vt  are i.i.d. with <∞β
E vt  for some β> 2 . in this case, 

as →∞n , it has

 
∫
∫

∫

∫
ρ ρ

{ }
( )− → =

+ −
n

J r dW r

J r dr

J c J r dr

J r dr
ˆ

( ) ( )

( )

(1) 2 ( ) 1 / 2

( )
.n n

d c

c

c c

c

0

1

0

1
2

2

0

1
2

0

1
2

 (8)

where J r( )c  denotes an ornstein–uhlenbeck (ou) process defined by the  
stochastic differential equation

 =− + =dJ r cJ r dr dW r J( ) ( ) ( ), (0) 0,c c c  (9)

with W(r) being a standard Brownian motion.
sowell (1990) considers the following unit root model with ρ = 1:

 ρ σ= + = − =−
−X X v v L X O, (1 ) , ~ (0,1), (1),t t t t

d
t t

i i d

p1

. . .

0   (10)

where L is the lag operator with − −L(1 ) d  defined as

 ∑( )− =
Γ +
Γ Γ +

∈ −−

=

∞

L
j d

d j
L d1

( )
( ) ( 1)

for ( 0.5,0.5).d

j

j

0

 

in this model, the error term vt is assumed to follow a fractionally integrated 
process of order d, which is referred to as an I(d) process in the literature. with ρ̂  
being the Ls estimator of ρ, sowell (1990) and marinucci and robinson (1999) 
show that, as →∞n ,

 
∫
∫

ρ( )− →n
W r dW r

W r dr
d =ˆ 1

( ) ( )

( )
, if 0,

d
0

1

0

1
2

 (11)

 

∫
ρ( )− → >n

B

B r dr
dˆ 1

1
2

(1)

( )
, if 0,

d
H

H

2

0

1
2

 (12)
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∫
ρ( )− →−

Γ +
Γ −

<n
H

H
H

B r dr
dˆ 1

(0.5 )
(1.5 )

( )
, if 0,H

d

H

2

0

1
2

 (13)

where = +H d 0.5 .1

setting c = 0 in (8) or setting d = 0 in (11) can lead to the well-known result for 
the unit root model obtained in phillips (1987b) as

 
∫
∫ ∫

ρ
( )

( )− → =
−

n
W r dW r

W r dr

W

W r dr
ˆ 1

( ) ( )

( )

1
2

(1) 1

( )
.

d
0

1

0

1
2

2

0

1
2

 

3. AsYmPtotIc ProPErtIEs
to develop the asymptotic properties of the centered Ls estimator ρ ρ−ˆn n  defined 

in (5), we first introduce the limit behavior of the partial sum process ∑
=

ut
t

nr

1

[ ]
 

for any [ ]∈r 0,1 . as = − −u B t B t( ) ( 1)t
H H , we have

 

∑ ∑{ }− −

=









⇒ →∞

−

=

−

=

−

n u n B t B t

n B nr

B
nr
n

B r n

~ ( ) ( 1)

([ ])

~
[ ]

( ), as

,

H
t

t

nr
H H H

t

nr

H H

H

H

1

[ ]

1

[ ]

 (14)

where equivalence in distribution comes from the self-similarity property of the 

fBm B t( )H . note that the sample path of ∑−

=
n uH

t
t

nr

1

[ ]
 is a function of ∈r [0,1]  

that is right-continuous with left limits. hence, the convergence result of the par-
tial sum sequence is built up in the space of D[0,1] , which is the space of all 
real valued functions on [0,1]  that are right-continuous with finite left limits, 
equipped with the skorokhod topology. the convergence results obtained in  
the rest of this chapter are all considered in the space of D[0,1]  with the same 
topology.

the convergence result in (14) is the source of the asymptotic theory devel-
oped in this chapter. sowell (1990) gives a similar weak convergence result for the 

partial sum process ∑
=

ut
t

nr

1

[ ]

 when ( )u I d~t ; see also marinucci and robinson 

(1999). therefore, all the results in this chapter applies to the case where ( )u I d~t .  
it is important to note that sowell (1990) uses the result of Davydov (1970) to 
establish the weak convergence while we do not need to resort to Davydov (1970) 
as our errors are normally distributed.
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the result in (14) compares with Donsker’s functional central limit theorem, 
which states that,

 ∑ ⇒ = →∞−

=

n W r B r n( ) ( ), as ,t
t

nr
0.5

1

[ ]
0.5  (15)

where t is a sequence of i.i.d. random variables with mean zero and variance one.
Define a fractional ou (fou) process through the following stochastic dif-

ferential equation

 =− + =dJ t cJ t dt dB t J( ) ( ) ( ), with (0) 0.c
H

c
H H

c
H  (16)

Cheridito et al. (2003) proved that, for t > 0, the differential equation (16) has 
a unique solution, taking the form of

 ∫= − −J t e dB s( ) ( ),c
H c t s

t
H( )

0
 

where the integral is a path-wise riemann–stieltjes integral. it is worthwhile to 
mention that, when H = 0.5, J t( )c

H  becomes the traditional ou process con-
sidered in phillips (1987a). if  in addition, c = 0, the process J t( )c

H  becomes a 
standard Brownian motion.

Lemma 1. Let X{ }t  be the time series generated by Model (1). Then, as →∞n ,

1. σ σπ⇒ +− −n X J r e( )H
nr c

H cr
[ ] 0 ;

2. ∑ ∫σ π⇒ +





− −

=

−n X J r e dr( )H
t

t

n

c
H cr1

1
0

0

1

;

3. ∑ ∫σ π⇒ +





− −

=

−n X J r e dr( )H
t

t

n

c
H cr1 2 2

1

2
0

2

0

1

;

4. ∑ ε−
−

=

n XH
t

t

n

t
2

1
1

5.

 

J e c J r e dr H

J e c J r e dr H

1 2 1 / 2, if 0.5

1 2 / 2, if 0.5

c
c

c
cr

c
H c

c
H cr

2
0

2

0
2

0

2

0

1

2
0

2

0
2

0

2

0

1

∫

∫

σ π π π

σ π π π

( )
( )
( ) ( )

( ) ( )
⇒

+



 − + +



 − =

+



 − + +



 >











− −

− −

;

 ∑ ε σ→−−
−

=

n X / 2t
t

n

t

p
1

1
1

2 , if <H 0.5 .

remark 1. This lemma is related to Lemma 1 in Phillips (1987a) with several differ-
ences. First, the initial condition π0, which is the limit of σ−n X /H

0 , plays explicit 
roles in all the limits except the last one. Second, compared with Lemma 1.a–1.c of 
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Phillips (1987a), J r( )c  is replaced with J r( )c
H  in our Lemma, and the orders of 

∑ =
X X,nr tt

n

[ ] 1
, and ∑ =

Xtt

n 2

1
 becomes nh, − +n H1 , and +n H1 2 , respectively. Third, 

both the order and the limit of ∑ ε−=
Xt tt

n

11
 depend on H. When ≥H 0.5 , the order 

of ∑ ε−=
Xt tt

n

11
 is n H2 , whereas, when H < 0.5, the order becomes n. In addition, 

the limit of ∑ ε−=
Xt tt

n

11
 has one more term (i.e., σ− / 22 ) when H = 0.5 than when 

H > 0.5, and three more terms than <H 0.5 . These differences root in the distinct 
properties of the FGN, ut, when the Hurst parameter H takes different values. For 

example, when =H 0.5 , the limit of ∑ ε−
=

n H
tt

n2 2

1
 is σ2 , whereas, when H > 0.5, 

the limit of ∑ ε−
=

n H
tt

n2 2

1
 is zero.

remark 2. When H = 0.5, it has =J r J r( ) ( )c
H

c . If we further let π = 00 , the 
results in Parts 1–3 of Lemma 1 above becomes exactly the same as those in Lemma 
1.a–1.c in Phillips (1987a). Moreover, the result in Part 4 of Lemma 1 above can 
be written as

 ∑ ∫ ∫ε σ σ( )⇒ + − =−
−

=

n X J c J r dr J r dW r(1) 2 ( ) 1 / 2 ( ) ( ),t
t

n

t c c c
1

1
1

2 2

0

1
2 2

0

1

which is the same as that in Lemma 1.d of Phillips (1987a).

remark 3. The convergence result in Part 1 of Lemma 1 is the key to the develop-
ment of the results in the rest of the Lemma. With slight adjustments, the result 
in Part 1 can be extended to the case where ut becomes an I(d) process. When 

∑Γ −
+ Γ + Γ −









 ⇒−

−

=
u I d n

d
d d d

u B r~ ( ),
(1 2 )

(1 2 ) (1 ) (1 )
( )t

H
t

H

t

nr
1/2

1

[ ]

 as →∞n . This is 

a special case of a more general result obtained in Taqqu (1975). Consequently, 

with the use of the continuous mapping theorem, it can be proved easily that

 

σ σπ

Γ −
+ Γ + Γ −











⇒ +
Γ −

+ Γ + Γ −











−

−

−

−

n
d

d d d
X

J r
d

d d d
e

(1 2 )
(1 2 ) (1 ) (1 )

( )
(1 2 )

(1 2 ) (1 ) (1 )

.

H
nr

c
H cr

1/2

[ ]

1/2

0

 

theorem 2. Let X{ }t  be the time series generated by (1) and (2). Then, as →∞n ,  
if H = 0.5,

 
∫

∫
ρ ρ

π π π

π

( )
( )

( ) ( )
− ⇒

+



 − + +



 −

+





− −

−
n

J e c J r e dr

J r e dr
ˆ

1 2 1 / 2

( )
;n n

c
c

c
cr

c
cr

0

2

0
2

0

2

0

1

0

2

0

1  (17)

if H > 0.5
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∫

∫
ρ ρ

π π π

π

( )
( )

( ) ( )
− ⇒

+



 − + +





+





− −

−
n

J e c J r e dr

J r e dr
ˆ

1 2 / 2

( )
;n n

c
H c

c
H cr

c
H cr

0

2

0
2

0

2

0

1

0

2

0

1  (18)

if H < 0.5,

 

∫
ρ ρ

π
( )− ⇒

−

+





−
n

J r e dr
ˆ

1/ 2

( )
.H

n n

c
H cr

2

0

2

0

1  (19)

remark 4. When we compare Theorem 2 in this chapter to Theorem 1 in Phillips 
(1987a), we have a few observations. First, the initial condition π0 plays significant 
roles in all the limits in Theorem 2. Second, when H = 0.5 and π = 00 , ρ ρ−ˆn n  has 
the same convergence rate and the same limiting distribution as those in Phillips 
(1987a). Third, there is a discontinuity in our limit theory when H passes 0.5. When 
H > 0.5, the convergence rate of ρ ρ−ˆn n  is n, which is the same as that when H = 
0.5. However, the numerator of the limit has one term less comparing to the case of 
H = 0.5. Furthermore, When H < 0.5, the rate of convergence of ρ ρ−ˆn n  becomes 
n H2 , which is slower than that when ≥H 0.5 . The numerator in the limit has three 
terms less than that when H = 0.5.

remark 5. If c = 0, then ρ = − =c nexp( / ) 1n . In this case, Model (1) gives a 
unit root process with FGNs. With the further assumption of =X 00  that leads to 
π = 00 , the results in Theorem 2 become

 

∫
ρ ρ( )− ⇒ >n

B

B r dr
Hˆ

1
2

(1)

( )
, when 0.5,n n

H

H

2

0

1
2

 (20)

and

 

∫
ρ ρ( )− ⇒

−
<n

B r dr
Hˆ

1/ 2

( )
, when 0.5.H

n n
H

2

0

1
2

 (21)

The result in (20) is the same as that developed in Sowell (1990) and Marinucci and 
Robinson (1999) for the unit root process with I(d) errors when = − >d H 1/ 2 0. 
However, when H < 0.5 our limiting result in (21) is slightly different with 
that obtained in Sowell (1990) and Marinucci and Robinson (1999) when 
= − <d H 1/ 2 0 ; see (13) in this chapter. The difference arises because the 

I(d) process used in Sowell (1990) has different variance and long‐run variance 
from those of the FGN. The variance and the long‐run variance of an I(d) pro-

cess is 
Γ −
Γ −

d
d

(1 2 )
(1 )2

 and 
Γ −

+ Γ + Γ −
O n

d
d d d

( )
(1 2 )

(1 2 ) (1 ) (1 )
H2 , respectively. The ratio of 

Γ −
Γ −

d
d

(1 2 )
(1 )2

 and 
Γ −

+ Γ + Γ −
d

d d d
(1 2 )

(1 2 ) (1 ) (1 )
, divided by 2, gives
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+ Γ +
Γ −

=
Γ +
Γ −

d d
d

H H
H

(1 2 ) (1 )
2 (1 )

(0.5 )
(1.5 )

,

which is the numerator of the limit in (12) that has been derived by Marinucci and 
Robinson (1999).

4. AsYmPtotIc ProPErtIEs WItH FIttEd INtErcEPt
in this section, we assume that, while the data are generated from model (1), it 
is not known apriori that the intercept is zero. hence, an ar regression with an 
intercept is estimated as

 α ρ ε= + +−X X ,t n t t1  (22)

which leads to the Ls estimator of ρn as in (6).
theorem 3 presents the large sample theory of ρn  for various values of H.

theorem 3. Let X{ }t  be the time series generated by Model (1) and ρn  be the 
estimator of the AR root from Model (22) with fitted intercept. Then, as →∞n , 
if H = 0.5,
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if H > 0.5,
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if H < 0.5,
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remark 6. When H = 0.5 and π = 00 , it has ( ) ( )=B r W rH  and
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Appling a result in Phillips (1987a) that

 ∫ ∫( )+ − =J c J r dr J r dW r(1) 2 ( ) 1 / 2 ( ) ( ),c c c
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1
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0

1

we obtain the limiting distribution of ρ ρ( )−n n n  as
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where ∫= −J r J r J s ds( ) ( ) ( )c c c
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 is the de‐meaned OU process. This limiting distri-

bution is the same as that given in Remark 3 of Mikusheva (2015) for the local to 
unity model with weakly dependent errors.

remark 7. Theorem 3 shows that the large sample theory of the centered LS estima-
tor ρ ρ−n n  not only depends on the values of h, but also on the initial condition π0.

in Corollary 4, it is shown that, when c = 0 that makes the model (1) a unit 
root process, the limiting distributions of ρ ρ−n n  becomes independent of the 
initial condition.

corollary 4. Let X{ }t  be the time series generated from Model (1) with c = 0. In 
this case, it has ( )=J r B r( )c

H H . Then, as →∞n ,
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if H > 0.5
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if H < 0.5,
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remark 8. The large sample result in (26) of Corollary 4 is well‐known in the litera-
ture; see, for example, Equation (17.4.28) in Hamilton (1994). Loosely speaking, 
the large sample results in (27) and (28) of Corollary 4 extend those of Sowell 
(1990) from the estimated model without fitted intercept to the estimated model 
with fitted intercept.

5. moNtE cArLo studIEs
to check how well the limit distribution perform in finite sample, we carry out 
several monte Carlo studies. in all studies, we simulate data from model (1). 
four different sample sizes are considered, namely, n = 32, 512, 2,048, and 8,192. 
three values are considered for H, namely H = 0.5, 0.9, and 0.1.2 two values are 
considered for c, namely, c = 10 and 5.

5.1. Without Fitted Intercept

for each time series simulated, we estimate ρn by ρ̂n  and calculate ρ ρ( )−n ˆn n  
when ≥H 0.5  and ρ ρ( )−n ˆH

n n
2  when <H 0.5 . the 200,000 replications are 

used to obtain density of ρ ρ( )−n ˆn n  or ρ ρ( )−n ˆH
n n

2 .
figs. 1 and 2 display the density of ρ ρ( )−n ˆn n  when H = 0.5 and c = 10 and 5. 

in each of the two values of c, the densities are almost identical for all n, suggesting 
the limit distribution provides accurate approximations to the finite sample distri-
bution when the sample size is as small as 32. in all cases, the density is left-skewed.
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Fig. 1. the Density of ρ ρ( )−n ˆn n .
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figs. 3 and 4 display the density of ρ ρ( )−n ˆn n  when H = 0.9 and c = 10 and 
5. for both values of c, the density when n = 32 is very different from that when 
n = 8,192. the density for n = 2,048 is very close to that for n = 8,192. for small 
values of n, the density is left‐skewed. interestingly, the density becomes right-
skewed when n is larger. although the same rate applies to H = 0.5 and H > 
0.5, the convergence of the density is much slower when H > 0.5 than that when  
H = 0.5. this study indicates that the asymptotic distribution approximates the finite 
sample distribution less accurately when H > 0.5 than when H = 0.5 if n is small.

figs. 5 and 6 display the density of ρ ρ( )−n ˆH
n n

2  when H = 0.1 and c = 10 and 
5. for both values of c, the density when n = 32 is hugely different from those for 
other values of n, suggesting one would make a terrible mistake by using the limit 
distribution to approximate the finite sample distribution when n = 32. however, 
the densities for n = 2,048, 8,192 are close to each other. for all values of n, the 
density of ρ ρ( )−n ˆH

n n
2  is symmetric.

5.2. With Fitted Intercept

for each time series simulated, we now estimate ρn by ρn  and calculate ρ ρ( )−n n n  
when ≥H 0.5  and ρ ρ( )−n H

n n
2

  when H < 0.5. the 200,000 replications are 
used to obtain density of ρ ρ( )−n n n  or ρ ρ( )−n H

n n
2

 .
figs. 7 and 8 display the densities of ρ ρ( )−n n n  when H = 0.5 and c = 10 and 5. 

 for every value of c, the densities are almost identical for all n, suggesting that 
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Fig. 2. the Density of ρ ρ( )−n ˆn n .
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Fig. 3. the Density of ρ ρ( )−n ˆn n .
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Fig. 5. the Density of ρ ρ( )−n ˆn n
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Fig. 7. the Density of ρ ρ( )−n n n .
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the limiting distribution provides accurate approximations to the finite sample 
distribution when the sample size is as small as 32. in all cases, the density is 
left‐skewed. Compared with figs. 1 and 2, the densities in figs. 7 and 8 are more 
spread. this is expected as the intercept is also fitted.

figs. 9 and 10 display the densities of ρ ρ( )−n n n  when H = 0.9 and c = 10, 
5. for both values of c, the density when n = 32 is very different from that when  
n = 8,192. the density for n = 2,048 is very close to that for n = 8,192. the den-
sities are right-skewed for all n. although the same rate applies to H = 0.5 and 
H > 0.5, the convergence in density is much slower when H > 0.5 than when  
H = 0.5. this study indicates that the asymptotic distribution approximates the 
finite sample distribution less accurately when H > 0.5 than when H = 0.5 if  n 
is small. Compared with figs. 3 and 4, the densities in figs. 9 and 10 are more 
spread, as expected.

figs. 11 and 12 display the density of ρ ρ( )−n H
n n

2
  when H = 0.1 and  

c = 10 and 5. for both values of c, the density when n = 32 is hugely different from 
those for other values of n, suggesting that one would make a terrible mistake 
by using the limiting distribution to approximate the finite sample distribution 
when n = 32. however, the densities for n = 2,048 and 8,192 are nearly identical. 
the density is symmetric for all n. Compared with figs. 5 and 6, the densities in 
 figs. 11 and 12 are more spread, as expected.
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6. coNcLusIoNs
in this chapter, we study the properties of the Ls estimator (with and with-
out the intercept fitted) of the ar parameter in local to unity processes when 
errors are assumed to be fGns with the hurst parameter H. it is shown that 
the estimator is consistent when ∈H (0,1) . moreover, the rate of convergence is 
n when ∈H [0.5,1) , whereas the rate of convergence is n H2  when ∈H (0,0.5).  
this result suggests that the estimator has a slower rate of consistency when 
∈H (0,0.5)  than when ∈H [0.5,1) .
furthermore, the limiting distribution of  the centered Ls estimator depends 

on H. when H = 0.5, the limiting distribution is the same as that obtained in 
phillips (1987a) for the local to unity model with errors for which the stand-
ard functional central theorem is applicable. when H > 0.5 or when <H 0.5 , 
the limiting distributions are new to the literature. the limiting distribution for  
H > 0.5 has one term less than that for H = 0.5. the limiting distribution for 
H < 0.5 has three terms less than that for H = 0.5. simulation studies are per-
formed to check the reliability of  the asymptotic approximation. when H > 0.5, 
a large sample size is needed for the limiting distribution to provide an accurate 
approximation to the finite sample distribution. when H = 0.5, a small sample 
size is enough for the limiting distribution to provide an accurate approxima-
tion to the finite sample distribution. when H < 0.5, a moderate sample size is 
needed for the limiting distribution to approximate the finite sample distribu-
tion accurately.
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APPENdIX

proof of Lemma 1. to prove Lemma 1.1, we first note that
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where the fifth equation is from the similarity property of the fBm. we then have
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where the third equation is from the taylor expansion of ( )− −e c r s n/  and the last 
equation comes from the definition of the fou process ( )J t n/c

H  given in (16). 
hence, for any ∈r [0,1] .
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since [ ]
−n XH

nr  is a Gaussian process with a finite first-order absolute moment, 
it is easy to show that the above result holds uniformly in ∈r [0,1]  under the 
skorokhod topology. this proves Lemma 1.1.

then, the convergence results in Lemmas 1.2 and 1.3 can be obtained straight-
forwardly by using the continuous mapping theorem (Billingsley, 1968, p. 30).

to prove the results in Lemmas 1.4 and 1.5, we first have
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from the results in Lemmas 1.1–1.3, we have
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whereas, when H > 0.5, it has >H2 1 . thus, ∑ ε ( )=
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in contrast, when H < 0.5, <H2 1 , thereby, ∑ ε ( )=
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the proof of Lemma 1 is completed.

Proof of theorem 2: the theorem is the direct consequence of Lemmas 1.3–1.5. 
in particular, (17) and (18) follow from Lemmas 1.3 and 1.4 and (19) follow from 
Lemmas 1.3 and 1.5.

Proof of theorem 3: the centered Ls estimator given in (6) has the following 
representation,
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from the results in Lemmas 1.2 and 1.3, when →∞n , the large sample theory  
of the denominator of ρ ρ−n n  is obtained as
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Xt tt

n

11
 and 

∑ ∑ ε( )( )− −
−= =

n Xtt

n

tt

n1
11 1

, respectively. the second term, based on the results 
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in equation (14) and in Lemma 1.2, has the order of n H2  and the following large 
sample property as →∞n :
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whereas the order of the first term, that is ∑ ε−=
Xt tt

n

11
, is n H2  when ≥H 0.5 , 

and n when H < 0.5, as proved in Lemmas 1.4 and 1.5. therefore, when ≥H 0.5  
the two terms in the numerator of ρ ρ−n n  have the same magnitude and are 
equally important as →∞n . in this case, the numerator has the order of n H2  
and the limit can be obtained straightforwardly from Lemma 1.4. note that the 

limits of ∑ ε−=
Xt tt

n

11
 are different with each other when H = 0.5 and H > 0.5.

in contrast, when H < 0.5, the first term in the numerator of ρ ρ−n n  domi-
nates the second term. in this case, the numerator has the order of n and the fol-
lowing limit as →∞n :
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where the last limit comes from the result in Lemma 1.5.
from the limits obtained above of the numerator and the denominator of 

the estimator ρ ρ−n n , the large sample theory presented in theorem 3 can be 
obtained straightforwardly. the proof of theorem 3 is completed.

NotEs

1. equations (11)–(13) are different from those reported in theorem 3 in sowell (1990). 
this is because, as remarked in section 3 of marinucci and robinson (1999), the partial 
sum of an ( )I d  process, adjusted an appropriate normalizing term, should converge to 
the type i fBm denoted by ( )B tH  in this chapter, not to the type ii fBm adopted in 
sowell (1990).

2. the choice of H = 0.1 is empirically relevant for modeling logarithmic realized vola-
tility, as found in Gatheral et al. (2018) and wang et al. (2021).
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